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Abstract

In this paper we show uniqueness of the conductivity for the quasilinear Calderón’s inverse problem. The nonlinear conductivity 
depends, in a nonlinear fashion, of the potential itself and its gradient. Under some structural assumptions on the direct problem, a 
real-valued conductivity allowing a small analytic continuation to the complex plane induce a unique Dirichlet-to-Neumann (DN) 
map. The method of proof considers some complex-valued, linear test functions based on a point of the boundary of the domain, 
and a linearization of the DN map placed at these particular set of solutions.
© 2020 Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. Setting of the problem

Let � ⊂ Rn, n ≥ 2, be a smooth C2,α bounded domain, for some 0 < α < 1. Acting on �, we will consider a 
nonlinear, uniformly (in �) positive function

a : � ×R×Rn → (0,∞),

a = a(x, s,p) ≥ a0(s,p) > 0, a0 given.
(1.1)

The purpose of this paper is to describe the Calderón’s inverse problem for a quasilinear conductivity a(·), that is to 
say, the study of the quasilinear scalar equation

divx

[
a(x,u(x),∇u(x)) ∇u(x)

] = 0, x ∈ �. (1.2)
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Here u = u(x) is assumed to be a function defined from � into R. In order to determine a possibly unique u, we will 
impose a boundary condition

u
∣∣
∂�

= f,

for some fixed f in an space of smooth functions, to be specified below.
The standard and well-known Calderón’s problem, namely the determination of the conductivity a = a(x) for the 

problem

divx[a(x)∇u(x)] = 0, x ∈ �, u
∣∣
∂�

= f, (1.3)

under the knowledge of the Dirichlet-to-Neumann map (DN)

H 1/2(∂�) 	 f 
−→ a ∇u · ν∣∣
∂�

∈ H−1/2(∂�), ν unit outer normal to �,

has attracted the attention of many researchers during the past thirty years. Outstanding results in this area are the 
works by Calderón [3], Sylvester the second author [11,12], Nachman [10], Astala and Päivärinta [1], among many 
others. The survey [16] is a suitable source for a historical account on the developments of the Calderón’s problem.

However, in nonlinear media applications (see [14] for a detailed survey), the conductivity a(x) is usually a non-
linear function, not only depending on the point x but also on the function u(x), and more importantly, on its gradient 
∇u(x). It is for this reason that problem (1.2) is a natural step towards the understanding of several inverse problems 
coming from different applied scientific problems.

More precisely, by quasilinear inverse problem associated to (1.2), we mean the following question: under which 
conditions on the conductivity a, the boundary values f , and a related Dirichlet-to-Neumann map associated to f , a
and u, we can recover the coefficient

a = a(x, s,p), where (x, s,p) ∈ � ×R×Rn.

Note that we must recover a scalar function depending on 2n + 1 variables, where n ≥ 2 is the dimension of space. 
This inverse problem for (1.2) is in some sense hard to tackle down because of the gradient term ∇u inside the 
conductivity a, which makes the problem effectively quasilinear, and standard methods do not apply except for very 
particular situations where the coefficient a has particular properties. For example, in the case where the coefficient a
does not depend on the gradient ∇u, namely a = a(x, s) only, Sun [13] showed that the knowledge of the DN map

C2,α(∂�) 	 f 
−→ �a[f ] := a(x,u)∇u · ν∣∣
∂�

∈ C1,α(∂�), (1.4)

where ν is the outer normal in ∂�, and u = uf is solution of the equation

div(a(x,u)∇u) = 0 in �, u
∣∣
∂�

= f,

determines the strictly positive coefficient a(x, s). The fundamental step in their proof is to linearize the DN map (1.4), 
following the original idea of Isakov [8]. The objective is then to show that equality of quasilinear DN maps leads 
to a corresponding equality at the level of linearized DN maps, where a much better developed theory is available. 
Afterwards, Sun and the second author [15] extended this result by considering anisotropic conductivities: the DN 
map

ν · (A(x,u)∇u)
∣∣
∂�

determines the matrix-valued conductivity A(x, s), in the case where u solves the equation

div(A(x,u)∇u) = 0 in �, u
∣∣
∂�

= f,

and A is a symmetric, positive definite matrix. Note that uniqueness is obtained up to a change of coordinates that 
leaves invariant the boundary: if � : � → � is a C1 diffeomorphism that satisfies � = Id on the boundary ∂�, then

A�(x,u) := |D�|−1D�T A(�−1x,u(�−1x)) (1.5)

is another conductivity that has the same DN map. Here D� is the Jacobian matrix of �, and |D�| its Jacobian 
determinant. Later, Hervas and Sun [6] considered the problem for the quasilinear problem
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div(A(x,u,∇u)) = 0 in �, u
∣∣
∂�

= f,

and where A satisfy one of the following two conditions: either A(x, u, ∇u) = A0(x)∇u (linear case on ∇u, no 
dependence on u), or A(x, u, ∇u) = A0(∇u) (no dependence on x nor u at all). In both cases, uniqueness is obtained 
up to a diffeomorphism that changes coordinates, similar as in (1.5). Then, the natural question is the following: can 
on improve Sun-Uhlmann and Hervas-Sun results by allowing a complete quasilinear conductivity as in (1.2)?

A simple but somehow naive approach to this question should be to extend Hervas-Sun’s result [6] by allowing 
the conductivity to depend on x, u and ∇u. However, one can easily deduce that the problem is in some formal 
sense undetermined, because one has to recover a scalar function depending on n + 1 + n = 2n + 1 variables, and the 
corresponding DN map provides much less information. As far as we understand, this problem is completely open. 
A second issue comes from the fact that even the solvability theory for the direct problem is not completely well-
understood in the classical sense, and additional conditions are usually needed: either (i) one has solvability for u
with small gradient and a few mild assumptions on the conductivity a, or (ii) the conductivity is taken having plenty 
of constraints (with almost no grow in the variable ∇u); however one can recover now solutions with large gradients. 
In the following, we will precisely specify which of these constraints are needed in our work.

1.2. Assumptions

Let us come back to equation (1.2). The purpose of this paper is to give a first insight on the resolubility of 
the Calderón’s inverse problem for the most possible general quasilinear problem. However, unlike equation (1.3), 
the solvability (i.e. existence, uniqueness) of the direct problem (1.2) is not guaranteed in general. Indeed, before 
stating our main results, we will need to assume some standard structural assumptions2 on the conductivity a(·, ·, ·)
that will ensure the existence and uniqueness of a solution for the quasilinear direct problem. These are standard 
sufficient conditions, stated e.g. in Gilbarg and Trudinger’s monograph [4], but for the sake of completeness we give 
full details on their meaning in Section 2. Some of these conditions are necessary, meaning that the lack of a particular 
assumption leads to nonexistence or non uniqueness of the quasilinear solution. The reader may also consult [6] for 
similar conditions, in the case of a conductivity only depending on x and ∇u.

Structural assumptions. Recall that we have assumed that � ⊆ Rn is an open, bounded domain, of class C2,α , for 
some 0 < α < 1 fixed, and also that n ≥ 2. Additionally, let us assume the following:

(S1) (Smoothness and nonnegativity) a ∈ C1,α(� ×R ×Rn), and a(x, s, p) > 0 for all (x, s, p) ∈ � ×R ×Rn.
(S2) (Ellipticity) Let aij be the symmetric n × n matrix

aij (x, s,p) := 1

2
((∂pi

a)(x, s,p)pj + (∂pj
a)(x, s,p)pi).

Assume that

aij is elliptic in �, (1.6)

which means that, for all (x, s, p) ∈ � ×R ×Rn,

0 < λ(x, s,p)|ξ |2 ≤ aij (x, s,p)ξiξj ≤ 
(x, s,p)|ξ |2 < +∞,

(see Definition 2.1 and (2.2) for more details and a general definition).
(S3) (Growth conditions) Additionally, we will assume the following growth conditions: for any (x, s, p) ∈ � ×R ×

Rn, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ(x, s,p) ≥ λ0(|s|) > 0,

|p||∇pa(x, s,p)| + |a(x, s,p)| ≤ μ0(|s|),
(1 + |p|)|∂sa(x, s,p)| + |∇xa(x, s,p)| ≤ μ0(|s|)|p|,

p · A(x, s,p) ≥ |p|β − |a1s|β − a
β
2 ,

(1.7)

2 This terminology comes from Gilbarg-Trudinger’s monograph [4].
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for functions λ0 (resp. μ0) positive and non-increasing (resp. non-decreasing) in |s|, and constants β > 1, 
a1, a2 > 0.

It is stated in [4] (see more details in Section 2, and in particular, the descriptions in Theorem 2.17) that, under 
assumptions (S1)-(S3), the quasilinear problem for u : � → R real-valued,

div(a(x,u,∇u)∇u) = 0 in �, u
∣∣
∂�

= f
∣∣
∂�

, f ∈ C2,α(�), (1.8)

is uniquely solvable for u in C2,α(�), with standard a-priori estimates.3 Moreover, the DN map

C2,α(∂�) 	 f 
−→ �a[f ] := a(x,u,∇u)∇u · ν∣∣
∂�

∈ C1,α(∂�), (1.9)

where u = uf is the solution to the equation (1.8), is well-defined and continuous (Corollary 2.19).

Remark 1.1. Conditions (S1)-(S3), although sufficient for solvability of the quasilinear problem (1.2), are in some 
sense also necessary, because some a-priori estimates on the boundary (needed for the existence part) may fail if one 
of these conditions is lifted, see Remark 2.16 for more details.

Remark 1.2. The conditions imposed in (S3) may seem too strong compared with the standard theory for linear scalar 
elliptic problems, but they are required with the purpose of having solutions with large gradients. Less restrictive 
assumptions on the growth of a(x, s, p) as a function of p are certainly possible, but an a-priori restriction on the size 
of the gradient ∇u of the solution will be probably needed.

Inverse problem assumptions. In addition to the previous estimates, we will need three additional, non-structural 
assumptions. We call them non-structural assumptions because these are sufficient conditions for showing that the 
DN map in (1.9) is one-to-one. Although needed for the method of proof, we also believe that some of them are in a 
certain sense also necessary conditions, but we have no rigorous proof of this claim. In what follows, we shall assume 
the following hypotheses

(H1) The conductivity a is homogeneous in space: it only depends on s and p: a = a(s, p), and a(s, p) > 0 for all 
(s, p) ∈ R ×Rn.

(H2) There are constants r0, R0 > 0, such that a(s, p) has an analytic continuation as a function of (s, p) ∈ R ×
Br0(0), where4

R := R+ i[−R0,R0] ⊆ C (1.10)

is a (not necessarily small) band around the real line, and with a(s, p) ∈ C being real-valued for s and p real-
valued.

(H3) Under assumption (H2), the real part of the complex-valued function a(s, p) is positive, in the sense that there 
exist 0 < λ < 
 < +∞ (depending continuously on s, p) such that5

0 < λ̃ ≤ λ(s,p) ≤ Re a(s,p)

|a(s,p)| + |∇pa(s,p)| ≤ 
, for all (s,p) ∈R× Br0(0).
(1.11)

Some preliminary remarks about these conditions are absolutely necessary.

Remark 1.3. Hypothesis (H1) can be understood as a reduction on the number of variables to be found: we are looking 
for a conductivity depending on n + 1 variables, but still improving in some sense each of the results in [13,15,6], 
which recover ≤ n + 1 variables (and in the case of a nontrivial gradient, the problem simplifies to an almost linear 

3 The assumption f ∈ C2,α(�) is standard for the theories developed in [4], and it avoids the problem of finding a smooth extension of a boundary 
value condition f defined only on ∂�. For the sake of simplicity, we will assume this simplification as well as in [4].

4 Br(p0) := {p ∈Cn : |p − p0| < r}. Note also that R is unbounded.
5 Note that we are not asking for a being entire, but only bounded on a bounded domain.
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situation). However, we also believe that hypothesis (H1) can be relaxed to allow “near to a constant” inhomogeneous 
conductivities, as in standard “direct” elliptic theory. Hypothesis (H2) is needed for the method of proof, and probably 
can be lifted after one can construct some equivalent real-valued test functions to the ones we will mention in this 
paper. Finally, hypothesis (H3) is needed to preserve the ellipticity of a suitable complex-valued quasilinear problem, 
and it is certainly an essential condition for us.

Examples. Some examples of conductivities of this type are, for p small if necessary, the conductivity generalizing 
the minimal surface equation:

a1(s,p) := f (s)√
1 + p · p ,

among many others (in this last example one must rewrite the equation without fractional terms). See also [4, pp. 
260–263] for more details on the class of quasilinear equations appearing from different applied problems.

1.3. Main results

Now we state our main result. Let u = uf be a solution of the equation

div(a(u,∇u)∇u) = 0 in �, u
∣∣
∂�

= f. (1.12)

Theorem 1.4. Under the hypotheses (S1)-(S3) and (H1)-(H3), the knowledge of the DN map

C2,α(∂�) 	 f 
−→ �a[f ] = a(u,∇u)∂νu
∣∣
∂�

∈ C1,α(∂�), (1.13)

fully and uniquely determines the quasilinear coefficient a(s, p) in problem (1.12). More precisely, if �a1 ≡ �a2 , then 
a1 ≡ a2 in R × Br0(0).

Remark 1.5. This result can be seen as the first example of uniqueness for the quasilinear Calderón’s problem where 
the conductivity depends on both u and ∇u in a nontrivial fashion.

Remark 1.6. In principle, hypothesis (H1) may seem too restrictive, but as mentioned before, recovering a conductiv-
ity depending on x, u and ∇u could be considered as a problem with too many degrees of freedom, and uniqueness 
may not hold for the case of large gradients. On the other hand, we also believe that the analyticity condition (H2) can 
be relaxed to allow less restrictive conductivities.

1.4. Ideas of the proof

The proof of Theorem 1.4 relies on the introduction of a new class of solutions for (1.12) which have nontrivial 
gradient. Recall the hypothesis (H2), that ensures that a(s, p) is analytic in a particular tubular neighborhood of the 
real case. Assume that 0 ∈ ∂�, otherwise we translate the domain (or change the following argument by a suitable 
space translation). Under this framework, we fix s ∈ C and p ∈ Cn such that p · p = 0, and introduce the following 
set of functions

us,p(x) := s + x · p ∈C, x ∈ �. (1.14)

Note that x · p is the standard inner product between the (real-valued) vector x and the complex-valued vector p. A 
first important property of these functions is the following: each us,p solves (1.12) in the classical sense, provided 
p · p = 0:

div(a(us,p,∇us,p)∇us,p) = 0 in �.

This last identity shows precisely a nontrivial bifurcation, along a complex analytic manifold (p ·p = 0) of the standard 
constant solutions (in this case, us,0), which where mostly considered by Z. Sun and coauthors [15,6].

Solving in general the direct quasilinear problem (1.12) for a(·) complex-valued is a hard problem. Very few 
results are available in the literature, and they mostly consider the linear case only. Some recent breakthroughs on the 
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regularity problem are the works by Hofmann et al. [7], and subsequent papers. See also the work by Barton [2] for 
more details on this approach. In our case, we will only consider solutions that are close enough to a particular exact 
solution (us,p), which in some sense simplifies the solvability theory.

In Theorem 4.4 we will show the existence and uniqueness of complex-valued solutions in the neighborhood of 
each us,p , provided p is chosen small. In proving this result we will invoke the Implicit Function Theorem. A suitable 
complex-valued Dirichlet-to-Neumann map arises from this construction.

The second ingredient of the proof is the linearization technique above mentioned, applied this time to the complex-
valued case. We will show in Corollary 5.4 that if two complex-valued DN maps coincide, then their respective 
linearization are well-defined and must coincide, at least for small gradients.

A third ingredient of the proof is the uniqueness a particular set of complex-valued conductivities in a linearized 
Calderón problem. Unlike the standard real-valued Calderón problem, the proof of the former result relies on simple 
and elementary evaluation techniques, and no CGO solutions are needed (although each us,p may be recast as a very 
particular CGO solution), see the proof of Theorem 6.6 for the corresponding details. We also emphasize that our 
techniques do not apply for the standard real-valued Calderón problem, because of the absence of a particular zeroth 
order term that makes things work in our case.

The last part of the argument consists in comparing the real and complex-valued DN maps. By hypothesis, we only 
have information about the real-valued one, and some information must be transferred from the real to the complex 
one. In order to show this fact we will prove that the complex-valued DN map is the unique continuation of the 
real-valued one, around each us,p , to the complex n-dimensional space p ∈ Cn, p small. We will use here the fact 
that the manifold p · p = 0 is analytic outside the origin. As a consequence, complex-valued DN maps are equal 
for each boundary value data. Consequently, linearized DN maps coincide, and therefore, from the previous results 
(Theorem 6.6), both conductivities are the same everywhere.

Organization of this paper. In Section 2, and in order to make this paper self-contained, we review the standard 
solvability theory of quasilinear problems. Then, in Section 3 we show the existence and uniqueness of a complex-
valued, linear elliptic problem. In Section 4 we extend this result to the nonlinear case, and show the existence of 
well-defined DN maps. Section 5 is devoted to the linearization of the DN map, and the transference of uniqueness 
from nonlinear to the linear regime. Section 6 deals with the uniqueness for the Calderón problem associated to 
a particular linear, complex-valued equation resulting from the linearization of the quasilinear problem. Finally, in 
Section 7 we show the main result, Theorem 1.4.

Notations. Through this paper, we will assume the following conventions:

• Given p ∈Cn, pT denotes its transpose vector.
• Cα(�; C), Cα(∂�; C) denote Hölder spaces of complex-valued functions of exponent α.
• Br(x0) will denote the open ball centered at x0 ∈Cn (or Rn), of radius r > 0.
• ν(x) ∈ Sn−1 denotes the outer unit normal to a point x ∈ ∂�.
• Given an m × n matrix A, we will denote its norm as ‖A‖2 := ∑

i,j |aij |2.

Acknowledgments. C. M. would like to thank the Mathematics Department of the U. Washington for its kind hos-
pitality during the elaboration of this work. He also would like to thank the Laboratoire de Mathématiques d’Orsay 
for his kind hospitality during past years, and where part of this work was completed. Finally, C.M. was partially 
funded by ERC no. 291214 Blowdisol (France), FONDECYT no. 1150202 Chile, Conicyt Grant PIA AFB-170001 
(U. Chile), and Millennium Nucleus Center for Analysis of PDE NC130017. G. U. was partly supported by NSF and 
a Si-Yuan Professorship at IAS, HKUST.

2. Review on the real-valued, quasilinear direct problem

2.1. Preliminaries

In this section we recall some well-known results on quasilinear scalar equations. For the sake of completeness, 
we state (without proofs) all interesting results, even if they are not essentially needed. Some good references for 
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these results are the monographs by Ladyzenskaja and Ural’ceva [9], and also Gilbarg and Trudinger [4]. Most of the 
results below are stated for operators in divergence form, but they have general counterparts, see the aforementioned 
monographs for more details and general statements.

Recall that we assumed � being a smooth (C2,α for instance, 0 < α < 1), bounded domain in dimension n ≥ 2. The 
regularity of the boundary is essentially needed in one specific statement, Theorem 2.12. Let Q = Qu be an operator 
in divergence form

Quu = Qu := divA(x,u,∇u),

u = u(x) ∈ C2(�).
(2.1)

Here the vector field A = A(x, s, p), defined in � ×R ×Rn with values in Rn, is assumed to be at least differentiable, 
although in practice we will need C1 regularity, see (S1) in page 1145. We start with the following definition, which 
is standard.

Definition 2.1 (Ellipticity, see [4], eqn. (10.5), p. 259). We say that Q as in (2.1) is elliptic in � if there are constants 
0 < λ < 
 < +∞, depending on (x, s, p) ∈ � ×R ×Rn, such that for all ξ ∈Rn,

0 < λ(x, s,p)|ξ |2 ≤ aij (x, s,p)ξiξj ≤ 
(x, s,p)|ξ |2, (2.2)

and where

aij (x, s,p) := 1

2
(∂xj

Ai + ∂xi
Aj )(x, s,p). (2.3)

Similarly, we will say that Q is elliptic in � if (2.2) holds for all (x, s, p) ∈ � ×R × Rn, and uniformly elliptic if λ
and 
 do not depend on x ∈ �.

Examples. Some examples of vector fields A that we will see through this paper are the following:

A1(x, s,p) := a(x, s,p)p, a(·) scalar valued,

and for (s, p) ∈R ×Cn fixed, and if a = a(s, p) is differentiable in its variables (s, p),

A2(x, z, q) := a(s + p · x,p)q + p {(∇pa)(s + p · x,p) · q + (∂sa)(s + p · x,p)z}.
This second vector field A2 can be recast as a sort of linearization of the nonlinear field A1, around a particular 
solution.

Remark 2.2 (Complex-valued case). Let us assume now that A = A(x, s, p) is complex-valued, differentiable in 
x ∈ � and analytic in a region of points M 	 (s, p) ∈ C × Cn. We will say that Q is elliptic in � × M if there are 
constants 0 < λ < 
 < +∞, depending on (x, s, p) ∈Rn ×M, such that for all ξ ∈Cn,

0 < λ(x, s,p)|ξ |2 ≤ Re
(
aij (x, s,p)ξiξj

) ≤ 
(x, s,p)|ξ |2, (2.4)

and where, as usual,

aij (x, s,p) = 1

2
(∂xj

Ai + ∂xi
Aj )(x, s,p). (2.5)

As in the real-valued case, we will say that A is uniformly elliptic in � × M if both λ and 
 are functions not 
depending on x ∈ �.

2.2. Uniqueness

We first mention a uniqueness result. The following result is a slight modification of Theorem 10.7, p. 268 in [4], 
adapted to our needs.

Theorem 2.3 (Uniqueness). Assume that Qu =Qv = 0 for u, v ∈ C2(�), with Q in (2.1) elliptic in � (see inequalities 
(2.2)), and A = A(x, s, p) continuously differentiable with respect to the s and p variables. If u = v on ∂�, then u ≡ v

in �.



1150 C. Muñoz, G. Uhlmann / Ann. I. H. Poincaré – AN 37 (2020) 1143–1166
The next result explains the maximum principle for operators in the form of divergence, adapted to our setting. 
Note that no ellipticity assumption is needed, although a different coercivity assumption is imposed.

Theorem 2.4 (See Theorem 10.9, p. 272 in [4]). Assume that u ∈ C0(�) ∩ C1(�) satisfies Qu = 0 in the weak sense 
in �,6 and suppose that for some β > 1, and a1, a2 > 0,

p · A(x, s,p) ≥ |p|β − |a1s|β − a
β
2 , for all (x, s,p) ∈ � ×R×Rn. (2.6)

Then one has the estimate

sup
�

|u| ≤ C(a2 + a1 sup
∂�

|u|) + sup
∂�

|u|, C = C(n,β, a1, |�|) > 0.

Before continuing, some remarks are essentially needed.

Remark 2.5. This result is useful because it gives a-priori C0 estimates for any sufficiently smooth solution u of 
Qu = 0 in �, only in terms of its values on the boundary. In that sense, this is the first step for establishing a-priori 
estimates for solutions to the quasilinear problem Qu = 0.

Remark 2.6. Assume that A(x, s, p) = a(x, s, p)p, with a ≥ 1 uniformly in (x, s, p) ∈ � ×R ×Rn. Then we have

p · A(x, s,p) = a(x, s,p)|p|2 ≥ |p|2,
which implies that (2.6) is satisfied with β = 2 > 1, and a1 = a2 = 0. Therefore, in this particular case, one simply 
has the pure C0 estimate

sup
�

|u| ≤ sup
∂�

|u|.

2.3. A priori estimates

The next step is how to establish existence of solutions for the quasilinear problem Qu = 0, where Q is as in (2.1). 
Recall the definition of ellipticity in �, see Definition 2.2. For the next result, we will assume, for |p| → +∞, the 
following structural conditions on A:

ν(|s|)(1 + |p|)τ ≤ λ(x, s,p), (see (2.2)),

‖∇pA(x, s,p)‖ ≤ μ(|s|)(1 + |p|)τ
(1 + |p|)|∂sA(x, s,p)| + ‖DxA(x, s,p)‖ ≤ μ(|s|)|p|τ+2,

(2.7)

for some τ > −1, and ν (resp. μ) positive and non-increasing (resp. non-decreasing) in |s|.
The next result, essentially Theorem 14.1 in [4] (p. 337), establishes boundary gradient estimates for solutions to 

Qu = 0 in �. Before announcing this, we need some standard notations and definitions. Assume that u ∈ C2(�), and 
that Q is elliptic as in Definition 2.1. Recall that (2.1) can be written, using Einstein’s summation convention, as

Qu = divx A(x,u,∇u)

= ∂xi
Ai(x,u,∇u)

= (∂xi
Ai)(x,u,∇u) + (∂sAi)(x,u,∇u) ∂xi

u + ∂pj
Ai(x,u,∇u) ∂2

xixj
u.

Since u ∈ C2(�), we have (∂2
xixj

u)i,j symmetric, which implies that

Qu = 1

2
(∂pj

Ai(x,u,∇u) + ∂pi
Aj (x,u,∇u)) ∂2

xixj
u

+ (∂xi
Ai)(x,u,∇u) + (∂sAi)(x,u,∇u) ∂xi

u

= ai,j (x,u,∇u) ∂2
xixj

u + b(x,u,∇u),

6 This means the equation Qu = 0, with Q and u as in (2.1), is tested against a C∞
0 (�) function.
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where

b(x, s,p) := (∂xi
Ai)(x, s,p) + (∂sAi)(x, s,p) pi,

see also Definition 2.1. Gilbarg and Trudinger define (see eqn. (10.3)) the principal part of Q as E :

E(x, s,p) := ai,j (x, s,p)pipj ,

so that, since Q is elliptic,

0 < λ(x, s,p)|p|2 ≤ E(x, s,p) ≤ 
(x, s,p)|p|2.
Having this in mind, we also have

|p|
(x, s,p) ∼ |p|‖ai,j (x, s,p)‖
∼ |p|‖DpA(x, s,p)‖ ≤ μ(|s|)(1 + |p|)τ+1,

(2.8)

thanks to (2.7). Applying once again (2.7), we have

μ(|s|)(1 + |p|)τ+1 ≤ μ̃(|s|)λ(x, s,p)(1 + |p|) ≤ μ̃(|s|)E(x, s,p),

for p large. Additionally, if p is large,

|b(x, s,p)| ≤ |(divx A)(x, s,p)| + ‖(∂sA)(x, s,p)‖|p|
≤ μ(|s|)|p|τ+2

≤ μ̃(|s|)E(x, s,p),

(2.9)

using again (2.7). In conclusion,

|p|
(x, s,p) + |b(x, s,p)| ≤ μ̃(|s|)E(x, s,p).

These are the “structure” conditions imposed in [4, eqn. (14.9)], and are clearly satisfied thanks to (2.7). Consequently, 
we have

Theorem 2.7 (Boundary estimates). Let u ∈ C2(�) ∩ C1(�) satisfy

Qu = ai,j (x,u,∇u) ∂2
xixj

u + b(x,u,∇u) = 0 (2.10)

in � and u
∣∣
∂�

= f ∈ C2(�). Suppose that � satisfies the uniform exterior sphere condition, with uniform radius 
δ > 0. Then, under assumptions (2.7), one has

sup
∂�

|∇u| ≤ C(n,M,μ(M),N, δ), M := sup
�

|u|, N := ‖f ‖C2(�). (2.11)

Remark 2.8. The uniform exterior sphere condition for � is needed in order to construct suitable barriers, which is a 
standard technique in elliptic theory. See [4, Chapter 14] for more details.

The following result is Theorem 15.9 in [4]. Recall the definitions of M and N in (2.11).

Theorem 2.9. Let u ∈ C2(�) ∩ C0(�) satisfy (2.10) in � bounded and assume (2.7) valid for τ > −1. Assume 
additionally that � satisfies the exterior sphere condition and that u = f on ∂�, with f ∈ C2(�). Then we have

sup
�

|Du| ≤ C(n, τ, ν(M),μ(M), ∂�,N,P ), P := sup
�

|A(x,0,0)|. (2.12)

Now we recall some Hölder estimates for the gradient of u. Let us remind the Hölder seminorm:

[u]α,� := sup
|u(x) − u(y)|

|x − y|α .

x,y ∈�, x �=y
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Theorem 2.10 (See Theorem 13.2 p. 323 in [4]). Assume u ∈ C2(�) is such that Qu = 0 in �, with Q elliptic in �, 
and A ∈ C1(� ×R ×Rn). Finally, assume that ∂� ∈ C2 and u = f on ∂�, where f ∈ C2(�). Then

[∇u]α,� ≤ C
(
n,K,


K

λK

,
μK

λK

,�,‖f ‖C2(�)

)
, K := ‖u‖C1(�),

and α = α(n, 
K/λK, �) > 0 (see (13.4) in [4]).

2.4. Existence. Leray-Schauder fixed point argument

The following Leray-Schauder type result is the key tool to prove existence of solutions for Qu = 0. Note that 
the existence is proven in Hölder classes, however, this condition could be relaxed by allowing a less regular class of 
solutions (and a different notion of solution).

Theorem 2.11. Let � be a bounded domain in Rn, with Q as in (2.10) elliptic in �, with coefficients

aij ∈ Cα(� ×R×Rn), b ∈ Cα(� ×R×Rn), 0 < α < 1.

Let ∂� ∈ C2,α and f ∈ C2,α(�). If there exists a constant M, independent of u and σ ∈ [0, 1], such that for every 
C2,α(�) solution of the Dirichlet problems

Qσ u := aij (x,u,∇u)∂2
i,j u + σb(x,u,∇u) = 0 in �,

u
∣∣
∂�

= σf, σ ∈ [0,1],
satisfies the C1 uniform bound

sup
�

|u| + sup
�

|∇u| < M,

then the Dirichlet problem Qu = 0, u
∣∣
∂�

= f has a solution in C2,α(�).

The following result is strictly contained in Theorem 15.11 in [4] (p. 381).

Theorem 2.12 (Existence). Let � be a bounded domain in Rn and suppose that Q is elliptic in �, with A ∈ C1,γ (�×
R ×Rn), 0 < γ < 1, satisfying (2.7) and (2.6) with the additional restriction β = τ + 2. Then if ∂� ∈ C2,γ , and for 
any f ∈ C2,γ (�) there exists a solution u = uf ∈ C2,γ (�) of the problem Qu = 0 in �, u

∣∣
∂�

= f .

In the following remarks, we essentially explain how Theorem 2.12 is proved.

Remark 2.13. The assumption β = τ + 2 is required to reconcile condition (2.6) with the first estimate in (2.7).

Remark 2.14. For the proof of Theorem 2.12, several intermediate steps are needed, parts of a main strategy invoking 
the Leray-Schauder fixed point theorem in Hölder spaces. In order to apply this result, one needs to show some 
Ladyzenskaja-Ural’ceva a-priori interior and boundary estimates in C1,γ , for solutions to the problem Qu = 0 in �, 
which are established through Chapters 10, 13, 14 and 15 in [4]. See the comments after Theorem 15.11 in [4] for full 
details.

Remark 2.15. The assumption ∂� ∈ C2,γ is needed to ensure the so-called exterior sphere condition for every point 
in ∂�.

Remark 2.16. Conditions (2.7) are only sufficient for obtaining existence for the problem Qu = 0, however, there 
are examples (see Chapter 14, Section 14.4 in [4]) that show that the absence of some of these assumptions leads to 
nonexistence results. Usually, the estimate that fails is the control of the derivative of u on the boundary.
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2.5. Applications

We will apply Theorems 2.3 and 2.12 to show the existence of a unique solution for the direct problem associated to 
the quasilinear problem (1.2). A first result deals with the solvability problem for scalar quasilinear problems. Before 
we need some notations. Assume that

A(x, s,p) := a(x, s,p)p, a ≥ 1. (2.13)

Then aij in (2.3) is given by

aij (x, s,p) := 1

2
((∂pi

a)(x, s,p)pj + (∂pj
a)(x, s,p)pi).

We will assume that

aij is elliptic in �, (2.14)

as in (2.2), with involved parametric constants λ(x, s, p) and 
(x, s, p) respectively (see (2.2)). Additionally, we will 
assume that⎧⎪⎨⎪⎩

λ(x, s,p) ≥ ν(|s|) > 0,

|p||∇pa(x, s,p)| + |a(x, s,p)| ≤ μ(|s|),
(1 + |p|)|∂sa(x, s,p)| + |∇xa(x, s,p)| ≤ μ(|s|)|p|,

(2.15)

for ν (resp. μ) positive and non-increasing (resp. non-decreasing) in |s|. These conditions essentially say that a must 
be bounded with derivatives of the right order.

Theorem 2.17. Consider the quasilinear problem posed in a bounded domain � ⊆Rn of class C2,α , 0 < α < 1, and 
n ≥ 2, for u : � →R real-valued:

div(a(x,u,∇u)∇u) = 0 in �, u
∣∣
∂�

= f. (2.16)

Assume that a ∈ C1,α(�×R ×Rn), and a ≥ 1, and that (2.14) and (2.15) are satisfied. Then the direct problem (2.16)
is uniquely solvable for u in C2,α , i.e., for any f ∈ C2,α(∂�), there exists a unique solution u = uf ∈ C2,α(�).

Proof. The existence part is essentially Theorem 2.12 with A given by (2.13), and α = 2, τ = 0. Note also that 
conditions (2.7) are satisfied by assuming the conditions in (2.15). For the uniqueness part, it is enough to invoke 
Theorem 2.3. �
Remark 2.18. Let us comment about the meaning of assumptions (2.15). They state, among other things, that the 
conductivity must be bounded uniformly in x ∈ � and p ∈Rn. In other words, it is not allowed to have e.g.

a(x, s,p) ∼ |p|2.
This requirement can be understood as a smallness condition for the gradients of solutions to Qu = 0. We will see 
later that this condition appears in a different form in our main results.

One of the main consequences of the previous result is the following existence result for the DN map.

Corollary 2.19. Consider the quasilinear problem (2.16). Under the assumptions and conclusions of Theorem 2.17, 
the Dirichlet-to-Neumann map

C2,α(∂�) 	 f 
−→ �a[f ] := a(x,u,∇u)∇u · ν∣∣
∂�

∈ C1,α(∂�), (2.17)

where u = uf is the solution of (2.16), is well-defined and bounded.
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It seems reasonable now to deal with the inverse problem associated to the quasilinear problem (2.16). However, 
we will see later in this paper that, if we want to recover the conductivity a = a(x, s, p) for p �= 0, it is better to 
consider complex-valued solutions for (2.16). However, the solvability theory for this type of solutions is, as far as 
we know, far from being completely understood. For this reason, we will have to make a digression from the standard 
theory and prove some particular existence theorems for complex-valued solutions of (2.16). The fact that there are 
explicit solutions in some particular cases will be essential for the uniqueness proof.

Before treating in detail the full quasilinear problem, it is somehow better to understand a simplified, complex-
valued coefficients, linear problem.

3. Solvability for a complex-valued linear problem

3.1. Preliminaries

Let g ∈ C0,α(�) and h ∈ C2,α(�), 0 < α < 1 denote two fixed “source” functions. The purpose of this Section is 
to develop a solvability theory for the linear direct problem for the unknown function v = v(x)

divx

[
a(us,p,p)∇v + p

{
(∇pa)(us,p,p) · ∇v + (∂sa)(us,p,p)v

}] = g in �,

v
∣∣
∂�

= h.
(3.1)

Note that us,p = s + x ·p, with s ∈R and p ∈ Cn is such that p ·p = 0 (see (1.14)). From hypothesis (H2) in p. 1146, 
when considering the expression a(us,p, p) we are using the fact that a admits an analytic continuation to the region 
R × Br0(0), for p ∈ Br0(0) and r0 small if needed. In that sense, this problem has complex-valued coefficients, but it 
still preserves its divergence form. Finally, note that the terms

(∇pa)(us,p,p), (∂sa)(us,p,p),

denote the functions ∇pa(s, p) and ∂sa(s, p) evaluated at the point (us,p, p), respectively (and if no confusion arises, 
we will drop the parentheses).

Problem (3.1) is the key element to understand in this paper. It will be essential to show solvability for the quasi-
linear case studied in Section 4, and additionally, it will play an important role in the associated, quasilinear inverse 
problem (cf. Sections 5 and 6).

It is not difficult to identify the main symbol of the problem above. It turns out that we can write (3.1) as

divx(Ã(x, s,p)∇v + b̃(x, s,p)v) = g, in �, v
∣∣
∂�

= h,

and where (In is the n × n identity matrix)

Ã(x, s,p) := a(us,p,p)In + p ∇pa(us,p,p)T ∈Cn×n,

b̃(x, s,p) := ∂sa(us,p,p)p ∈Cn.
(3.2)

Both coefficients have complex-valued components. The n × n matrix Ãij is not symmetric nor diagonal, and the 
term p∇pa(us,p, p)T may be a very large perturbation (in terms of its absolute value) of the main part a(us,p, p)In, 
in such a form that it is very probable that Ã is no longer elliptic, so that the nature of the Dirichlet boundary value 
problem may be completely different to a standard one.

The following result states that for p small enough, the matrix Ã from (3.2) is uniformly elliptic.

Lemma 3.1. Assume that (s, p) ∈ R ×Cn, and x ∈ �. Assuming r0 > 0 in (1.10) smaller if necessary, the following 
is satisfied. For all |p| < r0, the complex valued matrix Ã in (3.2) is elliptic in the sense of Remark 2.4, and the vector 
field ̃b in (3.2) is also uniformly bounded.

Proof. Since from (1.11) we have Rea(s, p) > λ(s, p) > 0, we only have to show that for p small this inequality is 
preserved. We have

Re
(
Ãij (x, s,p)ξiξj

) = Re
(
a(us,p,p)|ξ |2 + pi∂pj

a(us,p,p)ξiξj

)
= Rea(u ,p)|ξ |2 + Re(p ∂ a(u ,p)ξ ξ

)
.
s,p i pj s,p i j
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Recall that we have |p| < r0. Now, since � is bounded, us,p = s + x · p lies inside a narrow horizontal band of the 
complex plane, of the form

R× [−Cr0,Cr0], C = C(�) > 0.

Therefore, if r0 is chosen small enough,

R× [−Cr0,Cr0] ⊆ R (see (1.10)).

Consequently, by hypothesis (H2) (see p. 1146), a and its derivatives are well-defined and bounded in the set 
R× Br(0).∣∣Re(pi∂pj

a(us,p,p)ξiξj

)∣∣ ≤ r0|ξ |2 × sup
(s̃,p̃)∈R×Br0 (0)

|∇pa(s̃, p̃)| ≤ Cr0|ξ |2.

Additionally, using (1.11) and the continuity of λ (taking r0 smaller if necessary),

Rea(us,p,p) ≥ inf
(s̃,p̃)∈R×Br0 (0)

Rea(s̃, p̃)

≥ inf
(s̃,p̃)∈R×Br0 (0)

λ(s̃, p̃) ≥ λ̃ > 0.

Consequently, for r0 small,

Re
(
Ãij (x, s,p)ξiξj

) ≥ 9

10
λ̃|ξ |2. (3.3)

On the other hand, note that in the region R × Br0(0),

‖Ã(x, s,p)‖ ≤ 
 + C|p| ≤ 2
, (3.4)

and from (3.2),

|̃b(x, s,p)| ≤ C|p| ≤ Cr0. � (3.5)

Remark 3.2. Lemma 3.1 and hypothesis (H3) (see (1.11)) can be weakened by asking for λ̃ depending on s, under 
suitable assumptions on a(·, ·) and it first derivatives, in such a form that (3.3) is satisfied with a positive lower bound 
λ̃ depending on s also.

3.2. Existence for a linear complex-valued problem

Now we will apply Lemma 3.1 to show existence for the problem (3.1).

Theorem 3.3. Let g ∈ C0,α(�) and h ∈ C2,α(�), 0 < α < 1, be two fixed data. Under the assumptions of Lemma 3.1, 
problem (3.1) has a unique, complex-valued solution v = vg,h in the class C2,α(�). Moreover, one has the estimate

‖v‖C2,α ≤ C(‖h‖C2,α(∂�) + ‖g‖C0,α(�)), C = C(λ,
, r0). (3.6)

Proof. The proof of this result is based in the standard procedure to show solvability of linear elliptic PDEs. �
We will see later, in Chapters 5 and 6, that the linear problem (3.1) appears naturally in the study of the quasilinear 

inverse problem (1.12). Theorem 3.3 will be applied in the next section in order to get the desired solvability for 
problem (1.12).
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4. Solution for the quasilinear complex case

4.1. A model example

Now we make a small digression from the main subject of this paper. In this subsection we will consider the 
Calderón direct problem in � ⊆Rn bounded

divx(a(x)∇u) = 0 in �, u
∣∣
∂�

= f, (4.1)

where a ∈ C1,α(�) is uniformly positive, and f ∈ C2,α(�), with ∂� ∈ C2,α , for some 0 < α < 1. Clearly (4.1) has a 
unique real-valued solution u = uf ∈ C2,α . Moreover, there exists a solution in standard Sobolev spaces even if f is 
assumed less regular than Hölder.

The problem now is to get some insight about the same problem when now a(·) is assumed to be complex-valued, 
namely a : � −→ C. Since solvability for (4.1) in the real and complex-valued case is related to the Riesz Theorem 
(or Lax-Milgram Theorem), a sufficient condition to find a solution in a Sobolev space is the ellipticity condition (see 
Remark 2.2)

0 < λ ≤ Rea(x) ≤ 
 < +∞, x ∈ �.

The case where a(·) depends now on x, u(x) and ∇u(x) will have require some new (but standard, in view of 
Section 2) restrictions, because λ may now depend on u and ∇u. It turns out that, for some particular reasons, it is 
good to have a good control of the dependence on u of the lower bound λ(u, ∇u). This control will be important to 
obtain a desired ellipticity for our problem.

4.2. Existence close to a given solution

We will consider s ∈ R and p ∈ Cn fixed, with p ·p = 0. Recall the linear affine function us,p(x) defined in (1.14). 
The following is clearly satisfied:

Claim 4.1. Assume that a = a(s, p) is a complex-valued, homogeneous conductivity, analytic for (s, p) ∈ C × Cn. 
Then us,p solves (1.12) with f = us,p , that is,

divx(a(us,p(x),∇us,p(x))∇us,p(x)) = 0 in �. (4.2)

Remark 4.2. For a conductivity a(s, p) defined only in a portion of the complex space C × Cn (see e.g. (1.10)), 
we need additional restrictions on (s, p), depending on x ∈ �. However, even in this case it is possible to show that 
Claim 4.1 do hold for a subset of possible (s, p).

Remark 4.3. Note additionally that, for any x0 ∈Rn, the modified test function ũs,p := s +p · (x −x0) is also solution 
to the first equation in (1.12). This sort of “degeneracy” in the choice of x0 is completely absorbed by simply assuming 
that x0 = 0 ∈ ∂�.

The function us,p is an example of a complex-valued solution to the quasilinear problem (4.2), revealing the 
existence of a general family of solutions beyond the ones mentioned by the existence theorems in Section 2. We 
would like to find new solutions to (1.12) around this explicit solutions. For this reason, we set

u = us,p + v, v unknown,

and we will write (1.12) in terms of the new variable v. The following result is the main objective of this Section, and 
it can be seen as an extension of Claim 4.1. Before, recall the definition of R in (1.10).

Theorem 4.4. Let h ∈ C2,α(�) be a fixed, complex-valued function. Assume that the conductivity a = a(s, p) is 
analytic in R × Br0(0), and consider the quasilinear problem in � ⊆Rn, n ≥ 2, for v = v(x) complex-valued:

divx(a(us,p + v,p + ∇v)(p + ∇v) − a(us,p,p)p) = 0 in �

v
∣∣ = h.

(4.3)

∂�
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Finally, assume that (2.4) and (2.15) are satisfied. Then for any small ‖h‖C2,α(∂�) and small p ∈Cn such that p ·p = 0, 
the direct problem (4.3) is uniquely solvable for v = vh in C2,α(�).

Unlike Section 2, we will prove Theorem 4.4 following other steps: by the application of the Implicit Function 
Theorem to show existence and uniqueness. Although the methods of proof are somehow similar to the ones in 
Section 2, it will be clear from the beginning that the addition of a complex-valued conductivity will lead to several 
problems, and the smallness condition on the gradients will be essential for this approach.

Proof of Theorem 4.4. We will make use of the Implicit Function Theorem below. Assume t ∈ R and h ∈ C2,α(�)

given. Let us write

v(x) = h(x) + w(x), x ∈ �, w unknown.

Then (4.3) writes in terms of w,

divx

[
a(us,p + h + w,p + ∇h + ∇w)(p + ∇h + ∇w) − a(us,p,p)p

] = 0 in �,

w
∣∣
∂�

= 0.

In what follows, we denote by C2,α
0 (�) the Banach space of complex-valued functions in C2,α(�) which are zero at 

the boundary (but not necessarily its derivatives). Let us define the map F = Fs,p,h such that

F : C2,α
0 (�) × C

2,α
0 (�) 
→ C0,α(�), (4.4)

and

F[h,w] := divx

(
a(us,p + h + w,p + ∇h + ∇w)(p + ∇h + ∇w) − a(us,p,p)p

)
. (4.5)

Clearly F is well-defined, and F[0, 0] ≡ 0. The fact that F is of class C1 is a direct computation.
Now, for w̃ ∈ C

2,α
0 (�) fixed, we compute DwF[0, 0](w̃). Since F is continuously differentiable, we have

DwF[0,0](w̃) = d

dσ
F[0, σ w̃]

∣∣∣
σ=0

= d

dσ

[
divx(a(us,p + σw̃,p + σ∇w̃)(p + σ∇w̃) − a(us,p,p)p)

]∣∣∣
σ=0

= div
(
a(us,p,p)∇w̃ + p

{
(∇pa(us,p,p) · ∇w̃) + (∂sa)(us,p,p)w̃

})
.

Thanks to Theorem 3.3, if |p| < r the homogeneous Dirichlet problem

divx

(
a(us,p,p)∇w̃ + p

{
(∇pa(us,p,p) · ∇w̃) + (∂sa)(us,p,p)w̃

}) = g ∈ Cα(�),

w̃
∣∣
∂�

= 0,

has a unique solution w̃ ∈ C
2,α
0 (�), with uniform bounds. Therefore, applying the Implicit Function Theorem, for 

each h ∈ C2,α(�) small in norm it is possible to find a unique small solution w = w[h] ∈ C2,α(�) of F[h, w[h]] ≡ 0, 
which solves our problem. �
4.3. Another proof for uniqueness

Although the following result can be stated for more general conductivities, as in Theorem 2.3 (but under additional 
assumptions), we will only consider the following simple statement for uniqueness.

Theorem 4.5 (Uniqueness). Let r0, R0 > 0 be given by hypothesis (H2) (see (1.10)). Assume that v1, v2 ∈ C2(�), 
complex-valued, solve (4.3) with same boundary condition, and satisfying

|p| + ‖v1‖C2(�) + ‖v2‖C2(�) < r0. (4.6)

Then v1 ≡ v2 in �.



1158 C. Muñoz, G. Uhlmann / Ann. I. H. Poincaré – AN 37 (2020) 1143–1166
Remark 4.6. The smallness condition on v1 and v2 in (4.6) is a sufficient condition for having a positive functional 
for the difference of two solutions. From the existence part, we see once again that smallness is in some necessary.

Remark 4.7. The proof of Theorem 4.5 is not based on any type of pointwise comparison principle (compare with 
section 2 and the monograph [4, Chapter 10]), since the former simply does not work for general, complex-valued 
equations. In that sense, an energy method is suitably more reasonable for taking into account the oscillatory behavior 
of complex-valued solutions.

Proof of Theorem 4.5. We follow the ideas of the proof of Theorem 10.7 in [4], with some important differences 
because several inequalities do not hold for complex-valued functions.7 In that sense, the smallness character of the 
involved perturbation v will be a key ingredient.

Defining w := u1 − u2 = v1 − v2, and vt := tv1 + (1 − t)v2, for t ∈ [0, 1]. Finally, for s ∈ R and p ∈ Cn fixed, 
denote

A(x, z, q) := a(us,p + z,p + q)(p + q) − a(us,p,p)p, z ∈C, q ∈Cn.

Clearly A is analytic in the (z, q) variables. Then we have

0 = div(A(x,us,p + v1,p + ∇v1) − A(x,us,p + v2,p + ∇v2))

= ∂i(aij (x)∂jw + bi(x)w) (Einstein’s summation convention),
(4.7)

where, for t ∈ [0, 1],

aij (x, s,p) := 1

2

1∫
0

(∂pj
Ai + ∂pi

Aj )(x, vt ,∇vt )dt

bi(x, s,p) :=
1∫

0

(∂sAi)(x, vt ,∇vt )dt.

A further simplification reveals that8

aij (x, s,p) = δij

1∫
0

a(us,p + vt ,p + ∇vt )dt

+ 1

2

1∫
0

(pj ∂pi
a + pi∂pj

a)(us,p + vt ,p + ∇vt )dt,

and

bi(x, s,p) = pi

1∫
0

(∂sa)(us,p + vt ,p + ∇vt )dt (4.8)

Using (H3) (see p. 1146) and the smallness hypotheses on the perturbation (4.6), we note that aij is still elliptic, in 
the sense of Remark 2.4:

0 < λ|ξ |2 ≤ Re
(
aij (x, s,p)ξiξj

) ≤ 
|ξ |2,
and

|aij | ≤ 
, |bi | ≤ C.

7 In particular, no comparison principle seems to hold in the complex-value case.
8 δij represents the standard Kronecker’s identity matrix.
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Therefore, using (4.7) with test function ϕ = w,

0 = Re
∫

(aij (x)∂jw + bi(x)w)∂iw = Re
∫

aij (x)∂jw∂iw + Re
∫

bi(x)w∂iw.

The first integral above is nonnegative (ellipticity), and the second one is small, because of the smallness assumptions: 
from (4.8) and the fact that |p| < r0,

sup
x∈�

|Reb(x)| ≤ Cr0.

Therefore, using (2.4) and the Poincaré’s inequality (since � is bounded), we have for r small

0 ≥ λ

∫
|∇w|2 − Cr2

0

∫
|w|2 �

∫
|∇w|2.

Therefore, w ≡ 0. �
As in Section 2, Corollary 2.19, one of the main consequences of Theorem 4.4 is the existence of a suitable 

complex-valued DN map around the solution us,p.

Corollary 4.8. Under the assumptions (and conclusions) of Theorem 4.4, the following holds. For any s ∈ R, 
‖h‖C2,α(∂�) small, and p ∈ Cn also small, such that p · p = 0 is satisfied, the Dirichlet-to-Neumann map

C2,α(∂�) −→C1,α(∂�;C)

h 
−→ �̃a,s,p[h] (4.9)

where

�̃a,s,p[h] :=
(
a(us,p + v,p + ∇v)(p + ∇v) − a(us,p,p)p

)
· ν∣∣

∂�
(4.10)

and v = vh is the solution of (4.3), is well-defined and bounded.

Now that we have a well-defined DN map for the quasilinear problem (4.3), it is time for asking the differentiability 
properties of ̃�a,s,p .

5. Linearization of the DN map

5.1. Differentiability of the DN map

In what follows, we prove that the DN map ̃�a,s,p defined in (4.9)-(4.10) has a well-defined Gateaux-derivative at 
the origin.

Given h ∈ C2,α(�) fixed, s ∈ R, p ∈ Cn and t ∈ R small enough (such that Theorem 4.4 holds for the boundary 
data th), and consider the DN operator �̃a,s,p(th). The following result shows that this nonlinear operator has a 
well-defined Gâteaux-derivative around us,p.

Lemma 5.1. Given s, p ∈ C × Cn and t ∈ R fixed, and h ∈ C2,α(�). As a functional from t ∈ R into C1,α(∂�), we 
have that

t 
→ �̃a,s,p[th]
is Gâteaux differentiable at t = 0. Moreover, one has (cf. 3.2)

lim
t→0

∥∥∥∥1

t
(�̃a,s,p[th] − �̃a,s,p[0]) − (

Ã(·, s,p)∇h + b̃(·, s,p)h
) · ν

∥∥∥∥
1,α

= 0. (5.1)

C (∂�)



1160 C. Muñoz, G. Uhlmann / Ann. I. H. Poincaré – AN 37 (2020) 1143–1166
Remark 5.2. Identity (5.1) can be recast as a directional derivative:

D�̃a,s,p[0](h) = (
Ã(·, s,p)∇h + b̃(·, s,p)h

) · ν,

for any h ∈ C2,α(�) and Ã, ̃b defined in (3.2).

Proof of Lemma 5.1. From (4.10) and (4.3), we have

�̃a,s,p[th] − �̃a,s,p[0] = (
a(us,p + v,p + ∇v)(p + ∇v) − a(us,p,p)p

) · ν∣∣
∂�

= (
a(us,p + th,p + t∇h)(p + t∇h) − a(us,p,p)p

) · ν.

The term above can be expanded as follows:

a(us,p + th,p + t∇h)(p + t∇h) − a(us,p,p)p =
= (

a(us,p,p) + t∂sa(us,p,p)h + t∇pa(us,p,p) · ∇h
)
(p + t∇h) − a(us,p,p)p

+ t2D2
s,pa(s̃, p̃)[h,∇h]2(p + t∇h)

= t
(
a(us,p,p)∇h + p∂sa(us,p,p)h + p∇pa(us,p,p) · ∇h

)
+ t2(∂sa(us,p,p)h + ∇pa(us,p,p) · ∇h

)∇h

+ t2D2
s,pa(s̃, p̃)[h,∇h]2(p + t∇h).

Since h ∈ C2,α(�), and a is analytic in the considered region, we have then

lim
C1,α,t→0

1

t
[̃�a,s,p[th] − �̃a,s,p[0]] = a(us,p,p)∇h · ν

+ {∇pa(us,p,p) · ∇h + ∂sa(us,pp)h}p · ν.

Therefore, t 
→ �̃a,s,p[th] is differentiable at t = 0 and its derivative is given by (5.1). �
5.2. The linearized Calderón’s problem

In what follows, we consider the following linear direct problem: given h ∈ C2,α(�), find v ∈ C2,α(�) such that

divx

[
a(us,p,p)∇v + p

{∇pa(us,p,p) · ∇v + ∂sa(us,p,p)v
}] = 0 in �, (5.2)

under the Dirichlet boundary condition

v
∣∣
∂�

= h. (5.3)

Recall that in this problem, the coefficients

a(us,p,p), p ∇pa(us,p,p), and p ∂sa(us,p,p),

are functions of (x, s, p), but independent of v. Thanks to Theorem 3.3, this problem has a unique solution v = vh ∈
C2,α(�), provided p is chosen small enough, a condition that will be assumed from now on.

For problem (5.2)-(5.3), we denote by ̃��,a,s,p[h] the associated DN map:

�̃�,a,s,p[h] :=
[
a(us,p,p)∇v + p

{∇pa(us,p,p) · ∇v + ∂sa(us,p,p)v
}] · ν

∣∣∣
∂�

= (
Ã(x, s,p)∇h + b̃(x, s,p)h

) · ν. (see (3.2)).
(5.4)

Recall the nonlinear DN map ̃�a[h] in (4.9)-(4.10). Our next result is the following

Corollary 5.3. Fix a complex-valued coefficient a = a(s, p) satisfying (H1)-(H3) in p. 1146, and h ∈ C2,α(�). Then, 
for each function (s, p) ∈R ×Cn such that p · p = 0 and p is small enough, the associated DN map ̃�a satisfies

d
�̃a,s,p[th]

∣∣∣ = �̃�,a,s,p[h].

dt t=0
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Proof. Direct from (5.1) and (5.4). �
A second result translates the information from ̃�a,s,p into ̃��,a,s,p .

Corollary 5.4. Assume that ̃�a1,s,p ≡ �̃a2,s,p for given coefficients a1, a2 satisfying (H1)-(H3) in p. 1146. Fix (s, p) ∈
R ×Cn, with p · p = 0 and p small. Finally let ̃��,a1,s,p and ̃��,a2,s,p be the corresponding DN maps obtained form 
the previous result for a1 and a2, respectively. Then, for each fixed (s, p) one has

�̃�,a1,s,p ≡ �̃�,a2,s,p.

Proof. We follow the proof in [15]. Fix h ∈ C2,α(�), and pick t ∈ R small. We know by hypothesis that, for any 
suitable (s, p),

�̃a1,s,p[th] = �̃a2,s,p[th].
In particular, thanks to Corollary 5.3, both Gateaux-derivatives coincide:

d

dt
�̃a1,s,p[th]

∣∣∣
t=0

= d

dt
�̃a2,s,p[th]

∣∣∣
t=0

,

namely

�̃�,a1,s,p[h] = �̃�,a2,s,p[h],
as desired. �
6. Uniqueness of a linear Calderón’s problem

6.1. Setting

Let us assume, as already required in this paper, that s ∈ R is fixed and p ∈ Cn is a small, complex-valued vector 
satisfying the compatibility condition p · p = 0. The purpose of this Section is the study of the Calderón’s inverse 
problem for the complex-valued, matrix-valued, linear equation (5.2)-(5.3)-(5.4). We also assume h ∈ C2,α(�) in 
(5.3).

Consider the associated DN map �̃�,a,s,p[h], h as above, see (5.4). Now the question is the following: can the 
knowledge of �̃�,a,s,p for a sufficiently large class of boundary data h determine the linearized, complex-valued 
conductivity a = a(z, q)?

Let us start by recalling the following well-known result, valid for the scalar, real-valued conductivity case, but 
whose extension to the complex-valued case is immediate from the proposed proof.

Theorem 6.1 (Sylvester and Uhlmann, [12]). Assume that n ≥ 3 and a = a(x) is an unknown C2(�), real-valued 
conductivity. Consider the associated Calderón’s inverse problem for a(x):

div(a(x)∇v) = 0 in �,

v = h on ∂�,
(6.1)

and let us assume that two conductivities a1, a2 above produce the same DN map:

H 1/2(∂�) 	 h 
−−→ aj (x)∇u · ν∣∣
∂�

∈ H−1/2(∂�).

Then a1 ≡ a2.

Remark 6.2. The proof of this result is mainly based on the use of complex geometric optics solutions (CGO). Later, 
we will see that our uniqueness proof will not use CGO solutions, since a very helpful, zero-order linear term will 
appear in the linearization of the DN map. Such a term is not present in Theorem 6.1, which makes our proof not 
suitable for (6.1).
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The purpose of this section is to extend Theorem 6.1 to the complex-valued case given in (5.2)-(5.3). Since this 
new problem is no longer a scalar one, we will need some different techniques. Before proving this result, we need an 
auxiliary lemma.

Lemma 6.3. Assume that 0 ∈ ∂�, ν(0) being the outer unit normal to 0 ∈ ∂�, and let A(r0) and C(r0) be the sets of 
the form

A(r0) := {
p ∈Cn : |p| < r0, p · p = 0

}
, (6.2)

and

C(r0) := {
p ∈Cn : |p| < r0, p · p = 0 and p · ν(0) �= 0

}
, (6.3)

where ν(0) is the outer unit normal to � at the point x = 0. Then,

(1) For any n ≥ 2, A(r0) is not open, but A(r0)\{0} is an analytic manifold.
(2) For any n ≥ 2, the vector 0 ∈Cn satisfies 0 /∈ C(r0).
(3) For any n ≥ 2, C(r0) ⊂ Br0(0)\{0} in Cn.
(4) For any n ≥ 2, C(r0) is a complex analytic manifold.
(5) If p ∈ C(r0) and λ ∈C\{0} is such that |λ| < 1, then λp ∈ C(r0).
(6) If n = 2, C(r0) is of the form

p = p0 + ip⊥
0 , p0 ∈R2\{0}, p⊥

0 · p0 = 0, |p0| < r0√
2
. (6.4)

(7) If n ≥ 3, the plane passing by the origin and determined by the directions pr, pi ∈Rn, with p = pr + ipi ∈ C(r0), 
is not the plane orthogonal to ν(0).

Proof. The first assertion is a consequence of the fact that on A(r0)\{0}, ∇(p · p) = p �= 0. The second and third 
assertions are direct. The proof of (4) is similar to the proof of (1), and the fact that p · ν(0) �= 0 is an open set. Let us 
show (5). Assume p ∈Cn small. Writing p = pr + ipi , with pr, pi ∈ Rn, we have p · p = 0 if and only if

|pr |2 = |pi |2, pr · pi = 0. (6.5)

Additionally, the condition p · ν(0) �= 0 reads

pr · ν(0) �= 0 or pi · ν(0) �= 0. (6.6)

In two dimensions, condition (6.6) is always satisfied if p �= 0, therefore, the set of complex-valued vectors p ∈ Cn

for which (6.5) and (6.6) are satisfied is of the form (6.4).
In dimensions n ≥ 3, the set of points pr, pi ∈ Rn for which pr · ν(0) = 0 and pi · ν(0) = 0 lie on a plane in Rn

passing through zero. Therefore, any pair of orthogonal, equal-size vectors pr, pi ∈ Rn\{0} for which one of them is 
not in the plane orthogonal to ν(0), form a satisfactory p = pr + ipi . This shows (7). �

Recall the region R defined in (1.10).

Theorem 6.4. Assume that n ≥ 2, s ∈ R and p ∈ Cn, p · p = 0 and |p| < r0 small enough such that Theorem 3.3 is 
valid. Consider two conductivities a1(s, p) and a2(s, p), defined in R × Br0(0), and satisfying hypotheses (H1)-(H3) 
in p. 1146. Consider the Calderón’s inverse problem associated to the linear equation (5.2)-(5.3)-(5.4), and let us 
assume that two conductivities a1, a2 produce the same linearized DN map:

�̃�,a1,s,p[h] = �̃�,a2,s,p[h] ∈ C1,α(∂�), for all h ∈ C2,α(�).

Then a1 ≡ a2 in the region R × C(r0).

Proof of Theorem 6.4. The proof is simple and does not require a deep understanding or improvement of Theo-
rem 6.1. Indeed, assume that given h ∈ C2,α(�), we have knowledge of the DN map
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�̃�,a,s,p[h] ∈ C1,α(∂�), (6.7)

note that, since p · p = 0 (p ∈ A(r0)), every constant v = c ∈ C is solution to (5.2)-(5.3) with h ≡ c small. Since the 
solution to this problem is unique for |p| small (Theorem 3.3), we have that necessarily (see (5.4))

�̃�,a,s,p[c](x) = c ∂sa(us,p,p)(p · ν)(x).

If c �= 0 and (p · ν)(x) �= 0 for a fixed x ∈ ∂�, we will have

(∂sa)(s + x · p,p) = �̃�,a,s,p[c](x)

c(p · ν)(x)
.

Since 0 ∈ ∂� (otherwise we translate the domain or define us,p = s + p · (x − x0), with x0 ∈ ∂� fixed), we have

(∂sa)(s,p) = �̃�,a,s,p[c](0)

c(p · ν)(0)
,

for all p ∈ C(r0) (see (6.3)), and any s ∈R. From now we fix a constant c = c0 ∈C\{0}, small if necessary. Note that 
the denominator is independent of s ∈ R. Certainly we have lot of information about a(s, p), because we have proved

Claim 6.5. For any s ∈ R and p ∈ C(r0),

a(s,p) =
s∫

0

�̃�,a,s,p[c0](0)

c0(p · ν)(0)
ds̃ + a(0,p) (=: ã(s,p) + a(0,p)). (6.8)

Moreover, ̃a(s, p) is completely known from the DN map, being the same for a1 and a2.

Hence a1(s, p) = a2(s, p) for any s ∈ R and p ∈ C(r0) small, except for a function depending on p only. In order 
to show that the additional function a(0, p) is identically the same for a1 and a2, we consider now the function

vp(x) := p · x, p ∈ C(r0).

Note that vp is clearly a solution to (5.2)-(5.3) with h = p · x. Indeed,

divx

[
a(us,p,p)∇vp + p

{∇pa(us,p,p) · ∇vp + ∂sa(us,p,p)vp

}] =
= divx

[
a(us,p,p)p + p

{∇pa(us,p,p) · p + ∂sa(us,p,p)(p · x)
}]

= (∂sa)(us,p,p)(p · p) + ∂xj
(∂pi

a(us,p,p))pipj

+ (p · p)(∂sa)(us,p,p) + (p · p)(∂2
s a)(us,p,p)(p · x)

= ∂2
s,pi

a(us,p,p))pi(p · p) = 0.

Since the solution to this problem is unique for |p| small (Theorem 3.3), we have that necessarily (see (5.4))

�̃�,a,s,p[p · x](x) =
[
a(us,p,p)p + p

{∇pa(us,p,p) · p + ∂sa(us,p,p)(p · x)
}] · ν

∣∣∣
∂�

.

Since a(s, p) is almost completely explicit, except for a function of p, we have, for x ∈ ∂�,

�̃�,a,s,p[p · x](x) = ã(us,p,p)(p · ν) + a(0,p)(p · ν)

+ (p · ν)
{∇pã(us,p,p) · p + ∇pa(0,p) · p + ∂s ã(us,p,p)(p · x)

}
.

Evaluating at x = 0, we have

�̃�,a,s,p[p · x](0) = (p · ν(0))
[̃
a(s,p) + ∇pã(s,p) · p + a(0,p) + ∇pa(0,p) · p]

,

or

a(0,p) + ∇pa(0,p) · p = 1 [
�̃�,a,s,p[p · x](0) − (p · ν(0))

{̃
a(s,p) + ∇pã(s,p) · p}]

.

(p · ν(0))
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The right side above is known, and we only need to find a(0, p). Now, for any η > 0 we have

d

dη
(η a(0, ηp)) = a(0, ηp) + ∇pa(0, ηp) · ηp

= 1

ηp · ν(0)

[
�̃�,a,s,ηp[ηp · x](0)

− (ηp · ν(0))
{̃
a(s, ηp) + ∇pã(s, ηp) · ηp}]

,

so that

a(0,p) = lim
θ→0

1∫
θ

(
�̃�,a,s,ηp[ηp · x](0) − (ηp · ν(0))

{̃
a(s, ηp) + ∇pã(s, ηp) · ηp}

ηp · ν(0)

)
dη.

Note that the first term in the integral above must converge near η = 0 since a is by hypothesis analytic near the origin. 
Hence we have a1 ≡ a2 in a set of the form (s, p) ∈ R × C(r0), which is a complex (noncompact) analytic manifold. 
Since both a1 and a2 are analytic as functions of s ∈ R only, we conclude that both coincide in the region R × C(r0). 
The proof is complete. �

We need to extend the equality between a1 and a2 from the set R × C(r0) to a larger set. This is a sort of unique 
continuation property.

Theorem 6.6. One has a1 ≡ a2 in R × Br0(0).

Proof. In what follows, we fix s ∈ R and p ∈ C(r0). Note that from Theorem 6.4, a1(s, p) = a2(s, p). Since {0} ×
C(r0) ⊆ R × C(r0) is an analytic manifold of codimension two in Cn+1, n + 1 ≥ 3, by Riemann’s second extension 
Theorem [5, Theorem 2, p. 30], we get the desired result. �
7. Uniqueness for the nonlinear problem

7.1. Preliminaries

In this Section we finally prove Theorem 1.4. The main idea of the proof is to find the correct link between the DN 
maps �a and ̃�a,s,p already defined in (2.17) and (4.9)-(4.10). We start with a simple result.

Lemma 7.1. Let �a the real-valued DN map from Corollary 2.19, and �̃a,s,p the complex-valued DN introduced in 
(4.9)-(4.10). Then, for any s ∈ R, and for any small, real-valued h ∈ C2,α(�),

�a[us,0 + h] = �̃a,s,0[h]. (7.1)

Proof. Since us,0 = s + h is real-valued, and since p · p = 0 if p = 0, Theorems 2.17 and 4.4 apply, with �̃a,s,0[h]
real-valued. From the uniqueness of the solutions in those theorems, we conclude (7.1). �

The next definition says that it is possible to extend �a in a particular, complex-valued case. Recall the definition 
of A(r0) in (6.2).

Definition 7.2 (Extension of �a). Fix h ∈ C2,α(�) with sufficiently small norm. Then, for any s ∈ R and p ∈ A(r0)

we define the function

(s,p) 
−−→ �a[us,p + h] ∈ C1,α(∂�;C)

as follows:

�a[us,p + h] := �̃a,s,p[h] (cf. (4.10)). (7.2)
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Remark 7.3. Note that, in virtue of Lemma 7.1, the above definition of �a[us,p + h] coincides with ̃�a,s,p[h] in the 
case where s ∈ R and p = 0.

Now we have the following

Proposition 7.4. Let h ∈ C2,α(�) be small enough. Fix x ∈ ∂�. For each (s, p) ∈ R × A(r0), the complex-valued 
function given by (s, p) 
−−→ �̃a,s,p[h](x) is the unique analytic continuation of �̃a,s,0[h], s ∈ R, to the complex-
valued subset R ×A(r0)\{0} in Cn+1.

Proof. Fix h sufficiently small such that �̃a,s,p[h] is well-defined for s ∈ R and p ∈ A(r0). First note that, for each 
x ∈ ∂� fixed, the several complex-valued function

R×A(r0) 	 (s,p) 
−−→ �̃a,s,p[h](x) ∈ C

is complex-valued analytic. This is just a consequence of the analytic character of the DN map [3] with respect to the 
conductivity (see (4.10)), and composition arguments. (Recall that a several complex-valued function is analytic if on 
each coordinate it is itself a complex-valued analytic function.)

Consequently, given another analytic continuation of �̃a,s,0[h] to the set R × A(r0)\{0}, and since this last set 
is an analytic manifold (Lemma 6.3) of codimension 2, we conclude that both continuations must coincide for p ∈
A(r0)\{0} [5, Theorem 2, p. 30]. The proof is complete. �
7.2. Proof of Theorem 1.4

We claim that Theorem 1.4 is a simple consequence of the following

Proposition 7.5 (Reduction of the proof). Under the assumptions of Theorem 1.4, if �a1 [h̃] = �a2 [h̃] for real-valued 
boundary valued functions h̃ ∈ C2,α(�), then

�a1 [us,p + h] = �a2 [us,p + h], (cf. (7.2))

for any s ∈R and p ∈ A(r0), and for each h ∈ C2,α(�) with sufficiently small norm.

Proof. We must show that for all h ∈ C2,α(�) with sufficiently small norm,

�̃a1,s,p[h] = �̃a2,s,p[h].
Since �a1[h̃] = �a2 [h̃], we have �a1[us,0 + h] = �a2 [us,0 + h]. From Lemma 7.1 we have for h small, and all s ∈ R,

�̃a1,s,0[h] = �̃a2,s,0[h].
Hence, we conclude thanks to Proposition 7.4. �
Proof of Theorem 1.4. From Proposition 7.5, we have �a1[us,p + h] = �a2 [us,p + h], and from Definition 7.2, this 
means that ̃�a1,s,p[h] = �̃a2,s,p[h]. Hence, using Corollary 4.8, Lemma 5.1, Corollary 5.3 and Corollary 5.4, we have 
�̃�,a1,s,p[h] = �̃�,a2,s,p[h]. The final conclusion comes from Theorem 6.6. �
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