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Abstract. The study of records in the linear drift model (LDM) has attracted
much attention recently due to applications in several fields. In the present paper
we study δ-records in the LDM, defined as observations which are greater than all
previous observations, plus a fixed real quantity δ. We give analytical properties
of the probability of δ-records and study the correlation between δ-record events.
We also analyse the asymptotic behaviour of the number of δ-records among
the first n observations and give conditions for convergence to the Gaussian
distribution. As a consequence of our results, we solve a conjecture posed in J.
Stat. Mech. 2010 P10013, regarding the total number of records in an LDM
with negative drift. Examples of application to particular distributions, such as
Gumbel or Pareto are also provided. We illustrate our results with a real data
set of summer temperatures in Spain, where the LDM is consistent with the
global-warming phenomenon.
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1. Introduction

Extreme values and records have attracted large efforts and attention since the begin-
nings of statistics and probability, due to their intrinsic interest and their mathematical
challenges. An important motivation for studying records comes from their connec-
tions with other interesting problems and, of course, from their countless practical
applications in different fields such as climatology [1–4], sports [5–7], finance [8, 9]
or biology [10]. Moreover, records have been used in statistical inference because, in
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some contexts, data is inherently composed of record observations [11–14]. The classical

probabilistic setting of independent and identically distributed random (i.i.d.) obser-

vations has been profusely studied. Main results in this framework can be found in

the monographs [15–17]. In the last few years, there has been an increasing interest

in the study of records in correlated observations such as random walks or time series

[18–24].

An interesting departure from the i.i.d. model, which introduces time-dependence

between observations, results from adding a deterministic linear trend to the i.i.d. obser-

vations, thus obtaining the so named linear drift model (LDM). This model was first

introduced in [25] and later developed in [26–28]. The model was also considered in

[29], under a wide range of scenarios, and has proven particularly useful in the study

of global warming phenomena [4, 30]. Furthermore, the importance of this model is not

only related to applications but also to its mathematical structure. For instance, the

study of records in the LDM model can be helpful in determining whether the underly-

ing distribution is heavy-tailed or not [31, 32]. Also, records statistics in random walks

with a drift have been studied in [9, 33, 34].

Different generalizations of the notion of record, such as near-records [35–37] or δ-

exceedance records [38, 39] have been proposed recently. We will work with δ-records,

first introduced in [40], which are observations greater than all previous entries, plus

a fixed quantity δ. In the i.i.d. setting, the distribution [41, 42], process structure [43]

and asymptotic properties [44] of δ-records have been studied. In the case δ < 0, where

δ-records are more numerous than records, their use in statistical inference has been

recently proposed and positively assessed; see [44–46]. In these articles, it is shown

how the information of δ-records can be incorporated successfully into the likelihood of

the sample, which is used for computing maximum likelihood and Bayes estimators and

predictions of future records. The resulting estimators and predictions outperform those

computed using records only; moreover, a slight modification of the sampling scheme for

records yields δ-records with a low additional cost. The results are applied to examples

of rainfall data and strength of materials.

In this work, we study δ-records from observations obeying the LDM, while revisiting

some open questions about records. We analyse the positivity and continuity of the

asymptotic δ-record probability as a function of δ and of the trend parameter c. We also

obtain a law of large numbers and a central limit theorem for the counting process of

δ-records, thus extending the corresponding results in [25]. Furthermore, we completely

characterize the finiteness of the number of δ-records and, in particular, we solve a

conjecture posed in [29], about the finiteness of the number of usual records in the LDM

with negative trend.

We assess the effect of δ on the δ-record probabilities and correlations, for explicitly

solvable models. Some of the results obtained in these examples are new and shed light

on the behaviour of record events, when the underlying distribution is heavy-tailed.

Finally we illustrate our results by analysing a real dataset of temperatures, which fits

the LDM with a trend parameter consistent with the global-warming phenomenon.
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2. δ-records in the LDM

Our objects of interest in this paper are δ-records, formally defined as follows: given a
sequence of observations (Yn)n�1 and δ ∈ R a parameter, Y 1 is defined conventionally as
δ-record and, for j � 2, Y j is a δ-record if Y j > max{Y 1, . . . , Y j−1}+ δ.

Note that δ-records are just (upper) records, if δ = 0. If δ > 0, a δ-record is necessarily
a record and δ-records are a subsequence of records. On the other hand, if δ < 0, a
δ-record can be smaller than the current maximum, so records are a subsequence of
δ-records.

Throughout this paper we assume that the Y n are random variables obeying the
LDM, that is, Y n can be represented as

Yn = Xn + cn, n � 1, (1)

where c ∈ R is the trend parameter and (Xn)n�1 is a sequence of i.i.d. random variables,
with (absolutely continuous) cumulative distribution function (cdf) F and probabil-
ity density function f. Another important parameter of the model is the right-tail
expectation of the Xj, defined as

μ+ =

∫ ∞

0

xf(x)dx.

For simplicity, we assume the existence of an interval of real numbers I = (x−, x+), with
−∞ � x− < x+ � ∞, such that f(x) > 0, for all x ∈ I, and f(x) = 0 otherwise. Note
that x− = inf{x :F (x) > 0} and x+ = sup{x :F (x) < 1}.

Let 1j,δ denote the indicator of the event {Yj is a δ-record}. That is, 1j,δ = 1 if
Y j > max{Y 1, . . . , Y j−1}+ δ and 1j,δ = 0 otherwise. So, the number of δ-records up to
index n is computed as Nn,δ =

∑n
j=1 1j,δ.

Under the LDM, the probability of {Y j is a δ-record} is easily computed by
conditioning, as

pj,δ :=E[1j,δ] =

∫ ∞

−∞

j−1∏
i=1

F (x+ ci− δ)f(x)dx,

where E[·] denotes the mathematical expectation. Moreover, the asymptotic δ-record
probability is given by the formula

pδ := lim
n→∞

pn,δ =

∫ ∞

−∞

∞∏
i=1

F (x+ ci− δ)f(x)dx, (2)

which is mathematically justified by the monotone convergence theorem for integrals;
see [47, theorem 2.8.2].

In what follows we occasionally write 1j,δ(c),Nn,δ(c), pj,δ(c), pδ(c), etc to emphasize
the dependence on the trend parameter c.
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3. Properties of the δ-record probabilities

We begin with a simple property about the asymptotic δ-record probability of an
affine transformation of the LDM. Let X̃n = bXn + a, with b > 0, a ∈ R, and Ỹ n =
X̃n + cn, n � 1. If p̃δ(c) is the δ-record probability in this model, then it holds

p̃δ(c) = pδ
b

(c
b

)
.

We consider next some analytical properties of pj,δ(c) and pδ(c), as functions of c
and δ. We note first that both are increasing in c and decreasing in δ. Moreover, it is
easy to see that pj,δ(c) is decreasing in j and continuous in c, converging to 1 as c→∞.
The continuity of pδ(c) is less clear because of the infinite product within the integral
in (2).

3.1. Positivity of pδ(c)

We show that the positivity of pδ(c) depends on c and δ and on the right-tail behaviour
of F . We consider two cases depending on μ+:

(a) μ+ = ∞. In this case pδ(c) = 0, for all δ, c ∈ R.
To justify this claim, we show that

∏∞
j=1 F (x+ cj − δ) = 0, for all x ∈ (x−, x+).

If c < 0 the conclusion is immediate because F (x+ cj − δ)→ 0, as j →∞.
If c = 0, we note that μ+ = ∞ implies x+ = ∞ and so, F (x− δ) < 1. Thus∏∞

j=1 F (x+ cj − δ) = 0.

Finally, if c > 0, we note that μ+ = ∞ implies
∑∞

i=1 (1− F (x+ ci− δ)) = ∞,
which in turn implies

∏∞
j=1 F (x+ cj − δ) = 0. This follows from the definition of μ+

and from Taylor’s expansion of log(1 + x).
Distributions with μ+ = ∞ can be considered as ‘right-heavy-tailed’ and we

observe that, for such distributions, the linear trend has no impact on the asymptotic
probability of a δ-record. This class of distributions includes the Pareto and Fréchet,
with shape parameter α ∈ (0, 1].

(b) μ+<∞. As in the previous case, we have three situations depending on the sign of
c.
For c < 0, pδ(c) = 0, for all δ ∈ R, since

∏∞
j=1 F (x+ cj − δ) = 0, for all x ∈ (x−, x+).

If c = 0,

pδ(0) =

∫ ∞

−∞

∞∏
j=1

F (x− δ)f(x)dx =

∫ ∞

x++δ

f(x)dx, (3)

which is positive if and only if x+ < ∞ and δ < 0.

Finally, if c > 0, then pδ(c) = 0 if and only if x+ − x− � δ − c. Indeed, note that,
if x+ − x− � δ − c, then P[Yn > Yn−1 + δ] = 0, for all n, and so, only the first obser-
vation (by convention) is a δ-record. Conversely, if x+ − x− > δ − c, then the interval
J := (x−, x+) ∩ (x− − c+ δ,∞) is nonempty and, for every x ∈ J , we have F (x+ cj −
δ) � F (x+ c− δ) > 0, for all j. Now, since F (x+ cj − δ)→ 1 as j →∞, and μ+ < ∞,
we have

∑∞
j=1 (1− F (x+ cj − δ)) < ∞, which implies

∏∞
j=1 F (x+ cj − δ) > 0 and, so

pδ(c) > 0.

https://doi.org/10.1088/1742-5468/abb4dc 5
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Summarizing the above findings, we state

Theorem 1. pδ(c) > 0 if and only if μ+ < ∞ and one of the following conditions holds

(a) c > 0 and δ < x+ − x− + c,

(b) c = 0, δ < 0 andx+ < ∞.

3.2. Continuity of pδ(c).

As commented at the beginning of this section, the continuity of pδ(c) is not obvious.
However, thanks to theorem 1 we can restrict attention to distributions F with finite
right-tail expectation since, otherwise, pδ(c) vanishes and continuity is trivial. Thus, we
assume throughout this section that μ+ < ∞.

A first interesting fact, which is rigorously proved in proposition 6 of appendix A,
is that

∏∞
i=1 F (x+ ci− δ) is continuous at every c �= 0, for every x ∈ (x−, x+), such

that x �= x− + δ − c. Then, thanks to the dominated convergence theorem of integration
(theorem 2.8.1 in [47]), we conclude that pδ(c) is continuous, at every c �= 0.

The continuity at c = 0 is subtler to establish and depends on the sign of δ and the
finiteness of x+, the right-end point of F . Note that, for every c > 0 and N � 1, we have

∞∏
j=1

F (x− δ) �
∞∏
j=1

F (x+ cj − δ) �
N∏
j=1

F (x+ cj − δ).

Then, taking the limit as c→ 0+ in the above inequalities,

∞∏
j=1

F (x− δ) � lim
c→0+

∞∏
j=1

F (x+ cj − δ) � F (x− δ)N.

Therefore, limc→0+
∏∞

j=1 F (x+ cj − δ) is 0, if x < x+ + δ, and 1 otherwise. Then, by the
dominated convergence theorem,

lim
c→0+

pδ(c) =

∫ ∞

−∞
lim
c→0+

∞∏
j=1

F (x+ cj − δ)f(x)dx =

∫ ∞

x++δ

f(x)dx.

Thus, pδ(c) is right-continuous at c = 0 by (3). Regarding left-continuity at 0, recall that
pδ(c) = 0 for c < 0. So, pδ(c) is discontinuous at 0 if and only if x+ < ∞ and δ < 0.

We now show the continuity of pδ(c) as a function of δ. The result is trivial if c < 0,
since pδ(c) = 0, for all δ ∈ R. For c = 0, note that, by (3), pδ(0) = 1− F (x+ + δ), which
is continuous since F is a continuous function.

If c > 0 and (δn)n�1 is a sequence converging to δ, we prove that

lim
n→∞

∞∏
i=1

F (x+ ci− δn) =

∞∏
i=1

F (x+ ci− δ), (4)

for all x ∈ (x−, x+), x �= x− + δ − c. Indeed, let x < x− + δ − c, then F (x+ c− δ) = 0
yielding

∏∞
i=1 F (x+ ci− δ) = 0. Also F (x+ c− δn) = 0 for n large enough and (4) fol-

lows. Let now x > x− + δ − c and ε > 0 such that x+ c− δ − ε > x−. Then, for n large

https://doi.org/10.1088/1742-5468/abb4dc 6
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enough, we have |δn − δ| < ε and

−
∞∑
i=1

log F (x+ ci− δn) � −
∞∑
i=1

log F (x+ ci− (δ + ε)) < ∞,

since μ+ < ∞. So (4) holds, and continuity follows.
In the following theorem we summarize conditions for continuity of pδ(c).

Theorem 2. The asymptotic δ-record probability pδ(c), as a function of c, δ, is

(a) continuous at every c �= 0 and right-continuous at c = 0, for all δ;

(b) discontinuous at c = 0 if and only if x+ < ∞, δ < 0, and

(c) continuous in δ, for all c.

4. Exactly solvable models

In general it is not possible to compute exactly the probabilities pj,δ or pδ. We show
below explicit results for the Gumbel distribution and for particular instances of the
Dagum family of distributions [48].

4.1. The Gumbel distribution

Let F (x) = exp(−exp(−x)), for x ∈ R, be the Gumbel distribution. Note that F (x+

cj − δ) = F (x)e
−cj+δ

. Then, if c �= 0,

n−1∏
j=1

F (x+ cj − δ) = F (x)
∑n−1

j=1 e
−cj+δ

= F (x)e
δ e−c−e−nc

1−e−c

and, if c = 0,
∏n−1

j=1 F (x+ cj − δ) = F (x)(n−1)eδ . So, from (2) we get

pn,δ(c) =

∫ ∞

−∞
F (x)e

δ e−c−e−nc

1−e−c f(x)dx

=
1− e−c

1− e−c + eδ(e−c − e−nc)
,

if c �= 0, and

pn,δ(0) =
1

(n− 1)eδ + 1
.

Note that, taking limits as n→∞, in the above formulas, we obtain

pδ(c) =
1− e−c

eδ e−c + 1− e−c
=

1

1 + e−c

1−e−c eδ
,

if c > 0 and pδ(c) = 0, if c � 0, as expected from theorem 1.
Also, for every c > 0, pδ(c) decreases with δ as a logistic function of −δ. Figure 1

shows the behaviour of pδ(c) as a function of δ and c.

https://doi.org/10.1088/1742-5468/abb4dc 7
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Figure 1. Asymptotic δ-record probability pδ(c) for the Gumbel distribution as a
function of δ and c.

4.2. The Dagum family of distributions

The Dagum distribution has cdf given by F (x) =
(
1 +

(
x
b

)−a
)−q

1{x�0}, where a, b, q are

positive parameters. Note that if q = 1, the distribution is referred to as log-logistic [49].
Also, the Pareto distribution [50] with cdf

F (x) = (1− 1/x)1{x�1}, (5)

can be seen as a shifted version of the Dagum family, with a = b = q = 1. For simplicity,
in this section we limit our attention to the case a = 1, which has μ+ = ∞.

By theorem 1 we know that pδ(c) = 0, for every c, δ ∈ R, so we chose to analyse the
speed of convergence of pn,δ(c) to 0, for some values of c, δ. To that end, observe that
the formula for pn,δ takes the manageable form

pn,δ(c) =

∫ ∞

(δ−c)+

n−1∏
i=1

(
x+ ci− δ

x+ b+ ci− δ

)q

f(x)dx, (6)

which becomes simpler if we further assume that c = b (that is, the trend parameter of
the LDM is equal to the scale parameter of the distribution). From (6) we get

pn,δ(c) =

∫ ∞

(δ−c)+

(
x+ c− δ

x+ cn− δ

)q

f(x)dx. (7)

We introduce the notation p
(q)
n,δ(c) to make explicit the dependence of pn,δ(c) on q.

First, for records (δ = 0) we have,

p
(q)
n,0(c) = cq

∫ ∞

0

xq−1(x+ cn)−q(x+ c)−1dx

= qn−q

∫ 1

0

tq−1(1− t(n− 1)/n)−qdt (8)

=
q

(n− 1)q

∫ n

1

(y − 1)q−1

y
dy, (9)

where the second equality follows from the change of variable x = ct/(1− t) and the
third from 1− t(n− 1)/n = 1/y.

https://doi.org/10.1088/1742-5468/abb4dc 8
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Observe that (8) and (9) do not depend on c and so, for the sake of simplicity, we

write p
(q)
n,0. Moreover, from formula (8) we see that

p
(q)
n,0 = n−q

2F1 (q, q ; q + 1 ;(n− 1)/n) ,

where 2F 1 is the Gauss hypergeometric function.
Also, from (9) and using the binomial expansion, for q = 1, 2, . . . , we readily obtain

p
(q)
n,0 =

q

(n− 1)q

(
(−1)q−1 log n+

q−1∑
k=1

(
q − 1

k

)
(−1)q−1−k

k
(nk − 1)

)
. (10)

The asymptotic behaviour of p
(q)
n,0, for any q ∈ (0,∞), can be obtained from (9). For

q = 1, (10) yields p
(1)
n,0 =

1
n−1

log n. For q > 1, the leading term in the integral in (9)

is yq−2, so p
(q)
n,0 ∼ q

q−1
1
n
. For q ∈ (0, 1), the integral in (9) converges and, using formula

3.191.2 in [51], we get

p
(q)
n,0 ∼ n−qq

∫ ∞

1

(y − 1)q−1

y
dy = n−qqΓ(1− q)Γ(q).

Thus,

p
(q)
n,0 ∼

⎧⎪⎪⎨
⎪⎪⎩
n−qqΓ(1− q)Γ(q), if 0 < q < 1,

log(n)/n, if q = 1,

n−1 q

q − 1
, if q > 1.

(11)

It is interesting to observe that the limiting behaviour of p
(q)
n,0, as a function of the

power of the tail q, seems to match the asymptotic behaviour of pn,0(c) when F is the
Fréchet distribution (F (x) = exp(−x−1), x > 0) and the tuning parameter is the trend
c, studied in [28].

We now consider δ �= 0 and investigate whether p
(q)
n,δ/p

(q)
n,0 → 1, as n→∞. This result

can be expected since, as μ+ = ∞, the variables Xn take very large values, so δ may
have little influence on the probability of δ-record, in the long term.

From (7) we may evaluate p
(q)
n,δ, for any q ∈ N, although the computation becomes

lengthy as q grows. We have carried out the computation with values of q from 1 to 7,
and obtained

p
(1)
n,δ ∼

log(n)

n
, p

(q)
n,δ ∼

q

q − 1

1

n
, q = 2, . . . , 7.

So, from (11) we have p
(q)
n,δ/p

(q)
n,0 → 1, at least for q = 1, . . . , 7.

For noninteger values of q ∈ (0,∞), the limit behaviour of (7) is harder to analyse.
To get a tractable expression, we impose δ = c. Proceeding as above, we have, for n > 2,

p
(q)
n,δ =

q(n− 1)q

(n− 2)2q

∫ n−1

1

(y − 1)2q−1

yq+1
dy.
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Figure 2. δ-record probability pn,δ(c) for the Pareto distribution as a function of δ
and n with c = 1.

Therefore, we have

p
(q)
n,δ ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
n−qΓ(2q)Γ(1− q)

Γ(q)
, if 0 < q < 1,

log(n)/n, if q = 1,

n−1 q

q − 1
, if q > 1.

So, under the above stated conditions, p
(q)
n,δ ∼ pn,0, for q � 1, but this is not the case if

q ∈ (0, 1).
To conclude this example we study the Pareto distribution, defined in (5), taking

c = 1. From (7), the probability of δ-record is explicitly computed as

pn,δ =

∫ ∞

max{1,δ}

x− δ

x2(x+ n− 1− δ)
dx

=
1

(n− 1− δ)2

(
(n− 1) log

(
n−min{1, δ}
max{1, δ}

)
−min{1, δ}(n− 1− δ)

)
,

(12)

if δ �= n− 1 and pn,δ =
1

2(n−1)
, if δ = n− 1. Figure 2 shows the behaviour of pn,δ as a

function of n and δ.

5. Correlations

The indicators of δ-records are in general not independent in the case of i.i.d. random
variables; see [44]. In [32] the authors study the dependence of record events in the
LDM, by means of the following dependence index (δ = 0 in their case)

ln(c, δ) :=
P[obs.n andn+ 1 are δ − records]

P[obs.n is δ − record]P[obs.n+ 1 is δ − record]
=

E[1n,δ1n+1,δ]

E[1n,δ]E[1n+1,δ]
.

If the events are independent, then ln(c, δ) = 1. Otherwise, values greater or smaller than
1 indicate positive or negative correlation, respectively. That is, neighbouring δ-records
tend to attract or repel each other, if ln > 1 or ln < 1.
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In order to manipulate E[1n,δ1n+1,δ] we consider the decomposition

E[1n,δ1n+1,δ] = E[1n,δ1n+1,δ1{Yn<Yn+1}] + E[1n,δ1n+1,δ1{Yn>Yn+1}], (13)

which, for δ < 0, can be written as

E[1n,δ1n+1,δ] =

∫ ∞

−∞

(∫ ∞

s−c

n−1∏
j=1

F (s+ cj − δ)f(t)dt+

∫ s−c

s−c+δ

n∏
j=2

F (t+ cj − δ)f(t)dt

)
f(s)ds

=

∫ ∞

−∞

(
(1−F (s− c))

n−1∏
j=1

F (s+ cj− δ)+

∫ s−c

s−c+δ

n∏
j=2

F (t+ cj − δ)f(t)dt

)
f(s)ds,

(14)

and, for δ � 0,

E[1n,δ1n+1,δ] =

∫ ∞

−∞

∫ ∞

s−c+δ

n−1∏
j=1

F (s+ cj − δ)f(t)dt f(s)ds

=

∫ ∞

−∞
(1− F (s− c+ δ))

n−1∏
j=1

F (s+ cj − δ)f(s)ds, (15)

since the second term in (13) vanishes.
As for E[1n,δ], it is not possible to explicitly compute E[1n,δ1n+1,δ], in general. Nev-

ertheless, it is still possible to describe the behaviour of the dependence index in some
particular cases.

5.1. The Gumbel distribution

Let c > 0 and F the Gumbel distribution, as in section 4.1. When δ < 0 and n→∞,
elementary but lengthy computations yield

lim
n→∞

E[1n,δ1n+1,δ] =
(ec − 1)2(ec − eδ + 1)

(ec + eδ − 1)(e2c + eδ − 1)

and

l∞(c, δ) := lim
n→∞

ln(c, δ) =
(ec + eδ − 1)(ec − eδ + 1)

(e2c + eδ − 1)
.

By differentiating with respect to c, we see that l∞(c, δ) is decreasing in c and bounded
below by 1, since limc→∞ l∞(c, δ) = 1. With respect to δ we find that the derivative ∂l∞

∂δ
vanishes at

δ = log(1− e2c +
√
e4c − e2c),

and then, for any c,

max
δ<0

l∞(c, δ) =
2e2c

(√
e2c(e2c − 1)− e2c + 1

)
√

e2c(e2c − 1)
= 2

(
e2c −

√
2e3c sinh(c)

)
.
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Figure 3. Dependence index l∞(c, δ) for the Gumbel distribution.

Note also that limδ→−∞ l∞(c, δ) = 1.
For δ � 0,

lim
n→∞

E[1n,δ1n+1,δ] =
ec(ec − 1)2

(ec + eδ − 1)(ec+δ − ec + e2c − eδ + e2δ)

and

l∞(c, δ) =
ec(ec + eδ − 1)

ec+δ − ec + e2c − eδ + e2δ
.

We note that l∞(c, δ) = 1, ∀c > 0, if δ = 0, which results in the asymptotic independence
of consecutive record indicators in the LDM. Also, there are no critical points for the
index when δ � 0. So, in this case l∞(c, δ) is increasing in c with limc→∞ l∞(c, δ) = 1,
and decreasing in δ, with limδ→∞l∞(c, δ) = 0, as can be seen in figure 3. Gathering these
results, we conclude that l∞(c, δ) > 1 if and only if δ < 0. The asymptotic independence
for records (δ = 0) was proved in [27]; we have shown here that δ-records attract each
other for δ < 0 and repel each other for δ > 0.

5.2. The Pareto distribution

Let c = 1 and F be as given in (5). The probability of δ-record is given in section 4.2.
Computations of ln(c, δ) are cumbersome and the explicit expression of ln(1, δ) can be
found in appendix A.5.

We have limδ→−∞ ln(1, δ) = 1 and limδ→∞ ln(1, δ) = 1− log(2) ≈ 0.3069, for every
n > 1. Also, limn→∞ ln(1, δ) = ∞, for all δ ∈ R, that is, δ-record-attraction grows
unboundedly, as n increases. Moreover, it can be proved that ln(1, δ) ∼ C n

(log n)2
as

n→∞, where C is a constant depending on δ.
The sublinear growth of ln(1, δ) as n increases can be observed in the right panel of

figure 4, for different values of δ, as well as the decrease in δ. Also, for fixed n (left panel
of figure 4), there is a negative value of δ where the correlation reaches a maximum, as
in the Gumbel case. Note that, for negative and small positive values of δ, ln(1, δ) > 1,
while, for big values of δ, ln(1, δ) < 1.
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Figure 4. Dependence index ln(1, δ) for the Pareto distribution as a function of δ
and n.

6. Asymptotic behaviour of Nn,δ

In sections 3 and 4 we have presented properties of the probability that observation n is
a δ-record. In this section we analyse the random variable Nn,δ, defined as the number
of δ-records among the first n observations, and study its behaviour as n→∞.

Depending on F , c and δ, it might be the case that only finitely many δ-records are
observed. We give necessary and sufficient conditions for this to happen. On the other
hand, if Nn,δ grows to infinity, we investigate if the ratio Nn,δ/n converges (in a certain
stochastic sense) to pδ and, in that case, how the fluctuations of Nn,δ/n around pδ are
distributed.

Recall that, in the classical record model (c = 0), the number of records Nn,0 grows
to infinity, and there are universal results ensuring that, for any continuous F , Nn,0/logn
converges to 1, almost surely (a.s.) and (Nn,0 − logn)/(logn)1/2 has, asymptotically, a
standard Gaussian distribution. However, when δ �= 0, results in [44, 52] for the model
with c = 0, show that Nn,δ may grow to a finite limit and, when it diverges, the cor-
responding limit laws depend both on δ and F . We begin by analysing the situation
where Nn,δ has a finite limit.

6.1. Finiteness of the total number of δ-records

Let N∞,δ = lim
n→∞

Nn,δ be the total number of δ-records along the sequence (Yn)n�1. In

this section we find necessary and sufficient conditions for the finiteness of N∞,δ and
E[N∞,δ].

Clearly, these questions are related to the asymptotic behaviour of pn,δ. If pδ > 0,
then we can expect N∞,δ = ∞. On the other hand, if pδ = 0, it may happen that Nn,δ

grows sublinearly to ∞ or N∞,δ < ∞. Since, by theorem 1, the positivity of pδ is linked
to the finiteness of μ+, we split the analysis into two cases:

(a) μ+ = ∞. In this situation, N∞,δ = ∞ a.s. for any c, δ ∈ R.
To check this assertion, we first prove that Mn := max{Y 1, . . . , Y n} →∞.

Observe that μ+ = ∞ implies x+ = ∞ and

∞∑
n=1

P[Yn > a] =

∞∑
n=1

P[Xn > a− cn] =

∞∑
n=1

(1− F (a− cn)) = ∞, ∀ a ∈ R. (16)
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From (16) and the second Borel–Cantelli lemma, we conclude that Y n > a infinitely
often (i.o.), for any a, and so, Mn →∞, with probability one. This fact clearly
implies N∞,0 = ∞. Now, since, for δ < 0, N∞,δ � N∞,0, we get N∞,δ = ∞. On the
other hand, for δ > 0, the event

{Xn + (c− δ)n > max
1�j�n−1

{Xj + (c− δ)j}} implies {Xn + cn > max
1�j�n−1

{Xj + cj}+ δ},

that is, 1n,0(c− δ) � 1n,δ(c). Therefore, N∞,δ(c) � N∞,0(c− δ) = ∞.

(b) μ+ < ∞. We distinguish three scenarios depending on the sign of c.

If c > 0, we first assume x+ − x− > δ − c. In this case, we have pδ > 0 and so
N∞,δ = ∞ is an immediate consequence of the law of large numbers in theorem 5 below.
If x+ − x− � δ − c, only the first observation will be a δ-record as shown in section 3.1,
so N∞,δ = 1.

If c = 0 and δ � 0, then N∞,δ = ∞, since N∞,δ � N∞,0 = ∞. If c = 0 and δ > 0, the
situation is more complicated. In fact, N∞,δ < ∞ if and only if∫ ∞

0

1− F (x+ δ)

(1− F (x))2
f(x)dx < ∞,

which is also equivalent to E[N∞,δ] < ∞. This is shown in proposition 7 of the appendix
A, by relating this question to the counting process of geometric records, as studied in
[52].

If c < 0, we proceed as in (16) to obtain

∞∑
n=1

P[Yn > a] =

∞∑
n=1

P[X1 > a− cn] < ∞, ∀ a ∈ R,

where the last inequality follows from μ+ < ∞. Thus, the first Borel–Cantelli lemma
ensures that P[Yn > a i.o.] = 0, for all a ∈ R, so Y n →−∞. Then, there exists a random
variable N < ∞ such that limn→∞Mn = MN and, consequently, N∞,δ < ∞. In this case,
we can also prove that E[N∞,δ ] < ∞; see proposition 9.

Summarizing the above, we give a complete characterization of the (a.s.) finiteness
of the number of δ-records in the next theorem.

Theorem 3. N∞,δ < ∞ a.s. if and only if one of the following conditions holds

(a) c < 0 and μ+ < ∞,

(b) c = 0, δ > 0 and
∫ ∞
0

1−F (x+δ)
(1−F (x))2

f(x)dx < ∞,

(c) c > 0 and x+ − x− � δ − c.

Moreover, N∞,δ < ∞ a.s. if and only if E[N∞,δ] < ∞.

Remark 4. Theorem 3 answers a conjecture posed in [29], stating that the expected
number of records (δ = 0) in the LDM, with negative trend, remains finite, based on
the observed exponential decay of pn, in a particular case. We have shown that the
conjecture holds if and only if μ+ < ∞.
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6.2. Growth of Nn,δ to infinity.

We now turn our attention to the case N∞,δ = ∞. More precisely, we are interested in
the convergence of the proportion of δ-records to pδ. For records (δ = 0) it was shown
in [25, 26] that Nn,0/n→ p0 and that fluctuations of Nn,0 around p0 are asymptotically
Gaussian.

We show here that these results carry over to the case of δ �= 0 but leave the proof
for appendices A.3 and A.4. As in the aforementioned works, we assume μ+ < ∞ and
c > 0 and, additionally, that x+ − x− > δ − c. Note that, by theorems 1 and 3, we have
pδ > 0 and N∞,δ = ∞.

Theorem 5. Assume μ+ < ∞, c > 0 and x+ − x− > δ − c. Then, as n→∞,

(a) Nn,δ/n→ pδ a.s. and E[Nn,δ/n]→ pδ.

(b) If, additionally,
∫ ∞
0

x2f(x)dx < ∞, then
√
n(Nn,δ/n− pδ)

D−→N(0, σ2
δ), where

D−→
stands for convergence in distribution and σ2

δ is defined in (22).

As it can be seen in the proof of theorem 5(a) in the appendix A, the assumption
on independence of the Xn can be relaxed to stationary and ergodic and prove that
Nn,δ/n→ E[1∗0,δ], defined in (21). This is useful because it allows to deal with a wider
range of scenarios, including stationary autoregressive-moving-average processes. Note,
however, that E[1∗0,δ] could differ from pδ in (2).

7. Illustration

We present a practical application of theorem 5 to a real dataset of temperatures, where
convergence to the stationary regime is seen for quite small values of n. As pointed out
in the introduction, the LDM has been used by [4, 30] to model temperature data in
the framework of climate-change.

Our dataset consists of means of daily maximum temperatures (in degrees celsius),
for every month of July, from 1951 to 2019, in the city of Saragossa, Spain. See figure 5
for a data plot. For δ-records we choose the value δ = −1, which is arbitrary and does
not respond to any specific reason, other than interpretability of the example. Note
that a year will have a δ-record temperature if the maximum average temperature
in July is a record or if it is at a distance smaller than 1◦C from the current max-
imum. In this framework, we find that 17 out of the 69 observations are δ-records
(coloured in red), and 7 of them are records (with circle). The least squares line fitted
to the data (in dotted red), reveals a linear increase of the maximum temperatures over
time.

The simple linear model for the temperature takes the form

Tt = β0 + β1t+ εt, (17)

where T t is the temperature of year t, and εt the error term. The results of the least-
square estimators of the coefficients and their p-values (assuming Gaussian errors) are
shown in table 1. In addition, we find an adjusted-R2 of 0.2769. The hypothesis β1 = 0 is
clearly rejected, using the student t-test. Moreover, the estimate of β1, which represents
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Figure 5. Monthly mean of maximum temperature in July, 1951–2019 in Saragossa
(Spain).

Table 1. Regression analysis estimations for the temperature data.

Coefficient Estimate Std. error p-value

β0 −62.659 18.172 0.000 98
β1 0.0476 0.009 15 2.04 × 10−6

the average increment of mean maximum temperatures by year, agrees well with previous
estimates of the summer warming trend in Europe, see [4, 30].

In figure 6 we show the classical diagnosis plots for linear regression. The top left
panel indicates that a linear model is appropriate since no pattern in the residuals is
observed. On the top right panel, the quantile–quantile plot of the residuals against
the normal distribution, with all the values within the confidence lines, shows that the
Gaussian assumption is adequate for errors; this is corroborated by a p-value of 0.58 in
the Shapiro–Wilk test (section 5.2.2 in [53]) for normality of the standardized residuals.
Moreover, the bottom panels show no significant autocorrelation or partial autocor-
relation values, indicating the absence of serial correlation of the observations; this is
confirmed by a p-value greater than 0.1 in the Kwiatkowski–Phillips–Schmidt–Shin test
[54] for stationarity of a series around a deterministic trend. We conclude that the data
are well fit by a linear regression in t, with Gaussian errors. Hence, an LDM with drift
parameter c = β̂1 = 0.047 and (Xn)n�1 independent normally distributed random vari-
ables, is adequate for the data. Note that, for applying theorem 5, there is no need to
assume any specific form of the distribution of the Xn.
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Figure 6. Diagnostic plots of the regression model. Top left: residuals vs year. Top
right: quantile–quantile plot of the residual with the normal distribution. Bottom
left: autocorrelation function. Bottom right: partial autocorrelation function.

Now, since 17 out of 69 observations were identified as δ-records, it is natural to
estimate pδ by the empirical record rate, that is,

p̂δ = n−1Nn,δ = 17/69 ≈ 0.2464.

Figure 7 illustrates how the empirical δ-record rate evolves with each extra observation
and how it seems to stabilize around a constant value, as predicted by theorem 5(a).

Concerning the asymptotic normality (theorem 5(b)), we need to estimate the
variance σ2

δ , defined in (22). To that end we propose the estimator

σ̃2
δ = γ̃n,δ(0) + 2

m∑
k=1

γ̃n,δ(k), (18)
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Figure 7. Evolution of the δ-record rate for the temperature data.

where m is a given natural number and

γ̃n,δ(k) = n−1

n−k∑
j=1

(1j,δ − n−1Nn,δ)(1j+k,δ − n−1Nn,δ),

The estimator in (18) is a version of an estimator proposed in [26], adapted here to deal
with δ-record data. By slightly changing the proof in [26], we can prove convergence of
σ̃2
δ to σ2

δ , as n→∞ (consistency), under the condition m(n) = O(n1/2).
In order to apply formula (18), we must choose m, of order

√
n. In our case, n = 69

so we take m = 8, to obtain the estimate σ̃2
δ = 0.337. Similar values were computed with

m = 6, 7. Therefore, from theorem 5(b), Nn,δ is approximately Gaussian, with mean 17
and variance 23.25 (0.337× 69).

For assessing the goodness of fit, we simulate the adjusted model (17) 106 times, and
compute the value of N 69,δ. Figure 8 summarizes the total number of δ-records obtained
at each of the 106 simulations. The histogram has a Gaussian shape, so the convergence
in theorem 5(b) to the Gaussian distribution seems to be fast. Moreover, the 0.025 and
0.975 quantiles of the normal distribution N(17, 23.25) are, respectively, 7.54 and 26.45.
The 0.025 and 0.975 empirical quantiles from the simulated data are 8 and 26, showing
an excellent fit to the theoretical (asymptotic) distribution.

As a conclusion, we see that empirical results and theory are in very close agreement.
This means that, even with a small sample, the approximations in theorem 5 are good,
at least for the model considered.
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Figure 8. Histogram of the total number of δ-records for the adjusted regression
model (106 iterations of 69 observations).

8. Concluding remarks

In this paper we have studied the behaviour of δ-records in the LDM. We have analysed
the asymptotic probability of δ-records, the dependence between δ-record events and
the limiting distribution of the number of δ-records among the first n observations.

The behaviour of the asymptotic probability of δ-records shows similarities with the
case of records (δ = 0); for instance, for positive c, pδ(c) > 0 if and only if μ+ < ∞,
regardless the value of δ (except for the trivial case δ � x+ − x− + c, where no δ-records
are observed). We also find that pδ(c) is a continuous function of δ for every c, while,
as a function of c, it is continuous for every c �= 0, and a discontinuity arises at c = 0,
if x+ < ∞ and δ < 0. This differs from records where p0(c) is a continuous function
of c.

We have described in detail the probability of δ-record in two examples. For the
Gumbel distribution, an explicit expression for pδ(c) is found, showing that it decreases
with δ, as a logistic function of −δ. For the cases studied in the Dagum family of
distributions, we have pδ(c) = 0, for every δ, c, since μ+ = ∞. For this family, we inves-
tigate if the speed of convergence of pn,δ(c) to 0, as n→∞, depends on δ or not.
Since random variables Xn, with μ+ = ∞, may produce large values, which provoke
abrupt changes in record values, we can expect that δ values close to 0 have neg-
ligible impact and so, pn,δ(c)/pn,0(c)→ 1. This happens in the case c = 0, where the
number of δ-records grows at the same speed as the number of records, when the Xn
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are heavy-tailed. However, we find that, for some distributions in the Dagum family,
pn,δ(c)/pn,0(c)→ a �= 1.

Parameter δ has a clear impact in the qualitative behaviour of correlations of δ-record
events. First, the expression of the limiting correlation is different for δ � 0 and δ < 0.
For the Gumbel distribution, where record indicators are independent [27], dependence
appears when δ �= 0; in fact, δ-records in this distribution attract each other for δ < 0
and repel each other, for δ > 0. For distributions with power law tails, it is known, for
c > 0, that correlations between records are positive and increase with n; see [31]. We
have studied the Pareto distribution with c = 1, and obtained that, while the correlations
are positive (and increasing in n) for negative, zero and small positive values of δ, they
are negative for big values of δ. In fact, for each n, the limiting correlation index, as
δ →∞, is 0.3069.

Another interesting finding of the paper is about the behaviour of the random vari-
able Nn,δ(c). We completely solve the question of finiteness of N∞,δ(c), that is, if there
is a finite number of δ-records along the infinite sequence of observations. We show that
this cannot happen for c > 0, for any δ (except if the condition x+ − x− < δ − c holds).
It cannot happen either when c < 0 and the underlying random variables Xn have an
infinite right-tail mean. This last fact solves a problem posed in [29], where the authors
conjectured that, in the presence of a negative trend, the expected number of records
in the whole sequence is finite.

In the case c > 0 we analyse the asymptotic behaviour of the random variable Nn,δ,
which grows to infinity. We give a law of large numbers, showing that the ratio Nn,δ/n
converges to pδ(c) and that its asymptotic distribution is Gaussian, finding the explicit
expression of its normalizing constants, which can be estimated from observed data.
This result was already known for records and has been applied to different problems,
such as athletic records [25, 26] and climate change [4, 30]. We have illustrated the
limiting result for Nn,δ with a set of real data of temperatures of the city of Saragossa
(Spain), showing a good agreement between the theoretical asymptotic results and the
observed data in the example. In fact, even for this relatively short series (69 data),
the distribution of the number of δ-records is close to the theoretical limiting Gaussian
distribution.

Our results open the door to the use of δ-records for statistical applications in the
LDM. It has been shown that δ-records perform better than records in statistical infer-
ence, using trend-free data [44–46], so we expect that their use in the LDM is also
advantageous.
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Appendix A

A.1. Continuity of pδ(c)

Proposition 6.
∏∞

i=1 F (x+ ci− δ), as a function of c is continuous at c ∈ R \ {0}, for
every x ∈ (x−, x+), x �= x− + δ − c.

Proof. Let (cn)n�1 be a real sequence converging to c > 0. We show that

∞∏
i=1

F (x+ cni− δ)→
∞∏
i=1

F (x+ ci− δ), (19)

as n→∞, for fixed x ∈ (x−, x+), x �= x− + δ − c.
Let x ∈ (x−, x+) be such that x < x− + δ − c (this can only happen if x− > −∞ and

δ − c > 0). In this case F (x+ c− δ) = 0, so the right-hand side (rhs) of (19) is 0. Also,
since cn → c, F (x+ cn − δ) = 0, for n large enough, the left-hand side (lhs) of (19) is
also 0 and (19) is proved.

Let now x > x− + δ − c, then F (x+ ci− δ) > 0 for all i � 1. Let ε > 0 such that
x+ c− ε− δ > x− and let n0 � 1, such that |cn − c| < ε, for all n � n0. We have, for
n � n0,

− log F (x+ cni− δ) � − log F (x+ (c− ε)i− δ).

Since x > x− + δ − (c− ε) and μ+ < ∞, we have −
∑∞

i=1 log F (x+ (c− ε)i− δ) < ∞,
so the dominated convergence theorem yields

∞∑
i=1

log F (x+ cni− δ)→
∞∑
i=1

log F (x+ ci− δ),

as n→∞, so (19) also holds for x > x− + δ − c. Finally, for c < 0, we have
∏∞

j=1 F (x+
cj − δ) = 0, ∀ x ∈ R, since F (x+ cj − δ)→ 0, as j →∞. �

A.2. Finiteness of the number of δ-records

Proposition 7. Let c = 0 and δ > 0. The following conditions are equivalent:

(a) N∞,δ < ∞,

(b) E[N∞,δ] < ∞,

(c) ∫ ∞

0

1− F (x+ δ)

(1− F (x))2
f(x)dx < ∞.

Proof. It is clear that Y n is a δ-record if and only if eXn > eδ max{eX1 , . . . , eXn−1}. That
is, if the nth observation in the sequence (eXn)n�1 is a geometric record, with parameter
k = eδ, according to [52]. In section 2.1.1 of that paper, it is shown that the total number
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of geometric records, in a sequence of i.i.d. random variables, with cdf G, is finite if and
only if ∫ ∞

1

1−G(kx)

(1−G(x))2
dG(x) < ∞. (20)

Moreover, in section 2.3.4 of that paper, it is shown that (20) is equivalent to
the finiteness of the expectation of the total number of geometric records. Since
G(x) = F (log(x)), the result is proved. �

In the rest of the appendix, we use the operator
∨

to denote the maximum. Then,
for instance,

∨n
i=1 Yi = max{Y1, . . . , Yn}.

Lemma 8.

(a) If c < 0, x− > −∞ and μ+ < ∞, then E[N∞,δ] < ∞, ∀ δ ∈ R.

(b) Let X̃1 be a random variable with cdf G, and (X̃n)n�2 an i.i.d. sequence, independent

of X̃1, with common cdf F , such that G(x) � F (x), ∀x. Let Ỹ n = X̃n + cn, n � 1.
Then, if c < 0, E[

∑∞
j=1 1{Ỹ j>∨j−1

i=1 Ỹi+δ}] � E[N∞,δ].

Proof.

(a) First we bound pn,δ(c) as follows

pn,δ(c) =

∫ ∞

−∞

n−1∏
j=1

F (x+ cj − δ)f(x)dx

=

∫ ∞

−∞

n−1∏
j=1

F (x+ cj − δ)1{x+c(n−1)−δ>x−}f(x)dx

=

∫ ∞

x−−c(n−1)+δ

n−1∏
j=1

F (x+ cj − δ)f(x)dx

� 1− F (x− − c(n− 1) + δ).

So,
∑n

j=1 pn,δ �
∑n

j=1 (1− F (x− − c(j − 1) + δ)) yielding

E[N∞,δ ] �
∞∑
j=1

(1− F (x− − c(j − 1) + δ)) < ∞,

since μ+ < ∞.

(b) It suffices to check that the δ-record probability for the Ỹn fulfils

E[1{Ỹ j>∨j−1
i=1 Ỹ i+δ}] =

∫ ∞

−∞
G(x+ c− δ)

j−1∏
i=2

F (x+ ci− δ)f(x)dx

�
∫ ∞

−∞

j−1∏
i=1

F (x+ ci− δ)f(x)dx = pj,δ(c).

�
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Proposition 9. If c < 0 and μ+ < ∞, then E[N∞,δ] < ∞

Proof. It suffices to consider δ < 0, since the number of δ-records is decreasing with
δ. Also, we take x− = −∞ as, otherwise, the result follows from lemma 8(a). Moreover,
since there exists c1 ∈ R such that P(Xn + c1 > 0) > 0, and the number of δ-records is

the same for the sequences Y n = Xn + cn and Ỹn = Xn + cn+ c1, we assume without
loss of generality that P(Xn > −δ) > 0.

Let N = inf{n ∈ N|Xn > −δ}, then N is a geometric random variable and

N∞,δ =

N∑
j=1

1j,δ +

∞∑
j=N+1

1j,δ =

N∑
j=1

1j,δ +

∞∑
j=N+1

1j,δ1{Xj>0}.

For j > N , let 1̃j,δ = 1{Xj>∨j−1
i=N (Xi+c(i−j)+δ)}1{Xj>0}, then

1j,δ1{Xj>0} = 1{Xj>∨j−1
i=1 (Xi+c(i−j)+δ)}1{Xj>0} � 1̃j,δ.

Note that the 1̃j,δ, defined for j > N , are the δ-record indicators of the sequence
{XN ,XN+11{XN+1>0} + c,XN+21{XN+2>0} + 2c, . . . }. Now, taking expectations we have

E[N∞,δ] � 1

P(X1 > −δ)
+

∞∑
i=1

E[1̃i,δ] < ∞,

since the last sum is bounded by lemma 8(b). �

A.3. Proof of law of large numbers for Nn,δ(c)

In order to work with a stationary process, we consider a bilateral version of the LDM
defined as in (1), but letting n ∈ Z instead of n ∈ N. Associated to this model, we define,
for n ∈ Z,

M ∗
n = max{Yi : i � n}, 1∗n,δ = 1{Yn>M∗

n−1+δ}, (21)

and, for n ∈ N,

N ∗
n,δ =

n∑
k=1

1∗k,δ.

Theorem 5(a). Let c > 0, μ+ < ∞. Then Nn,δ(c)/n→ pδ(c) a.s. as n→∞.

Proof. It is clear that

lim
n→∞

P[Yn > a] = lim
n→∞

P[Xn > a− cn] = 1, ∀ a ∈ R,

thus Y n →∞ and Mn →∞ a.s. Also, since μ+ < ∞, it is known by a Borel–Cantelli
argument that M ∗

0 < ∞ a.s. Gathering these facts, we know that ∃ 0 < N < ∞ a.s. such
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that 1∗N ,0 = 1 almost surely. From the definition of 1∗n,0, given n ∈ N we have 1n,0 � 1∗n,0,

and so 1N ,0 = 1 a.s., entailing M ∗
n = Mn and 1n,δ = 1∗n,δ a.s. ∀ n > N . So,

∞∑
k=N+1

1k,δ =

∞∑
k=N+1

1∗k,δ a.s.

Also, we know that 1∗n,δ is a strictly stationary and ergodic sequence. Applying Birkhoff’s
ergodic theorem (page 129 in [55]) we have

N ∗
n,δ

n
=

1

n

n∑
k=1

1∗k,δ → E[1∗0,δ] a.s.

Now, let (an)n�1 be a real sequence diverging to ∞. Then∣∣∣∣Nn,δ −N ∗
n,δ

an

∣∣∣∣ �
∣∣∣∣Nan

∣∣∣∣→ 0 a.s.

since N does not depend on n. Finally, since

∣∣∣∣Nn,δ−N∗
n,δ

n

∣∣∣∣→ 0 a.s. and
N∗

n,δ

n
→ E[1∗0,δ] a.s., we

have
Nn,δ

n
→ E[1∗0,δ] a.s. Finally, E[1

∗
0,δ] can be written as the rhs in (2), yielding E[1∗0,δ] =

pδ(c). �

A.4. Proof of central limit theorem for Nn,δ(c).

A proof of Gaussian convergence for the number of δ-records, based on the ideas in [25],
is not straightforward. The main problem arises when considering the joint probability
of two observations being δ-records. While in the case of records this quantity can be
explicitly written as follows

E[1i,01i+m,0] =

∫ ∞

−∞

i−1∏
k=1

F (y + ck)

∫ ∞

y−cm

m−1∏
j=1

F (s+ cj)f(s)ds f(y)dy,

in the setting δ �= 0 there is no such analytical expression. In order to solve this problem
we introduce the following general bounds, which do not depend on the specification of
the model for the sequence (Yn)n�1.

Proposition 10. Let (Yk)k∈Z be a sequence of random variables and consider the events

A =
{∨

k=−∞Yk + δ < Yi

}
, B =

{∨i+m−1
k=i+1 Yk + δ < Yi+m

}
, C = {Yi − δ < Yi+m} and

E = {Yi + δ < Yi+m}. Then, if δ � 0,

(a1) P[A ∩B ∩ C] � E[1∗i,δ1
∗
i+m,δ] and

(a2) P[A ∩B ∩ E] � E[1∗i,δ1
∗
i+m,δ].

Also, if δ � 0,

(b) P[A ∩B ∩ E] = E[1∗i,δ1
∗
i+m,δ].
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Proof.

(a1) Note that 1∗j,δ is the indicator of Dj =
{∨j−1

k=−∞ Yk + δ < Yj

}
, j = i, i+m. Then

we must show that A ∩B ∩ C ⊆ Di ∩Di+m.
First, it is clear that A = Di. Also, observe that C ⊆ E and that A ∩ C ⊆{∨i−1
k=−∞ Yk + δ < Yi+m

}
, since δ � 0. From the inclusions above we have

A ∩B ∩ C ⊆
{

i−1∨
k=−∞

Yk + δ < Yi+m

}
∩E ∩B = Di+m

and the conclusion follows.

(a2) Trivial.

(b) It is clear thatDi ∩Di+m ⊆ A ∩B ∩ E and that A ∩B ∩E ⊆ Di, because A = Di.

Also, since δ � 0, we have A ∩ E ⊆
{∨i−1

k=−∞ Yk + δ < Yi+m

}
, so

A ∩B ∩ E ⊆
{

i−1∨
k=−∞

Yk + δ < Yi+m

}
∩E ∩B = Di+m,

which completes the proof. �
Note that, although it is unnecessary in our setting, the reverse (a1) inequality also

holds for δ � 0. Under the assumptions of the LDM, the lhs of the first two bounds in
the previous proposition have analytical expressions. The strategy to prove Gaussian
convergence is to work with the corresponding bounds of E[1i,δ1i+m,δ], which are shown
to be tight enough to achieve our purpose. So, with this result we slightly modify the
necessary bounds and rebuild the martingale approach in [25], to prove convergence to
the Gaussian distribution.

Theorem 5(b). Suppose that
∫∞
0

x2f(x)dx < ∞ and let c > 0, δ ∈ R, such that pδ > 0.
Then, as n→∞,

√
n(n−1Nn,δ − pδ(c))

D−→N(0, σ2
δ(c)),

where

σ2
δ = pδ − p2δ + 2

∞∑
m=1

(E[1∗i,δ1
∗
i+m,δ]− pδ). (22)

Proof. For simplicity, we only consider the case δ � 0 since the case δ > 0 is analogous.
We assume −2δ < x+ as, otherwise, we can define X ′

n = Xn + (−3δ − x+), n � 1; the
number of δ-records in both models is the same and −2δ < x′

+, where x
′
+ is the right-end

point of X ′
n.

The proof is split into several steps.

(a) We claim that

0 � pn,δ − pδ � c−1

∫ ∞

c(n−1)/2−δ

(1− F (s))ds+ F (−δ)�(n−1)/2�. (23)
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The first inequality follows from

pn,δ − pδ =

∫ ∞

−∞

(
n−1∏
j=1

F (y + cj − δ)−
∞∏
j=1

F (y + cj − δ)

)
f(y)dy � 0.

For the second, let u =
∏n−1

j=1 F (y + cj − δ) and v =
∏∞

j=1 F (y + cj − δ). Then, from
the elementary inequality u− v � u− uv, we have

pn,δ − pδ �
∫ ∞

−∞
u(1− v)f(y)dy. (24)

The integral in the rhs of (24) is split into two terms A,B, that we bound. Let

A =
∫ −c(n−1)/2

−∞ u(1− v)f(y)dy and B =
∫∞
−c(n−1)/2 u(1− v)f(y)dy, then

A �
∫ −c(n−1)/2

−∞

n−1∏
j=1

F (−c(n− 1)/2 + cj − δ)f(y)dy

�
n−1∏
j=1

F (c(j − (n− 1)/2)− δ)

�
�(n−1)/2�∏

j=1

F (c(j − (n− 1)/2)− δ)

�
�(n−1)/2�∏

j=1

F (−δ) = F (−δ)�(n−1)/2�. (25)

For B we have

B �
∫ ∞

−c(n−1)/2

(
1−

∞∏
j=n

F (y + cj − δ)

)
f(y)dy

�
∫ ∞

−c(n−1)/2

∞∑
j=n

(1− F (y + cj − δ))f(y)dy

�
∫ ∞

−c(n−1)/2

(∫ ∞

z=n−1

(1− F (y + cz − δ))dz

)
f(y)dy

�
∫ ∞

−c(n−1)/2

(
c−1

∫ ∞

−c(n−1)/2+c(n−1)−δ

(1− F (s))ds

)
f(y)dy

� c−1

∫ ∞

c(n−1)/2−δ

(1− F (s))ds. (26)

So, from (25) and (26), (23) holds.
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(b) Let rm,δ = E[1∗i,δ1
∗
i+m,δ], which is well defined since it does not depend on i. We

bound rm,δ by applying proposition 10 as follows:

rm,δ = P [Yi, Yi+m are δ − records]

= P

[
Yi >

∨
l<i

Yl + δ, Yi+m >
∨

l<i+m

Yl + δ

]

� P

[
Yi >

∨
l<i

Yl + δ, Yi+m >

m−1∨
l=1

Yi+l + δ, Yi+m > Yi + δ

]

=

∫∫
y<s+cm−δ

∞∏
j=1

F (y + cj − δ)
m−1∏
i=1

F (s+ ci− δ)f(s)ds f(y)dy.

If rm,δ � p2δ, we apply the Fubini–Tonelli theorem, as well as the triangle
inequality, to obtain

|rm,δ − p2δ| �
∣∣∣∣∣
∫∫

y<s+cm−δ

∞∏
j=1

F (y + cj − δ)

m−1∏
i=1

F (s+ ci− δ)f(s)ds f(y)dy − p2δ

∣∣∣∣∣
�A+B,

where

A =

∫ ∞

−∞

∞∏
j=1

F (y + cj − δ)

∣∣∣∣∣
∫ ∞

−∞

m−1∏
i=1

F (s+ ci− δ)f(s)ds− pδ

∣∣∣∣∣ f(y)dy
and

B =

∫ ∞

−∞

∞∏
j=1

F (y + cj − δ)

∫ y−cm+δ

−∞

m−1∏
i=1

F (s+ ci− δ)f(s)ds f(y)dy.

Since variables are separated in A and applying the first step of this proof

A �
∫ ∞

−∞

m−1∏
j=1

F (s+ cj − δ)f(s)ds− pδ

� c−1

∫ ∞

c(n−1)/2−δ

(1− F (s))ds+ F (−2δ))�(m−1)/2�. (27)

While for B we have

B =

∫ cm/2

−∞

∞∏
j=1

F (y + cj − δ)

∫ y−cm+δ

−∞

m−1∏
i=1

F (s+ ci− δ)f(s)ds f(y)dy

+

∫ ∞

cm/2

∞∏
j=1

F (y + cj − δ)

∫ y−cm+δ

−∞

m−1∏
i=1

F (s+ ci− δ)f(s)ds f(y)dy
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�
∫ −cm/2+δ

−∞

m−1∏
j=1

F (s+ cj − δ)f(s)ds

∫ cm/2

−∞

∞∏
j=1

F (y + cj − δ)f(y)dy

+

∫ ∞

cm/2

∞∏
j=1

F (y + cj − δ)f(y)dy

�
m−1∏
j=1

F (−cm/2 + cj) + 1− F (cm/2)

�F (−2δ)�(m−1)/2� + 1− F (cm/2). (28)

Analogously, applying the corresponding bound in proposition 10, we arrive at the
same conclusion if rm,δ � pδ via (27) and (28), so

|rm,δ − pδ| � c−1

∫ ∞

c(m−1/2−δ)

(1− F (s))ds+ 2F (−2δ)�(m−1)/2� + 1− F (cm/2).

(29)

(c) Since
∫∞
0

x2f(x)dx < ∞, it is easy to check, from (29), that the series∑∞
m=1 |rm,δ − pδ| converges; for F (−2δ)�(m−1)/2� convergence holds since F (−2δ) < 1.

(d) Using the strategy in the proof of theorem 5(a), we get the following convergence
in distribution

√
n(n−1Nn,δ − n−1N ∗

n,δ)
D−→ 0. (30)

(e) Theorem 5.2 in [56] is applied to the N ∗
n,δ in order to transfer the asymptotic

normality to Nn,δ, as a consequence of (30). This martingale result guarantees
convergence to the Gaussian distribution, if the next two conditions hold:

(1)
∑∞

k=1E[ξk,δE[ξl,δ|M0]] converges ∀l � 0.

(2) liml→∞
∑∞

k=K E[ξk,δE[ξl,δ|M0]] = 0 uniformly in K � 1,

where ξk,δ = 1∗k,δ − pδ and M0 is a certain sub-σ-algebra of events of the original
probability space (see [56], page 128, for details). Moreover we have

lim
n→∞

n−1
E

⎡
⎣( n∑

i=1

ξi,δ

)2
⎤
⎦ = σ2

δ .

Given that the hypothesis δ �= 0 does not imply any extra difficulty in the application
of this theorem, we omit the verification of these two conditions since the adaptation of
this part of the proof is straightforward following the lines of [25]. �

A.5. Correlations in the Pareto distribution

The δ-record probability is given in (12). For E[1n,δ1n+1,δ] and n > 2, we use (14) for
δ < 0 and (15) for δ � 0.
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(a) Let a = n− δ, A = (δ − 2)(δ(1− a) + (n− 1)log a)(n log(a+ 1)− δa),

B = −
(
δ3(n− 2) + δ − 2n3 − 2δ2(n2 − 2) + δ(n−1)(n+5)n+n+1

)
log(a+1),

C = (a− 1) log(a+ 1− δ)− (δ − 2)a
(
δ(a− 1)2 − (n− 1)a log(4a)

)
+ (1− a) log((a− δ + 1)(a+ 1)).

Then, if δ < 0,

ln(1, δ) =
B + C

A
.

(b) Let a = n− δ, A = (δ − 1)2(δ − a)(δ(1− a) + (n− 1)log a)(−δa+ n log(a+ 1)),

B = (a− δ)(δ − 1)

(
δ2(a− 1) + (δ − 1)(n− 1) log

(
a− δ + 1

(2− δ)a

))
,

C =−log(2− δ)(δ(δ + 2)−2δn+ n−1)(a− δ)+(δ−1)2(n−1) log(a− δ+1).

Then, if 0 < δ < 1,

ln(1, δ) =
a2(B + C)

A
.

(c) If δ = 1,

ln(1, 1) =
(n− 1)2((n− 2)n− 2(n− 1) log(n− 1))

2(n− 2)(−n+ (n− 1) log(n− 1) + 2)(−n+ n log(n) + 1)
.

(d) Finally, let a = n− δ, A1 = (δ + log δ − n log δ − n+ (n− 1)log(n− 1) + 1)(δ −
1)2(δ − a),

A2 = (δ − n log δ − n+ n log n),

B = (log δ)
(
2δ(δ2 + 2δ − 1) + (2δ − 1)n2 − 5δ2n+ n

)
,

C = (δ − 1)2(n− 1) log(n− 1)− (a− 1) ((δ − 1)(δ − a) + (2δ − 1) log(2δ − 1)(a− 1)) .

Then, if δ > 1, and δ /∈ {n/2,n,n+ 1} (otherwise, the values of the index are given
by the continuous extension at these points),

ln(1, δ) =
a2(B + C)

A1A2
.
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[42] López-Blázquez F and Salamanca-Miño B 2015 Distribution theory of δ-record values: case δ � 0 Test 24 558–82
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