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Evaluation of localization precision by proposed
quasi-spherical nested microphone array in combination
with multiresolution adaptive steered response power

Ali Dehghan Firoozabadi1∗ , Pablo Irarrazaval2,3,4 ,
Pablo Adasme5 , David Zabala-Blanco6 , Cesar Azurdia-Meza7

Multiple sound source localization in noisy and reverberant conditions is one of the important challenges in the speech
signal processing. The aim of this article is three-dimensional sound source localization in undesirable scenarios. For the
localization algorithms, the spatial aliasing is one of the destructive factors in reducing the accuracy. Firstly, a 3D quasi-
spherical nested microphone array (QSNMA) is proposed for eliminating the spatial aliasing. Since the speech signal has
the windowed-disjoint orthogonality property, the speech information differs in terms of the frequency bands. Then, the
Gammatone filter bank is introduced for the speech subband processing. In the following, the multiresolution steered response
power (SRP) algorithm is adaptively implemented on subbands with the phase transform (PHAT)/maximum likelihood
(ML) weighted functions based on the levels of the noise and reverberation. The peaks of the multiresolution adaptive SRP
(MASRP) algorithm are extracted in each subband based on the number of speakers for continuous time frames. Finally, the
distribution of these peaks are calculated in each subband and they are merged by the use of weighted averaging method.
The final 3D speakers locations are estimated by extracting the peaks in the final distribution. The proposed QSNMA-
MASRP(PHAT/ML) algorithm is evaluated on real and simulated data for 2 and 3 simultaneous speakers in noisy and
reverberant conditions. The proposed method is compared with SRP-PHAT, spectral source model-deep neural network,
and spherical harmonic temporal extension of multiple response model sparse Bayesian learning algorithms on different range
of signal-to-noise ratio and reverberation time. The mean absolute estimation error, averaged standard deviation for absolute
estimation error, and computational complexity results show the superiority of the proposed method.
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1 Introduction

In the recent years, many researches have been done on
the signal processing related to smart meeting rooms and
robotics, which are considered as important fields for the
source localization algorithms. Localization and tracking
[1] are two important categories of these processes, which
are obtained directly for sound source localization (SSL)
implementations, and indirectly for speech enhancement
applications by steering the beampattern to the speaker
direction for preparing the better quality of recorded sig-
nals. Also, other applications are be for robotic systems,
where the robots follow the speakers in order to realize
some specific tasks. Therefore, they should first localize
the speakers’ locations and after that, they are able to
record the voice instructions and commands. In the si-
multaneous multi-speakers condition, it is important the
robots find the true speaker and follow the instructions.
The localization algorithms are used for sound sources as
human speakers or noise sources such as fan, air condi-
tion, car, etc. Also, the localization algorithms are im-

plemented for one or multiple speakers scenarios, where
unknown number of speakers is another challenges in this
area. The accuracy of the localization algorithms is highly
dependent on the noise and reverberation, which make
uncertainly in the final results. In addition, the detection
of the speech signal overlapped area and the implemen-
tation of the localization methods on single or multiple
speakers regions are other important factors for localiza-
tion algorithms. Most of the localization methods use the
microphone array for digital audio signal recording [2].
The advantages of microphone array are pattern control
in the desired direction and information redundancy be-
cause of the number of microphones. But spatial aliasing
is the disadvantage to use the microphone arrays because
of inter-microphone distances.

In many applications, SSL is a key part of signal pro-
cessing systems, where still there are many challenges in
this area. SSL is used in many recent researches such as:
speaker separation [3], steering cameras to speaker di-
rection in smart rooms [4,5], source localization in low
light areas where video systems cannot be used [6], and
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source identification in robotic systems [7,8]. Although
many methods have been proposed in the recent years,
but multiple SSL in noisy and reverberant environments
is still an important challenge in the speech signal pro-
cessing. There are two main categories of SSL algorithms
due to the received signals by microphone array. Both cat-
egories use the generalized cross-correlation (GCC) cal-
culation for the pairs of microphone array signals [9]. The
first category of methods are one-step algorithms based
on the steered response power (SRP), where the aim is
maximizing the output of this function due to a series of
candidate source locations [10,11]. The SRP function is
calculated for all candidate locations of the search space
and its global maxima is considered as the estimated
source location, which contains high computational com-
plexity process. One of the important keys in the use of
SRP algorithm is the synchronization of recorded signals
from microphone array to prepare the accurate results.
The SRP method has high computational complexity in
the implementations but it works accurately in the noisy
and reverberant conditions. In contrast, there are two-
step methods based on the GCC function for SSL [12].
In the first step, the time difference of arrival (TDOA)
values are calculated due to the peak positions of GCC
function for each microphone pairs [13]. Then, the direc-
tion or 3D location of speakers are estimated by the use of
these TDOAs and the geometry of the microphone array,
which considers such criteria as hypercone fitting problem
[14]. The TDOA-based methods for SSL are very sensitive
against of the noise and reverberation and their accuracy
is greatly diminished, but they can be implemented faster
due to the complexity. Also, the SSL methods are divided
into the parametric and non-parametric algorithms. The
parametric methods [15] are the beamformer and maxi-
mum likelihood (ML) functions but the non-parametric
methods [16] are based on the subband signals and eigen-
value analysis, where two important algorithms are multi-
ple signal classification (MUSIC) [17] and estimating sig-
nal parameters via rotational invariance technique (ES-
PRIT) [18], which have higher resolution in comparison
with parametric methods.

In the last decade, many algorithms have been pro-
posed for single and multiple speaker localization in in-
door environments. Some methods use the two-microphone
structure and the others consider the microphone array
for audio recording. In addition, the localization algo-
rithms are proposed for direction of arrival estimation
(DOA) estimation or 3D SSL. In the following, the most
important researches for SSL are explained. Byoungho
et al ]; proposed a multiple speaker localization method
based on a spatial mapped GCC function [19]. This
method uses the GCC function for SSL but the source lo-
cations are not estimated directly based on the calculated
TDOAs and a spatial mapping is considered in the local-
ization procedure. In the presented method, the source
locations are estimated by the use of spatial mapped func-
tion. The spatial functions are transferred to other coor-
dinate and a mathematical expression is obtained for the

source location by the summation of mapped GCC func-
tions. The maximums of the summed GCC function are
selected as the source locations.

Yusuke et al proposed the histogram mapping method
for multiple SSL based on the TDOA calculations [20].
Firstly, the TDOAs are estimated by the use of each pair
of microphone signals. Then, the DOAs are calculated by
averaging the estimated histograms. This method does
not need any initial estimation of speaker DOAs. Fi-
nally, the mapping stage is implemented on the estimated
DOAs for positioning the speakers.

Mojtaba et al proposed a method based on the relative
transfer function (RTF) for SSL in hearing aid system
applications [21]. This article explains the binaural aid
systems for target DOA estimation in the noise-free con-
ditions. A system based on ML function is proposed for
DOA estimation, which models the shadowing effects of
user’s head on microphone signals as a RTF between hear-
ing aid system of microphone signals. Three various RTF
methods are presented with different precisions and res-
olutions. Also, the presented DOA estimators are shown
based on the inverse discrete Fourier transform to be able
for calculation the ML computational complexity.

Nikolaos et al proposed a perpendicular cross-spectra
fusion function for multiple simultaneous SSL by the use
of microphone array [22]. In the presented work, the per-
pendicular cross-spectra fusion method is introduced as
a novel algorithm for DOA estimation, which uses the
analytic formulas in time-frequency (TF) domain for es-
timating the speakers directions. The proposed method
prepares the various candidate DOAs in each TF point
in addition to estimating the parallel speakers locations.
Also, a coherence criteria based on the divergence prop-
erty of DOA estimators is presented for evaluating the
reliability of different parts of speech signal, which per-
mits to consider just the TF bins with high quality of
information. This criteria prepares the high precision for
multiple SSL in undesirable noisy and reverberant condi-
tions.

Ning et al presented a binaural SSL method by combi-
nation the spectral source model and deep neural network
(SSM-DNN) [23]. A few model-based methods have been
proposed for simultaneous SSL in adverse environmental
conditions. In this presented work, a new framework is
proposed for simultaneous binaural SSL, which consid-
ers a combination of model-based information of speech
spectral features and DNN structure. Firstly, a model for
target and another for background sources are selected in
the phase training step by the use of extracted spectral
features. If the background source identity is unknown, a
universal model can be considered for this condition. In
the next step, the source models are considered jointly for
mixed observations and improving the localization proce-
dure by the use of weighed azimuth selection with a DNN-
based localization system. Finally, the proposed method
uses the combination of model-based and data-driven in-
formation for introducing a single computational frame-
work for SSL. The presented method works accurately
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in reverberant scenarios with the presence of interfering
noise sources.

Wei and Huawei proposed a simultaneous SSL method
for reverberant conditions by the use of spherical har-
monic Bayesian learning [24]. In the recent years, the
spherical localization methods have been proposed based
on three-dimensional microphone array. The performance
of sparse methods is decreased for multiple SSL in in-
door conditions due to the reverberation. In this pre-
sented work, a sparse-based multiple localization method
is proposed for reverberant environments, which consid-
ers the spherical harmonic temporal extension of multiple
response model sparse Bayesian learning (SH-TMSBL)
for SSL. The precision of SSL algorithms are increased
by the use of 3D microphone structure for array sig-
nal processing in spherical harmonic domain. The results
show the accuracy of the presented method in indoor
reverberant conditions. In this article, a novel method
for three-dimensional multiple simultaneous SSL is pre-
sented by use of the proposed 3D quasi-spherical nested
microphone array (QSNMA) in combination with the
multiresolution adaptive SRP algorithm based on the
Gammatone filter bank, which is adaptively implemented
with phase transform (PHAT)/ML weighted functions
(MASRP(PHAT/ML)). The microphone array advantage
is information redundancy because of the number of mi-
crophones, and its disadvantage is the spatial aliasing
due to the inter-microphone distances. The spatial alias-
ing decreases the precision of the localization algorithms.
Firstly, a 3D QSNMA is proposed as a solution for elimi-
nating the spatial aliasing. The inter-microphone distance
is adjusted in the proposed QSNMA to consider the spe-
cific microphone pairs for each subarray, which avoids to
have spatial aliasing. Also, this nested microphone array
(NMA) decreases highly the computational complexity
by selecting the specific microphone pairs for each sub-
band. The speech is a non-stationary and wideband sig-
nal with windowed-disjoint orthogonality (W-DO) prop-
erty [25], which means the lower frequency bands have
more spectral information. In the case of several simulta-
neous speakers, each microphone receives a mixed signal
from the speakers. As long as the time representation
(waveform) of the each microphone signal shows a mixed
and overlapped version of the speech signals from indi-
vidual speakers, there is no overlap between the signals
of the speakers in many of the TF points. Then, each TF
point can be considered with high probability just for one
speaker based on the W-DO property. Then, the Gamma-
tone filter bank, as a human hearing based filter, is pro-
posed for subband processing of microphone array signals.
In the following, the multiresolution SRP algorithm is im-
plemented on the microphone signals for each subband,
and adaptively, by the use of PHAT/ML weighted func-
tions. The largest peaks for the MASRP(PHAT/ML) al-
gorithm are extracted in each subband based on the num-
ber of speakers, and this process is repeated for contin-
ues time frames. Finally, the MASRP(PHAT/ML) peaks
histogram is calculated for each subband, and the final

histogram is obtained by the fusion between subband his-
tograms with the weighted averaging method. The first
N-peaks in the final histogram are selected as the speak-
ers locations. As initial work [26], we introduced this idea
briefly on the simulated data for 2 simultaneous speakers
on the specific environmental conditions. In this article,
the proposed algorithm is explained comprehensively by
the extended formulas, and the proposed method is imple-
mented on the real data for 2 and 3 simultaneous speak-
ers. Also, the accuracy of the proposed method is evalu-
ated by the mean absolute estimation error (MAEE) cri-
teria on the fixed and variable range of signal-to-noise ra-
tio (SNR) and reverberation time. In addition, the SSM-
DNN method is included in the results section, and the
computational complexity of the proposed algorithm is
compared with other previous works, which shows the su-
periority of the proposed QSNMA-MASRP(PHAT/ML)
algorithm based on the high accuracy and acceptable
computational complexity.

We present the microphone signal model and the pro-
pose a quasi-spherical nested microphone array. After
showing the proposed localization algorithm based on the
Gammatone filter bank, multiresolution SRP, and adap-
tive use of PHAT/ML weighted functions the simulations
and the real data are discussed.

2 Microphone signal model and
proposed quasi-spherical NMA

The microphone signal modeling is a principal part of
the implementation of the localization algorithms. The
microphone signal models are explained below and pro-
posed 3D quasi-spherical NMA as a proper tool for elim-
ination the spatial aliasing in the localization algorithms
is introduced.

2.1 Microphone signal model

In simulations for the speech signal processing, spe-
cially localization algorithms, the microphone signal model
is one of the important factors for the evaluation of the
proposed algorithms. The selected model should prepares
the conditions similar to real environments. Then, the
ideal and real models are considered for the microphone
signals in the simulations. In the ideal model, it is as-
sumed that the signal received by microphone is a weak-
ened and delayed version of the speech source signal. This
model is mostly selected for outdoor scenarios, which is
expressed as follows

xm(t) =
1

rm
s(t− τm) + v̆m(t) , (1)

where xm(t) is the signal received by m-th microphone,
τm is the time delay, rm is the distance between the
source and m-th microphone, s(t) is the speech source
signal, and v̆m(t) is the additive noise in m-th micro-
phone. This model is named ideal because the reverber-
ation and reflective surfaces effects are not considered.
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Therefore, it cannot model the recorded speech signals
in indoor conditions. In contrast, the real model is pre-
sented for microphone signals, which contains the room
reverberation effects. The real model for microphone sig-
nals is expressed as follows

xm(t) =
1

rm
s(t− τm) ∗ γm(t) + v̆m(t) , (2)

where γm(t) is the impulse response of m-th microphone
to particular source. Symbol ∗ denotes the convolution
operator, which contains the reverberation and all reflec-
tive effects in the indoor conditions. The signal received
by m-th microphone is expressed as the convolution of
this ”room impulse response” and the source signal, in-
cluding the noise. In addition, the near-field and far-field
assumptions are defined for microphone signals. In the
near-field assumption, the speech signal arrives to the
microphone array spherically due to the short distance
between the source and microphone array in comparison
with array dimensions. But in the far-field assumption,
the speech signals reach to the microphone as a flat shape
because of the greater distance. The near field assumption
is considered in the evaluations based on the environmen-
tal conditions, shown in Fig. 1.

s t1( )
s t2( )

x tm( )

MICm
MIC1

MIC3

x t1( )

Fig. 1. The near-field assumption for microphone signals in the
proposed localization algorithms

2.2 The proposed quasi-spherical NMA

The microphone array provides the suitable informa-
tion due to the many numbers of microphones, but the
spatial aliasing appears as a disadvantage because of
the inter-microphone distances. The spatial aliasing de-
creases the accuracy of the localization algorithms due
to the destruction of speech spectral information. The
nested microphone array is introduced to solve this prob-
lem. The nested microphone array is mostly used lin-
early in speech enhancement algorithms for noise elim-
ination of a speech signal [27], but the linear array is not
useful for 3D SSL. In this section, a 3D quasi-spherical
NMA is proposed for three-dimensional SSL algorithms.
This array increases the localization accuracy in combina-
tion with multiresolution adaptive SRP(PHAT/ML) al-
gorithm. Fig. 2 shows the block diagram of the proposed

QSNMA-MASRP(PHAT/ML) algorithm for 3D multiple

simultaneous SSL, where the NMA part is specified in the

left side.

The inter-microphone distance (d) for each subarray

should be adjusted to the condition d < λ/2 (where λ is

the speech signal wavelength for the maximum frequency

component in each subband) to avoid the spatial aliasing.

In the proposed QSNMA, the inter-microphone distances

are adjusted in a symmetrical way to have the same accu-

racy for speakers in different directions. The speech signal

is considered for the following frequency range B = 0− 8

kHz. The proposed QSNMA is structured as 4 subar-

rays, each one to cover a part of speech spectral compo-

nents. Also, the sampling frequency is selected as based

on the maximum speech signal frequency to comply the

Nyquist condition. The first subarray is designed to cover

the frequency range of B1 = 4 − 8 kHz. Then, the cen-

tral frequency for the analysis filter H1(z) and the inter-

microphone distances are estimated as fc1 = 6 kHz and

d1 < 2.3 cm respectively. The second subarray is designed

for the frequency range B2 = 2−4 kHz, to avoid the spa-

tial aliasing. Therefore, the microphones in the proposed

nested array are adjusted to provide the central frequency

fc2 = 3 kHz for the filter H2(z) and the inter microphone

distance is estimated as d2 = 2d1 < 4.6 cm. The third

subarray for frequency range B3 = 1 − 2 kHz with the

filter H3(z) has the central frequency fc3 = 1.5 kHz. The

inter-microphone distance is selected as d3 = 4d1 < 9.2

cm. Finally, the parameters of the forth H4(z) subarray

are d4 = 8d1 < 18.4 cm and fc4 = 0.5 kHz. Figure 3

shows the proposed 3D QSNMA with M = 18 micro-

phones, and its diameter is 18.4 cm.

The proposed QSNMA is designed such a way to pre-

pare a proper microphone pairs for each subband. Fig-

ure 4 shows the designed subarrays for each subband re-

lated to the analysis filters. The first subarray is designed

for the analysis filter H1(z), which contains the micro-

phone pairs (m1,m2), (m2,m3), (m3,m4), (m4,m5),

(m5,m6), (m6,m7), (m7,m8), and (m8,m1). The mi-

crophone pairs (m9,m13), (m10,m14), (m11,m15),

and (m12,m16) are structured for the second subar-

ray and analysis filter The third subarray contains the

microphone pairs (m13,m18), (m14,m18), (m15,m18),

(m16,m18), (m9,m17), (m10,m17), (m11,m17), and

(m12,m17), which are designed for the analysis filter

Finally, the microphone pairs (m9,m15), (m12,m14),

(m11,m13), (m10,m16), and (m17,m18) are used for

the forth subarray.

Analysis filters are considered for each subarray to pre-

pare the proper frequency components for the related mi-

crophone pairs to eliminate the spatial aliasing. A multi-

rate sampling with down-samplers are required to design

the analysis filters Hi(z) [27]. Figure 5 shows the filters

together with down-samplers Di as a tree structure. Each

level of the tree contains a low-pass filter (LPF) high-pass

filter (HPF) and down-sampler Di(↓ 2).



154 A. D. Firoozabadi et al : EVALUATION OF LOCALIZATION PRECISION BY PROPOSED QUASI-SPHERICAL NESTED . . .

Multiresolution
SRP

Multiresolution
SRP

Extraction the
peak positions

Extraction the
peak positions

Histogram for
20 frames

Histogram for
20 frames

Fusion with
Weighted
Averaging

Estimation
the 3D

position for
speakersN

)(ˆm,1 tx

)(ˆm,2 tx

)(m,1 tx

4 - 8 kHz

2

D

h t1( )

H z1( )

Analysis
Filter

)(m,2 tx

2 - 4 kHz

4

D

h t2( )

H z2( )

Analysis
Filter

)(m,3 tx

1 - 2 kHz

8

D

h t3( )

H z3( )

Analysis
Filter

Nested Microphone Array part

x t( )

)(m,4 tx

0 - 1 kHz

8

D

h t4( )

H z4( )

Analysis
Filter

SNR estimation for
PHAT/ML selection

Estimation the
number of speakers

q = 1,...,16

GTFB

f tq( )

Multiresolution
SRP

Extraction the
peak positions

Histogram for
20 frames

)(ˆ qm, tx

17

16

7

12

18

10

3

14
13

15

11

4

21

5

8

9

6

Fig. 2. The block diagram of the proposed sound source localization algorithm with QS-NMA, Gammatone filter bank (GTFB) and
multiresolution SRP with adaptive PHAT and ML weighed functions
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Fig. 3. The proposed 3D QSNMA for SSL in combination with
MASRP(PHAT/ML) algorithm

The relation between LPFs LPi(z), HPFs HPi(z) and
down-samplers Di is

H1(z) = HP1(z),

H2(z) = LP1(z)×HP2(z
2),

H3(z) = LP1(z)× LP2(z
2)×HP3(z

4),

H4(z) = LP1(z)× LP2(z
2)× LP3(z

4) .

(3)

As seen, the analysis filters Hi(z) are implemented
in a multi-level structure based on a series of LPFs and
HPFs. Therefore, there are possibilities to develop more
frequency bands, if more computational complexity is al-
lowed. Figure 6 shows the frequency response for the anal-
ysis filters related to the QSNMA. As shown, the filter
H1(z) is related to the highest frequency band and filter
H4(z) covers the lowest frequency range. The analysis fil-
ter H1(z) is for the nearest microphone pairs in the first
subarray and the analysis filter H4(z) is for the farthest
microphone pairs in the forth subarray.

Each level of the tree contains a LPF and a HPF, which
are designed with the Remez method. Therefore, the tran-
sition band is 0.0625 and the stop band is selected as 50
dB. These analysis filters not only eliminate the spatial
aliasing, but also prepare the proper frequency bands for
each pair of microphones in the proposed QSNMA.

3 The proposed multiresolution
adaptive SRP(PHAT/ML) method
based on the Gammatone filter bank

The speech is a wideband and non-stationary signal
with a non-uniform spectral distribution, where the lower
frequency bands of the speech signal have more spectral
information. Therefore, more paying attention to these
frequency components prepares the proper information
and increases the localization accuracy. Then, the mul-
tiresolution adaptive SRP(PHAT/ML) is proposed for
implementing on different frequency bands of the speech
signal, which are recorded by the use of proposed QS-
NMA. The use of GammaTone filter bank is proposed for
subband processing in the implementation of the MASRP
method. The GammaTone filter bank is based on the hu-
man auditory system, where it has a high frequency reso-
lution in low frequency components. Since the speech sig-
nal has the W-DO property, where each TF point with
high probability is related just to one speaker, the Gam-
matone filter bank increases the precision of the localiza-
tion algorithms by increasing the frequency resolution.
In the following, the multiresolution SRP algorithm is
proposed with the adaptive use of PHAT/ML weighted
functions on the overlapped speech signal for 3D SSL.

3.1 The Gammatone filter bank for speech subband
processing

The Gammatone filter bank is a proper tool for speech
signal subband processing, which is defined based on the
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Fig. 4. The four subarrays related to the proposed QSNMA
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speech spectral components. This filter was introduced
by Johannesma in 1972 for physiological modeling of the
impulse response associated with the human auditory sys-
tem [28]. This filter was named as Gammatone in 1980
by Aersten and Johannesma due to the use a carrier tone
with amplitude modulation, which has the exponential
shape similar to the gamma distribution in probabilis-
tic topics [29]. In 1987, more studies were done on the
Gammatone filter bank, which shows its complete adap-
tation with the human auditory system, where it has been
widely used for auditory system modeling [30]. The time
domain impulse response for the Gammatone filter bank
is

hg(t) = ant
n−1e−Ωt cos(ω0t+ ϕ), t ≥ 0, (4)

where Ω = 2πb , ω0 = 2πf0 with f0 being the filter cen-
tral frequency, while n is the filter order, and b is the
scaling parameter. For a fixed n value, the filter band-
width is raised by increasing the variable b . The variable

n controls the envelope of the Gammatone filter bank in
the time domain, where the ascending and descending ar-
eas are skewed by increasing the variable n . The variable
ϕ is considered as 0 because its effect is not considerable
on the Gammatone filter spectral features. The Gamma-
tone filter bank in frequency domain is, [28]

Hg(f) =

[

1 + j
f − f0
b

]−n

+

[

1 + j
f + f0
b

]−n

,

(−∞ < f <∞) .

(5)

The second part in (5) can be neglected, based on the
human auditory system model. Then, the Gammatone fil-
ters of order n can be implemented with a cascade struc-
ture of n Gammatone filters of order 1 with frequency

response
[

1 + j f−f0
b

]−1

where each one is a shifted LPF

in the frequency domain, which can be structured with
recursive implementation method as follows.

Vector x(i) is considered as the input signal with a
sampling period ∆t . First, the signal x[i] is shifted in
the frequency domain by for f0 . Then the complex vector
will be

V [i] = e−jω0i∆tx[i]. (6)

Signal V [i] passing through the first-order recursive
filter is changed to W [i] . The filter output is passed n−1
times through the recursive filter to get the output

W [i] =W [i− 1]+
(

1− e−Ω∆t
)(

V [i− 1]−W [i− 1]
)

. (7)
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Finally, the output of Gammatone filter bank is produced
with a frequency shift +f0 and by considering the real
part of (7)

y[i] = ℜ{ejω0i∆tW [i]}. (8)

The output of the Gammatone filter bank, from Fig. 2,
is

x̂m,q(t) = xm(t) ∗ fq(t) for

{

m = 1, . . . , (M = 18)

q = 1, . . . , (Q = 16),
(9)

where M is number of the microphones, Q is num-
ber of the subbands, and fq(t) is the frequency re-
sponse of the Gammatone filter. The subband signals
x̂m,q(t), generated by the QSNMA and Gammatone fil-
ter bank, are considered as the input signals for the pro-
posed MASRP(PHAT/ML) localization algorithm. Fig-
ure 7 shows the frequency response of the Gammatone
filter bank. As seen, the frequency resolution in higher in
lower frequencies.
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Fig. 6. Frequency response of analysis filter bank related to the
proposed QSNMA
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Fig. 7. Frequency response of the Gammatone filter bank in the
proposed MASRP(PHAT/ML) localization algorithm

3.2 The multiresolution adaptive SRP algorithm with
PHAT/ML weighted functions for 3D SSL

The 3D simultaneous SSL in noisy and reverberant
conditions with high accuracy and low computational

complexity is always a challenge in the speech signal
processing. The one-step methods for localization are
more applicable because of their precision. In this sec-
tion, a multiresolution SRP method is proposed in com-
bination with the adaptive use of PHAT/ML weighted
functions and the proposed QSNMA for multiple simul-
taneous SSL in noisy and reverberant conditions. As men-
tioned, the output of Gammatone filter bank is considered
as x̂m,q(t), where the output of delay and sum beam-
former (DSB) is, [10]

yq(t) =

Mq
∑

m=1

x̂m,q(t−∆m), (10)

where, q is the subband index, Mq is the number of mi-
crophones in q -th subband, and ∆m is the delay selected
for steering the array to the speaker direction. The filter
and sum beamformer (FSB) is proposed to improve the
robustness of the DSB at presence of noise to decrease its
effect and the reverberation of the input signal. The out-
put of the FSB block with microphones in q -th subband
in the frequency domain is

Yq(ω) =

Mq
∑

m=1

Gm(ω)X̂m,q(ω)e
−jω∆m , (11)

where Gm(ω) is the Fourier transform of a filter trans-

fer functions associated with FSB and X̂m,q(ω) are
the Fourier transform of the microphone signals in the
MASRP algorithm for the q -th subband and Mq micro-
phones related to the subband. The MASRP is a function
of steered delays. The beam-pattern of the microphone
array is adjusted to the specific direction in the 3D en-
vironment by changing the steered delays. The steered
response is calculated by sweeping the controlled area
of the beamformer. The steered response power is maxi-
mized, when the searching area by the beamformer is the
same as the source location. The SRP has multiple peaks
in the case of existence multiple simultaneous speakers,
but the reverberation generates many incorrect peaks,
which prepares the wrong source location estimations.
The MASRP is expressed by the output power of the
FSB is

Pq(∆1 . . .∆Mq
) =

∞
∫

−∞

Yq(ω)Y
′
q (ω)dω, (12)

where Yq(ω,∆1 . . .∆Mq

)

is the output of the FSB for

the q -th subband, and the prime denotes its complex
conjugate. The MASRP of the FSB is calculated by the
combination of (11) and (12). After some manipulation
this will lead to

Pq(∆1, . . . ,∆Mq
) =

Mq
∑

l=1

Mq
∑

r=1

∞
∫

−∞

ψlr,q(ω)X̂l,q(ω)X̂
′
r,q(ω)e

jω(∆l−∆r)dω,
(13)
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where we have introduced the weighting function ψlr,q(ω) =
Gl,q(ω)G

′
r,q(ω).

The weighed function is an important factor in the
performance of the MASRP algorithm. This function has
a effect on the precision of the localization algorithms un-
der the noisy and reverberant conditions. Two important
weighted functions are PHAT and ML for placement in
the MASRP algorithm. It has been shown in [31] that the
PHAT weighed function is more efficient for reverberant
and less noisy conditions (SNR > 10 dB). Therefore, a
noise estimation block is proposed in the algorithm for
the adaptive use of PHAT and ML weighted functions in
different environmental conditions. The PHAT weighted
function is defined as

ψPHAT
lr,q

(ω) =
1

∣

∣

∣
X̂l,q(ω)X̂ ′

r,q(ω)
∣

∣

∣

. (14)

This function works ideally for the free-reverberant
conditions, and has a high efficiency in the reverber-
ant scenarios. This weighted function does whitening on
the microphone signals by normalizing the Fourier trans-
form for the signals amplitude. The MASRP with PHAT
weighted function is

PPHAT
q (∆1, . . . ,∆Mq

) =

Mq
∑

l=1

Mq
∑

r=1

∞
∫

−∞

ψPHAT
lr,q

(ω)X̂l,q(ω)X̂
′
r,q(ω)e

jω(∆l−∆r)dω.

(15)

Based on the assumption in the use of PHAT filter,
this function is considered for the reverberant scenarios
with SNR > 10 dB.

If the environment is noisy and the speech and noise
signals are uncorrelated, another ML weighed function is
more efficient

ψML
lr,q

(ω) =
|X̂l,q(ω)| |X̂r,q(ω)|

|Vl,q(ω)|2|X̂r,q(ω)|2 + |Vr,q(ω)|2|X̂l,q(ω)|2
,

(16)
where Vl,q(ω) and Vr,q(ω) are spectra of the additive
noise in q -th subband of l -th and r -th microphones,
respectively. The noise spectra are estimated on the
silence part of the microphone signals. Therefore, the
MASRP/ML function is expressed as

PML
q (∆1, . . . ,∆Mq

) =

Mq
∑

l=1

Mq
∑

r=1

∞
∫

−∞

ψML
lr,q

(ω)X̂l,q(ω)X̂
′
r,q(ω)e

jω(∆l−∆r)dω.
(17)

The MASRP algorithm is implemented adaptively
by the use of PHAT/ML weighted functions MASRP
(PHAT/ML) in all subbands associated with the Gam-
matone filter bank and microphone pairs related to the
proposed QSNMA. The number of extracted peaks in the

MASRP algorithm is the same as the number of speak-
ers, where the i -vector probabilistic linear discriminant
analysis (i -vector PLDA, [32]) is considered for estimat-
ing the number of speakers. Then, the N -first peaks of
the MASRP(PHAT/ML) algorithm for q -th subband de-

noting T̂n ≡ T̂n,(x,y,z)(b,q) on (x, y, z) ∈ R are extracted
as

T̂1 = argmax PPHAT/ML
q (∆1, . . . ,∆Mq

) ,

T̂2 = argmax
T̂2 6=T̂1

PPHAT/ML
q (∆1, . . . ,∆Mq

) ,

T̂N = argmax
T̂N 6=T̂1,...,T̂N−1

PPHAT/ML
q (∆1, . . . ,∆Mq

) ,

(18)

where T̂1, . . . , T̂N are the N -first peaks of MASRP(PHAT
/ML) algorithm for the q -th subband and microphones
related to this subband. The MASRP(PHAT/ML) is a
function based on the steered delays ∆1, . . . ,∆N for
any candidate point. The MASRP function is calcu-
lated for all 3D candidate points each having a spe-
cific steered delay in indoor condition. Therefore, the
MASRP(PHAT/ML) function is maximized for all 3D
candidate room points with position r ≡ r(x, y, z). This
process is iterated for continuous frames of overlapped
speech signals and separately for each subband to extract
the histogram of MASRP(PHAT/ML) peaks as

Dq = H
{

T̂1,r,q, T̂2,r,q, . . . , T̂N,r,q, ∀m ∈Mq

}

, (19)

where Dq is the histogram of the N -first peaks of
MASRP(PHAT/ML) method for q -th subband. This
process is repeated for all Q subbands to provide a sep-
arate histogram for each subband. Finally, the weighted
averaging (WA) method is selected for combining the his-
tograms for all subband to generate the final histogram

HWA(T̂ ) =
1

Q

Q
∑

q=1

S1,q

N
∑

i=2

Si,q

Dq, (20)

where
Si,q = max

Si,q 6=S1,q 6=S2,q···6=Si−1,q

Dq. (21)

The effect of each speaker in the related subband is high-
lighted by the weighted averaging. For example, if the
first speaker has more contents in the frequency band
2-2.5 kHz, then it has more effect on the combination be-
tween histograms. The final histogram is calculated on

T̂ ∈ R by the fusion of histograms for each subband, and
the N -first peaks are the 3D location of N speakers as

T̂1,r = argmaxHWA(T̂ ),

T̂2,r = argmax
T̂ 6=T̂1,r

HWA(T̂ ),

...

T̂N,r = argmax
T̂ 6=T̂1,r ...T̂N−1,r

HWA(T̂ ),

(22)
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Fig. 8. The time-domain speech signal for: (a) – speaker S1, (b) – speaker S2, (c) – speaker S3, (d) – overlapped speech of speaker S1
and speaker S2, and (e) – overlapped speech between three speakers
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Fig. 9. A view of the simulated recording room with the proposed
QSNMA and three speakers

where T̂1,r . . . T̂N,r are the estimated 3D locations for
N simultaneous speakers by the proposed QSNMA-
MASRP(PHAT/ML) method. The estimated locations
by the proposed method are very accurate because of use
the QSNMA, subband processing with GammaTone fil-
ter bank, and adaptive PHAT/ML weighted functions in
combination with SRP algorithm.

4 Results and discussions

The evaluations for the proposed method are imple-
mented on real and simulated data. Texas Instruments
and Massachusetts Institute of Technology (TIMIT)
dataset is selected for simulated data, where we consid-
ered some of the speech signals in this dataset [33]. The
simulation scenarios are considered in a way to prepare
the conditions as same as the real environments. Also,

the real data was recorded with the proposed QSNMA
in the speech processing laboratory, at the Universidad
Tecnológica Metropolitana, Santiago, Chile. The experi-
ments in multi-speaker scenarios show about 9% of over-
lapped speech is for two simultaneous speakers, 8% for
three overlapped speakers, and 2% for four or more speak-
ers [34]. Therefore, the simulations are implemented on
the scenarios with two and three simultaneous speakers
to cover the most environmental conditions. Then, two
males (24 and 35 years old) and one female (31 years
old) speakers are selected for data recording. The Omni-
directional microphones are considered for data record-
ing with a sampling frequency 16000Hz in a room under
the conditions of temperature 23 ◦Cand 25% humidity.
45 s speech signal is recorded for each speaker, where
17.3 s is for two simultaneous speakers (speaker S1 and
speaker S2), and 6.8 s is for three simultaneous speakers.
Figure 8 shows the time-domain speech signal for each
speakers, and overlapped between two and three simulta-
neous speaker, respectively.

The proposed QSNMA with 18 microphones is located
in the middle of the room, where the room dimensions
are (475,592,420) cm. In addition, the three speakers are
located at (55,130,180 )cm (S1), (110,520,170) cm (S2),
and (460,45,175) cm (S3), respectively. Figure 9 shows a
view of the simulated recording room, where the speakers
are located in different directions to show the symmetry
effects of the proposed QSNMA

Robustness and precision of the localization algo-
rithms in noisy and reverberant environments are two
important factors in the evaluations of the proposed
method. Noise and reverberation are the important chal-
lenges, which decrease the accuracy of the localization
algorithms. In the simulations, a Gaussian white noise is
considered additively with the speech signal in the mi-
crophone place. In the real environment, the effect of the
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noise is considered by playing a Gaussian noise with a
speaker. The reverberation appears in the indoor environ-
ments due to the existence of reflective surfaces such as
walls and tables, which are recorded by the microphones
as same as the original signals. Therefore, Image model is
selected for simulating the reverberation effect in the en-
vironments [35]. This model simulates the reverberation
similar to the real conditions. The Image algorithm pro-
duce the room impulse response between the source and
microphone by considering the room dimensions, speaker
location, microphone position, room reverberation time,
sampling frequency, impulse response length, and reflec-
tive coefficients of the surfaces. The received signal to
the microphone is produced by the convolution between
the source signal and generated room impulse response
by the Image method. Two categories of experiments are
selected for the evaluations. In the first category, the pro-
posed algorithm is evaluated for the fixed SNR , variable
RT60 and vice versa for 2 and 3 simultaneous speakers
to show the effect of the noise and reverberation changes
on the robustness and accuracy. In the second category,
some scenarios are defined, which happens commonly in
the real environments to evaluate the precision of the pro-
posed algorithm. Three scenarios are defined for the sec-
ond category of evaluations. The first scenario is named
the reverberant environment, where RT60 = 650 ms and
SNR = 20 dB. The second scenario is a noisy environ-
ment with SNR = 20 dB and RT60 = 250 ms. The
most challenging scenario is noisy-reverberant environ-
ment by selecting and The precision and accuracy of the
proposed method is evaluated by the comparison between
the proposed method with other previous works on these
scenarios. A Hamming window with length 60ms and 50%
overlap is selected for data windowing in the evaluations.
These length and overlap values prepare the best station-
ary for the data in the localization algorithm. In addition,
the experiments are implemented on a PC with CPU In-
tel(R) core i7-7700 (4.2 GHz), ×64-based processor, 32
GB RAM, and WINDOWS 64-bit operating system by
the use of MATLAB software version 2018b for the sim-
ulations. The MATLAB software is considered for the
implementations because is user friendly and more appli-
cable for the use of existing functions and preparing the
figures in the results section. Otherwise, the other soft-
ware such as Python and C, or implementing with digital
signal processor hardware are the options to be closer to
real-time implementation.

The proposed QSNMA-MASRP(PHAT/ML) method
is compared with SRP-PHAT [11], SSM-DNN [23], and
SH-TMSBL [24] algorithms based on the precision and
accuracy on the real and simulated data for 2 and 3
simultaneous speakers. The MAEE criteria in frame b , of

estimated (T̂N,(x,y,z)[b] and true (TN,(x,y,z)[b]) locations

is considered for comparison on L time frames

MAEEN =
1

L

L
∑

b=1

∣

∣

∣
T̂N,(x,y,z)[b]− TN,(x,y,z)[b]

∣

∣

∣
. (23)

The methods with smaller MAEE values for one or
averages multiple of speakers are considered as the algo-
rithms with better accuracy.

Figure 10 and 11 show the energy distribution of
the proposed QSNMA-MASRP (PHAT/ML) method for
the subband 1-1.2 kHz in noisy, reverberant, and noisy-
reverberant scenarios for 2 and 3 simultaneous speakers,
respectively. These 3D figures shows the information for
x and y axis (the two most important axis since the z
values for all speakers are very similar). By considering all
axis (x, y, z) with the energy as the output of QSNMA-
MASRP (PHAT/ML) function, then it would be a 4D
shape, which is not possible to show as a clear energy
distribution. Then, we decided to drop the z axis just in
the plot, which is similar for all speakers, and a clear 3D
energy distribution is plotted for the proposed algorithm.
As seen, the noisy-reverberant condition is the worst sce-
nario, where there are many extra peaks in the energy
distribution diagram, which conduce the wrong estima-
tion for the speaker location. After that, noisy scenarios
still has many extra peaks but the reverberant scenario
has less peaks in comparison with the other scenarios.
In addition, each speaker has different information in the
sub-figures for the energy distribution based on the sub-
bands. These information differences are due to the use of
GammaTone filter bank, which provides the good sepa-
ration between the speakers based on the frequency com-
ponents in different subbands. In addition, each speaker
is dominant in different subband by the effect of Gamma-
tone filer bank.

Table 1 shows the results for two simultaneous speak-
ers (speaker S1 and speaker S2) for real and simulated
data. The simulations are implemented on 3 scenarios
and the comparison with SRP-PHAT, SSM-DNN, and
SH-TMSBL algorithms are realized. The mean absolute
estimation error (MAEE) and averaged standard devia-
tion (SD) for absolute estimation error, in cm, are consid-
ered to compare the simulation results with real speakers
positions. The MAEE results are calculated by averaging
of 10 time frames to be robust in different scenarios. The
algorithm was tested by various number of frames to find
with how many frames the accuracy and the computa-
tional complexity of the algorithm are in an acceptable
range. We found that by increasing the number of over-
lapped frames, the accuracy is increased by the use of
around 20 frames, but by having more frames the accu-
racy does not change and just more complexity is added
to the algorithm. Then, we decided to keep the number
of frames as 20 in order to have acceptable accuracy as
well as the complexity. Then, n=20 frames means (floor
=660 ms of the data from the overlapped speech between
two speakers (speaker S1 and speaker S2) for the scenario
with 2 simultaneous speakers. Also, in the scenario with 3
simultaneous speaker, the data are taken from are of the
overlapped speech between three speakers in Fig. 8. As
seen, the proposed method has the smaller MAEE and
SD in comparison with other methods, which means the
speakers are localized more accurately. Also, the differ-
ence of accuracy in all scenarios in the proposed method
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Table 1. The MAEE and averaged SD of absolute estimation error results for the proposed QSNMA-MASRP(PHAT/ML) method
in comparison with SRP-PHAT, SSM-DNN, and SH-TMSBL algorithms for 2 simultaneous speakers in different scenarios for real and

simulated data

MAEE (cm) SRP-PHAT, [11] SSM-DNN [23] SH-TMSBL [24] Proposed*

Real data

Speaker S1 S2 SD S1 S2 SD S1 S2 SD S1 S2 SD

Scenario 1 54 61 7.7 49 52 7.3 33 44 6.7 22 34 5.9

Scenario 2 55 63 7.9 51 54 7.6 36 42 6.9 24 31 6.1

Scenario 3 67 68 8.3 58 62 7.7 52 56 7.1 35 38 6.3

Simulated data

Speaker S1 S2 SD S1 S2 SD S1 S2 SD S1 S2 SD

Scenario 1 53 55 7.2 42 46 6.8 32 34 6.4 17 22 5.7

Scenario 2 56 51 7.4 44 47 7.0 35 37 6.5 21 27 5.8

Scenario 3 59 66 8.1 50 56 7.5 44 47 6.8 24 28 6.0

* QSNMA-MASRP (PHAT/ML)

Modified SRP (PHAT/ML)

8000

6000

4000

50 40 30 20 10 0
Y cm( )

X cm( )
0

20
40

60

(b)

Speaker 1

Speaker 2

Modified SRP  (PHAT/ML)

40 30 20 10 0

Y (cm)

X ( )cm0
20

40
60

(a)

Speaker 1 Speaker 2

Modified SRP (PHAT/ML)

6000

4000

50

8000

4000

50

40 30 20 10 0
Y cm( )

X cm( )0

50

(c)

Speaker 1 Speaker 2

Fig. 10. Energy distribution curves for proposed multi-resolution SRP-PHAT/MLmethod by use of Gammatone filter bank and QS-NMA
for 3 simultaneous speakers (speaker 1 and speaker 2 and speaker 3) and for: (a) – reverberant, (b) – noisy, and (c) – noisy-reverberant
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Fig. 11. The averaged MAEE (cm) for the proposed multi-resolution SRP-PHAT/ML method by use of Gammatone filter bank and
QS-NMA in comparison with traditional SRP-PHAT [17] and SH-TMSBL [13] methods for 3 simultaneous speakers (real and simulated

data) for: (a) – different RT60 values for SNR = 5 dB, and (b) – different SNR values and RT60 = 650 ms

is less than the SRP-PHAT, SSM-DNN, and SH-TMSBL

algorithms. The reason is due to the use of PHAT and ML

filters adaptively, which considers the best weighted filter

based on the different acoustical environments to increase

the accuracy of the proposed method. The MAEE and

SD results for the real data are larger than the simulated

data. Because measuring the noise and reverberation in

the real environment is not completely accurate.

Figure 12 shows the averaged MAEE criteria, in cm,

for the proposed QSNMA-MASRP(PHAT/ML) method

in comparison with SRP-PHAT, SSM-DNN, and SH-

TMSBL algorithms for 2 simultaneous speakers on real

and simulated data. Figure 12(a) shows the results for

and different range RT60 of values. As seen, our proposed

method has better results in comparison with other previ-

ous works in both real and simulated data. For example,

the averaged MAEE value for the proposed method in

SNR = 5 dB and RT60 = 200 ms for real data is 23

cm in comparison with 56 cm for SRP-PHAT, 48 cm for

SSM-DNN, and 35 cm for SH-TMSBL algorithm. In addi-
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Fig. 13. The averaged MAEE (cm) for the proposed multi-
resolution SRP-PHAT/ML method by use of Gammatone filter
bank and QS-NMA in comparison with traditional SRP-PHAT [17]
and SH-TMSBL [13] methods for 3 simultaneous speakers real
(dashed lines) and simulated (solid lines) data for: (a) – differ-
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and RT60 = 650 ms

Table 2. The MAEE and averaged SD of absolute estimation error results for the proposed QSNMA-MASRP(PHAT/ML) method

in comparison with SRP-PHAT, SSM-DNN, and SH-TMSBL algorithms for 3 simultaneous speakers in different scenarios for real and
simulated data

MAEE (cm) SRP-PHAT, [11] SSM-DNN [23] SH-TMSBL [24] Proposed*

Real data

Speaker S1 S2 S3 SD S1 S2 S3 SD S1 S2 S3 SD S1 S2 S3 SD

Scenario 1 67 74 75 7.9 56 55 58 7.7 42 45 48 6.8 21 27 33 6.2

Scenario 2 70 75 78 8.1 57 59 60 7.9 47 52 56 7.3 29 32 37 6.4

Scenario 3 80 84 87 8.7 61 64 66 8.0 53 61 64 7.4 35 37 41 6.5

Simulated data

Speaker S1 S2 S3 SD S1 S2 S3 SD S1 S2 S3 SD S1 S2 S3 SD

Scenario 1 57 63 67 7.6 48 54 51 7.5 34 41 43 6.6 21 22 26 5.9

Scenario 2 64 65 72 7.8 50 56 55 7.6 43 42 46 7.0 23 26 28 6.1

Scenario 3 67 72 79 8.3 57 63 59 7.9 44 48 49 7.2 25 36 37 6.3

* QSNMA-MASRP (PHAT/ML)

tion, the averaged MAEE value for the proposed method
in SNR = 10 dB and RT60 = 650 ms for real data is 31
cm in comparison with 63 cm for SRP-PHAT, 56 cm for
SSM-DNN, and 45 cm for SH-TMSBL algorithm. Also,
the accuracy of the proposed method does not decrease

highly by increasing the value. For example, the variation
in the MAEE criteria for the proposed method in and is
just 8cm for simulated and 12 cm for real data, in compar-
ison with 18 cm for simulated and 14 cm for real data in
SRP-PHAT, 19 cm for simulated and 21 cm for real data
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Table 3. The computational complexity for the proposed QSNMA-
MASRP(PHAT/ML) method in comparison with SRP-PHAT,
SSM-DNN, and SH-TMSBL algorithms for 2 and 3 simultaneous

speakers on real data

Run SRP SSM SH-
Pro-

time -PHAT -DNN -TMSBL
posed*

(s) [11] [23] [24]

Two simultaneous speakers

Scenario 1 675 547 252 248

Scenario 2 631 529 226 235

Scenario 3 692 578 284 276

Three simultaneous speakers

Scenario 1 709 566 292 302

Scenario 2 683 547 273 261

Scenario 3 724 603 332 325

* QSNMA-MASRP (PHAT/ML)

in SSM-DNN, and 17 cm for simulated and 20 cm for real
data in SH-TMSBL algorithms. Figure 12(b) shows the
results for RT60 = 650 ms and a different range of SNR
values. As shown, our proposed method has better accu-
racy in comparison with the SRP-PHAT, SSM-DNN, and
SH-TMSBL algorithms for 2 simultaneous speakers. The
variation in the MAEE values for the proposed method
in SNR = 0 dB and SNR = 30 dBis just 12 cm for
simulated data and 13 cm for real data, in comparison
with 14 cm for simulated and 17 cm for real data in SRP-
PHAT, 18 cm for simulated and 17 cm for real data in
SSM-DNN, and 18cm for simulated and 19 cm for real
data in SH-TMSBL algorithms.

Table 2 shows the averaged MAEE and averaged
standard deviation (SD) for absolute estimation error,
for 3 simultaneous speakers in reverberant, noisy, and
noisy-reverberant scenarios for real and simulated data.
Also, these results are calculated for the proposed QS-
NMAMASRP(PHAT/ML) method in comparison with
SRP-PHAT, SSM-DNN, and SH-TMSBL algorithms. As
shown, the proposed method has smaller MAEE and SD
values in comparison with other previous works. Even
by adding one more speaker, the result for the proposed
method does not change highly and is similar to the re-
sults for two simultaneous speakers (by comparison of
Tab. 2 and Tab. 1). These MAEE and SD results show
the superiority of the proposed method in comparison
with SRP-PHAT, SSM-DNN, and SHTMSBL algorithms
for two and three simultaneous speakers in different un-
desirable scenarios.

Figure 13 shows the results for 3 simultaneous speakers
for the proposed QSNMA-MASRP(PHAT/ML) method
in comparison with SRP-PHAT, SSM-DNN, and SH-
TMSBL algorithms for real and simulated data. In both
subfigures ((a) – different RT60 values for SNR = 5 dB
and (b) – different SNR values for RT60 = 650ms),
where the proposed method has better results in compari-
son with other previous works. For example, the averaged
MAEE value for the proposed method in SNR = 5 dB

and RT60 = 200 ms for real data is 34 cm in comparison
with 71 cm for SRP-PHAT, 57 cm for SSM-DNN, and 50
cm for SH-TMSBL algorithm. In addition, the averaged
MAEE value for the proposed method in SNR = 10 dB
and RT60 = 650 ms for real data is 36 cm in comparison
with 81 cm for SRP-PHAT, 58 cm for SSM-DNN, and
54 cm for SH-TMSBL algorithm. In Fig. 13(a), the varia-
tion in the MAEE parameter for the proposed method in
RT60 = 0 ms and RT60 = 700 ms is just cm for simulated
and 12 cm for real data in comparison with 14cm for sim-
ulated and 19 cm for real data in SRP-PHAT, 13 cm for
simulated and 15cm for real data in SSM-DNN, and 10
cm for simulated and 14 cm for real data in SH-TMSBL
algorithms. In Fig.13(b), the variation in the MAEE for
the proposed method in SNR = 0 dB and SNR = 30
dB is just 13 cm for simulated and 16 cm for real data in
comparison with 16 cm for simulated and 20 cm for real
data in SRP-PHAT, 16cm for simulated and 18cm for real
data in SSM-DNN, and 14cm for simulated and 19cm for
real data in SH-TMSBL algorithms. Therefore, based on
the results in Fig. 12 and Fig. 13, our proposed method is
more robust in different range of SNR and RT60 . Also,
the proposed method has better accuracy and less error
in comparison with other previous works.

Table 3 shows the computational complexity of the
proposed QSNMA-MASRP(PHAT/ML) method in com-
parison with SRP-PHAT, SSM-DNN, and SH-TMSBL
algorithms. The run-time of the MATLAB software, in
second, for 2 and 3 simultaneous speakers on all envi-
ronmental scenarios for real data is considered for this
comparison. As seen, the SRP-PHAT method has the
most computational complexity in comparison with other
works due to the space search of candidate locations. Af-
ter that, the complexity of the SSM-DNN algorithm is
high because of use the neural networks in the training
step. The proposed QSNMAMASRP(PHAT/ML) algo-
rithm has lower complexity in comparison with the SRP-
PHAT and SSM-DNN methods due to the nested mi-
crophone array and allocating some specific microphone
pairs to each subarray. Also, the computational complex-
ity of the proposed method is similar to the SHTMSBL
algorithm in most of the scenarios. In some cases, the
SH-TMSBL method has less complexity in comparison
with the proposed work, which is mentioned in the table.
Therefore, the complexity of the proposed method is ac-
ceptable for implementing as a localization algorithm in
comparison with other previous works.

5 Conclusions

The multiple SSL from overlapped speech signal in
noisy and reverberant environments is one of the impor-
tant challenges in the speech signal processing. Some one-
step and two-step methods were proposed for SSL, where
they have high accuracy and low computational complex-
ity, respectively. Also, the spatial aliasing is one of the
destructive factors in the precision of the localization al-
gorithms due to the intermicrophone distances. Firstly, a
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quasi-spherical nested microphone array is proposed for
eliminating the spatial aliasing. The proposed QSNMA is
structured in a way to prepare enough microphone pairs
for each subarray, and to have the spatial symmetry for
speakers in all directions. In addition, it prepares the ca-
pacity for the three-dimensional SSL because of its 3D
shape and distribution among the microphones in all di-
mensions. Speech signal has the W-DO property, which
means each TF point of the overlapped speech signal with
high probability is related to one single speaker. There-
fore, the GammaTone filter bank is selected for signal
subband processing. This filter has a high frequency res-
olution in low frequency components of the speech signal
due to its design based on the human auditory system.
In following, the multiresolution SRP algorithm is imple-
mented adaptively with PHAT/ML weighted functions on
QSNMA signals. The PHAT and ML weighted functions
are considered adaptively for low and high noisy part of
the speech signal, respectively. The MASRP peaks are ex-
tracted based on the number of speakers in each subband
and this process is iterated for continuous time frames.
Then, the distribution of the MASRP peaks is calculated
for each subband and they are combined by the weighted
averaging method. The maximums of the final peaks dis-
tribution are selected based on the number of speakers as
the speakers locations. The proposed QSNMAMASRP(
PHAT/ML) method is compared by the MAEE criteria
and computational complexity with SRP-PHAT, SSM-
DNN, and SH-TMSBL algorithms. The experiments are
implemented on noisy, reverberant, and noisy-reverberant
scenarios for 2 and 3 simultaneous speakers in different
range of SNR and RT60 . In all scenarios, the proposed
method has higher accuracy and lower computational
complexity in comparison with the other previous works,
which shows the superiority of the proposed algorithm.
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dad Catóica del Maule. His research interest includes OFDM-

based systems, optical communications, Nyquist-I pulses, and

extreme learning machines.

Cesar A. Azurdia-Meza (BSc, MSc, PhD) was born in

1981 in Antigua Guatemala, Sacatepquez, Guatemala. He re-

ceived the BSc degree in electronics engineering from Univer-

sidad del Valle de Guatemala, Guatemala in 2005;and the MSc

degree in electrical engineering from Linnaeus University, Swe-

den in 2009. In 2013 he obtained the PhD degree in Electron-

ics and Radio Engineering, Kyung Hee University, Republic

of Korea. He joined the Department of Electrical Engineer-

ing, University of Chile as an Assistant Professor in August

2013, where he is currently lecturing on wireless and mobile

communication systems. He has served as Technical Program

Committee (TPC) member for multiple conferences, as well

as a reviewer in journals such as IEEE Communications Let-

ters, IEEE Transactions on Wireless Communications, Wire-

less Personal Communications, IEEE ACCESS, IET Commu-

nications, EURASIP Journal on Advances in Signal Process-

ing, among others. Dr. Azurdia is an IEEE Communications

Society Member, as well as Member of the IEICE Communi-

cations Society. His research interests include topics such as

Nyquist’s ISI criterion, OFDM-based systems, SC-FDMA, vis-

ible light communication systems, vehicular communications,

5G and beyond enabling technologies, and signal processing

techniques for communication systems. He is a co-recipient of

the 2019 IEEE LATINCOM Best Paper Award, as well as the

2016 IEEE CONESCAPAN Best Paper Award.


