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Abstract Mine planning optimization aims at maximizing the profit obtained
from extracting valuable ore. Beyond its theoretical complexity—the open-pit
mining problem with capacity constraints reduces to a knapsack problem with
precedence constraints, which is NP-hard—practical instances of the problem
usually involve a large to very large number of decision variables, typically
of the order of millions for large mines. Additionally, any comprehensive ap-
proach to mine planning ought to consider the underlying geostatistical un-
certainty as only limited information obtained from drill hole samples of the
mineral is initially available. In this regard, as blocks are extracted sequen-
tially, information about the ore grades of blocks yet to be extracted changes
based on the blocks that have already been mined. Thus, the problem lies
in the class of multi-period large scale stochastic optimization problems with
decision-dependent information uncertainty. Such problems are exceedingly
hard to solve, so approximations are required. This paper presents an adap-
tive optimization scheme for multi-period production scheduling in open-pit
mining under geological uncertainty that allows us to solve practical instances
of the problem. Our approach is based on a rolling-horizon adaptive optimiza-
tion framework that learns from new information that becomes available as
blocks are mined. By considering the evolution of geostatistical uncertainty,
the proposed optimization framework produces an operational policy that re-

T. Lagos · D. Sauré
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duces the risk of the production schedule. Our numerical tests with mines of
moderate sizes show that our rolling horizon adaptive policy gives consistently
better results than a non-adaptive stochastic optimization formulation, for a
range of realistic problem instances.

Keywords Mine planning; geostatistics; stochastic optimization; adaptive
algorithms; Iterative Learning Algorithm
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1 Introduction

Motivation. Open-pit mining planning optimization aims at maximizing the
profit obtained from extracting valuable ore when a mineral deposit is mined
from the surface. A mining project typically starts with a prospecting stage,
during which mineral deposits are discovered, followed by an exploration phase,
where drilling campaigns are carried out to sample and collect information on
the ore content. This information is then used to create a geological model
of the mineral content, using techniques such as kriging, see Krige (1951).
Once a geological model of the deposit is in place, a mine is designed, together
with an exploitation plan, both of which are evaluated economically. If this
evaluation, which usually includes estimating the net present value of the
operation, results in a positive value, the mine is developed and exploitation
operations are carried out.

In this context, while long-term extraction plans (dictating when and how
the material is extracted) are rather inflexible, their periodic operational coun-
terparts often adapt to new information available and operational settings. In
particular, consider the case of information about the ore content of the de-
posit: as material is extracted, ore content (which up to that point was only
estimated based on the geological model of the deposit) is observed, and it
might di↵er significantly from its estimate; thus, based on such values, the
extracted material is either processed (to obtain saleable product), or dumped
as waste, or transported to a stockpile that can be processed in the future, all
this, considering the mine’s extraction and processing capacities.

The problem is a particular case of resource-constrained project schedul-
ing, which seeks to optimally schedule activities over time while satisfying
resource and precedence constraints. In the case of open-pit mining, these ac-
tivities are the extraction and processing of the resource. Formulations for
solving resource-constrained project scheduling, which is NP-hard in general,
have been proposed since the 1960s; see, e.g., Muñoz et al. (2018) and ref-
erences therein for an overview of this problem and its applications to mine
planning. Early work focused on deterministic formulations of the problem,
without geological uncertainty, which often led to tractable but rather unreal-
istic settings. More recently, various stochastic models, incorporating market
and/or geological uncertainty, have been presented. While in all such models
uncertainty is revealed all at once, in practice however, uncertainty revelation
depends on the extraction decisions. The problem is an instance of a stochas-
tic optimization with decision-dependent information uncertainty, following
the terminology proposed by Hellemo et al. (2018). Such problems are in gen-
eral hard to solve; in this particular case of mine planning, because of the
complexity associated with modeling uncertainty, extant work often trades re-
alism for tractability, and thus available more practical models only have been
solved for unrealistic (small) instances of the mining problem.

Objective and Assumptions. In this paper we study an adaptive optimiza-
tion scheme for multi-period production scheduling in open-pit mining under
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geological uncertainty. In essence, adaptive or learning schemes in optimization
under uncertainty seek to incorporate new information on mineral content (or
ore grade) in the optimization decisions as it becomes available; see, e.g., Pow-
ell and Ryzhov (2012). This idea is especially sound for open-pit mining, where
planning operations rely heavily on geostatistical estimates of the mineral con-
tent, which are usually based on a few costly drilling campaigns of the mining
deposit. Consequently, our objective is to develop a practical framework for
producing adaptive operation mining plans, that uses the grades of blocks
that have already been mined to update the geostatistical model of grades of
unmined blocks, and re-optimizes the production schedule so as to maximize
the net present value (NPV) of the operation. While other dynamic models
have been proposed in the literature (Boland et al. 2008; De Lara et al. 2017;
Del Castillo and Dimitrakopoulos 2019; Rimélé et al. 2020), to the best of our
knowledge we present the first adaptive optimization approach for the open-
pit mining problem that takes into account the updates of the geostatistical
models.

For the sake of context, we tackle the following simplified open-pit mining
problem. We consider the usual open-pit setting, where the mine is discretized
into a fixed collection of uniformly-sized blocks, and in order to mine a block we
have to first mine all the blocks in a cone above it. The deposit is to be exploited
over a sequence of time periods; at each period we have to decide which blocks
to extract, and depending on their grade, which of those to process and which
to send to the waste dump without being processed. This, considering that at
each time period, there is a finite capacity for extraction and processing.

A key feature of the operation is that the actual mineral content in each
block is uncertain prior to its extraction. This makes mine planning a high-
risk high-stakes task, because of the (very large) size of practical instances, and
the irreversibility of the extraction decision. Several approaches have been pro-
posed to tackle geostatistical uncertainty, most notably stochastic program-
ming ones; see, e.g., Boland et al. (2008); Lagos et al. (2011); Ramazan and
Dimitrakopoulos (2013); Alonso-Ayuso et al. (2014); Del Castillo and Dimi-
trakopoulos (2019); Rimélé et al. (2020).
Literature Review. Extant literature in mining planning that incorporates
geological uncertainty (Ravenscroft 1992; Dimitrakopoulos and Ramazan 2004;
Goria 2004; Nicholas et al. 2006; Dowd and Dare-Bryan 2018; Menabde et al.
2018) typically does so by working with a (large) set of sample grades, which
are generated so as to reproduce the statistical properties of the sampled
grades (mean, variance, spatial covariance). Although di↵erent methods exist
for generating these simulations, the one based on a multivariate Gaussian
structure is most suitable for updating (for example, in the oil industry, the
good properties of simulations based on multivariate Gaussian models are
used for history matching, that is, for updating reservoir models as production
figures become known; see Oliver et al. (2008) and Oliver and Chen (2011)).
The standard geostatistical model used in mining is a Gaussian field, which
block discretization reduces to a multivariate normal (MVN) or a component-
wise transformation of it (Lantuéjoul 2013). We adopt a multivariate Gaussian
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model for representing grade uncertainty, and use its properties to e�ciently
update grade distributions and generate sample grades.

Non-adaptive production planning in open pit mining has been studied
for several decades. Early approaches consisted in Linear Programming relax-
ations and heuristics; see, e.g., Lerchs and Grossmann (1965); Gershon (1987).
Progress in the fields of Integer Programming and Mixed Integer and Linear
Programming made it possible to devise algorithms that produce optimal or
close to optimal production schedules; see, e.g., Smith (1978); Klingman and
Phillips (1988); Newman et al. (2010) and the recent work of Rivera et al.
(2019). The impact of uncertainty in commodity prices and ore-grades on the
production scheduling problem only started to be considered in the 2000’s. Ini-
tial approaches consisted of heuristics, e.g. Leite and Dimitrakopoulos (2007),
but advances in the theory of stochastic programming and robust optimization
in the last two decades, see e.g. Shapiro et al. (2009); Ben-Tal et al. (2009),
have allowed the development of approaches with theoretical properties, see
e.g. Boland et al. (2008); Lagos et al. (2011). In particular, the last two ap-
proaches consider uncertainty in the mineral content and use wait and see
decision schemes, where some of the decisions are taken only after observing
the actual grades realizations. In this regard, to the best of our knowledge,
ours is the first approach where observed grades are used to learn or update
the belief of grades in unexploited parts of the mine.

As far as adaptive optimization or optimization with learning is concerned,
a fairly comprehensive reference is Powell and Ryzhov (2012), extending mostly
from Bayesian approaches for the problem of ranking and selection. More re-
cently, Frazier (2018) gives an overview of Bayesian optimization with Gaus-
sian process regression. In this framework, one models the uncertain param-
eters of the optimization problem using a Gaussian process, which allows,
by using the properties of multivariate normal random variables, to explic-
itly write formulas on how the distribution changes based on observations of
the parameters. Ultimately, this leads to being able to incorporate into the
optimization scheme an “acquisition function” that incorporates the value of
information (derived from new observations of a set of uncertain parameters)
along with the value of the objective function. See Section 3.1 of Frazier (2018)
for a discussion covering similar covariance functions to the ones we consider
here.

Main contributions. Our first and principal contribution is a practical adap-
tive optimization framework that simultaneously adapts or learns from the lat-
est grade realizations of the deposit, and can solve practical instances of the
problem, as it does not introduce extra computational burden to existing non-
adaptive approaches to the problem (e.g. two-stage stochastic programming).
Indeed, our method takes a “base” non-adaptive scenarios-based approach to
the problem, and introduces, at the end of each time period, an extra step
consisting of observing the mineral content, updating uncertainty belief, and
regenerating the ore grade block model. While these extra steps per se can
be executed regardless of the base optimization method—so they can actually
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be performed in practice during the mining operation—a key element of our
approach is the ability to incorporate the updated distributions to execute a
new optimization plan at every time period. Such a feature in turn requires
us to implement the simulation of the geostatistical models within the opti-
mization algorithms, unlike the approach typically found in the mine planning
literature whereby a set of geostatistical scenarios is fixed in advance.

Our second contribution is to illustrate the particular challenges of studying
adaptability in a prototypically “di�cult” sequential decision-making problem
of large size, but with a fairly “amicable” model of uncertainty, suitable to in-
corporating learning. Indeed, the problem we study is a prime example of a
di�cult and large problem. On the one hand, the open-pit mining problem
with capacity constraints is known to be NP-hard (via a reduction to the
knapsack problem). Moreover, the size of practical instances of the problem
(typically driven by number of discretized blocks in the deposit) is usually
large to very large. According to Menabde et al. (2018), the number of blocks
in a deposit is typically of the order of 50,000 in a small mine, and 5,000,000
in a large one. Despite its theoretical complexity, non-adaptive approaches to
mine planning can be solved for practical instances of the problem via the use
of specialized algorithms. On the other hand, while our model of grade uncer-
tainty is most convenient for Bayesian belief updating (conditional on observed
information, grade distribution remains MVN), the sheer number of blocks in
practical settings makes it computationally intractable to straightforwardly
use available closed-form formulas to compute conditional grade distributions.
The proposed approach exploits in an ad-hoc manner the property of second-
order stationarity of the Gaussian field model for the mineral grades, which is
a common assumption in geostatistics and is often assumed in the Bayesian
Learning and Bayesian Optimization literature; see, e.g., Frazier (2018). In this
regard, our approach leverages available non-adaptive approaches to produce
an (adaptive) rolling-horizon policy. We do so as a way to isolate the practi-
cal complexity of solving the (non-adaptive) mine planning problem from the
challenges of the learning or adaptation step.

Our third contribution is presenting an operational policy that reduces
(relative to non-adaptive approaches) the risk associated with mine planning.
Indeed, our work is motivated by the high risk inherent in the design of pro-
duction plans in open-pit mining. In addition to ore-grade uncertainty, mine
planning is subject to other sources of uncertainty, the prime example of which
is commodity price uncertainty. One could argue that price uncertainty can
be somewhat mitigated by the use of financial derivatives (e.g. options), al-
though recent work (Rimélé et al. 2020) shows the benefit of incorporating
price uncertainty into the model. Still, because planning horizons usually vary
between 5 and 20 years, and mining deposits are very large, planning methods
that incorporate geostatistical uncertainty while being computationally man-
ageable might reduce operational risk significantly. To sum up, this makes the
production planning problem a high-risk high-stakes operation. In this regard,
our proposed framework enhances operational planning by means of introduc-
ing two additional steps, one of belief-updating —or learning–, and the other
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of re-optimization. In a broader perspective, our work contributes to a body of
literature in engineering that has studied the power of being adaptable, flexi-
ble, or both, in decision making under uncertainty; see e.g. Bassamboo et al.
(2012); Chod et al. (2010); Lund et al. (2015); Moreno et al. (2017).

Finally, our last contribution is to show, via numerical experiments, that
the proposed rolling-horizon policy is likely to capture most of the benefits
associated with adapting production plans to new information on the grades
of exploited blocks. With this in mind, we develop an alternative approxi-
mate dynamic programming (ADP) approach to solve the problem. In theory,
Dynamic Programming policies might perform arbitrarily better than the pro-
posed policies, and ADP policies aim at replicating such a performance im-
provement (we demonstrate that this is indeed the case by means of a “toy”
example). However, in a practical setting, we show that the ADP approach
does not perform better than the proposed policies. This is explained by the
facts that: i) the performance of our policy leaves little room for improve-
ment; and ii) additional approximations introduced by the ADP approach,
necessary to maintain computational tractability, impact its performance neg-
atively. Nonetheless, our analysis of the ADP approach should inform future
research in adaptive planning in mining.

2 Background: ore grade modeling, simulation and update

In this section we give a brief overview on how mineral contents, or ore grades,
are usually modeled and simulated in mining. We start in Section 2.1 with
a typical model for mineral deposits, and then in Sections 2.2 and 2.3 we
show how ore grades are estimated and simulated, respectively. We refer the
reader to Chiles and Delfiner (2009) for a comprehensive reference on ore-body
modeling and geostatistics.

2.1 A model for mineral deposits

Drill-holes. When a mine is being planned, samples (understood as probes or
tests) of the actual mineral content (ore grade) in the deposit are obtained
from diamond drill-holes. These holes are “cylinders” drilled from the surface
through the rock on a regular grid (say 50m⇥ 50m); in that way, cylinders of
rock 5cm in diameter, called cores, are extracted. They are divided into 10m
lengths which are split in half along the length; one half is crushed and sent to a
laboratory for analysis and the other half is retained for future reference. Each
10m long cylinder is called a sample in mining vernacular, and is thought of
as an “atomized” observation at a point located, by convention, midway down
the section of the core; the idea is that the volume of the cylinder is very small
compared to that of the deposit.
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Block model. For mine planning and scheduling, the orebody is divided into
blocks typically of size 10m⇥10m⇥10m. In order to extract a block, the blocks
in a cone above it must already have been removed. To mine the blocks, blast
holes typically 20cm in diameter are drilled on a 5m⇥ 5m grid right through
the block; they are packed with explosives which are detonated to break the
block into small enough pieces to be taken either to the processing plant or to
the waste dump. The spacing of the blast holes depends on the properties of
the rock. As the rock comes out of the blast-holes, a representative sample is
taken and analysed. This grade is considered as the “true” grade of the block.

Geostatistical model of the orebody. Let X ✓ R3 be a 3D volume containing
the orebody, and for x 2 X let Z(x) denote the random ore grade at point
x. A usual modeling assumption in geostatistics (e.g. for copper deposits), is
that ore grades are second-order stationary, that is, the first two moments of
Z(·) (mean, variance and spatial covariance) are invariant under translation1.
That is, for all x, y 2 X one has that

E [Z(x)] =: M

E [(Z(x)�M) (Z(y)�M)] =: C(x� y). (1)

A second-order stationary process is then characterized by the mean value M ,
and a spatial covariance function C(·). From above, for any given set of points
x1, . . . , xn, the covariance matrix Cn⇥n corresponding to the random variables
Z(x1), . . . , Z(xn) is given by

Cij = Cov(Z(xi), Z(xj)) = C(xj � xi) = C(xi � xj).

Thus, spatial covariance functions C must be positive definite2.
The most commonly used spatial covariances in 3D are the exponential

model, the spherical model and the pure nugget e↵ect. The corresponding
covariance functions are

C(h) =

8
><

>:

C0 exp(�|h|/a) (exponential)

C0(1� (3/2)|h|/a+ (1/2)(|h|/a)3)1{|h| < a} (spherical)

C01{h = 0} (pure nugget),

where 1{·} denotes the indicator function, C0 is a constant called the sill, and
a is a scale factor (a distance) that is called the range for the spherical model.

1 This is reasonable for most deposits but not all. For example, diamond pipes have radial
symmetry and are richer in the center and poorer on the outside. Similarly the impermeable
dome on top of most oil reservoirs is curved so the depth to its surface cannot be treated as
second order stationary because the mean depth varies.

2 Following Stewart (1976), a function f : R 7! R is positive definite if f is even (i.e.
f(x) = f(�x)) and, for any x1, . . . , xn 2 R, the matrix An⇥n defined as Aij = f(xi � xj)
is positive semidefinite. From a practical point of view, kriging (see Section 2.2) gives the
minimum variance unbiased linear estimator, and if the spatial covariance function is not
positive definite in the appropriate dimension space, negative kriging estimation variances
can occur. See Armstrong and Jabin (1981) for some examples.



Adaptive Mining Planning under Geological Uncertainty 9

It can be shown (see, e.g., Chiles and Delfiner 2009) that these functions are
indeed positive definite. Note also that, for these models, Var [Z(x)] = C0.

In the optimization methods in Section 3, we represent the mine by a set
of blocks B. In a slight abuse of notation, we let Z(xb) denote the (random)
ore grade associated with block b 2 B, where xb denote a representative point
inside block b. Let X (b) ✓ X denote the points included in block b; we compute
Z(xb) as the average of the grades at all the points in b, i.e.

Z(xb) :=

R
X (b) Z(s) ds

Volume(X (b))
.

Note that when ore grades are second order stationary, the mean grade of any
block equals M , but its spatial covariance is smaller than that given by C(·).
Next, we explain how to estimate and sample the ore grade Z(xb) of a block
b 2 B using only a finite number of previous measurements.

2.2 Geostatistical estimation: Kriging

Gaussian process regression, or kriging, is a standard method in geostatistics
for estimating grades (at points or of blocks); see, e.g. Chiles and Delfiner
(2009). In such a method, suppose that we have sampled grades at n points,
x1 . . . xn, thus we observe z(x1) . . . z(xn), the realizations of the grades Z(x1),
. . ., Z(xn); we would like to use this information to compute an estimate
bZ(x) of the grade Z(x) at another point x. The kriging methods uses a linear
combination of the sample grades, i.e.

bZ(x) :=
nX

i=1

�i z(xi).

The (kriging) weights �1 . . .�n above depend on the location x relative to the
locations of the samples x1 . . . xn and are chosen so as to obtain a minimum
variance unbiased estimator. Two cases have to be considered depending on
whether the true mean M is known or not.

When the mean M is unknown, the procedure is called ordinary kriging
and the kriging weights satisfy the so-called kriging system:

2

66664

C(x1 � x1) C(x1 � x2) . . . C(x1 � xn) 1
C(x2 � x1) C(x2 � x2) . . . C(x2 � xn) 1

. . . . . . . . . 1
C(xn, x1) C(xn � x2) . . . C(xn � xn) 1

1 1 . . . 1 0

3

77775

2

666664

�1

�2
...
�n

µ

3

777775
=

2

666664

C(x1 � x)
C(x2 � x)

...
C(xn � x)

1

3

777775
(2)

where �i is i-th kriging weight, and µ is a Lagrange multiplier. Note that the
value of each �i depends on x, so we could write (as we shall do later) �i(x).
The row and column of “1s” correspond to the Lagrange multiplier µ which
filters out the unknown mean M .
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On the other hand, when the mean M is known (as it is when simulating,
see Section 2.3), the procedure is called simple kriging. The simple kriging
estimator bZ(x) is given now by

bZ(x) := M +
nX

i=1

�i(z(xi)�M),

where the kriging weights �i solve the kriging system (2), after setting µ = 0
(in which case is known as the simple kriging system).

When a very large number of samples is available, it may be di�cult to
invert the covariance matrix on the left-hand side of (2). In that case, only
the data within a moving neighbourhood near the point or block are used. See
Chiles and Delfiner (2009) for more information.

2.3 Geostatistical Scenario Sampling

2.3.1 Unconditional Scenario Sampling

Non-adaptive optimization methods, which our proposed policy uses, typically
require sampling grades for all unexploited blocks (see Section 3). Said samples
must (asymptotically) reproduce conditional (on available data) means and
spatial covariance, so as to ensure the asymptotic optimality of such methods.

As mentioned in Section 1, traditional sampling methods can not be used
in practical instances of the problem, because of the large number of blocks
in said instances. This, despite the availability of closed-form expressions for
the blocks’ unconditional and conditional grade joint distributions. Next, we
use key properties of the Gaussian distribution3 to produce sample grades
e�ciently.

For the sake of exposition, we assume that the ore grade process is a Gaus-
sian field, so that for any finite set of points, x1 . . . xn, the joint distribution of
their grades Z(x1) . . . Z(xn) is MVN. We also assume that the marginal dis-
tribution for each point is the standard normal N(0, 1), and that the spatial
covariance function C(·) is known.

In practice, ore grades are not normally distributed (e.g. they are non-
negative). We transform the grades to their “gaussian equivalents”, so that
their marginal distribution after the transformation is standard normalN(0, 1)4.

3 Other simulation methods have been developed, e.g., sequential simulations, see Gómez-
Hernández and Journel (1993), Caers (2000), Soares (2001), and multi-point simulations,
see Mustapha and Dimitrakopoulos (2010), de Carvalho et al. (2019).

4 Let � denote the cumulative standard normal distribution, and let Z(x) denote the
grade. Let F be the cumulative distribution of the grades. Then we define the gaussian
equivalent as follows: f(z) = ��1(F (z)) (which is well-defined because F is an increas-
ing function by construction). Consequently P (f(Z)  z) = P (Z  F�1�(z)) = �(z), so
Y (x) ⌘ f(Z(x)) is normally distributed. This can be defined “graphically” from the exper-
imental histogram, or it can be expressed in terms of Hermite polynomials. See pp380-381
Chiles and Delfiner (2009), notably Figure 6.1 for details.
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We compute the experimental spatial covariance of the transformed grades and
fit a model to it (for instance, the exponential, or spherical models described
earlier). With the function C(·) at hand, we can compute the covariance matrix
for the grades of any finite set of points x1 . . . xn via equation (1).

With the parameters of the multivariate normal distribution at hand, we
can then sample the random vector Z = {Z(x1) . . . Z(xn)}, for any finite set of
points {x1 . . . xn} (called an unconditional sample). This can be done by an LU
decomposition (Cholesky) of the covariance matrix if it is small enough; that
is, if n is not too large. Otherwise, we use the turning bands method (Matheron
1973), which involves generating suitably chosen 1D processes (which depend
on the covariance model) along a set of 15 or more bands (lines) equally spread
in space. The projection from each band to each target point is computed and
these are then summed. We refer the reader to Emery and Lantuéjoul (2006);
Lantuéjoul (2013); Chiles and Delfiner (2009) for details. The advantage of
this method are that it reduces 3D problems into one-dimensional problems,
and also is capable of sampling grades from models with a very large number
of points.

2.3.2 Conditional scenario sampling

The next step is to produce sample grades conditional on the available data. To
set the stage, consider a finite set of points {x1 . . . xn}, and let D ⇢ {1 . . . n}
denote the subset of indices of points for which we have information, either
from drill holes or extracted blocks. (That is, grade realizations z(xi), i 2 D
have been observed.)

Let I ✓ Dc denote the (index) set of points we would like to sample (ore)
from, conditional on (the information from points in) D, and let bZ(xi|D)
denote the estimate of Z(xi), conditional on D, i 2 I. Suppose that we have
access to an unconditional sample {z0(x1) . . . z0(xn)} of {Z(x1) . . . Z(xn)} (see
prior section). Then, a conditional sample bZ(xi|D), i 2 I, is given by

bZ(xi|D) = z0(xi) +
X

j2D

�j(xi)(z(xj)� z0(xj)). (3)

where {�j(xi), j 2 D} denote the solution to the kriging system (2), solved
at point xi, using the input {xj , j 2 D}). Note that the conditional sample is
such that di↵erence between the estimated grade and its unconditional sample
equals the weighted (using the kriging weights) sum of the same di↵erences
across the points in D. Moreover, note that the last term in (3) corresponds
to the di↵erence in the krige estimates when using inputs {z(xj), j 2 D} and
{z0(xj), j 2 D}. See Chiles and Delfiner (2009) for details. In summary, given
ore data for points inD (drill holes and extracted blocks), the following scheme
is used to sample grades in a set of points I:

1. Generate an unconditional sample (z0i, i 2 I [D) of (transformed) grades
using the turning bands method.
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2. Compute kriging weights by solving (2), for each target point i 2 I, using
{xj , j 2 D} as input (because the transformed grades have known mean,
we set µ = 0).

3. Given the observed (transformed) grades {z(xj), j 2 D} compute the con-
ditional samples using equation (3). (Alternatively compute the di↵erence
between kriging estimates using unconditional sampled and observed in-
put)

4. Un-transform the conditional kriging estimates to obtain conditional grade
samples at the target points.

3 Optimization models

In this section we propose an adaptive production scheduling policy for the
mine planning problem under geological uncertainty. To make the model clear,
we give a gradual exposition where we first present a simplified bare-bones
version of the multi-stage mining problem with no stochasticity or adaptivity.
Then in Section 3.1 we present a non-adaptive version of the problem when
the ore grades are uncertain; and finally, in Section 3.2, we present the pro-
posed adaptive policy. Our methodology is tailored to the specific geostatistical
models frequently used to represent the geological uncertainty of the mineral
contents in mines; in particular, we use the model for geological uncertainty
discussed in Section 2 to estimate, simulate and update the ore grades in our
optimization policy.

Simplified model with no stochasticity or adaptivity. Consider the following
simplified version of the mine planning problem, when grades are deterministic.
The objective is to maximize the economic value from exploiting the mine over
a (finite) set T of time periods. The ore-body is discretized into a finite set of n
blocks, which are clustered into a partition B := {B1 . . . Bm} (here, m denotes
the number of clusters); that is, a cluster is a subset of blocks, and clusters are
such that each block belongs to a cluster, and no two clusters share blocks.

At each time period t 2 T , all blocks in a cluster Bi 2 B are extracted,
or none is. We let binary variable ✓i,t denote such an extraction decision, i.e.
✓i,t = 1 if all blocks in cluster Bi are extracted at period t, and ✓i,t = 0 if none
is. (In the sequel, we refer to a cluster by its index). If cluster i is extracted
during period t 2 T , then each block b 2 Bi can be processed, either partially
or completely. Let continuous variable yb,t 2 [0, 1] denote the portion of block
b that is processed in period t (which, jointly, we refer to as the processing
decision in period t).

A cluster can be extracted in at most one time period, and extraction
decisions are subject to a series of precedence rules, summarized in the set P ,
such that (i, j) 2 P if in order to extract cluster i in period t, then one must
extract cluster j prior or during period t.

Each period has a total processing capacity of Kpr; processing whole block
b requires kprb units of such capacity (we assume that required capacity scales
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linearly with the processing decision). Similarly, each time period has a finite
total extraction capacity Kex; extracting cluster i at any given period requires
kexi units of capacity. Lastly, we assume that there is a cost wi,t associated
with extracting cluster i at time t, and that processing block b at time t
generates economic value equals to ⇢tvb (scales linearly), where ⇢ denotes a
relevant discount factor5. Note that the component vb of such an economic
value depends on the ore grades, which in this model are deterministic.

Considering the above, a simplified version of the mine planning problem
is given by

max
X

t2T

⇢t

2

4
X

bn

vb yb,t �
X

im

wi,t ✓i,t

3

5 (4a)

s.t.
X

t2T

✓i,t  1 8 i  m (4b)

✓i,t 
X

st

✓j,s 8 (i, j) 2 P, t 2 T (4c)

X

im

✓i,t k
ex
i  Kex 8 t 2 T (4d)

yb,t  ✓i,t 8 i  m, b 2 Bi, t 2 T (4e)
X

bn

yb,t k
pr
b  Kpr 8 t 2 T (4f)

✓i,t 2 {0, 1} 8 i  m, t 2 T (4g)

0  yb,t  1 8 b  n, t 2 T. (4h)

Model (4) is a 0-1 mixed integer programming formulation, that maximizes
the net present value of the production value minus the excavation costs. Con-
straint (4b) imposes that each cluster is extracted at most once, (4c) makes
sure the optimal solution satisfies the precedence constraints of clusters, ex-
cavation capacity constraints for each period are considered in Equation (4d),
Constraint (4e) requires that all material send to processing must be extracted
in the same period, Constraint (4f) imposes processing capacity constraints for
each time period, variables type constraints are in Equations (4g) and (4h).

3.1 Non-adaptive stochastic programming problem

We consider now a setting where ore grades are stochastic. For that, we assume
that a model for ore grade uncertainty is available. That is, we assume that
the joint distribution of the ore grades, at the block level, is available. In
formulating the problem, we build upon the simplified optimization problem

5 Economic value from processing might include discount factors, operational costs, com-
modity prices, mineral ore grades, etc. per cluster or block. For clarity of exposition we
assume economic values are time-homogeneous up to a discount factor.
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shown above, and consider the two-stage stochastic programming formulation
in Moreno et al. (2017). Such a formulation is non-adaptive, as it does not
take into account any information update based on new data that may become
available as the mine is exploited. Because such a formulation is scenario-based,
we assume that there exists an e�cient procedure to generate samples from
the joint ore grade distribution. As detailed in Section 2, such a procedure
is indeed available for Gaussian-based uncertainty models, which are quite
standard in geostatistics.

In order to formulate the problem, we make two assumptions. First, we
assume that a block’s ore grade does not a↵ect its extraction value (although
we allow it to a↵ect the value of processing the block). Second, we assume
that, once a block is extracted, its true ore grade is immediately observed, and
that such data can inform the processing decision (i.e., how much of the block
to process).

From above, one can formulate a two-stage stochastic program, where in
the first stage extraction decisions are made for all periods, and processing de-
cisions are relegated to the second stage. Thus, in this formulation, extraction
decisions are made before ore grades are observed, and processing decisions
are made after the uncertainty is realized, as grade uncertainty is resolved
once blocks are extracted. In terms of the formulation in the previous section,
we now have that the economic value vb associated with processing block b
is a random variable, which we denote by Vb. (In the sequel, we assume all
variables are embedded in a probability space (⌦,F ,P).)

Defining ✓✓✓ := {✓i,t : i  m, t 2 T} and V := {Vb : b 2 B}, we can
formulate the (non-adaptive) stochastic program (nA-SP) proposed in Moreno
et al. (2017),

(nA-SP) max E [Q(✓✓✓,V(!))]�
X

t2T

⇢t
X

im

wi,t ✓i,t

s.t. (4b), (4c), (4d) and (4g)

where for given vectors v = {vb : b 2 B} and ✓ we define

Q(✓✓✓, v) := max
X

t2T

⇢t
X

b2B

vb yb,t

s.t. yb,t  ✓i,t 8 b 2 Bi, i  m, t 2 T
X

bn

yb,t k
pr
b  Kpr 8 t 2 T

0  yb,t  1 8 b  n, t 2 T.

Note that the expectation in the definition of nA-SP above is taken with
respect to the ore grades (we emphasize this by making the dependence of
the random grade vector V(!) in ! 2 ⌦ explicit). Also, note that processing
decisions depend on the vector of grades V(!), via the definition of Q(·, ·),
and thus, are random variables themselves.
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The term E [Q(✓✓✓,V)] depends in a non-trivial fashion on the distribution
of V. For that reason, the standard approach to solving the formulation above
is to use a Sample Average Approximation (SAA) (see, e.g., Kleywegt et al.
(2002), Shapiro et al. (2009) and Homem-de-Mello and Bayraksan (2014) for
overviews of such an approach). Suppose that we have access to a set {vs : s 
S} of S independent samples (also called scenarios) from V, where vs := {vsb :
b 2 B}, for s  S. Such samples might be obtained, for example, by using
the unconditional simulation procedure described in Section 2.3.1 to sample
ore grades, and use those to compute economic values. The SAA approach
consists on approximating the EV [Q(✓✓✓,V(!))] by its sample mean, i.e.

E [Q(✓✓✓,V(!))] ⇡ 1

S

SX

s=1

Q(✓✓✓, vs).

Note that the number of variables and constraints in the resulting formu-
lation depend on the number of samples considered, and thus, might result
in prohibitively long solution times using standard commercial solvers. Such
a formulation, however, might be solved by specialized algorithms, for ex-
ample, Benders-type decomposition algorithms that separates the extraction
decisions (first-stage decisions) from the processing decisions for each scenario
s (second-stage decisions). See also Muñoz et al. (2018) for a decomposition
algorithm based on the Bienstock-Zuckerberg algorithm. For more details on
the specialized algorithm we use in this article, see the Appendix.

3.2 Adaptive rolling-horizon policy

In this section we present our adaptive policy for the production optimization
in open-pit mining. Our starting point is the non-adaptive stochastic program
nA-SP in the previous section. Using such a formulation, we propose a rolling-
horizon policy that, at each time period, updates the ore-grade distribution,
and generates new scenarios, based on the latest ore-grade observations, and
then solves an instance of nA-SP to set extraction decisions for the current
period.

At a general level, the key ingredients of the procedure are: an e�cient
method for updating ore-grade distributions of non-extracted blocks, condi-
tional on ore-grades realizations for extracted blocks; and an e�cient method
to solve the non-adaptive version of the problem. In particular, regarding the
first of these ingredients, we consider a Gaussian-based model for ore-grade
uncertainty, and thus, we can use the procedure discussed at the end of Sec-
tion 2.3.2 to generate conditional ore-grade samples. Regarding the second
ingredient, we formulate the mine planning problem so that its non-adaptive
formulation corresponds to the two-stage stochastic program nA-SP, for which
there exists e�cient (specialized) algorithms (e.g., see Escudero et al. (2020)
for scenario group decomposition, Zou et al. (2019) stochastic nested decom-
position, and Muñoz et al. (2018) for column-generation based approach; see
also Escudero et al. (2017) for a recent survey on the topic).
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The adaptive policy we propose is summarized in algorithmic form in Al-
gorithm 1.

Algorithm 1: A-RH policy

Generate a set of S ore-grade scenarios, conditioned on drill-holes data,
using the procedure in Section 2.3.1.
for t 2 T do

1. Formulate and solve nA-SP with the extraction and processing decisions
for periods s � t and extraction and processing decisions of periods s < t
fixed.
Result: Set extraction decisions for period t according to the solution to
nA-SP. In particular, extract clusters for which ✓i,t = 1.

2. Observe ore grades for blocks in clusters extracted in period t, i.e.,
observe vb for b 2 Bi for all i such that ✓i,t = 1.

3. Set processing decisions for period t according to the solution to

max

8
<

:
X

i:✓i,t=1

X

b2Bi

vb yb :
X

i:✓i,t=1

X

b2Bi

yb k
pr
b  Kpr, 0  yb  1 8 b  n

9
=

; .

4. Update the set of S ore-grade scenarios, conditioned on drill-holes data
and observed ore grades from blocks in clusters extracted so far, using the
procedure in Section 2.3.2.

end

Note that the optimization problem in step 3 above adapts processing
decisions to the ore grades observed for extracted blocks. This is necessary
because the solution to nA-SP might not include said observed grades in any of
the scenarios considered in said formulation. In this regard, the maximization
in step 3 is a sub-problem embedded in nA-SP. It is important to note that,
because of the continuous nature of its decision variables, it can be solved
e�ciently by a greedy algorithm. In step 4 of the algorithm the update is
carried on by using all (or a subset) of the data extracted so far in periods
1, . . . , t. Thus, a new set of scenarios for the unextracted blocks is generated
using conditional simulations on the drill holes and extracted blocks data.

The resulting policy adapts extraction and processing decisions to the latest
observations of the ore-grades, by using the (non-adaptive) stochastic program
(nA-SP) in a rolling horizon manner. Consequently, we call this the adaptive
rolling-horizon policy and denote it by (A-RH).

Remark 1 As mentioned before, the complexity of solving nA-SP depends on
the size of the instance, and the number of scenarios considered. Thus, solution
times for practical instances of the problem are typically measured in hours.
In addition, the complexity of sampling conditional ore-grades depends on the
number of non-extracted blocks as well on that of extracted blocks, and drill
holes (in addition to various other tuning parameters). Thus, as our numerical
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experiments show, running times for generating conditional samples might also
go as high as an hour, for practical instances of the problem. In this regard, it
is important to note that the typical length of a time period in mine planning
is a calendar year (with time horizons going as high as 25 years).

4 A one-step look-ahead policy

A major drawback of the policy prescribed by nA-SP is that extraction de-
cisions are made before the beginning of the planning horizon, and are not
revisited as more information (on ore grades) is gathered. To see this, note
that, when envisioned as a dynamic system, the planning process can be im-
proved by considering the class of closed-loop extraction policies, instead of
adopting an open loop policy (that prescribed by nA-SP).

The rolling-horizon policy discussed in Section 3.2 belongs to the class of
closed-loop policies, as extraction decisions adapt to new information gathered
on each period. Such a policy, however, is in fact myopic in the sense that,
being based on the solution to nA-SP, it fails to anticipate that extraction
decisions are revisited after each period. This is, defining ✓t := {✓i,t, i  m},
at period t 2 T the A-RH policy implements extraction decision ✓t assuming
that extraction decision ✓s will be implemented in period s for all s > t, which
is not the case.

In order to improve performance, one might allow policies to anticipate the
e↵ect of adapting future decisions to upcoming information. For this, one can
formulate the mine planning problem using dynamic programming (DP). A
conceptual scheme of such a formulation is the following: at time t extraction
and processing decisions come from solving

max

n
E|t

h
payo↵

period t

i
+E|t

s.t.
⇣
operational
constraints

⌘

"
max

n
E|t+1

h
payo↵

period t+1

i
+E|t+1

s.t.
⇣
operational
constraints

⌘

"
max

n
E|t+2

h
payo↵

period t+2

i
+E|t+2

s.t.
⇣
operational
constraints

⌘

"
. . .

...+E|T�1

"
maxE|T

h
payo↵

period T

i

s.t.
⇣
operational
constraints

⌘

#o
. . .

#o#o#o
,

where E|t indicates the expectation conditional on the information that is
available at the beginning of period t, the payo↵ in each period corresponds to
the economic value of the extracted ore minus extraction and processing costs,
and “operational constraints” refer to precedence and capacity (extraction and
processing) constraints.

A policy solving the DP formulation above anticipates that extraction deci-
sion are being revisited on each period. In this regard, each expectation above
is taken with respect to the distribution of ore grades conditional on the infor-
mation available at the time the extraction decisions is to be made. This is a
case of a sequential decision-making problem under uncertainty with decision-
dependent information uncertainty, following the terminology proposed by
Hellemo et al. (2018). Models of this type are notoriously hard to solve —
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typically, one needs to resort to integer variables to model the dependence
on decisions (Hellemo et al. 2018; Escudero et al. 2020; Goel and Grossmann
2006; Boland et al. 2008).

In what follows, we propose a policy based on approximate dynamic pro-
gramming (ADP) approach. In particular, we consider a one-step look-ahead
policy, which is a standard approach in the ADP literature; see for example
Powell and Ryzhov (2012). This policy, which we refer to as the ADP policy,
implements an extraction decision in period t considering that extraction de-
cisions will be revisited in period t+ 1 (and thus adapting to the information
gathered during period t), but in a open-loop manner. This is, for a fixed
extraction decision for period t, the policy anticipates the many possible (con-
ditional) ore-grade distributions that one might face in period t + 1, and for
each one of those distributions, commits to implement a sequence of extraction
decisions, from periods t+ 1 to T , that will not be revisited in the future (as
prescribed by nA-SP).

In terms of the scheme illustrated above, the ADP policy solves at time t
the following problem

max E|t

h
payo↵

period t

i
+ E|t+1

s.t.
�
operational
constraints

�

2

4
value of nA-SP
starting at
period t+ 1

3

5 .

In this regard, the ADP policy goes beyond the A-RH policy in anticipating
that extraction decisions will be revisited in the future, but does so while
assuming that such an opportunity is available only at the beginning of the
next period (hence the term one-step look-ahead). Thus, the policy can be
seen a going one step closer to the DP solution, relative to A-RH. Next, we
describe the ADP policy formally.

4.1 An Approximate Dynamic Programming Formulation

Consider the mine planning problem starting at period t 2 T , and let Dt

denote the set of clusters already extracted prior to time t. With this, let Vt

denote the information gathered prior to period t. Formally, define

Vt := {! 2 ⌦ : Vb(!) = vb, b 2 [i2DtBi},

where vb denotes the economic value observed (modulo the discount factor)
for block b upon extraction.

We can write the NPV of the operations (starting in period t) as the
sum of: (i) the extraction cost in period t, (ii) the expected revenue from
processing blocks in period t; and (iii) the expected profit of subsequent periods
conditioned to the information gained. Thus, we get the following dynamic
programming formulation

Jt(Dt,Vt) = max
I2I(Dt)

(
E [Qt(I,V(!))|Vt]�

X

i2I

wi,t + ⇢E [Jt+1(Dt [ I,Vt+1(Dt [ I,!))|Vt]

)
,

(5)
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where I(D) denotes the collection of subsets of clusters that can be extracted
in a period if clusters in D have already been extracted in the past, i.e,

I(D) :=

(
I ✓ Dc :

X

i2I

kexi  Kex,
[

i2I

{j : (i, j) 2 P} ✓ I [D

)
,

and, for a set of clusters I and a vector v = {vb : b 2 [i2IBi}, Qt(I, v) denotes
the single-period optimal profit from processing blocks from clusters in I when
their economic values are given by v, i.e.

Qt(I, v) := max

(
X

i2I

X

b2Bi

vb yb :
X

i2I

X

b2Bi

yb k
pr
b  Kpr, 0  yb  1

)
.

(This is indeed the optimization problem solved in step 3 of Algorithm 1.)
Note that the expectations in (5) above are taken with respect to the grade
vector V, conditional on the information available at the beginning of period t,
Vt. We highlight this fact by adding the dependence on ! for random objects.
In this regard, note that, given set of clusters D and Vt, we have that

Vt+1(D,!) = {!0 2 ⌦ : Vb(!
0) = Vb(!), b 2 [i2DBi}

Formulating (and solving) (5) is very hard in general: because of its re-
cursive nature, backward induction is typically required, and the numerical
complexity is tied to the size of the state space, which in this case is un-
countable. For these reasons, we combine a SAA approach to approximating
expectations, and a one-step look-ahead approach to approximate the contin-
uation value (starting on period t+1) to obtain an approximate solution. This
is, we solve

eJt(Dt,Vt) := max
I2I(Dt)

8
<

:
1

S

X

sS

Qt(I, v
s)�

X

i2I

wi,t +
⇢

S

X

sS

nA-SP(Dt [ I, V s(I [Dt), t+ 1)

9
=

; ,

(6)
where {vs : s  S} corresponds to a set of S independent samples from V,
conditional on Vt, and for a given s and cluster set D, V s(D) is a set of S
independent samples from V, conditional on

Vt+1(D, s) := Vt \ {! : Vb(!) = vsb , b 2 [i2DBi},

the information available at the beginning of period t+1 (for a given decision
I) under scenario s. In this regard, nA-SP(D,V, t) denotes the solution to nA-
SP, starting in period t, once clusters in D have been extracted in the past,
and the set of scenarios V is used in the SAA approach. That is,

nA-SP(D,V, t) = max
X

u�t

⇢u�t

0

@ 1

|V |
X

v2V

Qu({i : ✓i,u = 1}, v)�
X

im

wi,u ✓i,u

1

A
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s.t.
X

u�t

✓i,u  1 8 i  m

✓i,u 
X

u0u

✓j,u0 8 (i, j) 2 P, u � t

X

im

✓i,u k
ex
i  Kex 8 u � t

✓i,u 2 {0, 1}, 8 i  m,u � t, ✓i,t�1 = 1, 8i 2 D.

A key observation about formulation (6) is that the set V s(Dt [ I) of sam-
ples used in formulating nA-SP(·) depends on the extraction decision I. For
this reason, it is not possible solve nA-SP(·) directly as stated above using
regular integer programming techniques. We sidestep this di�culty by solving
(6) via complete enumeration. In this regard, note that, precedence and capac-
ity constraints considerably limit the possible extraction decisions in practical
settings, especially early in the planning horizon. Thus, for a fixed extraction
decision ✓✓✓t, it is possible to generate S ore grade samples, conditional on the
information available from all extracted clusters. While the procedure is com-
putationally intensive, our numerical results show reasonable solution times
are achievable. The e↵ort is, of course, justified as long as the ADP approach
is able to improve upon the performance of the A-RH policy. We explore this
issue next.

4.2 Illustration of the theoretical policy performance

To illustrate the theoretical advantage of an ADP approach, we consider a
small stylized instance of the mine planning problem. With this example, we
show that the ADP-based policy might perform arbitrarily better than the A-
RH policy. The mine associated to such an instance is illustrated in Figure 1.
The diagram represents a mine with three columns of n blocks each. The
symbols inside the blocks correspond to random variables representing the
Gaussian (transformed) ore grades. As can be seen from the figure, all blocks
in the first column are identical (with an ore grade given by Y ) and all blocks
in the second column are identical, with an ore grade W . Suppose now that
W = 2µ�Y , where µ = E[Y ]. This implies that E[W ] = µ = E[Y ], Var [W ] =
Var [Y ] = �2 and Corr(Y,W ) = �1. Suppose in addition that U1, . . . , Un are
i.i.d. with mean E[Ui] = ⌘ > µ, and that each Un is independent of Y and W .
There are n periods, and the capacity for extraction and processing is one block
per period. Finally, to complete the description of the model, suppose that (i)
all blocks have the same extraction cost w, (ii) each cluster contains exactly
one block, and (iii) the value of each block b is equal to its (transformed) ore
grade, and ⇢ = 1.

Consider first the solution prescribed by the nA-SP formulation in Section
3.1: one can see that its optimal solution is to extract the n blocks in the third
column (one per period), which yields an optimal value equal to E[

Pn
t=1 Ut]�Pn

t=1 w = n(⌘ � w).
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Fig. 1 An artificial example of a mine with 3n blocks.

Consider now the A-RH policy: because extracting a block in the third
column does not give any new information about the remaining blocks (due
to independence), the solution prescribed is that prescribed by the nA-SP
formulation, thus achieving the same performance.

Consider now the ADP model (6) applied to this example: in the first
period, the decision is whether to extract the top block from the first, second,
or third columns. Let us consider the three cases separately.

Case 1: Extract a block from the third column. In this case, the immediate
contribution to the objective function is U1�w. Moreover, since no information
is acquired, the calculation for the approximating value function is identical
to the two-stage case, so the objective function value corresponding to this
solution is given by

f1 = E [U1 � w] + (n� 1)(⌘ � w) = n(⌘ � w).

Case 2: Extract a block from the first column. Suppose its grade is y. Then, the
immediate contribution to the objective function is y � w. Because blocks in
the first column are identical a.s., after observing the grade y of the extracted
block, all the blocks below that one have mean y and variance zero. Similarly,
all blocks in the second column have mean µ� (y � µ) = 2µ� y and variance
zero. Finally, due to independence, the distribution of blocks in the third
column is not a↵ected. Therefore, if y > ⌘ the two-stage problem inside the
approximating value function will extract the remaining n�1 blocks from the
first column, whereas if 2µ�y > ⌘ it will extract the top n�1 blocks from the
second column. It follows that in this case, the objective function associated
with this solution is given by

f2 = E
⇥
Y � w + (n� 1)

�
Y 1{Y >⌘} + (2µ� Y )1{2µ�Y >⌘} + ⌘1{max(Y,2µ�Y )⌘} � w

�⇤
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Define

� := E
⇥�
Y 1{Y >⌘} + (2µ� Y )1{2µ�Y >⌘} + ⌘1{max(Y,2µ�Y )⌘}

�⇤
� ⌘.

Because the sets {Y > ⌘} and {2µ � Y > ⌘} have positive probability (Y is
normally distributed), we have that � > 0 (in the strict sense). It follows that,
for any n > 1 + ⌘�µ

� we have that

f2 = µ� w + (n� 1)(⌘ +�� w) > n(⌘ � w) = f1.

Case 3: Extract a block from the second column. Following the same steps as
in Case 2 (reversing the roles of Y and W ), we have that f3 = f2, and thus
for su�ciently large n we have f3 > f1.

From above, we see that the ADP model attains an objective value equal
to f3 = f2 > f1. Because f1 equals the objective function value for both the
nA-SP and A-RH approaches, for this example the ADP approach yields a
better solution. Moreover, we have that the di↵erence in performance can be
made arbitrarily large by taking n large enough.

5 Computational Results

In this section we test (numerically) the performance of the policies described
so far. For this, we use instances from mines of several sizes, ranging from
artificially small (120 blocks) to realistically-sized mines of more than 100,000
blocks. The covariance structure considered consists of the weighted sum of
a spherical structure (0.45), an exponential structure (0.45) and nugget e↵ect
(0.1). Such a structure is used by Moreno et al. (2017) to fit experimental data
from copper deposits in Chile.

For each instance, we test policy performance on a set of 100 ore grade
samples, drawn from our geostatistical model for uncertainty. For each sam-
ple, we compute policy performance for the nA-SP, A-RH and ADP (when
possible, more details below) approaches, assuming the “true” ore-grades are
as in the sample. For the A-RH, the subsequent iterations strictly after the first
period use the solution of the previous iteration as a MIP start. In addition,
we compute the performance of a perfect knowledge (PK) policy, which has
upfront knowledge of the true ore-grades (thus, there is no uncertainty) and
therefore provides an (probably unattainable) upper bound on performance.

For each instance, and “true” ore grade sample, we proceed as follows.
First, a sample for the drill holes grades is generated. Then, conditional on
this realization, we generate sample grades for the representative points of all
blocks (this produces the “true” scenario). Then, we simulate decisions made
by each policy, period by period. We use the number of drill holes as a proxy for
the amount of knowledge policies have a priori: we conduct sensitivity analysis
on policy performance as a function of the number of drill holes in order to
assess the role of uncertainty in the model.
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In our experiments, we use a HP ProLiant SL230s Gen8 computer with
20 cores available (2 ⇥ Intel Xeon E5-2660 10 cores each). With five of these
machines, we were able to parallelize all 100 simulations for each instance.

Instance set-up. We parameterize a mine by constants h � 2 and ` by consid-
ering a grid of drill hole grade samples represented by the locations specified
in the set DH, defined as follows:

DH =
n
(x1, x2, x3) = (20i, 5 + 20(j � 1), 5 + 10(k � 1)) 2 Z3 :

i, j 2 {1, . . . 2h�1}, k 2 {1, . . . , `}
o
. (7)

In the above, x3 corresponds to the depth coordinate, and (x1, x2) are its
locations on a plane parallel to the surface. With this, there are 22(h�1) drill
holes. For some experiments, we did not use all the drill holes in DH; in such
cases we took a subset of 22r points in DH (r = 0, . . . , h � 1) in such a way
that such points were equally spaced on the (x1, x2) plane.

Similarly, the set of blocks is represented by B, which is defined as follows:

B =
n
(x1, x2, x3) = 5 + 10 · (i� 1, j � 1, k � 1) 2 Z3 :

i, j 2 {1, . . . 2h}, k 2 {1, . . . , `}
o
. (8)

The total number of blocks in B is 22h`. In order to ensure the slope stability
of the open-pit, the walls must be inclined at less than about 45o (the precise
angle depends on the properties of the rock.), which means that there are
e↵ectively fewer blocks at lower levels. In our experiments, we only considered
blocks that were feasible for extraction.

We discuss now the structure of the precedence constraints. For that, let
us index blocks so that if block b1 is closer to the surface than block b2, then
b1 < b2. At the block level, a block cannot be extracted until the blocks above
them have been removed. Thus, we first define precedence constraints at the
block level as follows

PBlock =
n
(b1, b2) : |xb1

1 � xb2
1 |  10, |xb1

2 � xb2
2 |  10, xb2

3 = xb1
3 + 10,

1  b1 < b2  |B|
o
.

With this constraints at hand, we define the set P by using a bench-phase
design (see, e.g. Moreno et al. (2017)) considering precedence constraints for
adjacent clusters in the North-South and West-East directions, and also in the
top-down direction.
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5.1 Numerical tests

In our tests, we experiment with di↵erent number of drill holes and blocks (by
changing the values of h and `), the number of time periods |T | in the horizon,
and the number of scenarios S used by the SAA approach. With regard to
the extraction and processing capacities, we set the extraction capacity as
Kex = 1

|T |+1

P
b2B weightb, where weightb denotes the weight of block b, and

the processing capacity is set to be half of that amount: Kpr = Kex/2. Table 1
gives the values of the input parameters we used to run our experiments, and
Table 2 presents the results of these runs having a three hours limit to finish
all the evaluations, for all policies, given an out-of-sample scenario (for the
virtual true grades).

The results in Table 2 are quite striking. We see that, even for the large
mines, nA-SP and A-RH policies lead to values that correspond to 95% or more
of the upper bound given by the PK policy. Such a percentage increases even
further with the number of drill holes. While it is indeed expected that the gap
to the PK upper bound goes to zero with the number of drill holes (because
uncertainty is reduced), it is still remarkable that even with the information
from only one drill hole the gap is small. We also see that the A-RH policy
produces even smaller gaps than those obtained with nA-SP, although if the
number of drill holes is large, then both policies converge to the PK solution.
The table also show that, as expected, the problems become more complex as
the number of blocks, the number of periods (|T |) and the size S of the in-
sample increase. However, the results suggest that computation times grow less
than linearly in terms of number of blocks and size of the in-sample; the most
critical factor seems to be the number of time periods—which is not surprising,
as it is known from the literature on multistage stochastic optimization that
the complexity of the models grows quickly with the number of stages, in
some cases even exponentially (see Shapiro (2006)). Interestingly, the solution
time of the nA-SP and A-RH falls under the same order of magnitude, this
is in part because at each iteration of the A-RH, the size of the problem the
procedure solves decreases in one time period and several blocks and clusters
extracted up to the previous time periods. The other factor that diminishes
the computational e↵ort of the A-RH with respect to nA-SP, is that at each
iteration of the A-RH the solution given in previous iteration is used as a MIP
start.
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id. h ` |T | S
# Instances
Solved to
optimality

# Binary # Continuous # Restrictions
Matrix
non-zero
elements

Matrix
Density 10�4

Case 1 3 4 5 1 100 100 600 1,390 3,240 33.3
Case 2 3 4 10 1 100 200 1,200 2,760 8,080 20.91
Case 3 3 4 5 50 100 100 30,000 31,035 62,040 0.66
Case 4 3 4 10 50 100 200 60,000 62,050 125,680 0.34
Case 5 3 4 5 100 100 100 60,000 61,285 122,040 0.33
Case 6 3 4 10 100 100 200 120,000 122,550 245,680 0.17
Case 7 5 6 5 1 100 240 22,220 45,018 91,440 0.9
Case 8 5 6 5 50 100 240 1,111,000 1,134,043 2,269,000 0.02
Case 9 5 8 5 1 100 320 25,840 52,474 106,880 0.78
Case 10 5 8 5 25 98 320 646,000 672,754 1,347,200 0.03
Case 11 5 8 5 50 100 320 1,292,000 1,318,879 2,639,200 0.02
Case 12 6 14 5 1 92 560 186,620 374,682 752,880 0.11
Case 13 7 6 5 1 99 240 454,220 909,018 1,819,440 0.04
Case 14 7 8 5 1 61 320 586,480 1,173,754 2,349,440 0.03

Table 1 Parameters used to run numerical tests: h and ` determine the size of the
mine, |T | and S are the number of periods and scenarios respectively, and the last column
has the number of instances solved out of 100.
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id.
Number
of blocks

*Extraction
Capacity

Number of
precedences

Number
of Clusters

Av No Blocks
per Cluster

**nA-SP–A-RH

Time–sec. 1�gap

1 120 20.0 32 20 6.0
6.85;
0.50;
0.49

8.08;
1.23;
1.23

0.992;
0.975;
0.955

0.993;
0.975;
0.959

2 120 10.91 32 20 6.0
10.13;
4.6;
4.16

18.7;
13.03;
12.51

0.987;
0.966;
0.925

0.988;
0.97;
0.955

3 120 20.0 32 20 6.0
8.05;
1.9;
2.2

10.33;
3.71;
4.1

0.999;
0.989;
0.963

1;
0.988;
0.973

4 120 10.91 32 20 6.0
56.08;
107.1;
234.77

145.02;
286.91;
622.45

0.995;
0.976;
0.949

0.994;
0.98;
0.966

5 120 20.0 32 20 6.0
8.13;
4.52;
4.68

12.22;
8.28;
8.68

0.999;
0.987;
0.964

1;
0.988;
0.975

6 120 10.91 32 20 6.0
146.96;
318.83;
677.87

387.05;
789.53;
1622.12

0.992;
0.984;
0.963

0.993;
0.984;
0.972

7 4444 740.67 104 48 92.58

49.46;
33.49;
43.29;
61.23;
111.49

67.8;
52.7;
64.26;
86.88;
138.5

0.995;
0.993;
0.982;
0.963;
0.948

0.995;
0.993;
0.986;
0.977;
0.971

8 4444 740.67 104 48 92.58

288.81;
318.65;
369.9;
460.67;
605.41

482.63;
534.51;
636.96;
742.29;
936.9

0.997;
0.996;
0.987;
0.964;
0.958

0.997;
0.997;
0.989;
0.982;
0.98

9 5168 861.33 144 64 80.75

101.88;
83.64;
71.3;
90.38;
70.31

135.13;
120.13;
109.79;
121.15;
107.68

0.999;
0.996;
0.980;
0.954;
0.948

0.999;
0.996;
0.984;
0.970;
0.969

10 5168 861.33 144 64 80.75

222.66;
246.14;
328.09;
1018.12;
1817.17

377.01;
411.4;
517.53;
1229.98;
2032.93

0.997;
0.996;
0.985;
0.961;
0.952

0.997;
0.996;
0.991;
0.981;
0.979

11 5168 861.33 144 64 80.75

374.95;
364.03;
429.49;
774.68;
1900.44

651.57;
672.53;
766.49;
1185.31;
2339.23

0.997;
0.996;
0.985;
0.968;
0.951

0.998;
0.997;
0.989;
0.98;
0.979

12 37324 6220.67 264 112 333.25

410.85;
604.73;
782.65;
2247.25;
12709.5;
12003.3

553.59;
801.7;
910.89;
2457.88;
13287.9;
12329.5

0.998;
0.997;
0.992;
0.979;
0.964;
0.96

0.998;
0.997;
0.994;
0.985;
0.98;
0.98

13 90844 15140.67 104 48 1892.58

372.14;
966.44;
245.71;
457.11;
605.95;
1140.25;
1206.48

502.7;
1092.16;
366.28;
606.13;
888.7;

1400.11;
1440.74

0.999;
0.998;
0.997;
0.989;
0.98;
0.976;
0.974

0.999;
0.999;
0.997;
0.991;
0.986;
0.984;
0.983

14 117296 19549.33 144 64 1832.75

693.71;
503.13;
397.87;
1402.4;
21117.4;
30773.2;
32360.4

857.89;
690.55;
638.12;
1606.31;
21510.5;
32003.9;
33004.2

0.999;
0.999;
0.996;
0.989;
0.981;
0.977;
0.973

1.0;
0.999;
0.997;
0.991;
0.987;
0.984;
0.984

* Extraction capacity is normalized in the weight (assumed equal), so it can be expressed in number of blocks.
** Rows in each cell under nA-SP and A-RH contain the values for di↵erent number of drill holes (22·(h�1), 22·(h�2),. . . , 20).

Table 2 Results from numerical tests: Cases are mapped from Table 1. Going from left
to right, columns 2 to 4 show the number of blocks for each instance, the extraction capacity
normalized in number of blocks, and the average number of blocks across clusters, while the
fifth and sixth columns present the performance in solution time for the optimization and
average 1�gap with respect to the solution of the PK policy, for the nA-SP (right) and
A-RH (left) policies.
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Policy performance in the numerical experiments is presented in Figures 2
and 3 below as a function of the number of drill-holes, where it is compared
with that for the PK policy (red line). As policies cannot perform as well as
PK, they are below the red line, with those for the A-RH policy shown in green
and the nA-SP policy in grey. In each case, the solid line shows the mean value
with the confidence interval for the mean shown around it. As expected, as
the number of drill holes increases, the average tends toward the PK value and
the width of the confidence interval decreases. Most importantly we see that
the A-RH policy (in green) consistently outperforms the nA-SP policy.

Fig. 2 Comparing the results for the A-RH (green), nA-SP policy (grey) and

PK (red) policies. In each case the solid line shows the mean value with the confidence
interval around it. Top graph is for case 7 with 4444 blocks, then case 10 with 5168 blocks.
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Fig. 3 Comparing policy performance for the A-RH (green), nA-SP (grey) and

PK (red) policies. In each case the solid line shows the mean value with the confidence
interval around it. Top graph is for case 12 with 37324 blocks, them case 13 with 90844
blocks, and finally case 14 with 117296 blocks.
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id. h ` |T | S
# Instances
Solved to
optimality

# Binary # Continuous # Restrictions
Matrix
non-zero
elements

Matrix
Density 10�4

Case 15 5 6 3 20 100 144 266640 280395 560856 0.07
Case 16 2 2 3 20 100 48 1200 1411 2760 15.67
Case 17 3 4 3 20 100 60 7200 7739 15432 2.75

Table 3 Parameters used to run numerical tests for the ADP: h and ` determine
the size of the mine, |T | and S are the number of periods and scenarios respectively, and
the last column has the number of instances solved out of 100.

Next, we explore the performance of the ADP policy of Section 4. Because
of the higher computational cost associated with the ADP policy, we consid-
ered the cases in Table 3. The results are displayed in Table 4 and Figure 4.
We see that the ADP approach unfortunately does not perform well in these
problems, despite being theoretically better (recall the setting in Section 4.2),
and more time being consumed on its computation, compared to the other
approaches. We conjecture that the theoretical advantage of the ADP ap-
proach might arise in the presence of negative correlations, which rarely occur
in practical settings, and certainly did not occur in our experiments.

id.
Number
of blocks

*Extraction
Capacity

Number of
precedences

Number
of Clusters

Av No Blocks
per Cluster

**nA-SP–A-RH–ADP

Time–sec. 1�gap

15 4444 1111 104 48 92.58

1.58;
2.07;
5.27;
8.64;
9.26;

2.46;
2.99;
6.4;
9.94;
10.5;

784.36;
789.15;
732.83;
683.24;
672.19;

1;
1;

0.98;
0.94;
0.93;

1;
1;

0.99;
0.98;
0.97;

0.99;
0.91;
0.88;
0.87;
0.87;

16 20 5.0 24 16 1.25
5.3;
0.27;

5.48;
0.48;

684.09;
1040.69;

0.97;
0.951;

0.972;
0.965;

0.966;
0.964;

17 120 20.0 32 20 6.0
5.5;
0.43;
0.44;

5.71;
0.66;
0.69;

767.19;
733.26;
714;

0.988;
0.971;
0.948;

0.99;
0.976;
0.969;

0.979;
0.975;
0.974;

* Extraction capacity is normalized in the weight (assumed equal), so it can be expressed in number of blocks.
** Rows in each cell under nA-SP, A-RH and ADP contain the values for di↵erent number of drill holes (22·(h�1), 22·(h�2),. . . , 20).

Table 4 Results from numerical tests for the ADP: Cases are mapped from Table 3.
Going from left to right, columns 2 to 4 show the number of blocks for each instance, the
extraction capacity normalized in number of blocks, and the average number of blocks across
clusters, while the fifth and sixth columns present the performance in solution time for the
optimization and average 1�gap with respect to the solution of the perfect knowledge policy,
for each policy (respectively nA-SP, A-RH, and ADP).
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Fig. 4 Comparing the results for the A-RH (green), nA-SP (grey), ADP (blue)

and PK (red) policies. In each case the solid line shows the mean value with the confidence
interval around it. The graph is for case 15 with 4444 blocks.

6 Conclusions and discussion

We have studied adaptive optimization schemes for the open pit mining pro-
duction scheduling problem; that is, the problem of deciding when and which
blocks to exploit in an open-pit mine over a multi-period time horizon, in or-
der to maximize the total profit of the mining operation. In addition to being
theoretically hard, perhaps more importantly, the problem is quite di�cult
from a practical standpoint: it is a high-risk high-stakes problem as it con-
siders long term planning subject to uncertainty, and practical instances are
typically quite large.

As we have discussed, the mine planning problem under geostatistical un-
certainty (i.e. when the mineral content of the blocks in the mine model are
random) is very hard to tackle; in our work, we have studied production poli-
cies that sequentially adapt to the observed ore grade content of the mine. That
is, we incorporate the fact that, as the deposit is mined over time, the actual
ore grade content of mined blocks can be used to update and re-optimize the
production schedule of the remaining parts of the mine still to be exploited.

Importantly, our work illustrates the particular challenges of studying adapt-
ability in a prototypical “di�cult” problem of large size but with a fairly “am-
icable” type of uncertainty and learning setting. Indeed, following a common
approach in geostatistics we model ore grades as a Gaussian field, or a simple
transformation of it. With this, the estimation and updating (or learning) of
unobserved ore grades based on previous observations can be carried out using
kriging, a standard technique from geostatistics. To the best of our knowledge,
this is the first work in mine planning that enhances the optimization algo-
rithm by explicitly incorporating the updates of the ore grade distribution
based on the blocks already extracted.

The main adaptive policy we consider is the adaptive rolling-horizon policy
(A-RH) (see Section 3.2), where essentially one iterates through the following
at each time period: first simulate the ore grades of unextracted blocks based
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on all previous observations; then use a (non-adaptive) stochastic program to
produce an scheduling decision for the remaining time horizon; then perform
the exploitation decision for the current time period, and in particular observe
the actual ore grades of the latest extracted blocks; then update the belief on
the ore grades’ distribution based on the latter information; and then re-iterate
from the beginning for the upcoming time period. Our numerical experiments
on a number of realistic instances show that the adaptive approach yields con-
sistently better results than the non-adaptive approach nA-SP, at a similar
computational cost—even though both approaches perform very well, reach-
ing 95% or more of the value corresponding to the perfect-knowledge solution.
Although our models do not include a number of features that are present in
more realistic mine planning models (such as stockpiling, waste management,
etc.), we believe our results demonstrate the potential of dynamically incorpo-
rating the updates of the underlying geological models into the optimization
algorithms.

We have also studied a second adaptive one-step look-ahead ADP-based
policy, which is standard in sequential decision-making problems under un-
certainty, such as the multi-armed bandit framework and other optimization
problems with learning, see Powell and Ryzhov (2012). Despite the theoretical
soundness of the ADP approach, our computational experiments show that
there is no clear gain in profit of such a method over the A-RH policy, at
least in the cases we consider. Moreover, the computational burden is con-
siderably higher, as one has to evaluate more exploiting decisions, simulate
possible outcomes, and for each outcome one has to re-estimate and simulate
further exploiting decisions. On the other hand, the toy example discussed in
Section 4.2 suggests that, in theory, the ADP approach could perform arbi-
trarily better than the A-RH policy. Nonetheless, the example also suggests
that the ADP policy is mostly valuable when there exist negative correlations
among the random variables—a situation that is not observed in the case
of ore grades where we see either positive or zero correlation among blocks.
This may help explain why the ADP was outperformed by the other methods
in our experiments. We believe that this evidence may be useful for future
research in adaptive planning in mining, and furthermore for adaptive multi-
stage stochastic programming.
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Appendix

Benders’ Algorithm

First we present the formulation to which we apply the Benders’ decomposition
approach. We consider the following model:

max� w|✓ +
1

S

SX

s=1

D(✓, s) (9)

s.t.
X

t2T

✓i,t  1 8 i  m (10)

✓i,t 
X

st

✓j,s 8 (i, j) 2 P, t 2 T (11)

X

im

✓i,t k
ex
i  Kex 8 t 2 T (12)

✓i,t 2 {0, 1} 8 i  m, t 2 T, (13)

where D(✓, s) is a sub-problem optimal value. If D(✓, s) has a solution, it is
a function of ✓ and the scenario s. Moreover let the function Q return the
value for processing extraction ✓ under scenario s, i.e. the formulation for the
sub-problem of Q(✓, s) is the following:

max
X

t2T

X

b2B

⇢tvsb yb,t (14)

s.t. yb,t  ✓i,t 8 b 2 Bi, i  m, t 2 T (15)
X

bn

yb,t k
pr
b  Kpr 8 t 2 T (16)

0  yb,t  1 8 b  n, t 2 T. (17)

Note that restriction (15) above can be replaced by yb,t  1 for all b 2 Bi

such that ✓i,t are non-zero variables, and remove all variables ybt such that
✓i,t = 0 and b 2 Bi. Clearly Q(✓, s) is a continuous Knapsack problem, and it
can be solved in O(S|B| log |B|), by sorting the block price/weight ratio values
and setting the degree of the cut when either the capacity is met or the prices
are negative. In order to proceed with the decomposition approach, one must
incorporate the dual of problem (14)–(17) into the master problem (9)–(13).
The dual, D(✓, s), of Q(✓, s) is given by

min
X

t2T, s=1,...,S

(Kprµt +
X

im, b2Bi

✓i,t�b,t) (18)

s.t. �b,t + µtk
pr
b � ⇢tvsb 8i  m, b 2 Bi, t 2 T, s = 1, . . . , S

(19)
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µt � 0 8t 2 T, s = 1, . . . , S. (20)

Since D(✓, s) is a minimization problem that gives an upper bound to
Q(✓, s), one can solve the original problem (9)–(13) with the (equivalent) for-
mulation:

max� w|✓ +
1

S

SX

s=1

zs (21)

s.t.
X

t2T

✓i,t  1 8 i  m (22)

✓i,t 
X

st

✓j,s 8 (i, j) 2 P, t 2 T (23)

X

im

✓i,t k
ex
i  Kex 8 t 2 T (24)

zs  D(✓, s) 8s = 1, . . . , S (25)

✓i,t 2 {0, 1} 8i  m, t 2 T. (26)

Note that the above formulation does not include restrictions of the type
0  D(✓, s), because the dual formulation is naturally non-negative. To estab-
lish this fact, note that ys = 0 is always a feasible solution of primal problem
Q(✓, s), thus by weak duality we get the desired result.
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