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SIMULATION AND OPTIMIZATION TECHNIQUES FOR SHORT-TERM MINE
PRODUCTION SCHEDULING

Los planes de producción de corto plazo en minas a cielo abierto tienen como objetivo
cumplir con las metas previamente de�nidas por el plan de producción de largo plazo. De-
safortunadamente, la complejidad y la incertidumbre de la operación minera provocan desvia-
ciones de los planes de corto plazo. Una desviación de un plan corresponde a cualquier difer-
encia entre este plan y su ejecución. Por ejemplo, desviaciones en el movimiento de material,
en el movimiento de mineral enviado a la planta o en la ley del mineral enviado a la planta.

Uno de los desafíos que enfrentan los plani�cadores de minas es la consideración de la
incertidumbre operacional en la generación de planes de producción de corto plazo que puedan
reproducirse en la realidad. Un concepto que cuanti�ca las desviaciones en un plan de
producción de corto plazo y su ejecución se conoce como adherencia, que corresponde a la
capacidad del plan para ser reproducido en la realidad.

El objetivo de esta tesis es desarrollar una metodología de simulación-optimización con el
objetivo de generar planes de producción mineros de corto plazo con alta adherencia a través
de un enfoque iterativo. Los principales aportes de esta investigación son: (i) desarrollo de
una metodología genérica que integra técnicas de optimización y simulación en un esquema
iterativo, validado por un estudio de caso real; (ii) formalización del concepto de adherencia
de un plan, proponiendo varios indicadores de adherencia para medir la desviación entre un
plan y su correspondiente simulación; (iii) evaluación del cumplimiento de un plan mediante
simulaciones considerando la incertidumbre operacional; (iv) desarrollo de un modelo de
optimización para generar planes de producción mineros de corto plazo en minas a cielo
abierto, considerando múltiples objetivos, utilizando el método de la suma ponderada y el
método jerárquico. El modelo también contempla la asignación de palas a frentes de carga y
stockpiles.

Los resultados del trabajo presentado en esta tesis demuestran que la metodología prop-
uesta mejoró los indicadores de cumplimiento del plan minero con respecto a las iteraciones
y simultáneamente mantuvo el Valor Actual Neto del plan. Los resultados también muestran
que el método de la suma ponderada y el método jerárquico son capaces de generar planes
mineros a cielo abierto en minas a cielo abierto optimizando los diversos objetivos de corto
plazo. Finalmente, los resultados revelan que los planes con stockpiles obtienen mejores indi-
cadores de adherencia en comparación con los que no tienen stockpiles. También demuestran
que los planes con una �ota de palas móviles obtienen mejores indicadores de adherencia que
los planes mineros con una �ota de palas �jas. Esta tesis revela la importancia y el impacto
de los métodos de optimización de múltiples objetivos para la generación de planes de pro-
ducción mineros a corto plazo en minas a cielo abierto. También demuestra que la simulación
proporciona una mejor comprensión de los impactos de la incertidumbre operacional en los
planes de producción de corto plazo en minas a cielo abierto.
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Abstract

Short-term mine production schedules aim to meet goals previously de�ned by the long-term
mine production schedule. Unfortunately, the complexity and uncertainty of a mine operation
cause deviations from the short-term schedules. A deviation from a schedule corresponds
to any di�erence between this schedule and its execution; for example, deviations in the
movement of material, ore sent to the plant, or in the ore grade sent to the plant.

One of the challenges that mine planners face is the consideration of operational uncer-
tainty in the generation of short-term mine production schedules that can be reproduced in
reality. A concept that quanti�es the deviations in a short-term production schedule and
its execution is known as adherence, which corresponds to the schedule capability to be
reproduced in reality.

The objective of the thesis is develop a simulation-optimization framework with the ob-
jective of generating short-term mine production schedules with high adherence through an
iterative approach. The main contributions of this research are: (i) development of a generic
methodology which integrates optimization and simulation techniques in an iterative scheme,
that generates short-term mine production schedules with high adherence, validated by a
real case study; (ii) formalization of the concept of adherence of a schedule, proposing sev-
eral adherence indicators to measure the deviation between a schedule and its corresponding
simulation; (iii) evaluation of the adherence of a schedule through simulations considering op-
erational uncertainty; (iv) development of an optimization model to perform short-term mine
production schedules in open-pit mines, considering multiples objectives, using the weighted
sum and the hierarchical method. The model also support the allocation of shovels to mining
fronts and stockpiles.

The outcomes of the work presented in this thesis demonstrate that the proposed frame-
work improved the mine schedule adherence indicators over iterations and simultaneously
maintained the Net Present Value of the mine schedule. The results also show that the
weighted sum and the hierarchical method are capable of generating short-term mine sched-
ules by optimizing the various short-term objectives. Finally, the results reveal that schedules
with a stockpile obtain higher schedule indicators compared to the ones with no stockpile.
They also demonstrate that schedules with a mobile shovel �eet obtain higher schedules'
adherence indicators than the ones with a �xed shovel �eet.

This thesis reveals the importance and impact of multiple objective optimization methods
for the generation of short-term mine production schedules in open-pit mines. It also demon-
strates that the simulation provides a better understanding of the impacts of the operational
uncertainty in short-term mine production schedules.
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Chapter 1

Introduction

1.1 Introduction

Mine planning is the discipline of mining engineering that transforms the mineral resource
into the most pro�table business for the owner. The scheduling sequence of mining operations
is usually divided into three levels: strategic (long-term), tactical (medium-term) and oper-
ational (short-term) L'Heureux et al (2013). Strategic scheduling de�nes the portions of the
ore body to extract, the life of the mine, the production rate and the amount of investment.
A long-term mine production schedule de�nes the portions of waste and ore to mine from
the ore body in each year. This schedule seeks to maximize the net present value (NPV)
over the life of the mine. Tactical scheduling determines the sequence of mining for up to
�ve years by considering constraints on the production rate. Finally, operational scheduling
(short-term scheduling) seeks to make the long-term mine production schedule operationally
feasible Smith (1998). This thesis focuses on short-term scheduling. The horizon of interest
for a short-term schedule spans several weeks to months (and typically no more than one
to two years) (Blom et al, 2018). Therefore, this work focuses on scheduling horizons of no
more than one and a half years.

1.2 Motivation

One of the challenges that mine planners face is the consideration of the di�erent types of
uncertainty (geological, market, operational) in the generation of long and short-term mine
production schedules. Short-term mine production schedules aim to meet the movement of
material previously de�ned by the long-term mine production schedule. A particular problem
is the consideration of operational uncertainty in the process of generating short-term mine
production schedules. These schedules have to consider in detail how to execute all of the
mining activities in a mine operation in order to meet the required production rates. Each
of these activities is carried out by speci�c mining equipment. These activities should also
respect the mining activities precedence, which is the sequential order in which the activities
must be completed.
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1.2.1 Deviation from a mine production schedule

A deviation from a mine production schedule corresponds to any di�erence between this
schedule and its execution; for example, deviations in the movement of material, ore sent to
the ore processing plant, or in the ore grade sent to the ore processing plant. Unfortunately,
the complexity and uncertainty of a mine operation cause deviations from the short-term
schedules Upadhyay and Askari-Nasab (2017). These uncertainties are: (i) market uncer-
tainty, which has to do with unknown future commodity prices; (ii) geological uncertainty,
associated with the unknown characteristics of the deposit in terms of grades, rock types,
and mineralization; and (iii) operational uncertainty, which has to do with the unknown
characteristics of the behaviour of the mining operation associated with the mining equip-
ment. This third uncertainty is the main focus of this paper. The relevance of deviations in
the short-term production schedules is crucial in the mining industry. According to Upad-
hyay and Askari-Nasab (2018), deviations in short-term mining schedules make it di�cult to
achieve the goals de�ned by the long-term schedules.

1.2.2 Adherence from a mine production schedule

A concept that quanti�es the deviations in a short-term production schedule and its execu-
tion is known as adherence. More precisely, the adherence of a mine production schedule
corresponds to its capability to be reproduced in reality. Unfortunately, the adherence of a
mine schedule is not assessed before it is executed. This issue could lead to implementing
schedules whose goals are di�cult or even impossible to accomplish. One of the problems
that a�ect mining is the deviation between production schedules and the results of the op-
eration Dimitrakopoulos et al (2002). Due to the sources of uncertainty and the complexity
of mining operations, deviations from the production schedule Albor Consuegra and Dimi-
trakopoulos (2009); Upadhyay and Askari-Nasab (2016, 2017) occur. Compliance schedule is
a crucial aspect for mining since deviations in short-term schedules make it di�cult to meet
the goals de�ned by long-term schedules Upadhyay and Askari-Nasab (2018). Therefore, it
is desirable to generate production schedules with high adherence, which is de�ned as the
ability of the schedule to reproduce in reality

1.2.3 Key Performace Indicator

The e�ciency of the mining equipment is related to the achievement of the objectives of a
short-term schedule. A key performance indicator (KPI) is a measure of the level of e�ciency
of a process. A mine operation uses the following KPIs to measure the level of e�ciency in
each piece of equipment: availability and utilization. These indicators depend on the state of
the equipment. A piece of equipment is in the available state if it is enabled to perform the
tasks for which it was designed. On the other hand, a piece of equipment is in the e�ective
state if it is performing the tasks for which it was designed. In this way, the availability of
equipment corresponds to the quotient between the time in the available state and the total
time. Similarly, the utilization of equipment corresponds to the quotient between the time
in the e�ective state and the total time
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1.3 Aims and scope of the thesis

This section presents the objectives of this work, classi�ed between general objectives and
speci�c objectives. In addition, the main aspects that represent the scope of the thesis are
listed.

1.3.1 Overall objective

The main objective of the thesis is develop a simulation-optimization framework with the
objective of generating short-term mine production schedules with high adherence through
an iterative approach.

1.3.2 Speci�c objectives

The speci�c objectives of the thesis are the following:

� Integrate optimization and simulation techniques in an iterative scheme.

� Formalize of the concept of adherence of a short-term mine schedule.

� Evaluate of the adherence of a mining plan through simulations considering operational
uncertainty.

� Propose of a generic methodology for generating short-term mine production schedules
with high adherence, validated by a real case study.

� Generate an optimization model to perform short-term mine production schedules in
open-pit mines, considering multiples objectives.

1.3.3 Scope

This thesis proposal focuses on the following aspects:

� Short-term mine production scheduling, with a scheduling horizon of one year and
monthly periods.

� For the generation of short-term mine production schedules, we develop and solve
optimization problems based on mixed-integer linear programming.

� We apply discrete event simulation as a tool for evaluating the adherence of short-term
production mine schedules.

� We consider case studies of open-pit and underground mines.

� We do not consider market neither geological uncertainty.

1.4 Thesis organization

Chapter 2 provides a literature review about long- and short-term open-pit mine production
scheduling. It also review articles that integrates simulation and optimisation in the context
of open-pit mine scheduling. Finally, we brie�y explain the optimisation methods used to
optimise multi-objective optimisation problems.
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Each of the three subsequent chapters (Chapter 3, 4 and 5) has been published in, or
submitted to, international scienti�c journals or international conferences.

Chapter 3 propose a generic simulation-optimization framework to generate short-term
production schedules for improving the schedule adherence using an iterative approach. In
each iteration of this framework, a short-term schedule is generated using a mixed-integer
linear programming model that is simulated later using a discrete-event simulation model.
This chapter has been published in Optimization and Engineering (Manríquez et al, 2020b).

Chapter 4 proposes an optimization methodology to generate a short-term open-pit mine
production schedule optimizing multiple hierarchical objectives. For the generation of mine
schedules, we propose an optimization model based on mixed-integer linear programming. In
order to optimize the multiple hierarchical short-term objectives, we apply the hierarchical
and weighted sum methods in the proposed optimization model. This chapter has been pub-
lished in the Proceedings of the 39th international symposium on Application of Computers

and Operations Research in the Mineral Industry, APCOM 2019 (Manríquez et al, 2019).

Chapter 5 proposes an optimisation problem to generate short-term open-pit schedules,
optimising multiple objectives. The problem is based on mixed-integer linear programming.
It allocates shovels to di�erent mining faces, including stockpiles. It considers constraints
of plant capacity, ore blending, precedences between mining faces, shovels throughput, and
movement of shovel between mining faces. We also propose a set of indicators used to assess
and compare di�erent short-term schedules. To optimise the multiple short-term objectives,
we apply the single optimisation and the hierarchical method in a real-scale open-pit case
study. This chapter has been submitted to Engineering Optimization (Manríquez et al,
2020a).

A general discussion and conclusions of each article follow in Chapter 6, while Chapter 7
provides the references mentioned throughout the thesis.
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Chapter 2

Literature review

In this section, we review the works used to generate short-term production schedules in
open-pit mines. After that, we provide a brief review of the di�erent methodologies that are
commonly used to address the simulation-optimization problem. Then, we review the works
that combine the simulation by discrete events with the optimization in the mining industry

2.1 Short-term production schedules

A useful tool to generate production schedules is mathematical optimization. Both open-pit
and underground mining apply these techniques. In the particular case of short-term under-
ground mine scheduling, this generally consists of mixed-integer linear programming (MILP)
in which binary variables address long-term block-extraction decisions and continuous vari-
ables address the related short-term decisions of how much ore should be extracted from a
block (Newman et al, 2010a). A review of optimization techniques applied to underground
mines can be found in Musingwini (2016). Researchers have mainly applied mathematical
optimization to generate short-term production schedules in open-pit mines considering the
optimization of multiples objectives. An excellent review of works related to short-term
production scheduling in open-pit mines can be found in (Blom et al, 2018). Smith (1998)
describe a model to maximize ore production subject to ore quality constraints.

2.1.1 Long-term open-pit scheduling with stockpiles

The mineral deposit is partitioned into several blocks. The open-pit mine production schedul-
ing problem (OPMPSP) consists of scheduling the extraction of these blocks to maximise the
Net Present Value (Samavati et al, 2018). OPMPSP has been subsequently formulated as an
integer linear programming problem by Johnson (Johnson, 1968). Similarly, the OPMPSP+S
consists of scheduling the extraction of blocks of the mineral deposit segments to maximise
the Net Present Value of the operation, considering stockpiles in their formulation.

There are di�erent ways to model the blending in the stockpiles. Hoerger et al (1999)
assume that material is removed from the stockpile, its grade is considered to be the minimum
of the associated grade range. Akaike and Dagdelen (1999) model the stockpiles as an in�nite
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number of stockpiles, meaning that every block has its associated stockpile. That is to say,
there is no blending in the stockpile. Fu et al (2019) models the stockpiles using a series of
grade bins, allowing the model to allocate material with a di�erent grade.

Moreno et al (2017) proposed several linear integer optimisation problems to schedule
open-pit mines considering stockpiling. Rezakhah et al (2020) modi�ed on of the problems
developed by Moreno et al (2017). They apply it to an operational poly-metallic (gold and
copper) open pit mine, in which the stockpile is used to blend materials based on multiple
block characteristics. Rezakhah and Newman (2020) extend the OPMPSP+S, considering
degradation of stockpiles, which is the deterioration of material when it is exposed to the
environment. Rezakhah et al (2020) modi�ed a problem described by Moreno et al (2017)
and apply it to an operational poly-metallic (gold and copper) open pit mine, in which the
stockpile is used to blend materials based on multiple block characteristics.

For its part, Asad (2005) presents a long-term cut-o� grade optimisation algorithm for
open-pit mining operations with stockpiling in a deposit with two economic minerals. This
algorithm is an extension of the theory of cut-o� grades in deposits of two economic minerals
presented in Lane et al (1984).

Nonlinear optimisation models have also been proposed to address the open-pit mine
production scheduling problem with stockpile (OPMPSP+S). For example, Bley et al (2012)
propose two nonlinear optimisation problems to address. They assume that the grade of the
material removed from the stockpile is a weighted average of the material inside the stockpile.

Some articles address OPMPSP+S accounting for geological uncertainty in the metal
content(Ramazan and Dimitrakopoulos, 2013; Koushavand et al, 2014; Silva et al, 2015;
Lamghari and Dimitrakopoulos, 2016; Levinson and Dimitrakopoulos, 2019)

Ramazan and Dimitrakopoulos (2013) consider uncertainty in the geological and economic
input data and use a stochastic framework to solve the OPMPS+S problem. The authors
do not consider mixing material in the stockpile, meaning that when the material leaves the
stockpile, it has the same characteristics as when it enters. Koushavand et al (2014) present a
linear programming long-term open-pit mine production scheduling model, considering grade
uncertainty and stockpiling. The model considers one stockpile. The modelling of stockpiling
and re-handling of this stockpile is based on the over production of ore in certain periods.
Silva et al (2015) resolve a OPMPSP, considering metal uncertainty, multiple processing
destinations, and a stockpile. They apply one of the heuristics described in Lamghari and
Dimitrakopoulos (2016) to solve a gold deposit case study. Lamghari and Dimitrakopoulos
(2016) propose a novel formulation of the OPMPSP, considering metal uncertainty, multiple
processing destinations, and stockpiles. They also propose and compare four heuristics for the
problem. Levinson and Dimitrakopoulos (2019) apply a simultaneous stochastic optimisation
model, that integrates waste management into the long- term production schedule, to a gold
mining complex. The model aims to de�ne the extraction sequence, destination policy, and
processing stream decisions while simultaneously managing the targets and capacities at
waste, processing, and stockpile facilities. Geological uncertainty is considered by simulating
geological attributes for each block.
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2.1.2 Short-term open-pit scheduling with stockpiles

There are fewer articles that address the short-term open-pit scheduling considering stockpiles
than in the long-term open-pit scheduling.

Huang et al (2009) describe the MineSight Scheduling Optimiser (MSSO). They propose
an optimisation model based on MILP to generate short-term schedules. The optimisation
problem considers multiple destinations and blending requirements. Unfortunately, the au-
thors do not provide the formal mathematical model employed. Rehman and Asad (2010)
propose a MILP-based optimisation model to de�ne the short-term sequence mining of blocks
of a limestone quarry to meet plant quantity and quality requirements at the lowest possi-
ble cost. The proposed model does not consider shovel allocation in quarry blocks. Eivazy
and Askari-Nasab (2012) develop an MILP-based optimisation model to generate short-term
schedules. The model minimises the cost of open-pit mines, considering multiple destina-
tions. Bu�er and blending stockpiles, horizontal directional mining and decisions on-ramps
are incorporated. The model has blending constraints, mining and processing capacities, and
mining precedence. It is assumed that stockpiles are homogeneous and the ore reclaimed
from each stockpile has a speci�c grade equivalent to the average grade of the stockpile ma-
terial. The stockpiles are explicitly modelled, but the allocation of shovels in stockpiles are
not considered. Shovel allocation in mining blocks is not considered either.

Mousavi et al (2016) propose an MILP-based optimisation model that considers includ-
ing precedence relationship, machine capacity, grade requirements, processing demands and
stockpile management. The objective function is the minimisation of the total cost, which
includes rehandling and holding costs, misclassi�cation and drop-cut costs. Shovel allocation
in mining blocks is considered. The stockpiles are explicitly modelled, but the allocation of
shovels in stockpiles are not considered.

Matamoros and Dimitrakopoulos (2016) propose a formulation based on stochastic mixed-
integer programming to address the short-term open-pit scheduling. The model considers
uncertainty in both orebody metal quantity and quality. It also takes into account �eet
parameters and equipment availability. The model allocates shovels to mine sectors and
number of truck trips to shovels. The objective function considers operating �eet cost and
mining cost. It also considers a deviation cost from the production target. In a given period,
the overproduction of ore may be considered as the material that goes to stockpile, and its
tonnage is penalised by the corresponding re-handling cost. That is to say, stockpiles are not
explicitly modelled.

Blom et al (2017) generate multiple, diverse short-term schedules while optimising for a
customisable, prioritised sequence of objectives. They use a rolling horizon-based algorithm
to resolve instances. Unfortunately, the stockpiles are not explicitly modelled. That is to
say, the movement of material to and from each stockpile is not scheduled.

Table 2.1 summarizes and compares the features of the short-term open-pit mine schedul-
ing articles here reviewed.
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Feature \ Article Shovel allocation
in mine faces

Shovel allocation
in stockpiles

Explicit modelling
of stockpiles

(Rehman and
Asad, 2010)

7 7 3

(Eivazy and
Askari-Nasab,
2012)

7 7 3

(Mousavi et al,
2016)

3 7 3

(Matamoros and
Dimitrakopoulos,
2016)

3 7 7

(Blom et al, 2017) 3 7 7

Table 2.1: Comparison of short-term open-pit mine scheduling articles considering stockpiles.

2.2 Multi-objective optimisation

The weighted sum and hierarchical are methods commonly used to optimise multiple objec-
tives. We describe these methods in detail below

2.2.1 Weighted sum method

The weighted sum method allows the multiple-objective optimization problem to be cast
as a single-objective mathematical optimization problem. This single objective function is
constructed as a sum of objective functions fi multiplied by weighting coe�cients wi, hence
the name. The coe�cients wi are computed as wi = uiθi, where ui are the weights assigned
by the decisor-maker based on the hierarchy of the objectives and θi are the normalization
factors. In this work, the normalization factors are computed as θi = z−1i , where zi is the value
of the objective function of the optimization problem when solving for the single objective
function fi (Grodzevich and Romanko, 2006).

In this way, the weighted sum method consists of two steps. The �rst one solves i opti-
mization problems (corresponding to the i short-term objectives) in order to obtain the nor-
malization coe�cients θi. Then, an optimization problem is solved whose objective function
corresponds to the weighted sum of all the short-term objectives considered. The coe�cients
wi that multiply each of the objectives are calculated using the normalization coe�cients θi
obtained from the �rst stage and the weights ui assigned by the decision maker based on the
prioritization of the objectives.

2.2.2 Hierarchical method

In the hierarchical method, the decision-maker sorts the objective functions. A decision-
maker sorts these objectives in a descending order of importance. In this method, we resolve
as many optimisation problems as objective functions. We resolve the optimisation problems
following the order of the objectives previously de�ned. Each problem optimises its corre-
sponding objective, adding an extra set of constraints. These constraints impose an upper
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bound to the objectives functions previously solved. The upper bound corresponds to the
objective function values already obtained.

Below, we explain the hierarchical procedure in detail. Figure 2.1 provides a schematic
view of this procedure. First, we sort the N objectives in a descending order of importance.
Without losing generality of the procedure, we can assume all these objectives to be min-
imised. We denote the j-th objective as Aj. We denote Aj as the value of the objective
function j obtained in the j-the problem. The set of general constraints of the problem are
represented as gk ≤ Ck ∀k.

Figure 2.1: Scheme of the hierarchical method considering N objectives

We solve the �rst problem, which minimises A1. This problem obtains the �rst objective
function value A1. The second problem minimise A2 subject to an extra constraint. This
constraint imposes a limit to the �rst objective of the second schedule. That limit must
not exceed the �rst objective function value multiplied with certain tolerance λ1. This tol-
erance must be equal or greater than 1 to avoid infeasibility of the optimisation problems.
Mathematically, this extra constant is A1 ≤ λ1 · A1.

After solving the second problem, we obtain the second objective function value A2. Next,
we solve this problem, which minimises A3. This problem incorporates two additional con-
straints. The �rst one limits the objective function of the �rst objective A1 ≤ λ1 · A1. The
second constraint limits the objective function of the second objective A2 ≤ λ2 ·A2. We follow
this procedure until the last optimisation problem is solved. The last schedule corresponds
to the output of the procedure.

2.3 Discrete event simulation

One way to assess the likelihood of compliance with a mine schedule is to develop discrete
event simulation (DES). In this regard, Panagiotou (1999) states that due to the dynamic
and

stochastic nature that characterizes virtually any mining system, simulation is the only
reliable method that allows the evaluation of such systems. The DES was used to evaluate
the performance of open-pit mining systems in many studies. The application of simulation
in the mining sector can be traced back to the 1940s, according to and Moradi Afrapoli and
Askari-Nasab (2017). The �rst application of DES to �eet management can be found in Rist
(1961), where the Monte Carlo simulation technique was used to solve hauling problems in
mining operations. The DES was applied for evaluating dispatch policies in open-pit mining
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systems. Lizotte and Bonates (1987) studied the impact of dispatching rules for assigning
trucks and shovels, such as minimizing shovel idle time, maximizing truck use and assigning
trucks to shovels to meet speci�c production objectives. Forsman et al (1993) also studied
the impact of several dispatching rules, such as �xed trucks, maximum trucks and maximum
loaders. Simulation was used to assist the management of the Aitik mine in decision-making
regarding the purchase of new trucks, installation of in-pit crushers and route selection for
e�cient ore and waste transportation. Çetin (2014) developed a simulation model to compare
di�erent dispatch policies in terms of total production. Other applications of the DES tool
have been reported. Sturgul (1987) discusses the construction of simulation models using
a general-purpose simulation system. The authors mention that a separate program has to
be written for each system to be simulated as illustrated by three case studies of actual
open pit mines located in Australia. Rasche and Sturgul (1991) illustrates the use of DES
for determining the optimum number of trucks in the mine, the number of repair crews
and the number of spare trucks required. Meech and Parreira (2011) used a deterministic-
stochastic model to compare an automated system with a manual to predict the bene�ts
of an autonomous haulage system. Askari-Nasab et al (2007) developed a simulator called
the open-pit production simulator. They report that arti�cial intelligent simulators can be
very e�cient and helpful for modelling the dynamicity of processes and randomness of input
parameters.

2.4 Simulation-optimization approaches

Simulation optimization is the area of research that attempts to optimize a simulation model.
The primary objective is to �nd the values of controllable parameters that optimize a per-
formance function from a simulation model. Chen et al (2008a) reviewed three approaches
to address the simulation-optimization problem in a general engineering setting

� The e�cient simulation budget approach (Chen et al, 1997, 2000; Chick and Inoue,
2001b,a; Lee et al, 2004; Chen and Yücesan, 2005; Kim and Nelson, 2006; Fu et al,
2007; Chen et al, 2008b) aims to select the optimum simulation design from a set of
scenarios given in advance, which di�ers from the approach in this paper because ours
enumerates schedules as a result of the iterative process, i.e., they are not pre-de�ned
by the user.

� The nested partitions method is an approach that solves global optimization problems,
for which it requires to partition the space into subregions. Each subregion is evaluated
using sampling and the most promising one is used on the next iteration, or the method
backtracks to a larger region if the each one of the subregions turns out to be worse
than the incumbent region (Chen et al, 2008a). This approach is therefore di�erent
from the one proposed in this work, because we do not have such hierarchical structure
de�ned on the schedules.

� The stochastic gradient estimation method(Ho and Cao, 1991; Glasserman, 1991; Fu
and Hu, 1997; Glynn, 1987; Rubenstein and Shapiro, 1993; P�ug, 1989, 1996); is an
enumeration method based on local search that adjusts parameters, which are required
to be continuous, to generate alternate scenarios. The method proposed here also
enumerates scenarios (in our case, short-term schedules); however, they are not based on
derivatives of certain parameters but on new estimations of key performance indicators
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provided by the simulation process. In particular, the search is not local.

2.5 Combination of simulation and optimization in min-

ing

Previous works which combine optimization with DES have mainly been applied to the truck-
shovel transportation system in open-pit mines. A conventional approach is to integrate both
tools as a combined run. That is, the simulation model calls the optimization model whenever
the state of the mine operation changes in order to assist the simulation model to allocate
the available pieces of equipment in the mine operation according to the new state. The mine
operation state changes whenever there is a maintenance or a failure of a piece of equipment
or when a shovel �nishes the extraction of all the material at its mining face. The approach
mentioned above has been applied in the following reports in the context of open-pit mine
operations.

Fioroni et al (2008) presented a MILP model to allocate shovels to mine faces and the
number of trips that each type of truck �eet have to carry out to these faces, subject to
production and blending constraints. The models are called by an open-pit truck-shovel
simulation model, whenever a change in the mine operation system occurs, in order to update
the allocation of shovels to the new operation state.

Mena et al (2013) proposed a MILP model to allocate trucks to transportation routes.
The simulation model considers density probability distribution in order to model: (i) the
uncertainty of the operational parameters and (ii) the times between failures and the time
taken to repair load and haulage equipment.

Upadhyay and Askari-Nasab (2016, 2017, 2018). described a MILP model to allocate
shovels to mine faces in order to: maximize production, meet desired head grade and tonnage
at crushers and minimize shovel movements. This model is called by an open-pit truck-shovel
simulation model, similarly than the work of Fioroni et al (2008).

Others authors have integrated optimization and simulation di�erently. Bodon et al (2011)
and Sandeman et al (2010) proposed a linear programming model which determines the
quantity of ore extracted from each mining face transported to mine stockpiles, the ore
transported from each mine stockpile to the port stockpile, and the ore transported from
each port stockpile to ships, thus maximizing the throughput of material from pit to ship.
An initial schedule is generated for the �rst two weeks of a one-year horizon and subsequently
this schedule is simulated. Then, a new schedule is generated for the next two weeks given
the current state of the system. There is only limited literature regarding underground
mining that combines optimization with DES, due to the complex nature of generating mine
production schedules in underground mines compared to open-pit mines. Musingwini (2016).
Chanda (1990) presented a MILP model to perform short-term production scheduling of a
sector of a continuous block caving mine, minimizing the di�erence in average grade between
successive periods, and by considering constraints such as the availability of drawpoints and
limits on production and ore quality. This model was combined with a simulation to generate
short-term production schedules for six consecutive work shifts. Winkler (1998) described
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an optimization model of a sub-level caving mine, which de�nes the amount of ore to be
extracted in each block and each period, minimizing deviations from production goals, and
by considering constraints such as ore quality, the minimum amount of extraction of each
block, and the capacity of the available ore. The model is solved to generate a schedule
for a single period, which is subsequently simulated. This same procedure is repeated for
successive periods. Salama et al (2014) compared di�erent mineral haulage systems using
simulation in order to estimate the mining costs in a sub-level stoping mine. This cost serves
as an input to a mixed-integer optimization model which generates a long-term schedule that
maximizes the net present value (NPV). As it turns out, the reviewed reports, which combine
optimization and simulation applied in mining, use optimization and then simulation in a
sequential way, or use optimization as a subroutine of simulation. In none of these studies is
there feedback between the optimization and the simulation model, as proposed in this work.
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Chapter 3

A simulation-optimization framework for

short-term underground mine production

scheduling

Abstract

Mine operations are supported by a short-term production schedule, which de�nes where
and when mining activities are performed. However, deviations can be observed in this
short-term production schedule because of several sources of uncertainty and their inherent
complexity. Therefore, schedules that are more likely to be reproduced in reality should
be generated so that they will have a high adherence when executed. Unfortunately, prior
estimation of the schedule adherence is di�cult. To overcome this problem, we propose
a generic simulation-optimization framework to generate short-term production schedules
for improving the schedule adherence using an iterative approach. In each iteration of this
framework, a short-term schedule is generated using a mixed-integer linear programming
model that is simulated later using a discrete-event simulation model. As a case study, we
apply this approach to a real Bench & Fill mine, wherein we measure the discrepancies among
the level of movement of material with respect to the schedule obtained from the optimization
model and the average of the simulated schedule using the mine schedule material's adherence
index. The values of this index decreased with the iterations, from 13.1% in the �rst iteration
to 4.8% in the last iteration. This improvement is explained because the e�ects of the
operational uncertainty within the optimization model can be considered by integrating the
simulation. As a conclusion, the proposed framework increases the adherence of the short-
term schedules generated over iterations. Moreover, these increases in the adherence of
schedules are not obtained at the expense of the Net Present Value.

3.1 Introduction

Adherence is a concept that quanti�es the deviations in a short-term production schedule and
its execution. More precisely, the adherence of a mine production schedule corresponds to its
capability to be reproduced in reality. Unfortunately, the adherence of a mine schedule is not
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usually assessed before its execution. This could result in the implementation of schedules
whose objectives are di�cult or even impossible to accomplish. The application of discrete-
event simulation (DES) is an approach to evaluate the adherence of a short-term schedule
before its execution. This approach simulates a given short-term schedule by considering all
the operational uncertainties associated with mine operation.

Further, we incorporate the operational uncertainty associated with the operational pa-
rameters of the equipment (velocities, capacities, maneuver times, failures times, and main-
tenance times), which are modeled using the probability density functions based on the
historical data. DES has been extensively applied to the model mine operations in which
the deterministic models failed to accurately predict the uncertain behavior (Upadhyay and
Askari-Nasab, 2017). This approach is extensively used to assess the performance of mine op-
erations because it helps to incorporate the inherent variability and complexity of operational
uncertainty (Torkamani and Askari-Nassab, 2015).

Based on the evaluation of the adherence to short-term production schedules using DES,
it is desirable to generate short-term production schedules exhibiting high adherence. Mathe-
matical optimization is a useful tool to generate production schedules in both open-pit mining
and underground mining. In the case of short-term underground mine scheduling, mixed-
integer linear programming (MILP) is generally considered in which the binary variables
address long-term block-extraction decisions and continuous variables address the related
short-term decisions of how much ore should be extracted from a block (Newman et al,
2010b). A review of the optimization techniques applied to underground mines can be found
in Musingwini (2016).

One common approach for optimization under uncertainty is the utilization of stochas-
tic programming, which allows optimization problems with respect to the random variable
parameters in the goal function or constraints to be solved (see Birge and Louveaux (2011)
for details about stochastic programming). However, the problem that we address in this
study, such an approach would be very di�cult to implement and most likely impractical to
use because the KPIs are not only random but depend upon the schedule; conversely, the
feasibility of a schedule is highly dependent on KPIs.

Therefore, we propose a framework that combines a deterministic optimization model with
DES. In this framework, the optimization part of the framework generates short-term mine
production schedules, whereas the simulation part evaluates these schedules and provides
useful feedback to generate a new and better schedule in future iterations. Therefore, the
contributions of the paper are (i) the development of a simulation-optimization framework to
generate short-term mine production schedules, (ii) providing a set of indicators to measure
the adherence to a schedule, and (iii) the application of the proposed framework to a speci�c
case in which a mathematical model, a DES model, and the mechanisms to integrate them
are implemented to denote that the proposed methodology provides schedules with high
adherence using an iterative approach.

Section 3.2 provides a complete description of the proposed framework, Section 3.3 in-
troduces several adherence indices used to quantify the adherence of a schedule and its
corresponding simulation, and Section 3.4 describes the application of the proposed frame-
work to a Bench and Fill (B&F) mine operation by introducing the optimization model used
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to generate short-term mine production schedules and the simulation model developed to
simulate them. In Section 3.5, we apply the proposed framework to a real-world data of a
B&F mine. Section 3.6 reports and discusses the results of the case study. Finally, Section
3.7 concludes the present study and outlines future work.

3.2 Framework description

In this section, we describe the proposed framework, which combines simulation and opti-
mization via an iterative approach, to improve adherence to short-term production schedules.
This concept was �rst explored by Pérez et al (2017). In each iteration, we generate a short-
term mine production schedule by solving an optimization problem; subsequently, we simulate
this schedule using a DES model of mine operation. The steps can be given as follows (also
presented in Figure 3.1):

Figure 3.1: Simulation-optimization iterative framework diagram

1. Obtain initial KPIs through benchmarking or deterministic estimation.

2. Generate an initial short-term production schedule by solving a mathematical optimiza-
tion problem for the current KPI values. This short-term schedule considers a material
that has been extracted according to the long-term schedule.

3. Simulate the short-term production schedule generated in Step 2.

4. Update the KPIs per period for each equipment obtained from the simulation of the
short-term production schedule.

5. Calculate the actual adherence of the corresponding simulation to the schedule.

6. Whenever any termination criteria is satis�ed, e.g., when the schedule adherence index
is less than or equal to a speci�c critical value or a maximum computation time is
reached, the procedure is terminated; otherwise, go to Step 2.

The fundamental concept of the proposed framework is that in each iteration, better
estimations are obtained for the equipment's KPIs based on the simulation results of the
short-term mine production schedule.

Considering the operational uncertainty in the mining operation, the role of the replica-
tions is to represent all the potential results obtained when performing the simulation of a
given mine schedule as accurately as possible.

In the subsequent iteration, we use new estimations of the equipment KPIs as inputs
for the optimization model to generate an updated short-term mine production schedule.
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This procedure is repeated until a speci�c stop criterion is reached. The simulation of the
short-term mine production schedule allows us to consider majority of the complexities and
operational uncertainties associated with the mine operation, which are di�cult and cumber-
some to incorporate into a mathematical optimization model. Thus, the estimation of all the
equipment KPIs can be improved. In other words, the simulation of a particular short-term
mine production schedule allows us to obtain an explicit quanti�cation of the maintenance
equipment times, equipment failures, travel time between the locations at which the equip-
ment is used to perform mining activities, and equipment times. The backup time refers
to the equipment that is available for operation but is not operating because of a speci�c
condition of mine operation. Furthermore, the simulation considers the exact dispatching
routines that assign equipment to mine faces and the on-site speci�c operational rules for a
particular mine. It is noteworthy that the described framework is general because it can be
used to address the operational uncertainty in many other situations in which a deterministic
model is used; this kind of uncertainty has to be handled. However, its speci�cs are certainly
dependent on the application. The optimization and simulation models consider all the rele-
vant equipment and tasks to reliably emulate the mine operation. The selection of the type
of KPIs to be estimated in each iteration is critical for the application of the framework.
Usually, the utilization of the pieces of equipment, which is the ratio of the e�ective time and
the nominal time, is the selected KPI.

The optimization feedback to the simulation is presented in Figure 3.1. At the beginning
of each iteration, we generate a short-term production schedule by solving an optimization
problem. Based on this schedule, a list of priority tasks is created. This list is the input into
the simulation model. Thus, the simulation model follows a short-term production schedule.
The process by which the tasks are sorted to create a list of priority tasks is based on the
start and completion periods of each activity obtained based on the short-term production
schedule. If there is a tie in the order of two or more tasks, it can be broken using ad hoc
criteria that depend on the application.

The simulation feedback to the optimization process is described here. At the beginning
of each iteration, we generate a short-term production schedule by solving an optimization
problem, which is further simulated. Subsequently, we compute the mean KPIs of all the
replications of the corresponding simulation based on the simulation data for each piece of
equipment.

3.3 Adherence of a schedule

We propose several indices to evaluate the adherence to a short-term production schedule.
Some of these indices are related to the start and completion periods with respect to the
schedule and its corresponding activities. Other indices are related to the material movement
in case of the schedule and its corresponding simulation. We summarize the notation related
to the optimization model and the simulation model in Tables 3.1 and 3.2.

It is important to note that all the adherence indices de�ned in this section are associated
with a given mine schedule. During the application of the proposed framework, one mine
schedule is generated per iteration. Thus, the values of the adherence indices will vary during
each iteration.
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Symbol Description

Si
a Start period of the activity a, according to the mine schedule, in iteration

i.
C i
a Completion period of the activity a, as in the mine schedule, in iteration

i.
M Total material movement, according to the mine schedule.
MP i

t Total material moved in the mine schedule in period t, in iteration i.

Table 3.1: Optimization problem notation

Symbol Description

Si
a,r Start period of the activity a, in replication r, in iteration i.

C i
a,r Completion period of the activity a, in replication r, in iteration i.

M i
t,r Total material moved in the mine in period t, in replication r, in iteration

i.
MSi

t Mean material simulated over all the replications in period t, in iteration
i.

yia,r Equal to 1 if Si
a,r ≤ Si

a; otherwise, 0.
zia,r Equal to 1 if C i

a,r ≤ C i
a; otherwise, 0.

Table 3.2: Simulation problem notation

3.3.1 Mean lateness, earliness and tardiness

The initially proposed indices are related to the concepts of lateness, tardiness, and earliness,
as obtained from the literature (Baker and Trietsch, 2009). Given an activity a, its lateness
corresponds to the di�erence between its completion time and deadline, which can be either
positive or negative. The tardiness of the activity corresponds to the positive di�erence
between its completion time and deadline, whereas its earliness corresponds to the negative
deviation between its completion time and deadline. For details, refer to the second column
of Table 3.3.

We extend these concepts to a setting in which multiple activities and replications are
present. Let A the set of activities and R the set of replications. |A| represents the quantity
of elements of set A. |R| represents the quantity of elements of set R. First, we compute
the corresponding activity index for each activity a ∈ A and replica r ∈ R. Second, we add
all the activity indices and subsequently average them based on the number of replications
to generate representative indices for the schedule, including the mean lateness (L̄i), mean
tardiness (D̄i), and mean earliness (Ēi) of the given schedule. For details, refer to the third
column of Table 3.3.

The interpretation of the indices in Table 3.3 is explained below. A mean lateness value of
greater than zero indicates that the schedule is late when compared with its simulation on an
average. A mean lateness value of zero indicates that the schedule is on time relative to its
simulation on an average. A mean lateness value of less than zero indicates that the schedule
is ahead of its simulated schedule on an average. Based on the mathematical de�nition in
Table 3.3, the mean tardiness and mean earliness are observed to be greater than or equal to
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Index name Activity expression Schedule expression

Lateness Li
a,r = C i

a,r − C i
a L̄i =

1

|A||R|
∑
a∈A

∑
r∈R

Li
a,r

Tardiness Di
a,r = max{0;Li

a,r} D̄i =
1

|A||R|
∑
a∈A

∑
r∈R

Di
a,r

Earliness Ei
a,r = max{0;−Li

a,r} Ēi =
1

|A||R|
∑
a∈A

∑
r∈R

Ei
a,r

Table 3.3: Comparison of the activity and schedule lateness, tardiness, and earliness

zero. A mean tardiness value higher than zero indicates that the schedule is late relative to
its simulation on an average. A mean tardiness value of zero indicates that the schedule is on
time relative to its simulation on an average. Similarly, a mean earliness value of higher than
zero indicates that the schedule is ahead of its simulation on an average. A mean earliness
value of zero indicates that the schedule is on time relative to its simulation on an average.

3.3.2 Start and completion period adherence indices

We also de�ne the start period and completion period adherence indices. The start period
adherence index is the fraction of activities over all the replications that began in a period
equal to or before the short-term mine schedule period. Similarly, the completion period
adherence index is the fraction of activities over all the replications that were completed in
a period equal to or before its mine schedule completion period. Refer to Table 3.4.

Index adherence name Index adherence expression

Start period adherence index SAI i =
1

|A| · |R|
∑
a∈A

∑
r∈R

yia,r

Completion period adherence index CAI i =
1

|A| · |R|
∑
a∈A

∑
r∈R

zia,r

Table 3.4: Start and completion period adherence index

3.3.3 Production and material movement adherence

We introduce adherence indices related to material movement. Therefore, we introduce the
material adherence index, which measures the deviation of the material movement with
respect to the mine plan and simulation. The material adherence curve is the ratio of the
accumulated material of the simulations up to period t and the accumulated material of
the mine plan up to period t. For example, if this index is greater than one at a certain
period, the simulation produced more material when compared with that produced by the
mine schedule on an average, as presented in Table 3.5.

The adherence indices presented in Table 3.5 can be adapted depending on the applica-
tion. For instance, the adherence can be evaluated by only considering a subset of the total
scheduled activities (for example, development and production activities) instead of consider-
ing all the scheduled activities. With respect to the material adherence indices, it is possible
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Index adherence name Index adherence expression

Material adherence index MAI i =
1

M

∑
t∈T

|MP i
t −MSi

t|

Material adherence curve AT i(t) =

∑t
t′=1MSi

t′∑t
t′=1MP i

t′

Table 3.5: Material adherence indices

to consider the type of material instead of the total material transported when evaluating
the adherence index (for example, to distinguish the production material from di�erent mine
operation sectors).

3.4 Application to the operation of a Bench & Fill mine

We apply the proposed framework to B&F mine planning. Therefore, we develop an opti-
mization model that can be used to generate the mine production schedule of a B&F mine.
We also develop a simulation model that supports the simulation of the B&F mine produc-
tion schedule generated by the optimization model. This section explains the B&F mining
method and describes the optimization and simulation model, including the manner in which
these models interacted to obtain the proposed framework.

3.4.1 Description of the Bench & Fill mining method

The B&F method is an underground mining method, which is applied to ore bodies exhibiting
vertical or sub-vertical geometry. Drift and stope are the two types of mining workings that
have been used in this study. A stope is the basic mine production unit, which exhibits a
tabular or semi-tabular form and contains the ore that is to be extracted. To access each
stope, it is necessary to develop two drifts, i.e., the production drift (lower drift) and the
drilling drift (the upper drift), in the upper and lower parts of the stope in advance. After
the extraction of ore from the stope, it is necessary to back�ll the empty portion of the stope
from the drilling drift to maintain the stability of the walls and roof of the stope. Figure 3.2
depicts the side view of a stope in a B&F mine.

Figure 3.2: Side view of a stope in a B&F mine

To completely develop the drifts and stopes associated with this mining method, a set of
sequential mining activities should be performed using speci�c mining equipment. In order
to complete each portion of drift, the following activities should be sequentially performed:
drilling, charging, blasting, mucking, scaling, shotcreting, and bolting. The �rst activity
is drilling, which consists of drilling boreholes in a certain drill pattern in the rock face of
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the drift using a face drill rig. Subsequently, the drills in the drift face are charged with
explosives using an explosive charger, and that portion of the drift is then blasted. Next, a
load-haul-dump vehicle (LHD), which is a machine similar to a conventional front-end loader
used in underground mining, mucked the blasted material, and a scaler was used to eliminate
loose rock from the roof or walls of the drift. Shotcreting projects a mixture of concrete,
water, sand, and gravel onto the drift walls using a compressed air device mounted on a piece
of shotcrete equipment to ensure drift stability. Finally, a piece of bolter equipment is used
to install bolts in the drift walls to achieve drift stability.

The extraction of a portion of stope requires benching, explosive charging, blasting, ex-
traction, and back�lling. Benching comprises drilling boreholes in the drilling drift using a
production drill rig. Further, the benching boreholes in the stope are charged with explosives
using an explosive charger. Subsequently, the portion of the stope charged using explosives
is blasted, and the blasted ore is extracted using the LHD equipment. Finally, the empty
portion of the stope is back�lled using a back�ll truck and non-cemented rock �ll.

Globally, the extraction of each stope is ascendant. The progress of ore extraction and
the back�lling of the portions of the stope are conducted in the opposite direction when
compared with that of the extraction and drilling drifts. Figure 3.3 illustrates the sequencing
of three stopes (S1, S2, and S3). The arrows indicate the advance direction of each mine
working. The extraction order of the stopes is ascendant and follows the order of S1, S2, and
S3. The extraction sequencing of stope S1 is the extraction of drift D1 and the benching of
drift D2 as well as the extraction and back�lling of the stope portions S1.1, S1.2, S1.3, and
S1.4

Figure 3.3: Mine sequencing in a B&F mining method

3.4.2 Optimization model

We propose an optimization model based on MILP to generate short-term production sched-
ules in B&F mines. This model schedules activities that result in pro�t (income minus costs)
and that demand resources (e.g., e�ective time, which is the time interval in which the equip-
ment is performing an productive task) for their completion. The activities that result in a
pro�t lower than zero are also included because they must be completed to access activities
resulting in a pro�t of greater than zero. The optimization model maximizes the NPV over
the planning horizon, subject to an activity's precedence and resource constraints.
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The solution of the optimization model can be observed as a Gantt chart, where the frac-
tion of progress of each activity is speci�ed in each period of the planning horizon. This
optimization model is embedded in a software called UDESS (Morales et al, 2015), which
provides utilities for generating, resolving, and analyzing the general scheduling MILP op-
timization problems. The software is implemented in Python (Van Rossum and Drake Jr,
1995). UDESS can be used through scripts or a graphical user interface.

We present the sets, parameters, and variables of the optimization model in Tables 3.6,
3.7, and 3.8, respectively.

Symbol Description

A Set of activities.
Q Set of stope-type activities.
Pa Set of activities precedence of activity a.
T Set of periods, T = {1, . . . , T}.
E Set of equipment �eet types.
S Set of mine sectors.
H1
a Set containing the stope activity a and its corresponding production drift

activity.
H2
a Set containing the stope activity a and its corresponding drilling drift

activity.
H3
a Set containing the stope activity a and its corresponding upper stope ac-

tivity, if it exists.

Table 3.6: Sets of the optimization problem

Symbol Description

α Discount rate per period.
Ca Value of activity a.
Ne Quantity of equipment type e.
T Number of periods.
NTt Nominal time in period t.
Ta Time to perform the activity a.
Ta,e Time to perform the activity a with mining equipment of type e. If activity

a does not require equipment e, Ta,e is equal to zero.
UTe,t Utilization of equipment e at period t.
UTe,t,s Utilization of equipment e at period t in mine sector s. If activity a does

not require equipment e or activity a does not belong to sector s, Ta,e,s is
equal to zero.

Table 3.7: Parameters of the optimization problem

Activity modeling

Here, we describe activity modeling in UDESS to generate a short-term production schedule
for a B&F mine. First, we describe the types of workings in a B&F mine and subsequently
explain the slice discretization process of these workings.
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Symbol Description

sa,t ∈ {0, 1} If activity a has started in period t or before; otherwise, 0.
ea,t ∈ {0, 1} If the activity a is not �nished at the beginning of the period t; otherwise,

0.
xa,t ∈ [0, 1] The fraction of progress made by the activity a in period t.

Table 3.8: Variables of the optimization problem

The B&F mining method has two types of mine workings, i.e., drifts and stopes. Each
stope has two drifts, i.e., the production drift (below the stope) and the drilling drift (above
the stope). Before beginning a stope activity, the production and drilling drifts should be
completely developed. To completely develop a mine working, di�erent activities should be
conducted. Thus, to completely develop a drift, the following activities must be sequen-
tially performed: drilling, explosive charging, blasting, hauling, and back�lling. Similarly, to
completely develop a stope, the following tasks must be sequentially performed: benching,
explosive charging, blasting, hauling, and back�lling.

The slice discretization process is performed to re�ect the actual progress of the exploita-
tion of a B&F mine. This process involves the discretization of both types of workings (drift
and stope) in equal length slices so that each slice represents one activity in the UDESS model.
Figure 4 represents the slice discretization process of two stopes (in gray) and three stopes
(in white), including the precedence of the activities. In this �gure, instead of considering
drift and stope activities of length ∆, we work with several activities of length δ.

Figure 3.4: The slice discretization process of B&F three drifts (in white) and two stopes (in
grey) in UDESS

Objective function

The objective function of the optimization problem is presented in (3.1).

max
∑
t∈T

∑
a∈A

1

(1 + α)t
· Ca · xa,t (3.1)
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Constraints

In this section, we explain the constraints of the optimization problem.

sa,t+1 ≥ sa,t ∀a ∈ A, ∀t ∈ T \ {T} (3.2)

ea,t ≥ ea,t+1 ∀a ∈ A, ∀t ∈ T (3.3)

xa,t ≤ sa,t ∀a ∈ A, ∀t ∈ T (3.4)∑
t∈T

xa,t ≤ 1 ∀a ∈ A, ∀t ∈ T (3.5)

1− ea,t+1 ≤
t∑

t′=1

xa,t′ ∀a ∈ A, ∀t ∈ T (3.6)

sa,t ≤ 1− ea′,t+1 ∀a ∈ A, ∀a′ ∈ Pa,∀t ∈ T (3.7)

0 ≤ xa,t ≤ 1 ∀a ∈ A, ∀t ∈ T (3.8)

ea,1 ≥ 1 ∀a ∈ A (3.9)

ea,t ∈ {0, 1} ∀a ∈ A, ∀t ∈ T ∪ {T + 1} (3.10)

sa,t ∈ {0, 1} ∀a ∈ A,∀t ∈ T (3.11)∑
a′∈Hi

a

Ta′ · xa′,t ≤ NTt ∀t ∈ T ,∀a ∈ Q,∀i ∈ {1, 2, 3} (3.12)

∑
a∈A

Ta,e · xa,t ≤ NTt · UTe,t ·Ne ∀t ∈ T ,∀e ∈ E (3.13)∑
a∈A

Ta,e,s · xa,t ≤ NTt · UTe,t,s ·Ne,s ∀t ∈ T ,∀e ∈ E ,∀s ∈ S (3.14)

Constraints (3.2) and (3.3) de�ne the progress of the variables sa,t and ea,t over time.
Constraint (3.4) prevents that an activity a from progressing if it has not started. Constraint
(3.5) imposes that the maximum fraction of progress over the scheduling horizon of an activity
a is less than or equal to 1. Constraint (3.6) sets activity a as �nished when has completed
its progress. The activity has been fully completed in period t when the sum of the progress
of that activity from period 1 to t is equal to 1.

Constraint (3.7) imposes that an activity a can only start when all its precedence activities
j ∈ Pa are completed. This constraint models the logical order in which the drift and stopes
activities are developed. There are �ve types of activity precedence constraints (Figure 3.5)
Type 1 precedence restricts the sequential advance between the portions of drifts, whereas
Type 2 precedence restricts the sequential advance between the portions of stopes. Type 3
precedence ensures that the production drift of the stope must be entirely developed before
the operation of the stope itself is initiated. Type 4 precedence ensures that the drilling drift
of the stope must be entirely developed before the operation of the stope itself is initiated.
Finally, Type 5 precedence ensures that the operation of an upper stope cannot be initiated
before the lower stope (if any) is �nished.

Constraint (3.8) sets the range of variables xa,t; constraint (3.9) sets the activity a in period
t = 1 as un�nished. Constraints (3.10) and (3.11) set the range of variables ea,t and sa,t,
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Figure 3.5: Mine precedence between drift activities (in white) and stope activities (in gray)
in a B&F mine.

respectively. Constraint (3.12) ensures that the nominal time between di�erent neighboring
activities is not exceeded in each period. Constraint (3.13) requires that the sum of the
e�ective time of the type of the mining equipment �eet e on all the activities performed
in period t must be less than or equal to the maximum e�ective time during that period.
Finally, constraint (3.14) ensures that each type of mining equipment �eet can operate only
in speci�c mine sectors. This constraint requires that in each mine sector s, the sum of the
e�ective time of each type of mining equipment �eet e on all the activities performed in
period t must be less than or equal to the maximum e�ective time during that period.

3.4.3 Simulation model

The integration of a simulation model with an optimization model can be a considerably chal-
lenging task. Although some DES simulation commercial software (ARENA® and ProModel®)
have been applied to study mine operations (Torkamani and Askari-Nassab, 2015; Hashemi
and Sattarvand, 2015; Ataeepour and Baa�, 1999), they exhibit limited capabilities to ef-
�ciently and simply interact with an optimization model. Therefore, we have developed a
simulation software called Delphos Simulator (DSIM).

DSIM is a DES software used to simulate mine operations, including material handling
systems in open-pit mines and production and preparation in underground mines. It is
coded via Python using a speci�c simulation library called SimPy. DSIM implements (a)
a set of functions that allow easy de�nition of a layout and the modeling of equipment
movements, (b) several pieces of equipment that can be used with or without extension to
model considerably complex situations, and (c) reports details specially to mine operations
(cycle times and production).

Speci�cally, we use the B&F simulation model based on the model described in Pérez et al
(2017). The simulation model implements all the required tasks for the development of a
B&F mine. The inputs of the simulation model include (i) the activities to be performed,
(ii) the mining equipment, (iii) the mine layout, and (iv) the list of priority tasks. For the
simulation, it is assumed that one day comprises three operating shifts, a shift change lasting
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one hour, and one hour for meals per shift. In the simulation model, the pieces of equipment
vary based on their operational states, which can be given as follows: program delays (time
interval in which the equipment is not in operation because the operators are changing shift
or on meal time), operational losses (the equipment waiting time because other equipment
travel through the same drift), backup (time interval in which the equipment is available for
operation but is not in operation either (i) it has pending tasks however is unable to complete
them because of other tasks needs to be completed before or (ii) there are no pending tasks to
be completed for this equipment), non-available time (time interval in which the equipment
is not available owing to failure or maintenance), and e�ective time (time interval in which
the equipment is performing productive tasks).

Here, we describe the operation details of the simulation model. The mine layout contains
two types of elements, i.e., transport routes and fronts. Transport routes are the roads that
are used by the pieces of equipment to reach di�erent fronts. A front is a physical location at
which the mining equipment conducts its activities. A front can be either a drift or stope. The
type of front determines the performed activities and the type of equipment assigned to the
front. Each front has an attribute called "current activity," which indicates the activity that
should be performed next. Further, each piece of equipment has a list of priority activities
that should be conducted as input. The order of these activities is based on the start and
end periods obtained from a given short-term mine production schedule.

At the beginning of the simulation, the drift- and stope-type fronts begin with the states of
"drilling" and "benching," respectively. Throughout the simulation, the pieces of equipment
travel to di�erent fronts to execute the activities in the order based on the list of priority
activities. The activities are performed by respecting the activity precedence given using
the B&F method, and only one item of equipment is allowed to perform an activity at any
given time. When a piece of mining equipment completes its assigned activity, the activity
transitions from the current activity of the corresponding front to the next activity based on
the precedence of activities.

The general �owchart of the B&F simulation model, which involves development, produc-
tion, and back�ll of stopes, is presented in Figure 3.6. It is important to mention that the
simulation model does not consider the construction of the main ramp to access the ore body
because this study focuses on short-term scheduling.

3.4.4 Optimization and simulation feedback

In this section, we explain the interaction of optimization with simulation and vice versa in
the B&F application.

Optimization feedback to simulation

A short-term production schedule is generated at the beginning of each iteration by solving
an optimization problem. For each type of activity (drift and stope activities), a list of
priority tasks is created based on this schedule. Each of these lists is provided as input to
the simulation model. Thus, the simulation model follows a short-term production schedule.

To create the list of drift-type activities, each drift activity is sorted in an ascending order
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Figure 3.6: General �owchart of the B&F simulation model

according to the following criteria: (1) minimum start period of the �rst portion of the drift;
(2) minimum completion period of the �nal portion of the drift; (3) minimum start period of
the �rst portion of the stope associated with the drift; and (4) minimum completion period
of the �rst portion of the stope associated with the drift. In the B&F method, a drift can be
located between two stopes (the upper and lower stopes) or on one stope (the lower stope).
The stope associated with the drift corresponds to the upper stope, if it exists. Otherwise,
the associated stope corresponds to the lower stope.

If there is a tie with respect to a particular criterion, it is broken by applying the imme-
diately following criterion and so on. For example, while sorting the drift types of activities,
if two or more drift activities have equal minimum start periods with respect to the �rst
portion of the drift (�rst criterion), the drift activities are sorted using the minimum comple-
tion period of the �nal portion of the drift (second criterion). If these activities have equal
minimum completion periods with respect to the �nal portion of the drift, the criterion used
to sort the drifts is the minimum start period of the �rst portion of the stope associated with
the drift (third criterion) and so on.

Similarly, to create a list of the stope-type activities, the stope activities are sorted ac-
cording to the following criteria, which are applied sequentially until there is no tie: (1)
minimum start period of the �rst portion of the stope; (2) minimum completion period of
the �rst portion of the stope; (3) minimum start period of the �nal portion of the stope; and
(4) minimum completion period of the �nal portion of the stope.

Simulation feedback to optimization

A short-term production schedule is generated at the beginning of each iteration by solving
an optimization problem. Subsequently, this schedule is simulated using the DES model
to obtain the average utilization for each piece of equipment for each period over all the
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replications UTe,t at the end of the simulation process. The mean e�ective time over the
replications for each period is subsequently calculated in (3.15).

SETe,t =
1

|R|
∑
r∈R

SET re,t ∀e ∈ E ,∀t ∈ T (3.15)

Where SETe,t is the mean of simulated e�ective time of the equipment e in period t, and
SET re,t is the mean of e�ective time of the equipment e in period t in the replication r.

Before feeding this data to the next optimization problem during the next iteration, precise
adjustment of the mean e�ective time is necessary for each equipment. Thus, the total sum
of the simulated e�ective time SETe must be equal to the sum of the planned e�ective time
PETe used in the optimization problem to ensure the feasibility of the optimization problem.

Therefore, for all the periods t, the quantity SETe,t is multiplied with PETe
SETe

to obtain the

modi�ed simulated e�ective time ˆSET
e

t . Refer to (3.16).

ˆSET e,t =

(
PETe
SETe

)
· SETe,t ∀e ∈ E ,∀t ∈ T (3.16)

Thus, the sum over all periods of the modi�ed simulated e�ective time ˆSET e,t is equal to
PETe. Refer to (3.17).

∑
t∈T

ˆSET e,t = PETe ∀e ∈ E (3.17)

Finally, the average utilization of each piece of equipment for each period over all the
replications UTe,t is calculated as the ratio of the modi�ed simulated e�ective time ˆSET e,t

and the total time per period in hours. As each time period comprises a month (30 days),
each time period has 24 · 30 hours in total. Refer to (3.18).

UTe,t =
ˆSET e,t

24 · 30
∀e ∈ E ,∀t ∈ T (3.18)

In the next iteration, the average utilization of each equipment for each period UTe,t is
fed into constraint (3.13) to generate a new short-term mine production schedule. For an
equipment working in speci�c mine sector, the procedure to calculate the average utilization
per equipment for each period per mine sector UTe,t,s is similar to the procedure used to
calculate UTe,t. This quantity is fed into constraint (3.14) to generate a new short-term mine
production schedule.
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3.5 Case study

A case study of a real-world data of a B&F mine is considered for understanding the appli-
cation of the simulation-optimization framework. The mine is comprised of two exploitation
zones (East and West), and each contain three levels. Figure 3.7(a) shows the isometric
view of the mine, whereas Figure 3.7(b) depicts the plan view. Figure 3.8(a) illustrates the
North-South side view of the mine whereas the Figure 3.8(b) represents the East-West side
view.

Figure 3.7 and 3.8 illustrate the mine workings in the mine: stopes (in brown), crosscuts
(in green), main drifts (in yellow), access ramps (in red), and the access drifts (in blue).
Crosscuts connect the di�erent stopes with the main drifts. For their part, main drifts
connect the di�erent crosscuts with the corresponding access ramp. Finally, access drifts
connect the West and East sectors with other sectors of the mine.

The ore deposit is of the epithermal type of gold and silver, comprising of veins with
an average width of 2.1 m. Table 3.9 summarizes the number of activities by activity type
(drift, stope and back�ll). The total number of activities to be scheduled di�ers from the
total number of tasks, because the slice discretization process explained in Section 3.4.2 is
conducted using a slice discretization length of 9.0 m for each mining task. This length
corresponds to the length of the portion of the ore extracted from the stope subsequent to
which the back�ll of the stopes in the real mining operation begins. Table 3.10 shows the
mining equipment involved in the B&F mine. In each zone, one LHD and production drill rig
work exclusively; hence there are four pieces of equipment in total. Table 3.11 describes the
relation between the tasks and the mining equipment used to perform the mining activities.

Figure 3.7: Isometric (a) and plan view (b) of the B&F mine case study
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Figure 3.8: North-South side view (a) and West-East side view (b) of the B&F mine case
study

Activity type
Number of

mine workings
Total activities
to be scheduled

Total length [m] Material [kt]

Drift 89 568 3430 226.57
Stope 67 428 4568 192.26
Back�ll 67 428 4568 362.41

Table 3.9: Summary of the B&F mine case study activity type

Equipment Number Availability [%]

Face drill rig 1 68.2
Explosives charger 1 78.5

LHD 2 65.1
Scaler 1 75.8

Shotcrete 1 79.4
Bolter 1 82.4

Production drill rig 2 69.8
Back�ll truck 1 79.0

Table 3.10: Mining equipment used in the B&F mine case study

The mining equipment distribution parameters used in the simulation are presented in
Table 3.12. In this table, U(a, b) represents a uniform distribution, W (k) represents a 1-
parameter Weibull distribution, and N(µ, σ) represents a normal distribution. The types of
probability distributions used are obtained based on the best �t obtained from the historical
data. For further details of the probability density distribution, please consult Oliphant
(1995).

All the computational experiments presented in this study were performed on a 2.60 GHz
Intel® Xeon® CPU with 256 GB RAM, operating on the Windows 8® operating system.
The optimization model is solved using Gurobi (Gurobi Optimization, 2019). The proposed
framework considers a stop criterion for the iteration procedure when the value of one adher-
ence index is less than or equal to a particular critical value. In the B&F mine case study,
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Tasks

Mining Equipment Drift Stope

Face drill rig Drilling
Explosives charger Charging Charging

Explosives Blasting Blasting
LHD Mucking Hauling
Scaler Wedging

Shotcrete Shotcreting Shotcreting
Bolter Bolting

Production drill rig Drilling
Back�ll Truck Back�lling

Table 3.11: Relation between the mining equipment and tasks in the B&F mine case study

Parameter Probability density distribution

Time between failures [min] 1
4
· 46 ·W (1.7) · 1440

Time to repair [min] 1
4
· 1.35 · ln(1.1) · 1440

LHD maintenance [min] 120 + U(−20; 60)
Jumbo maintenance time [min] 180 + U(−20; 60)
Simba maintenance time [min] 180 + U(−20; 60)

LHD bucket load [t] 5 + U(−1.5 + 1.5)
Drift length [m] 3 + U(0; 0.5)

Drift drilling time [min] DriftLength · 0.4
2·N(1;0.02)

+ 15

Stop Benching time [min] 96
N(1;0.02)

+N(30; 5) · 12

Load/Dump LHD time [s] 15 + U(−2; 12)
Explosive charger time [min] 30 + U(0; 60)

Back�ll time [min] 20 + U(−5; 5)
Wedging time [min] 30 + U(0; 30)

Shotcreting time [min] 60 + U(0; 30)
Bolting time [min] 90 + U(0; 30)

Table 3.12: Mining equipment's probability density distributions

the iteration procedure stops when the value of the material adherence index in a given it-
eration is less or equal to 5%. We select this value because additional iterations to improve
it was not considered to be worth the computational time; however, a di�erent value could
be set if necessary. The optimization model considers periods of one month, with a schedul-
ing horizon of approximately a year and a half. The mine schedule assumes that the mine
workings required to access the production and drilling drifts have been already developed.
The initial utilization value for the mine equipment corresponds to the availability reported
in Table 3.10. The annual discount rate observed with respect to the objective function of
the optimization model is 10%.

We analyze the cumulative mean of the steady monthly production rates for the drift,
stope, and back�ll over replications to determine the number of simulation replications. The
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number of replications is selected such that the cumulative average of the production rates
becomes stabilized. Based on this criterion, the number of simulation replications is concluded
to be 100. We did not consider a warm-up period at the beginning of the simulation because
the conducted simulation considers a mine from the beginning of its production that attains
a steady production rate after some months.

To validate the simulation model, we use the con�dence interval procedure. The drift,
stope, and back�ll steady monthly production rates are selected as the response variables
of the simulation model. We run a total of 100 replications to obtain the sample mean
and standard deviation of the model response variables from the simulation replications. A
student's t-distribution of the response variables is conducted (because the standard deviation
of the response variables is unknown), and a con�dence level of 95% is assumed for calculating
the con�dence intervals. Based on the short-term mine production model generated from the
optimization model, the steady annual production rates for a drift, stope, and back�ll are
used to verify whether these values are within the corresponding intervals. It is then veri�ed
that the response variables are within the con�dence intervals, verifying the validity of the
model for the considered response variables.

3.6 Results and discussion

In this section, the results and discussion are presented based on the application of the
simulation-optimization framework to the B&F case study. The procedure stops when the
material adherence index is 4.8%, which is lower than the speci�ed critical value of 5%. With
this criterion, we performed a total of �ve iterations. In this way, using the optimization
problem we have generated a total of �ve schedules. Each schedule requires an average of 23
min to be resolved. The simulation of each schedules, containing 100 replications, requires
approximately 5 h for completion in average.

Figures 3.9 and 3.10 show the short-term mine production schedule obtained from the
resolution of the optimization model (a), and the average of the mine production schedule
obtained from the simulation (b), for the �rst and �fth iterations, respectively.

In the �rst iteration (Figure 3.9), discrepancies can be observed between the schedule
obtained from the optimization model and the average of the simulated schedule with respect
to the level of movement of material in the early periods. This discrepancy a�ects the number
of periods required to complete the extraction at the mine. The schedule needs 14 periods,
and the average simulated schedule needs 16 periods. This result is not desired but it is
expected because the optimization model alone fails to consider the operational uncertainty
of the mine's operation.

However, in the �fth iteration (Figure 3.10), the discrepancies among the level of movement
of material in the early periods with respect to the schedule obtained from the optimization
model and the average of the simulated schedule are observed to be minor in comparison with
those obtained from the �rst iteration. In the �fth iteration, the number of periods necessary
to complete the extraction at the mine with respect to the schedule and the average of the
simulated schedule is 17. This is expected because the e�ects of operational uncertainty
within the optimization model can be considered by integrating the simulation. Thus, it is
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Figure 3.9: Schedule obtained from the optimization model in the 1st iteration (a) and average
of the schedule obtained from its corresponding simulation (b)

possible to generate a schedule with smaller discrepancies with respect to the movement of
material when compared with the schedule obtained in the �rst iteration.

In the following paragraphs, we report each mine schedule's adherence indices generated
over the iterations of the B&F case study to assess the level of adherence between the schedule
generated by the optimization problem and the corresponding simulation.

In Table 3.13, we report the material adherence indices of the mine schedules generated
over iterations. In general, the material adherence index do not always decrease over it-
erations for every type of material. However, when considering all types of activities, the
material adherence index always decreased with each iteration. This result implies that the
levels of material movement in case of the schedule and the average of the simulated schedule
become increasingly similar with iterations.

In Figures 3.11 and 3.12, we report the material adherence curve for each mine schedule
generated over the iterations considering di�erent material types (drift, stope, and back�ll).
In the �rst two iterations (Figures 3.11(a) and 3.11(b)), the material adherence curves of
all the materials were lower than those in the �rst period. This result indicates that the
material movement in the simulation was late based on the mine schedule. In the subsequent
periods, the adherence curve was approximately one. This result indicates that the total
material movement in the simulation was synchronized with the mine schedule. In the three
subsequent iterations (Figures 3.11(c), 3.12(a), and 3.12(b)), the material adherence curve
of all the materials was greater than that in the �rst period. This result indicates that
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Figure 3.10: Schedule obtained from the optimization model in the 5th iteration (a) and
average of the schedule obtained from its corresponding simulation (b)

Iteration

Material type 1 2 3 4 5

Drift 10.18 3.83 3.00 3.20 2.63
Stope 18.13 11.29 9.46 9.60 8.80
Back�ll 19.00 9.76 6.52 6.00 7.24

Drift & Stope 9.92 6.13 4.98 5.73 4.02
Drift & Stope & Back�ll 13.11 7.11 5.48 5.26 4.86

Table 3.13: A mine schedule's material adherence index (in percentage) over the iterations,
considering di�erent types of materials

the material movement in the simulation was ahead of the mine schedule. However, in the
subsequent periods, the material adherence curve of all the materials was near to that. This
result indicates that the material movement in the simulation was synchronized with the
mine schedule.

In Tables 3.14 and 3.15, we report the start adherence index and completion adherence
index of the mine schedule generated over iterations, respectively. As can be observed, the
start and completion adherence indices do not always increase over iterations for every type
of material. However, when considering all types of activities, the start adherence index and
completion adherence index with respect to a given schedule are higher than those of the
immediately previous iteration. This result indicates that the number of simulated activities
that start/end in a period less or equal to the period given by the schedule increases in each
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Figure 3.11: Material adherence curve for the 1st (a), 2nd (b) and 3rd mine schedules

Figure 3.12: Material adherence curve for the 4th (a) and 5th (b) mine schedules
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iteration. In other words, the number of simulated activities that start / end in a period
greater than the period de�ned by the schedule decreases in each iteration.

Iteration

Activity type 1 2 3 4 5

Drift 99.2 96.6 98.2 96.1 97.3
Stope 47.5 58.9 75.2 77.2 79.2
All 77.0 80.4 88.3 88.0 89.5

Table 3.14: Summary of the start period adherence index (in percentage)

Iteration

Activity type 1 2 3 4 5

Drift 85.9 73.5 74.5 72.9 82.1
Stope 26.3 45.1 63.7 66.3 69.9
All 60.3 61.3 69.9 70.1 76.9

Table 3.15: Summary of the completion period adherence index (in percentage)

In Table 3.16 we report the mean lateness, mean tardiness and mean earliness of the
schedules generated over iterations.

The mean lateness of the schedule is negative and decreases over iterations. This result
implies that the di�erence between the completion period of simulated activities and the
completion period of scheduled activities is negative and increases over the iterations.

Generally, the tardiness of the schedule decreases with each iteration. This result implies
that when we consider the activities which are completed after the expected period given in
the schedule, the di�erence between the completion period of simulated activities and the
completion period of scheduled activities over the iterations decreases over the iterations.

Generally, the mean earliness of the schedule increases with each iteration. This result
implies that when we consider the activities which are completed before the expected period
given the schedule, the di�erence between the completion period of scheduled activities and
the completion period of simulated activities over the iterations increases over the iterations.

The results obtained of the adherence indices between of the schedule and its corresponding
simulation over the iterations can be summarized as follows: (a) material adherence index
decreased from 13.11% in the �rst iteration to 4.8% in the �nal iteration, (b) shape of the
material adherence curve showed a trend to a horizontal line of unit value over iterations, (c)
start adherence index increased from 77.0% in the �rst iteration to 89.5% in the �nal iteration,
(d) completion adherence index increased from 60.3% in the �rst iteration to 76.9% in the
�nal iteration, (e) mean lateness varied from -0.002 months in the �rst iteration to -1.128
months in the �nal iteration, (f) mean tardiness varied from 0.479 months in the �rst iteration
to 0.138 months in the �nal iteration, and (g) mean lateness varied from 0.480 months in the
�rst iteration to 1.000 months in the �nal iteration.
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Iteration

Index 1 2 3 4 5

Mean
lateness

-0.002 0.127 -0.534 -0.603 -0.863

Mean
tardiness

0.479 0.283 0.176 0.199 0.138

Mean
earliness

0.480 0.701 0.710 0.802 1.000

Table 3.16: Mean lateness, tardiness and earliness (in months) for all the activities over
iterations

The results presented in the previous paragraphs and presented in Tables 3.13 to 3.16 and
Figures 3.11 and 3.12 demonstrate, in general, that the adherence indices with respect to
a given schedule and its corresponding simulation are higher than those of the immediately
previous iteration. These results demonstrate that in each iteration, the optimization prob-
lem uses continuous improvement in the estimation of the utilization KPIs of each mining
equipment provided by the simulations. These estimations imply a better quanti�cation of
the maintenance equipment times, equipment failures, travel time between locations where
the equipment is used to perform mining activities, and equipment backup times (time during
which the equipment is available for operation even though the equipment is not operative
for the speci�c mine operation condition). Furthermore, these utilization KPIs estimations
consider the real mine operation behavior that is di�cult to consider in an optimization prob-
lem, such as the dispatching rules for transporting equipment to mine faces and the speci�c
rules of mine operations.

Finally, we compared the NPV and the material adherence index with respect to all the
short-term schedules generated over iterations in Table 3.17.

Iteration

Index 1 2 3 4 5

NPV
[MUSD]

721.7 718.1 716.2 716.2 715.9

% Di�erence NPV
c/r 1st iteration

0.0% -0.5% -0.8% -0.8% -0.8%

Material adherence
index [%]

13.11 7.11 5.48 5.26 4.86

Table 3.17: Comparison between the NPV and the material adherence index short-term
schedules generated over iterations

Based on the results in Table 3.17, we can state that the improvements in the adherence
of mine schedules over iterations are not obtained at the expense of NPV. The results denote
that the NPV remained constant, whereas the material adherence index of the mine schedules
decreased (Table 3.17). In other words, the proposed framework can e�ectively generate mine
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schedules over iterations and simultaneously maintain the NPV.

3.7 Conclusion and future work

The deviation between mine schedules and the mine operation results are crucial problems
that a�ect the mining industry. Therefore, the mine engineers should generate a mine produc-
tion schedule that can be reproduced in reality. Hence, they should develop mine production
schedules that exhibit high adherence.

In this study, we proposed a generic framework to increase adherence to a short-term mine
production schedule by combining optimization and simulation using an iterative approach.
This framework comprises the following steps. First, an initial mine schedule is generated
based on the resolution of a mixed-integer linear optimization problem. Second, this schedule
is simulated using a DES model. Third, a new short-term mine schedule is created using the
optimization model by considering the new utilization KPIs of each equipment, obtained from
the simulations performed in the previous step, as inputs for the mine operation. Finally,
iterations of the second step are performed. In each iteration, adherence to each mine schedule
is evaluated with respect to the corresponding simulations by evaluating several adherence
indices.

The proposed framework was applied to a real-scale B&F mine. The mine planning
horizon was more than a year and a half, and each period lasted for one month. A total of
�ve iterations were performed.

We measure the discrepancies among the level of movement of material with respect to
the schedule obtained from the optimization model and the average of the simulated schedule
using the mine schedule material's adherence index. The values of this index decreased with
the iterations, from 13.1% in the �rst iteration to 4.8% in the last iteration. This improvement
is explained because the e�ects of the operational uncertainty within the optimization model
can be considered by integrating the simulation.

The outcomes of the work presented in this study demonstrate that the proposed frame-
work improved the mine schedule adherence indices over iterations and simultaneously main-
tained the NPV of the mine schedule. The results demonstrate that the simulation provides a
better understanding of the impacts of uncertainty in short-term mine production schedules.

As future research, the proposed framework will be applied to massive and selective un-
derground mining methods as well as open-pit mines.
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Chapter 4

Short-term open-pit mine production

scheduling with hierarchical objectives

Abstract

Short-term mine scheduling in open-pit mines consists of meeting the objectives de�ned by the
long-term mine production schedule. Short-term scheduling in open-pit mines has multiple
hierarchical objectives to optimize. This work proposes an optimization methodology to
generate a short-term open-pit mine production schedule optimizing multiple hierarchical
objectives. For the generation of mine schedules, we propose an optimization model based
on mixed-integer linear programming. This model considers the usual restrictions of mine
sequencing and also takes into account both time and cost of movement between phases of
each shovel. In order to optimize the multiple hierarchical short-term objectives, we apply
the hierarchical and weighted sum methods in the proposed optimization model. We verify
this methodology in a real open-pit mine case study. The results show that both methods
generate short-term mine schedules optimizing the di�erent short-term objectives.

4.1 Introduction

Short-term mine scheduling in open-pit mines consists of meeting the objectives de�ned
by the long-term mine production schedule. Short-term scheduling in open-pit mines has
multiple objectives to optimize. In some mine operations, these objectives are ranked in
a descending order which are: (i) the minimization of the deviation between the ore sent
to the ore processing plant and the ore processing capacity of the plant per period, (ii) the
minimization of the deviation between the metal �nes sent to the plant and the �nes expected
by the ore processing plant, and (iii) the overall minimization of the movement time/cost
of the shovel �eet. This work proposes an optimization methodology to generate a short-
term open-pit mine production schedule optimizing multiple hierarchical objectives. For the
generation of mine schedules, we propose an optimization model based on mixed-integer linear
programming (MILP). This model considers the usual restrictions of mine sequencing and
also takes into account both time and cost of movement between phases of each shovel. In
order to optimize the multiple hierarchical short-term objectives, we apply the hierarchical
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and weighted sum methods (Grodzevich and Romanko, 2006; Nehring et al, 2018) in the
proposed optimization model. We verify this methodology in a real open-pit mine case
study. The remainder of this paper is organized as follows. Section 4.2 presents the proposed
optimization model and explains the procedure to perform various objective optimization
using both hierarchical and weighted sum methods. In section 4.3, we describe the open-pit
mine case study conducted to generate short-term production schedules optimizing multiple
objectives, applying both hierarchical and weighted sum methods. Section 4.4 reports the
results and discussion of the case study. Finally, section 4.5 presents the conclusions of the
work.

4.2 Materials and methods

In this section, we present the optimization model and describe the methodology to generate
short-term mine production schedules optimizing various objective optimizations using the
hierarchical and weighted sum methods.

4.2.1 Optimization model

The optimization model proposed is a shovel allocation problem based on MILP. The ob-
jective of the model is to provide shovel allocations to phases and benches over a one year
scheduling horizon. We present the sets & indexes, variables and parameters of the optimiza-
tion model in Tables 4.1, 4.2, and 4.3, respectively.

Symbol Description

P, p Set and index for shovels.
F, f Set and index for phases.

B(f), b Set for benches of phase f and index for benches.
T, t Set and index for periods.
R, r Set and index for routes.
R(f) Set of routes that contains phase f .
FR(r) Set of routes which the �rst phase is equal to the last phase of route r.
FC Set of consecutive phases (f, f ′)

Table 4.1: Optimisation model indices and sets

4.2.2 Multiple objective optimization methods

In this work, we optimize the short-term objectives in the following hierarchical order:

1. Minimize the maximum deviation between ore sent to the plant and plant capacity per
period: f1 = minD. This objective seeks to use the plant capacity in all periods.

2. Minimize the maximum deviation between metal �nes sent to the plant and the ex-
pected metal �nes by the plant per period: f2 = minG. This objective seeks to feed
the plant with the expected metal grade by the plant.
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Symbol Description

xp,f,b,t ∈ [0, 1] Time percentage of the period t ∈ T where shovel p ∈ P is operative in
bench b ∈ B of the phase f ∈ F .

x̄p,f,b,t ∈ {0, 1} Equal to 1 if shovel p ∈ P is allocated in bench b ∈ B of the phase f ∈ F
in period t ∈ T , 0 otherwise.

zf,b,t ∈ {0, 1} Equal to 1 if bench b ∈ B of phase f ∈ F is inactive at period t ∈ T , 0
otherwise.

z̄f,b,t ∈ {0, 1} Equal to 1 if bench b ∈ B of phase f ∈ F �nishes its exploitation in period
t ∈ T or later, 0 otherwise.

w̄p,f,t ∈ {0, 1} Equal to 1 if shovel p ∈ P is allocated on phase f ∈ F in period t ∈ T , 0
otherwise.

vp,r,t ∈ {0, 1} Equal to 1 if shovel p goes through route r in period t, zero otherwise.
D ∈ R+ ∪ {0} Maximum deviation between the processing plant capacity and the ore

send to processing plant.
d−t ∈ R+ ∪ {0} Positive deviation between the processing plant capacity and the ore send

to processing plant.
G ∈ R+ ∪ {0} Maximum deviation between the metal �nes sent to processing plant and

the metal �nes expected by the plant.
g+t ∈ R+ ∪ {0} Negative deviation between the metal �nes sent to processing plant and

the metal �nes expected by the plant.
g−t ∈ R+ ∪ {0} Positive deviation between the metal �nes sent to processing plant and the

metal �nes expected by the plant.

Table 4.2: Optimization model's variables

3. Minimize overall shovel movement cost: f3 = min
∑

p∈P,r∈R,t∈T CTp,r · vp,r,t. This objec-
tive seeks to minimize the movement cost of the �eet of shovels between sectors of the
mine.

We apply the weighted sum method and the hierarchical method, described in the Section
2.2, to generate short-term mine production schedules optimizing multiple objectives.

The following problems need to be solved in the context of the weighted sum method:

� mMDP: Minimize the maximum deviation between ore sent to the processing plant and
ore processing capacity per period.

� mMDF: Minimize the maximum deviation between metal �nes sent to the processing
plant and expected metal �nes by the ore processing plant per period.

� mD: Minimize the overall shovel �eet movement cost between phases.

� WS(1,2,3): Minimize the weighted sum of the three short-term objectives considered
in this work.

In the proposed optimization model, the sets of constraints that impose that the maximum
deviation of ore processing capacity per period does not take another value than the obtained
in the previously solved problem are 4.19 and 4.20. Analogously, the set of constraints that
enforce that the maximum deviation of �nes per period does not take another value than the
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Symbol Unit Description

TT [h] Total time per period.

TIp,r [%]
Percentage over the nominal time of the period where
shovel p needs to move between the phases of route r.

AVp,t [%] Availability of shovel p in period t.
CTp,r [USD] Movement cost of shovel p along the phases of route r.

RMp,f,b [t/h]
Maximum throughput of mined material
by the shovel p, in the phase f , in the bench b.

TMf,b [t] Total material to be mined in bench b in phase f .
OFf,b [%] Percentage of ore material in the bench b of the phase f .
PC [t] Total capacity of the ore processing plant.
EG [%] Expected grade of the metal by the ore processing plant.
SG [t/m3] Rock density.
BH [m] Bench height.

ADf,b [m]
Initial operative area of the bench b of the phase f
where shovels can operate.

ASp [m2] Minimum operative area of shovel p.

MLf,g -
Maximum number of benches between consecutive
phases f and g.

mLf,g -
Minimum number of benches between consecutive
phases f and g.

Table 4.3: Optimization model time and cost parameters

obtained in the previously solved problem are 4.21 to 4.23.

The following problems need to be solved in the context of the hierarchical method:

� mMDP: Minimize the maximum deviation between ore sent to the ore processing plant
and the ore processing capacity per period.

� mMDF(mMDP): Minimize the maximum deviation between metal �nes sent to the
ore processing plant and the expected metal �nes by ore processing plant per period,
subject to the minimum maximum deviation between ore sent to the processing plant
and the ore processing capacity per period.

� mD(mMDF(mMDP)): Minimize overall shovel movement between phases subject to:
(i) minimum maximum deviation between ore sent to the processing plant and the
ore processing capacity per period, and (ii) the minimum maximum deviation between
metal �nes sent to the processing plant and the expected metal �nes by the ore pro-
cessing capacity per period.

4.2.3 Optimization model constraints

Here we describe the constraints of the proposed optimization model. The material extracted
by the �eet of shovels of the bench b of the phase f along the planning horizon must be equal
to the total material available (Equation 4.1). The total ore sent to the ore processing plant
must be lower than the ore processing capacity (Equation 4.2). The shovel's operative time
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plus the shovel's movement time between the phases are lower or equal to the availability of
the shovel (Equation 4.3). In order to assign operative time, a shovel p must be assigned to
the bench b of the phase f (Equation 4.4). When a bench is �nished, it cannot be assigned
with any shovels (Equation 4.5). To assign a shovel p in a bench b of a phase f , that shovel
must be allocated in that phase f (Equation 4.6). To assign operative time in a bench b of
a phase f in a shovel p, it must be allocated in that phase f (Equation 4.7). Bench b of
phase f is not �nished in period t until all the material are extracted (Equation 4.8). If a
bench b of a phase f is �nished in a period t, it remains �nished in period t+ 1. Constraints
4.10 controls the precedence between benches of the same phase. Thus, to a bench b of a
certain phase f can be active, the upper bench must be �nished. To assign operative time,
the phase-bench must be active (Equation 4.11). Constraints 4.12 and 4.13 controls the
precedence between benches of consecutive phases. Constraints 4.14 to 4.15 control the area
available in the phase-bench in order to allocate shovels. Constraints 4.16 to 4.18 models
the shovel movements between phases. At most just one route is performed by shovel p in
period t (Equation 4.16). Constraint 4.17 links the binary variable w̄p,f,t with the variable
vp,r,t. For each shovel p, the constraint 4.18 ensures that the route r of period t and the route
s of period t + 1 are coherent, that is, the last phase f of the r route and the �rst phase of
the s route is the same. The set FR(t) represents the set of all the routes consistent with
the r route. That is, the set of routes whose �rst phase is the same as the �rst phase of
the r route. Constraints 4.19 and 4.20 model the deviation between the ore sent to the ore
processing plant and the ore processing capacity per period. Constraints 4.21 to 4.23 model
the deviation between the metal �nes sent to ore processing capacity and the expected �nes
by the ore processing plant per period.

∑
p∈P,f∈F,b∈B

RMp,f,b · xp,f,b,t · TT = TMf,b ∀f ∈ F, b ∈ B(f) (4.1)

∑
p∈P,f∈F,b∈B

RMp,f,b · xp,f,b,t · TT ≤ PC ∀t ∈ T (4.2)

∑
f∈F,b∈B(f)

xp,f,b,t +
∑
r∈R

TIp,r · vp,r,t ≤ AVp,t ∀p ∈ P, t ∈ T (4.3)

x̄p,f,b,t ≤ xp,f,b,t ∀p ∈ P, f ∈ F, b ∈ B(f), t ∈ T (4.4)

x̄p,f,b,t + z̄f,b,t−1 ≤ 1 ∀p ∈ P, f ∈ F, b ∈ B(f), t ∈ T (4.5)

w̄p,f,t ≥ x̄p,f,b,t ∀t ∈ T, f ∈ F, b ∈ B(f) (4.6)

w̄p,f,t ≥ xp,f,b,t ∀p ∈ P, f ∈ F, b ∈ B(f) (4.7)

z̄f,b,t ≤
∑

p∈P,τ∈{1,..,t}

RMp,f,b · xp,f,b,τ · TT ∀f ∈ F, b ∈ B(f), t ∈ T (4.8)

z̄f,b,t ≥ zf,b,t−1 ∀f ∈ F (4.9)

zf,b,t ≤ z̄f,b−1,t ∀f ∈ F, b ∈ B(f), t ∈ T (4.10)

xp,f,b,t ≤ zf,b,t ∀p ∈ P, f ∈ F, b ∈ B(f), t ∈ T (4.11)

zf,b,t ≥ z̄f ′,(b′−MLf,f ′ ),t
∀(f, f ′) ∈ FC, b ∈ B(f), b′ ∈ B(f ′), t ∈ T (4.12)

zf,b,t ≤ z̄f ′,(b′−mLf,f ′ ),t
∀(f, f ′) ∈ FC, b ∈ B(f), b′ ∈ B(f ′), t ∈ T (4.13)
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∑
p∈P

ASp · x̄p,f,b,t ≤ ADf,b ∀f ∈ F, b ∈ B(f), t = 1 (4.14)

∑
p∈P

ASp · x̄p,f,b,t ≤ ADf,b+

∑
p∈P,τ∈{1,...,t}

RMp,f,b · xp,f,b,τ · TT
SG ·BH

∀f ∈ F, b ∈ B(f), t ∈ T \ {1} (4.15)

∑
r∈R

vp,r,t ≤ 1 ∀p ∈ P, t ∈ T (4.16)

w̄p,f,t ≤
∑
r∈R(f)

vp,r,t ∀p ∈ P, t ∈ T, f ∈ F (4.17)

∑
s∈FR(r)

vp,s,t ≥ vp,r,t−1 ∀t ∈ T \ {1}, p ∈ P, r ∈ R (4.18)

d−t ≤ D ∀t ∈ T (4.19)∑
p∈P,f∈F,b∈B

RMp,f,b · xp,f,b,t · TT + d−t = PC ∀t ∈ T (4.20)

g+t ≤ G ∀t ∈ T (4.21)

g−t ≤ G ∀t ∈ T (4.22)

∑
p∈P,f∈F,b∈B

RMp,f,b · xp,f,b,t · TT+

g−t − g+t =
∑

p∈P,f∈F,b∈B

RMp,f,b · xp,f,b,t ·OFf,b · EG ∀t ∈ T (4.23)

4.3 Case study

A case study of an open-pit copper mine is considered to verify the model. Year 4 is selected
as the short-term schedule for the case study. The schedule requires 63.49 [Mt] of ore and
29.55 [Mt] of waste to be mined in year 4 with four phases (1, 2, 3 and 4). Figure 4.1 depicts
the mine layout in year 4 with the road network, one plant crusher and two waste dumps.
The plant has an annual ore capacity of 2.51 [Mt]. Plant crusher is desired to have ore with
a copper grade of 1.1 [%]. Mine production operations are carried out in two shifts of 12
[h] daily and seven days a week. The mine employs a total of 2 electric shovels. Shovel 1
has a throughput of 4,114 [t/h] and shovel 2 has a throughput of 5,486 [t/h]. Both shovels
have an availability of 80.0 %. Shovel 1 requires a minimum operational area of 1,239 [m2],
whereas shovel 2 requires 1,491 [m2]. The shovel average movement velocity is estimated at
0.24 [km/h], due to numerous curves and slopes of the road network for the mine layout case
study. The operational cost of shovel movement is estimated at 1.00 [USD/m]. Table 4.4
shows the distances each shovel needs to travel between phases.
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In this case study, the mine operation prioritizes the short-term objectives as shown in
section 4.2.2. We generate a short-term mine production schedules. Comparing the hierar-
chical method with the weighted sum method in terms of: (i) minimum maximum deviation
between ore and ore processing capacity per period, (ii) upper and lower maximum deviation
between copper �nes and expected copper �nes in the ore processing capacity per period,
(iii) Overall movement cost and time of shovel �eet , and �nally (iv) resolution time. In the
weighted sum method, the weights ui assigned by the decision maker for each objective in
decreasing order take the values of 10, 000; 100 and 10.

Figure 4.1: Mine layout with ramps and road network in year 4.

Phases 1,2 1,3 1,4 2,3 2,4 3,4

Distance [m] 2,800 4,276 3,273 4,813 2,968 1,845

Table 4.4: Distance between phases.

4.4 Results and discussion

In the case study, the weighted sum method needs 22.11 [h] to be carried out (resolution of
mMDP, mMDF, mD and WS(1,2,3)), while the hierarchical method needs 11.85 [h] (resolu-
tion of mMDP, mMDF(mMDP), mD(mMDP(mMDF)). Table 4.5 shows the results of the
mD, mMDP, and mMDF problems.

Figure 4.2 shows in the �nal production schedule of the case study, whereas Table 4.6 com-
pares deviations of plant capacity, deviations of copper �nes and overall movements of the
shovel �eet for problems associated with the hierarchical method (mMDP, mMDF(mMDP),
mD(mMDF(mMDP))) and the problem associated with the weighted summethod (WS(1,2,3)).

From the Table 4.6 it is veri�ed that each problem of the hierarchical method maintains the
objectives imposed by the previous problems and at the same time diminishes or maintains
the short-term objective that it wishes to minimize. In e�ect, it is observed that the mMDP
problem obtained a maximum deviation of the plant processing capacity of 1.8 %, whose
level is maintained in the following problems mMDF(mMDP) and mD(mMDF(mMDP)).
On the other hand, the problem mMDF(mMDP) decreased the positive and negative de-
viation of the copper �nes concerning the mMDP problem. This deviation is maintained
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Problem mMDP mMDF mD

Maximum ore processing
capacity deviation [%]

1.864% 8.237% 14.500%

Maximum positive deviation
of copper �nes [t]

6,462 4,967 6,734

Maximum negative deviation
of copper �nes [t]

6,754 4,967 6,945

Shovel �eet movement
time [days]

12.5 9.5 4.0

Shovel �eet movement
cost [kUSD]

71.9 54.6 22.8

Table 4.5: Optimization of single optimization problem objectives.

Figure 4.2: Mine short-term production schedule for the case study.

by the post problem mD(mMDF(mMDP)). Also, the problem mMDF(mMDP)) decreased
the total days of blade movement obtained by the mMDP problem from 12.5 days to 10.2
days. Finally, problem mD(mMDF(mMDP)) maintained the level of deviations of plant ca-
pacity, deviations of copper �nes and movement costs and movement times of the shovel
�eet obtained by the mMDF problem (mMDP). On the other hand, it is veri�ed that the
application of the hierarchical method obtains the same value of the short-term objectives
(problem mD(mMDF(mMDP))) than those obtained by the weighted sum method (problem
WS(1,2,3)).

4.5 Conclusions

Short-term scheduling in open-pit mines needs several objectives to be optimized jointly. In
some open-pit mine operations, these objectives are ranked in a descending order of impor-
tance: (i) the minimization of the deviation between the ore sent to the ore processing plant
and the ore processing capacity of the plant, (ii) the minimization of the deviation between
the metal �nes sent to the ore processing plant and the metal �nes expected by the ore pro-
cessing plant and �nally (iii) the overall minimization of the movement of the shovel �eet.
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Hierarchical
Weighted
Sum

Problem mMDP
mMDF
(mMDP)

mD
(mMDF
(mMDP))

WS(1,2,3)

Maximum ore processing
capacity deviation [%]

1.864% 1.864% 1.864% 1.864%

Maximum positive deviation
of copper �nes [t]

6,462 4,484 4,484 4,484

Maximum negative deviation
of copper �nes [t]

6,754 5,202 5,202 5,202

Shovel �eet movement
time [days]

12.5 10.2 10.2 10.2

Shovel �eet movement
cost [kUSD]

71.9 58.9 58.9 58.9

Table 4.6: Short-term objectives deviations of case study.

This work proposes an optimization methodology to generate a short-term open-pit mine
production schedule optimizing multiple hierarchical objectives. For the generation of mine
schedules, we propose an optimization model based on mixed-integer linear programming.
This model considers mining sequencing constraints, and also takes into account both time
and cost of shovels movement between phases. For the optimization of the various short-
term objectives, we apply the hierarchical method and the weighted sum method to a real
open-pit mine case study. The results of the case study show that both methods are capa-
ble of generating short-term mine schedules by optimizing the various short-term objectives.
Additionally, we veri�ed that both methods obtain the same mine production schedule. This
article shows the importance and impact of multiple objective optimization methods for the
generation of short-term mine production schedules in open-pit mines.
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Chapter 5

Short-term open-pit production

scheduling optimising multiple objectives

accounting for shovel allocation in

stockpiles

Abstract

Short-term open-pit mine production scheduling deals with several objectives. Unfortunately,
there are trade-o�s between them. To overcome this problem, we propose a methodology
based on mathematical programming to generate schedules, considering multiple objectives
using single optimisation and the hierarchical optimisation method. The model allocates
shovels to di�erent mining faces, including stockpiles. It considers constraints of plant capac-
ity, ore blending, precedences between mining faces, shovels throughput, and movement of
shovel between mining faces. We propose a set of indicators to compare di�erent schedules.
We apply the proposed model to a real iron open-pit mine. The results show that when using
the hierarchical method, both the objectives and the order of optimisation have a signi�cant
impact on the indicators. The results also show that the schedules with a stockpile obtain
higher adherence indicators compared to the ones with no stockpile.

5.1 Introduction

Open-pit mining is a technique for the extraction of ore deposits located near to the surface
of the Earth. The scheduling sequence of mining operations is usually divided into strategic
(long-term), tactical (medium- term), and operational (short-term) levels (L'Heureux et al,
2013). Strategic scheduling de�nes the portions of the ore body that can be extracted, the
life of the mine, the production rate, and the amount of investment. A long-term production
schedule de�nes the tonnage of waste and ore to be mined from each bench-phase for each
year over the scheduling horizon. This schedule seeks to maximise the Net Present Value
(NPV) over the life of the mine. Tactical scheduling determines the mining sequence for
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up to a typical period of 5 years based on the production rate constraints. Finally, opera-
tional scheduling seeks to ensure the operational feasibility of the long-term mine production
schedule (Smith, 1998). Unfortunately, to date, the short-term planning problem for open-
pit mines has not been as widely considered as that for the medium- and long-term horizons
(Blom et al, 2018). The reason for that is probably since short-term scheduling requires to
account for more complex operational constraints, making it challenging to model by means
of mathematical models like optimisation problems.

Short-term open-pit scheduling is required to meet the objectives de�ned by the long-
term mine schedule by delivering the budgeted ore tonnes and grade to the ore processing
plant while following the long-term mine schedule Chanda (1990). A short-term schedule
has multiple criteria to take into account, such as: maximisation of the plant utilisation,
maximisation of ore extraction, and maximisation of waste extraction. In this paper, short-
term refers to a production schedule time horizon, expanding from one week to one year with
a daily up to monthly �delity.

Another very relevant aspect of short-term scheduling is the availability and utilization
of stockpiles. Indeed, they are key because they allow to keep the balance between the
ore extracted from the mine and the processing capacity, First, stockpiles act as bu�ers or
storing, so that processes before them and processes after they can operate without being
constrained by each other. Second, stockpiles can be used to control the blending of material
to be processed, reducing their variability. Finally, stockpiles can be used to sort material by
grade or other properties. (See Jupp et al (2014) Robinson (2004).)

In this study, we propose an optimisation model to generate short-term open-pit schedules,
optimising multiple objectives and accounting for the movement of shovel between di�erent
locations (faces) and stockpiles. The model is based on mixed-integer linear programming
(MILP) (Bertsimas and Tsitsiklis, 1997) and its main goal is to allocate shovels to di�erent
mining faces, which can be located in the mine or stockpiles. The model takes as input a
targets for extraction from the mine (ore and waste) and to be sent to the mill, and aims
to achieve these targets while also considering the following constraints: plant capacity, ore
blending requirements, precedences between mining faces, shovels throughput, mine sequenc-
ing and movement of shovels �eet between sectors of the mine.

We apply the single-optimisation and the hierarchical method in the proposed optimisation
model to optimise multiple short-term objectives (Grodzevich and Romanko, 2006; Nehring
et al, 2018) (see Section 2.2). In this way, we generate various schedules in a real open-pit
mine case study. These schedules study the impact of the proposed indicators considering
the following scenarios: mobile or �xed shovel �eet between sectors of the mine, presence or
absence of a stockpile, and optimisation approach.

The contributions of the paper are the following: (i) a MILP-based optimisation problem to
generate a short-term schedule for open-pit mines considering loading equipment allocation,
stockpiles and multi-objectives, (ii) a set of indicators to assess and compare the di�erent
short-term schedules, and (iii) an application of the model in an iron open-pit mine case
study showing the validity of the model in di�erent scenarios.

The remainder of this paper is organised as follows. Section 5.2 states the problem to solve
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by the optimisation model. Section 5.3 presents the proposed optimisation model. Section
5.4 describes the real-scale open-pit mine case study. It also outlines the di�erent schedules
to solve. Section 5.5 reports and discusses the results of the case study. Finally, Section 5.6
concludes the study and outlines future work.

5.2 Problem statement

This section provides a complete description of the problem solved by the optimisation prob-
lem that is mathematically described in Section 5.3.

5.2.1 Sectors and mining faces

In the proposed model, we consider that shovels can be assigned to di�erent mining faces,
which can be either in the interior of the pit or at the stockpiles. Each mining face known
in advance and it is characterized by a tonnage, a type (ore or waste), the grade of the
metal of interest and its type (extraction or stockpile). The di�erence between extraction
and stockpiles is that the former only allow extraction, while the latter type also allow
accumulation of material extracted at the mine. Finally, the sequence at which extraction
faces can be mined is determined by precedences, which force the depletion of other faces
before starting extraction at a given one.

Because in short-term the movement of shovels can be signi�cant with regards to the total
time for scheduling, the proposed model considers that mining faces are grouped into sectors,
in such a way that the travel time between faces at the same sector can be neglected, while
the time travel between faces located in di�erent sectors cannot be used for production.

Each component of a mining face can refer to the element or compound of interest to
extract (for example, the metal produces the mine). A component of a mining face can also
refer to the components that condition the extraction of elements or compound of interest
(for example, impurities).

5.2.2 Stockpiles modelling

A stockpile is a type of mining face that can accumulate ore extracted from the extraction
mining faces and also supply ore to the plant. In the optimisation problem, the stockpiles
are explicitly modelled. That is to say, the movement of material to and from each stockpile
is scheduled. As in Hoerger et al (1999), it is assumed that the stockpiles are homogeneous
and the ore reclaimed from each stockpile has a grade equivalent to the average grade of the
stockpile, which is constant over the scheduled horizon.

5.2.3 Shovel modelling

A shovel can perform di�erent tasks. Each shovel can be either available or not available.
We consider that the shovel is available if it is operating (extracting material from a mining
face), moving between mining faces, or in stand-by position. Conversely, the shovel is not
available during meals, shift changes, maintenance and failures (Table 5.1). The proposed
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model will allocate the shovels utilizing only the available time, however it will decide how
much of it is spent operating, moving, or in stand-by.

Figure 5.1: Distribution of time of a shovel

Shovels are also characterized by an operative throughput. This parameter quanti�es the
extracted material per unit of operating time that a shovel can extract (in tonnes per hour)
during its operating period. This parameter depends on the mining face in which the shovel
is allocated, and is an input of the model.

Finally, each shovel is characterized the time it needs to move between any pair of sectors
in the mine. Such parameter is an input to the model that can be determined using the
shovel speed and the distance between said sectors. However, we also consider a maximum
number of sector change for each shovel within the scheduling horizon.

A route is a list of sectors in which a shovel travels sequentially in a given period. The
maximum number of sectors by which a route is composed is not limited by the optimization
model. However, in practice, routes up to two sectors are used in the case studies of this
article.

5.2.4 Schedule performance and deviations from targets

To compare and evaluate the performance of the results beyond the optimisation targets,
several performance indicators are considered. These indicators aim to measure the compli-
ance between the short-term schedule and material movement goals and the results from the
schedule, and are based on the material �ows depicted in Figure 5.2, namely: O the tonnage
of ore sent directly from the mine to the processing plants; R the tonnage of rehandling, that
is, material sent from stockpiles to the processing plants; S the tonnage of material sent from
the mine to stockpiles; and W the tonnage of material sent to waste dumps.

Figure 5.2: An example of material �ows in an open-pit mine operation.

Table 5.1 reports the �ow material targets. Table 5.2 reports the scheduled indicators
associated to �ow material targets.
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Target Description

P0 Ore to be sent to the plant.
M0 Ore to be extracted from the mine.
W0 Waste to be extracted from the mine.

Table 5.1: Targets of the short-term scheduling

Indicator Formula Description

C(W )
W

W0

Waste extraction.

C(P )
O +R

P0

Plant utilisation.

C(O)
O

P0

Plant utilisation due to ore directly sent from mine.

C(R)
R

P0

Plant utilisation due to ore sent from stockpile.

C(S)
S

P0

Ore sent to stockpile.

C(M)
O + S

M0

Ore extraction.

Table 5.2: Schedule indicators

5.3 Optimisation model

5.3.1 Sets, indexes, decision variables and objectives functions

The sets and indexes are reported in Table 5.3. The decision variables are reported in Tables
5.4 (for the main decision variables) and Table 5.5 (for auxiliary variables associated to
deviations from targets). Table 5.6 lists the objectives considered by the optimisation model.
The optimisation model parameters are reported in the Appendix (Section 5.7).

Symbol Description

P , p Set and index for shovels.
S, s Set and index for sectors.
F , f Set and index for mining faces.
Fs Set for mining faces belonging to sector s.
T , t Set and index for periods.
J , j Set and index for component.
R, r Set and index for routes.
Rf Set of routes that contains sector f .
Hr Set of routes whose �rst sector is equal to the last sector of route r.
Q Set of precedence between the mining faces b. (f, g) ∈ Q means that the

mining face f is a predecessor of mining face d.

Table 5.3: Optimisation model sets and indexes
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Variable Description

w̄p,s,t ∈
{0, 1}

Equal to 1 if shovel p ∈ P is allocated on sector s ∈ S in period t ∈ T , 0
otherwise.

x̄p,f,t ∈
{0, 1}

Equal to 1 if shovel p ∈ P is allocated in mining face f ∈ F in period
t ∈ T , 0 otherwise.

xp,f,t ∈
[0, 1]

Time percentage of the period t ∈ T where shovel p ∈ P is operative in
mining face f ∈ F

yp,f,t ∈
[0, 1]

Time percentage of the period t ∈ T where shovel p ∈ P is operative
in mining face f ∈ F sending material to dump or plant (according of
material type).

ȳp,f,t ∈
[0, 1]

Time percentage of the period t ∈ T where shovel p ∈ P is operative in
mining face f ∈ F sending material to the stockpile.

zf,t ∈
{0, 1}

Equal to 1 if mining face f ∈ F is active at period t ∈ T , 0 otherwise.

z̄f,t ∈
{0, 1}

Equal to 1 if mining face f ∈ F �nishes its exploitation in period t ∈ T or
later, 0 otherwise.

vp,r,t ∈
{0, 1}

Equal to 1 if shovel p goes through route r in period t, zero otherwise.

uf,t ∈ Tonnage of the mining face f at the end of the period t.

Table 5.4: Optimisation model decision variables

Variable Description

∆O ∈
R≥0

Deviation between the ore sent to the plant from mine and the total ore
capacity over the scheduled horizon.

∆P ∈
R≥0

Deviation between the ore sent to plant and plant capacity.

∆W ∈
R≥0

Deviation between the waste sent to the waste dump and the total waste
content in the mine.

∆dt ∈
R≥0

Deviation between the plant capacity and the ore send to processing plant.

∆D ∈
R≥0

Minimum maximum deviation between the plant capacity and the ore send
to plant.

∆g+j,t ∈
R≥0

Positive deviation of the content j between plant capacity and the ore
content j send to plant.

∆g−j,t ∈
R≥0

Negative deviation of the content j between plant capacity and the ore
content j send to plant.

∆Gj ∈
R≥0

Maximum deviation of the content j between plant capacity and the ore
content j send to plant.

Table 5.5: Optimisation model decision variables of deviation
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Single-objective function Description

∆O Minimisation of the deviation between ore sent to the
plant from the mine and ore expected to be sent to plant.

∆P Minimisation of the deviation between ore sent to the
plant from the mine and stockpile and ore expected to
be sent to plant.

∆W Minimisation of the deviation between waste hauled and
the waste expected to be hauled.

∆D Minimisation of the deviation between ore sent to plant
and the ore plant capacity per period.

∆Gj Minimisation of the deviation between the content of
component j sent to plant and the content of component
j expected by plant.∑

p∈P,r∈R,t∈T

MTp,r · vp,r,t Minimisation of the movement time of the shovel �eet.

∑
p∈P,r∈R,t∈T

MCp,r · vp,r,t Minimisation of the movement cost of the shovel �eet.

∑
p∈P,r∈R,t∈T

NMr · vp,r,t Minimisation of the number of movement of the shovel
�eet.

Table 5.6: Single-objective functions considered in the optimisation problem

5.3.2 Constraints

First, we present the mathematical expressions corresponding to the constraints of the opti-
misation model. Second, we describe them in groups associated to di�erent concepts.

∑
p∈P,t∈T

TTt ·RMp,f · (1− STf ) · xp,f,t ≤ TMf ∀f ∈ F (5.1)

PC−t ≤
∑

p∈P,f∈F

TTt ·RMp,f · yp,f,t ≤ PC+
t ∀t ∈ T (5.2)

∑
p∈P,f∈F

TTt ·RMp,f ·OMf ·mGj · yp,f,t ≤∑
p∈P,f∈F

TTt ·RMp,f ·OMf ·OGj,f · yp,f,t ≤∑
p∈P,f∈F

TTt ·RMp,f ·OMf ·MGj · yp,f,t ∀t ∈ T , j ∈ J (5.3)

∑
f∈F

TTt · xp,f,t +
∑
r∈R

MTp,r · vp,r,t ≤ TTt · UTp,t ∀p ∈ P , t ∈ T (5.4)
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∑
p∈P,f∈F ,t∈T

TTt · RMp,f · OMf · (1 − STf ) · yp,f,t + ∆O =
∑
t∈T

PC+
t (5.5)

∑
p∈P,f∈F ,t∈T

TTt · RMp,f · OMf · yp,f,t + ∆P =
∑
t∈T

PC+
t (5.6)

∑
p∈P,f∈F ,t∈T

TTt ·RMp,f · (1−OMf ) · yp,f,t + ∆W

=
∑
f∈F

TMf · (1−OMf ) (5.7)

∑
p∈P,f∈F

TTt ·RMp,f ·OMf · yp,f,t + ∆dt = PC+
t ∀t ∈ T (5.8)

∆dt ≤ ∆D ∀t ∈ T (5.9)

∑
p∈P,f∈F

TTt ·RMp,f ·OMf ·OGj,f · yp,f,t + ∆g−j,t −∆g+j,t =∑
p∈P,f∈F

TTt ·RMp,f ·OMf · EGj · yp,f,t ∀j ∈ J , t ∈ T (5.10)

∆g+j,t ≤ ∆Gj ∀j ∈ J , t ∈ T (5.11)

∆g−j,t ≤ ∆Gj ∀j ∈ J , t ∈ T (5.12)

zg,t ≤ z̄f,t ∀(f, g) ∈ Q (5.13)

x̄p,f,t ≤ w̄p,s,t ∀s ∈ S, f ∈ Fs, t ∈ T (5.14)

xp,f,t ≤ x̄p,f,t ∀p ∈ P , f ∈ F , t ∈ T (5.15)

x̄p,f,t ≤ 1− z̄f,t−1 ∀p ∈ P , f ∈ F , t ∈ T \ {1} (5.16)

z̄f,t ≤
∑

p∈P,τ∈{1,..,t}

TTτ ·RMp,f · xp,f,τ
TMf

∀f ∈ F , t ∈ T (5.17)

z̄f,t ≥ z̄f,t−1 ∀f ∈ F , t ∈ T \ {1} (5.18)

xp,f,t ≤ zf,t ∀p ∈ P , f ∈ F , t ∈ T (5.19)

x̄p,f,t ≤ FAp,f ∀p ∈ P , f ∈ F , t ∈ T (5.20)∑
r∈R,t∈T

NMr · vp,r,t ≤MMp ∀p ∈ P (5.21)

∑
r∈R

vp,r,t ≤ 1 ∀p ∈ P , t ∈ T (5.22)

w̄p,f,t ≤
∑
r∈Rf

vp,r,t ∀p ∈ P , f ∈ F , t ∈ T (5.23)
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∑
s∈Hr

vp,s,t ≥ vp,r,t−1 ∀p ∈ P , r ∈ R, t ∈ T \ {1} (5.24)

yp,f,t + ȳp,f,t = xp,f,t ∀p ∈ P ,∈ F , t ∈ T (5.25)

ȳp,f,t ≤ OMf ∀p ∈ P ,∈ F , t ∈ T (5.26)

ȳp,f,t ≤ 1− STf ∀p ∈ P ,∈ F , t ∈ T (5.27)

uf,0 = TMf · STf ∀f ∈ F (5.28)

∑
p∈P,f∈F

TTt ·RMp,f ·OMf · (1− STf ) · ȳp,f,t + uf,t−1 =∑
p∈P,f∈F

TTt ·RMp,f ·OMf · STf · yp,f,t + uf,t

∀p ∈ P ,∈ F , t ∈ T (5.29)

∆O ≤ ∆O∗ · (1 +Oε) + (1−Oµ) ·MM (5.30)

∆W ≤ ∆W ∗ · (1 +W ε) + (1−W µ) ·MM (5.31)

∆D ≤ ∆D∗ · (1 +Dε) + (1−Dµ) ·MM (5.32)

∆P ≤ ∆P ∗ · (1 + P ε) + (1− P µ) ·MM (5.33)

∆g+j ≤ ∆G∗j · (1 +Gε
j) + (1−Gµ

j ) ·MM ∀j ∈ J (5.34)

∆g−j ≤ ∆G∗j · (1 +Gε
j) + (1−Gµ

j ) ·MM ∀j ∈ J (5.35)∑
p∈P,r∈R,t∈T

MTp,r · vp,r,t ≤ ∆MT ∗ · (1 +MT ε) + (1−MT µ) ·MM (5.36)

∑
p∈P,r∈R,t∈T

MCp,r · vp,r,t ≤ ∆MC∗ · (1 +MCε) + (1−MCµ) ·MM (5.37)

∑
p∈P,r∈R,t∈T

NMp,r · vp,r,t ≤ ∆NM∗ · (1 +NM ε) + (1−NMµ) ·MM (5.38)

Operational constraints

Constraints (5.1)-(5.4) impose the ore plant capacity and models the distribution of time
of each shovel. Constraint (5.1) imposes that the total material extracted in each mining
face along the planning horizon must be less or equal to the total material contained in that
mining face. Constraint (5.2) sets the minimum and maximum ore tonnages sent to the ore
processing plant. Constraint (5.3) limits the minimum and maximum contents of component
j sent to the ore processing plant. Constraint (5.4) models the shovel time. The e�ective
shovel time plus the shovel movement time between sectors are less than or equal to the
maximum shovel utilisation.
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Deviation constraints

Deviation constraints (5.5)-(5.12) are related to the deviations between the objectives of the
schedule and the objectives desired to meet. Constraint (5.5) models the deviation between
the ore from the mine sent to the ore processing plant and the ore processing plant along the
scheduled horizon. Constraint (5.6) models the deviation between the ore from the mine and
the stockpile sent to the ore processing plant and the ore processing plant along the scheduled
horizon. Constraint (5.7) models deviation between the waste sent to the waste dump and the
waste content in the mine along the scheduled horizon. Constraint (5.8) models deviations
per period between the ore sent to the plant and the capacity of the plant. Constraint
(5.9) limit, with a maximum plant deviation variable, each one of the deviations per period
between the ore sent to the plant and the capacity of the plant. Constraint (5.10) models
each one of the upper and lower deviations per period between the content of component j
sent to the ore processing plant and content of component j expected by the ore processing
plant. Constraint (5.11) to (5.12) limit, with a maximum deviation variable of component j,
each one of the upper and lower deviations per period between the content of component j
sent to the ore processing plant and content of component j expected by the ore processing
plant.

Shovel allocation constraints

Shovel allocation constraints (5.13)- (5.20) models the shovel allocation to mine faces. Con-
straint (5.13) sets the precedences between sector-benches. The element (f, g) ∈ Q indicates
that the mining face f is a predecessor of the mining face g. Constraint (5.14) imposes that
to allocate a shovel p in a mining face f in a period t, the shovel must be allocated in this
sector s in this period t. Constraint (5.15) imposes that the shovel that has e�ective time in
the mining face b of sector f , must be allocated in that mining face. Constraint (5.16) ensures
that when a mining face is �nished, it cannot be assigned with any shovel. Constraint (5.17)
imposes that a mining face b of sector f is not �nished in period t until all the material of
that mining face is completely extracted. Constraint (5.18) ensures that if a mining face b of
a sector f is �nished in a period t, it remains in that state in period t+ 1. Constraint (5.19)
imposes that, to assign e�ective time in a shovel allocated in a mining face, that mining face
must be active. Constraint (5.20) restricts the allocation of shovel to certain mining faces.

Route constraints

Constraints (5.21)-(5.24) models the movement of each shovel between mine faces of di�erent
sectors. Constraint (5.21) sets the maximum number of movements between sectors along
the scheduled horizon for each shovel. Constraint (5.22) ensures that at most just one route
is performed by a shovel p in period t. Constraint (5.23) makes sure that when a shovel p
in a period t is allocated in sector f , just one of the variables vp,r,t with indexes of sector f
and period t must be equal to 1. Constraint (5.24) ensures that for each shovel p, route r
of period t and route s of period t + 1 are consistent. That is to say, the last sector of the
route r and the �rst sector of the s route must be equal. Set Hr contains of all the routes
consistent with the route r. In other words, this set contains all the routes whose �rst sector
is equal to the last sector of route r.
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Stockpile constraints

Constraints (5.25)-(5.29) models the stockpiles. Constraint (5.25) imposes that the sum of
the fractions of the e�ective time in primary and secondary destinations of a shovel p at
mining face b of sector,f must be equal to the fraction of the e�ective time of the shovel p
in the same mining sector. Constraint (5.26) imposes that the fraction of the e�ective time
in the second destination of mining sector that contains waste is zero. Constraint (5.27)
imposes that the fraction of the e�ective time in the second destination of mining faces that
are stockpiles is zero. Constraint (5.28) sets the initial ore tonnage of the mining faces that
are of type stockpile. Constraint (5.29) de�nes the inventory of ore tonnage in the mining
sector of the stockpile type. The ore sent to the stockpile from the mining faces in a period
t plus the ore contained in the mining face of stockpile in the �nal of period t − 1 is equal
to the ore sent to the plant from the mining face of the stockpile type in period t plus the
remaining ore tonnage in the mining face of the stockpile type in the �nal of period t.

Additional deviation constraints

Additional deviation constraints (5.30)-(5.38) impose an upper bound for each one of the cor-
responding deviations. These are the additional constraints used to perform the hierarchical
optimisation explained in Section 2.2 For example, in constraint (5.30), it is imposed that the
deviation ∆O must be less than or equal to the upper bound ∆O∗ · (1+Oε)+(1−Oµ) ·MM .
When Oµ = 1, the upper bound is a very large number O∗ · (1 + Oε) + M , while when
Oµ = 0, the bound higher is equal to ∆O∗ · (1 + Oε). The ∆O∗ parameter is a known value
of the constraint deviation (5.30), while the Oε parameter corresponds to a number greater
than or equal to zero, which represents the fraction of parameter tolerance ∆O∗. Constraints
(5.31)-(5.38) work analogously.

5.4 Case study

In this Section, we describe the real-scale open-pit mine case study. It also outlines the
di�erent schedules to solve.

5.4.1 Mine operation description

A real-scale open-pit mine case study is used for generating di�erent schedules using the
proposed optimisation model. The mine comprises of six sectors. The mine planning horizon
is one month, considering ten periods. Each period lasts between one and four days. The
main parameters related to the mine operation are summarized in Tables 5.7 to 5.10. Table
5.7 summarises the period length and ore plant capacity in each period. Table 5.8 shows the
shovel parameters involved in the open-pit mine. Table 5.9 presents the tonnage of ore and
waste contained in each mining face. In this case study, the mining face 6 1380 is the unique
mining face of stockpile type, that have 0 tonnages of ore at the beginning of the scheduling
horizon. Finally, Table 5.10 reports the distance to travel of each shovel to move from one
sector to another. At the begining of the scheduling period, the stockpiles are empty.
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Period
Period

length [days]
Ore plant

capacity [kt]

1 1 0
2 4 42
3 3 0
4 4 42
5 3 0
6 4 42
7 3 0
8 4 39
9 3 0
10 2 15

Total 31 180

Table 5.7: Length of periods and ore plant capacity

Shovel
E�ective

throughput [t/h]
Maximum

utilisation [%]
Speed
[km/h]

1 1,350 43 2
2 1,300 35 2
3 1,200 47 15
4 1,150 63 7
5 1,150 45 7
6 1,200 40 15

Table 5.8: Shovel �eet parameters

5.4.2 Experimental design

The model is used under di�erent con�gurations to analyze how these aspects a�ect the
performance indicators described in Section 5.2.4. There are a total of 28 con�gurations,
which are obtaining consider the following possibilities:

� Optimization criteria. In this case the following objectives are considered (a) maximi-
sation of plant utilisation (min ∆P ), (b) maximisation of waste extraction (min ∆W ),
and (c) maximisation of plant utilisation due to ore directly sent from mine (min ∆O)
(see Section 5.3). Each of these criteria is evaluated using a single step optimization
and then several two steps con�gurations are tested. Table 5.11 reports the criteria
considered for the single optimisation and hierarchical optimisation in each case, so for
example ∆P (∆W ) means that ∆P is minimized subject to ∆W , that is, �rst the waste
deviation ∆W is minimized and then plant deviation ∆P is minimized, subject to the
waste deviation, hierarchically.

� Presence or absence of a stockpile. These two options are labeled as "Yes� and "No�,
respectively, in the corresponding results.

� Fixed or mobile shovel �eet. For this, two possible con�gurations are considered: a
�xed �eet, meaning that shovels cannot change sector, and a mobile �eet, in which case
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Mining face Sector Waste [kt] Ore [kt]

1 1380 1 335 4

2 1330 2 40 2
2 1320 2 299 41

3 1280 3 21 2
3 1270 3 102 20
3 1260 3 131 10
3 1250 3 22 2
3 1240 3 618 94

4 1230 4 85 4

5 1240 5 59 0
5 1230 5 288 1

6 1380 6 0 0

Total tonnage 1,999 180

Table 5.9: Ore and waste tonnage of mining faces (in [kt])

Sectors 1 2 3 4 5 6

1 - 1.7 2.4 2.8 3.2 2.4
2 1.7 - 0.7 1 1.5 1.6
3 2.4 0.7 - 0.4 0.5 1.3
4 2.8 1 0.4 - 0.1 1.8
5 3.2 1.5 0.5 0.1 - 2.1
6 2.4 1.6 1.3 1.8 2.1 -

Table 5.10: Distance between sectors (in km)

shovels are allowed changing sector at most once during the planning horizon.

5.4.3 Computational resources

All the schedules presented in this study were performed on a 2.60 GHz Intel® Xeon® CPU,
with 256 GB RAM, running Windows 8®. The optimisation model is solved using Gurobi
Optimizer version 8.1 (Gurobi Optimization, 2019). We impose a minimum MIP gap of 5.0%
to resolve the optimisation problems. We believe that this value is an adequate trade-o�
between the resolution time and the objective function value.

5.5 Results and discussion

In this section, we present the results and discussion based on the application of the optimi-
sation model proposed to the open-pit mine case study.
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Optimisation
method

Notation Description

Single
∆W Minimise waste deviation.
∆P Minimise ore sent to plant deviation.
∆O Minimise ore deviation.

Hierarchical

∆P (∆W ) Minimise plant deviation s.t. the minimum
waste deviation.

∆W (∆O) Minimise waste deviation s.t. the minimum
ore deviation.

∆W (∆P ) Minimise waste deviation s.t. the minimum
plant deviation.

∆O(∆W ) Minimise ore deviation s.t. the minimum
waste deviation.

Table 5.11: Di�erent optimisation of short-term objectives considered in case study

5.5.1 Computational aspects

The resolution time, MIP gap, and objective function of the solved schedules are given in
Tables 5.12, 5.13, and 5.14, respectively.

Table 5.12 reports the resolution time of the resolved schedules. In general, the resolution
times of the schedules with a mobile shovel �eet are higher than the ones generated with
�xed shovel �eet. This could be explained because the number of decision variables in the
optimisation problem of schedules with a mobile shovel �eet is higher than the one with a
�xed shovel �eet.

Type of shovel �eet Fixed Mobile

Stockpile No Yes No Yes

∆W 0.5 0.9 30.8 0.4
∆W (∆O) 1.3 0.7 7.0 23.3
∆W (∆P ) 1.5 22.5 10.2 102.9

∆O 0.3 0.6 6.3 15.5
∆O(∆W ) 0.4 0.7 116.3 31.7

∆P 0.3 0.5 4.9 34.4
∆P (∆W ) 0.5 16.0 45.9 518.2

Table 5.12: Resolution time of scenarios (in [min]).

5.5.2 Hierarchical schedules with a mobile shovel �eet

In the Appendix Section (5.8), Tables 5.20 to 5.23 summarize the indicators of all the gener-
ated schedules that considers: (i) di�erent single and hierarchical objectives, (ii) considering
and not considering a stockpile in its generation and (iii) considering a mobile shovel �eet mo-
bile (each shovel can move at most once between sectors) or �xed (a shovel can be allocated
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Type of shovel �eet Fixed Mobile

Stockpile No Yes No Yes

∆W 0.0 0.0 0.0 0.0
∆W (∆O) 0.0 0.0 3.1 0.0
∆W (∆P ) 0.0 0.0 0.0 4.1

∆O 0.0 0.0 0.0 0.0
∆O(∆W ) 0.0 0.0 0.2 3.5

∆P (∆W ) 0.0 0.0 0.0 0.0
∆P 0.0 0.0 0.0 4.7

Table 5.13: Scenarios MIP gap (in percentage)

Type of shovel �eet Fixed Mobile

Stockpile No Yes No Yes

∆W 85 85 35 0
∆W (∆O) 767 767 111 767
∆W (∆P ) 767 767 112 767

∆O 49 49 18 11
∆O(∆W ) 85 85 49 26

∆P 49 49 18 10
∆P (∆W ) 85 85 49 26

Table 5.14: Objective function values of scenarios (in [kt])

in mining face of just one sector).

In this section, we summarize the adherence indicators obtained by hierarchical schedules
with a mobile �eet movement, considering stockpile (Table 5.15) and without stockpile (Table
5.16).

Indicator ∆P (∆W ) ∆O(∆W ) ∆W (∆P ) ∆W (∆O)

C(W ) 100 100 62 62
C(P ) 86 86 95 94
C(O) 86 86 50 94
C(R) 0 0 45 0
C(S) 14 14 45 1
C(M) 100 100 95 95

Table 5.15: Adherence indicators (in percentage) of hierarchical schedules with a mobile
shovel �eet, considering stockpile

From the analysis of Tables 5.15 and 5.16 we conclude that the hierarchical schedules
that consider stockpile obtain higher indicators than the ones of the schedules that do not
consider stockpile.
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Indicator ∆P (∆W ) ∆O(∆W ) ∆W (∆P ) ∆W (∆O)

C(W ) 98 98 94 94
C(P ) 73 73 90 90
C(O) 73 73 90 90
C(R) 0 0 0 0
C(S) 0 0 0 0
C(M) 73 73 90 90

Table 5.16: Adherence indicators (in percentage) of hierarchical schedules with a mobile
shovel �eet, not considering stockpile

Below, we analyse the primary objectives of the hierarchical schedules: ∆W , ∆P and ∆O.

For the primary objective ∆W , the associated indicator is C(W ). In the ∆P (∆W ) sce-
nario with stockpile gets a value of C(W ) higher than the same scenario without stockpile
(C(W ) = 100% against C(W ) = 98%). On the other hand, the scenario ∆O(∆W ) with
stockpile gets a value of C(W ) greater than the same scenario generated without stockpile
(C(W ) = 100% against C(W ) = 98%).

For the primary objective ∆P , the associated indicator is C(P ). The ∆W (∆P ) scenario
with stockpile gets a higher C(W ) than the same scenario without stockpile (C(P ) = 95%
against C(P ) = 94%).

For the primary objective ∆P , the associated indicator is C(P ). The ∆W (∆O) scenario
with stockpile gets C(O) = 94%, greater than C(O) = 90%.

Below, we analyse the global maximums of the scenarios generated under the C(O), C(W )
and C(P ) indicators.

The schedule that obtain the maximum extraction of ore sent directly to the plant (C(O))
is the schedule ∆W (∆O) with stockpile, with a value of C(O) = 94%. However, its waste
extraction is low, with a value of C(W ) = 62%.

The schedule that obtain the maximum extraction of waste (C(W )) corresponds to the
∆W (∆P ) and ∆W (∆O) schedules, both generated from stockpile. These schedules get a
value of C(W ) = 100%. However, its extraction of ore to the plant of these schedules is not
the highest of the schedules generated, with a value of C(O) = 86%.

The schedule that extracts the maximum mineral sent to the plant, from mine and stock-
pile (C(P )) is the ∆W (∆P ) schedule with stockpile, with a value of C(P ) = 95%. However,
this schedule contemplates an intensive shipment of mine ore to stockpile (C(S) = 45%) and
intensive use of rehandling (C(R) = 45%).

5.5.3 Discussion

From the results of the case study, we conclude that when applying the hierarchical optimi-
sation method, both the objective and the order of optimisation of these have a signi�cant
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impact on the values of the adherence indicators.

A schedule with a mobile shovel �eet gets higher adherence indicators than the ones of a
schedule with a �xed shovel �eet. This is because of a schedule with a mobile shovel �eet
allows higher shovels allocations to mining faces, compared to a schedule of �xed shovel �eet.

A schedule with stockpiles allows operational continuity of the ore and waste extraction.
To illustrate this, consider a shovel allocated in sector f in period t, which extracts ore to the
plant. Also, suppose that this loading equipment cannot move from the actual sector. This
assumption occurs because either (a) the schedule is generated with a �xed �eet of shovels or
(b) the shovel was already allocated in another sector in a period before t. In both scenarios,
the shovel cannot be assigned to a di�erent sector in the following periods after period t. In
this manner, in period after period t, this shovel faces one of the following scenarios: zero
plant capacity and saturated plant capacity. In both scenarios, when there is a stockpile, the
shovel can continue with the extraction of ore in the mining face. It simply has to send ore
to the stockpile instead of the plant. However, in a scenario with no stockpile, the shovel
cannot continue with the ore extraction in the actual period.

5.6 Conclusions and future work

In this study, we propose a MILP-based optimisation model to generate open-pit short-term
mine production schedules. This model allocates shovels to di�erent mining faces, including
stockpiles. In the proposed model, the stockpiles are explicitly modelled. That is to say,
the movement of material to and from each stockpile is scheduled. The model considers the
following constraints: plant capacity, ore blending, mining faces precedences, and movement
of shovels between mining faces.

The model can optimise di�erent objectives; namely, maximisation of the plant utilisation,
maximisation of ore extraction, maximisation of waste extraction, maximisation of the mini-
mum plant utilisation per period, minimisation of the overall cost/time/number of movement
of the shovel �eet and minimisation of metal grade deviation in the plant.

We also propose schedule indicators, which assess some objectives of the short-term sched-
ules. Thus, mine planners can use these indicators to evaluate and compare multiple short-
term schedules.

We apply the proposed optimisation model to a real-scale open-pit mine case study, com-
prising six exploitation sectors. The extracted material can be ore or waste. The mine
operation has one ore processing plant and uses six shovels. The case study has a scheduled
horizon of one month, considering ten periods. Each period has a duration between one and
four days.

The schedules are generated under di�erent scenarios; namely, single-optimisation or hier-
archical optimisation of di�erent short-term objectives, presence or absence of a stockpile, a
mobile or a �xed shovel �eet. The objective is to study the impact of the di�erent scenarios
on the schedule indicators.
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The schedules to generate consider the following short-term objectives: maximisation of
plant utilisation, maximisation of waste extraction, and maximisation of plant utilisation for
ore sent directly from the mine. We apply the single-optimisation method and the hierarchical
method to optimise them.

The results of the case study show that: (a) the hierarchical method can generate short-
term mine production schedules optimising the considered objectives, (b) when applying the
hierarchical optimisation method, both the objectives and the order of optimisation of these
have a great impact on the values of the di�erent schedule indicators, (c) in general, schedules
with a stockpile obtain higher schedule indicators compared to the ones with no stockpile,
and (d) schedules with a mobile shovel �eet obtain higher schedules' indicators than the ones
with a �xed shovel �eet.

As future work, we want to incorporate more aspects of the mining operation in the
optimisation model such as: scheduled shovel maintenance, allocation of drilling rigs to
mining faces, multiple ore processing plants, multiple stockpiles, and grade blending in the
stockpiles. We also intend to simulate the short-term mine production schedule generated by
the optimisation model. We plan to apply discrete-event simulation to assess the probability
of compliance of the schedule.
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5.7 Appendix: Optimisation model parameters

Parameter Description

TMf Total material to be mined in mining face f (in tonnes).
OMf Equal to 1 if the material in the mining face f is ore, 0 otherwise.
STf Equal to 1 if the mining face f is modelled as a stockpile, 0

otherwise.
OGj,f Fraction of the content j in the mining face f .
FAp,f Equal to 1 if shovel p can be allocated in the mining face f , 0

otherwise.
TTt Total time in period t (in hours).
UTp,t Maximum utilisation of shovel p in period t.
RMp,f Maximum throughput of mined material by the shovel p in the

mining face f (in tonnes per hour).
PC+

t Total capacity of the ore processing plant in period t (in tonnes).
PC−t Minimum desired tonnage to be sent to the ore processing plant

in period t (in tonnes).
MGj Maximum grade of the content j to be sent to the ore processing

plant in period t.
mGj Minimum grade of content j to be sent to the ore processing plant

in period t.
EGj Expected grade of the content j by the ore processing plant (in

percentage).
MTp,r Movement time of shovel p along the sectors of route r (in hours).
MCp,r Movement cost of shovel p along the sectors of route r (in US

dollars).
NMr Number of movements between sectors of route r.
MMp Maximum number of movements between sector of shovel p over

the scheduling horizon.
MM A very large number.

Table 5.17: Optimisation model parameters (1)
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Parameter Description

∆O∗ Deviation of ore sent from the mine to the ore processing plant
(in tonnes).

∆P ∗ Deviation of ore sent from the mine and stockpile to the ore
processing plant (in tonnes).

∆W ∗ Deviation of waste sent to the waste dump and the waste content
in the mine (in tonnes).

∆D∗ Deviation between the processing plant capacity and the ore send
to processing plant (in tonnes).

∆G∗j Deviation of the content j between the processing plant capacity
and the ore content j send to processing plant.

∆MT ∗ Movement time of shovel p along the sectors of route r (in hours).
∆MC∗ Movement cost of shovel p along the sectors of route r (in US

dollars).
∆NM∗ Maximum number of movements between sector of shovel p over

the scheduling horizon.

Table 5.18: Optimisation model parameters (2)
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Parameter Description

Oε Tolerance of the deviation ∆O∗.
P ε Tolerance to the deviation ∆P ∗.
W ε Tolerance to the deviation ∆W ∗.
Dε Tolerance to the deviation ∆D∗.
Gε
j Tolerance to the deviation ∆G∗j .

MT ε Tolerance to the deviation ∆MT ∗.
MCε Tolerance to the deviation ∆MC∗.
NM ε Tolerance to the deviation ∆NM∗.

Oµ Equal to 1 if the upper bound of the deviation ∆O is considered;
otherwise, 0.

P µ Equal to 1 if the upper bound of the deviation ∆P is considered;
otherwise, 0.

W µ Equal to 1 if the upper bound of the deviation ∆W is considered;
otherwise, 0.

Dµ Equal to 1 if the upper bound of the deviation ∆D is considered;
otherwise, 0.

Gµ
j Equal to 1 if the upper bound of the deviation ∆Gj is considered;

otherwise, 0.
MT µ Equal to 1 if the upper bound of the deviation ∆MT is consid-

ered; otherwise, 0.
MCµ Equal to 1 if the upper bound of the deviation ∆MC is consid-

ered; otherwise, 0.
NMµ Equal to 1 if the upper bound of the deviation ∆NM is consid-

ered; otherwise, 0.

Table 5.19: Optimisation model parameters (3)
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5.8 Appendix: Single and hierarchical schedules

Fixed �eet Mobile �eet

Indicator Stockpile ∆P ∆W (∆P ) ∆P ∆W (∆P )

C(W )
No 62 62 65 94
Yes 62 62 62 62

C(P )
No 73 73 90 90
Yes 73 73 95 95

C(O)
No 73 73 90 90
Yes 44 73 68 50

C(R)
No 0 0 0 0
Yes 29 0 27 45

C(S)
No 0 0 0 0
Yes 29 7 27 45

C(M)
No 73 73 90 90
Yes 73 80 95 95

Table 5.20: Schedule indicators (in percentage) of scenarios generated using min ∆P and
min ∆W (∆P ) optimisation scheme

Fixed �eet Mobile �eet

Indicator Stockpile ∆W ∆P (∆W ) ∆W ∆P (∆W )

C(W )
No 96 96 98 98
Yes 96 96 100 100

C(P )
No 20 53 72 73
Yes 0 53 0 86

C(O)
No 20 53 72 73
Yes 0 53 0 86

C(R)
No 0 0 0 0
Yes 0 0 0 0

C(S)
No 0 0 0 0
Yes 20 0 72 14

C(M)
No 20 53 72 73
Yes 20 53 72 100

Table 5.21: Schedule indicators (in percentage) of scenarios generated using min ∆W and
min ∆P (∆W ) optimisation scheme
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Fixed �eet Mobile �eet

Indicator Stockpile ∆O ∆W (∆O) ∆O ∆W (∆O)

C(W )
No 62 62 65 94
Yes 62 62 62 62

C(P )
No 73 73 90 90
Yes 73 73 94 94

C(O)
No 73 73 90 90
Yes 73 73 94 94

C(R)
No 0 0 0 0
Yes 0 0 0 0

C(S)
No 0 0 0 0
Yes 0 7 1 1

C(M)
No 73 73 90 90
Yes 73 80 95 95

Table 5.22: Schedule indicators (in percentage) of scenarios generated using min ∆O and
min ∆W (∆O) optimisation scheme

Fixed �eet Mobile �eet

Indicator Stockpile ∆W ∆O(∆W ) ∆W ∆O(∆W )

C(W )
No 96 96 98 98
Yes 96 96 100 100

C(P )
No 20 53 72 73
Yes 0 53 0 86

C(O)
No 20 53 72 73
Yes 0 53 0 86

C(R)
No 0 0 0 0
Yes 0 0 0 0

C(S)
No 0 0 0 0
Yes 20 7 72 14

C(M)
No 20 53 72 73
Yes 20 60 72 100

Table 5.23: Schedule indicators (in percentage) of scenarios generated using min ∆W and
min ∆O(∆W ) optimisation scheme
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Chapter 6

Conclusions

In this section we presented the conclusions and the future work of each one of the articles
of this thesis.

6.1 A simulation-optimization framework for short-term

underground mine production scheduling

The deviation between mine schedules and the mine operation results are crucial problems
that a�ect the mining industry. Therefore, the mine engineers should generate a mine produc-
tion schedule that can be reproduced in reality. Hence, they should develop mine production
schedules that exhibit high adherence.

In this study, we proposed a generic framework to increase adherence to a short-term mine
production schedule by combining optimization and simulation using an iterative approach.
This framework comprises the following steps. First, an initial mine schedule is generated
based on the resolution of a mixed-integer linear optimization problem. Second, this schedule
is simulated using a DES model. Third, a new short-term mine schedule is created using the
optimization model by considering the new utilization KPIs of each equipment, obtained from
the simulations performed in the previous step, as inputs for the mine operation. Finally,
iterations of the second step are performed. In each iteration, adherence to each mine schedule
is evaluated with respect to the corresponding simulations by evaluating several adherence
indices.

The proposed framework was applied to a real-scale B&F mine. The mine planning
horizon was more than a year and a half, and each period lasted for one month. A total of
�ve iterations were performed.

We measure the discrepancies among the level of movement of material with respect to
the schedule obtained from the optimization model and the average of the simulated schedule
using the mine schedule material's adherence index. The values of this index decreased with
the iterations, from 13.1% in the �rst iteration to 4.8% in the last iteration. This improvement
is explained because the e�ects of the operational uncertainty within the optimization model
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can be considered by integrating the simulation.

The outcomes of the work presented in this study demonstrate that the proposed frame-
work improved the mine schedule adherence indices over iterations and simultaneously main-
tained the NPV of the mine schedule. The results demonstrate that the simulation provides a
better understanding of the impacts of uncertainty in short-term mine production schedules.

As future research, the proposed framework will be applied to massive and selective un-
derground mining methods as well as open-pit mines.

6.2 Short-term open-pit mine production scheduling with

hierarchical objectives

Short-term scheduling in open-pit mines needs several objectives to be optimized jointly. In
some open-pit mine operations, these objectives are ranked in a descending order of impor-
tance: (i) the minimization of the deviation between the ore sent to the ore processing plant
and the ore processing capacity of the plant, (ii) the minimization of the deviation between
the metal �nes sent to the ore processing plant and the metal �nes expected by the ore pro-
cessing plant and �nally (iii) the overall minimization of the movement of the shovel �eet.
This work proposes an optimization methodology to generate a short-term open-pit mine
production schedule optimizing multiple hierarchical objectives. For the generation of mine
schedules, we propose an optimization model based on mixed-integer linear programming.
This model considers mining sequencing constraints, and also takes into account both time
and cost of shovels movement between phases. For the optimization of the various short-term
objectives, we apply the hierarchical method and the weighted sum method to a real open-pit
mine case study.

The results of the case study show that both methods are capable of generating short-term
mine schedules by optimizing the various short-term objectives. Additionally, we veri�ed that
both methods obtain the same mine production schedule. This article shows the importance
and impact of multiple objective optimization methods for the generation of short-term mine
production schedules in open-pit mines.

6.3 Short-term open-pit production scheduling optimis-

ing multiple objectives accounting for shovel alloca-

tion in stockpiles

In this study, we propose a MILP-based optimisation model to generate open-pit short-term
mine production schedules. This model allocates shovels to di�erent mining faces, including
stockpiles. In the proposed model, the stockpiles are explicitly modelled. That is to say,
the movement of material to and from each stockpile is scheduled. The model considers the
following constraints: plant capacity, ore blending, mining faces precedences, and movement
of shovels between mining faces.

The model can optimise di�erent objectives; namely, maximisation of the plant utilisation,

71



maximisation of ore extraction, maximisation of waste extraction, maximisation of the mini-
mum plant utilisation per period, minimisation of the overall cost/time/number of movement
of the shovel �eet and minimisation of metal grade deviation in the plant.

We also propose schedule indicators, which assess some objectives of the short-term sched-
ules. Thus, mine planners can use these indicators to evaluate and compare multiple short-
term schedules.

We apply the proposed optimisation model to a real-scale open-pit mine case study, com-
prising six exploitation sectors. The extracted material can be ore or waste. The mine
operation has one ore processing plant and uses six shovels. The case study has a scheduled
horizon of one month, considering ten periods. Each period has a duration between one and
four days.

The schedules are generated under di�erent scenarios; namely, single-optimisation or hier-
archical optimisation of di�erent short-term objectives, presence or absence of a stockpile, a
mobile or a �xed shovel �eet. The objective is to study the impact of the di�erent scenarios
on the schedule indicators.

The schedules to generate consider the following short-term objectives: maximisation of
plant utilisation, maximisation of waste extraction, and maximisation of plant utilisation for
ore sent directly from the mine. We apply the single-optimisation method and the hierarchical
method to optimise them.

The results of the case study show that: (a) the hierarchical method can generate short-
term mine production schedules optimising the considered objectives, (b) when applying the
hierarchical optimisation method, both the objectives and the order of optimisation of these
have a great impact on the values of the di�erent schedule indicators, (c) in general, schedules
with a stockpile obtain higher schedule indicators compared to the ones with no stockpile,
and (d) schedules with a mobile shovel �eet obtain higher schedules' indicators than the ones
with a �xed shovel �eet.

As future work, we want to incorporate more aspects of the mining operation in the
optimisation model such as: scheduled shovel maintenance, allocation of drilling rigs to
bench-sectors, multiple ore processing plants, multiple stockpiles, and grade blending in the
stockpiles. We also intend to simulate the short-term mine production schedule generated by
the optimisation model. We plan to apply discrete-event simulation to assess the probability
of compliance of the schedule. Finally, we also plan to develop a stochastic integer model that
incorporates uncertainty in geological and operational parameters based on the optimisation
model described in this article.
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