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que hay mas fotos mı́as comiendo maqui en un potrero que en la
ciudad. Fue una infancia tranquila, sin ver mucho a mi mamá de
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lo tomé muy bien. La soledad, fŕıo, e incertezas del devenir marcaron los primeros
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por Marius Mantoiu en la Universidad de Chile, y Olivier Bourget en la UC, con-
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RESUMEN

Se estudiará el operador HT , llamado el Hamiltoniano Termal, originalmente prop-
uesto por Luttinger para estudiar el efecto de un gradiente térmico en la materia.
Primero le daremos definiciones rigurosas al inicialmente formalmente autoadjunto
HT , y a operadores una serie de operadores unitariamente equivalentes a este. Pos-
terior a esto se estudiarán las propiedades espectrales de estos, y se calculará la
dinámica generada por este operador libre de perturbaciones, junto a su función de
Green y familia resolvente. En esta sección concluimos encontrando una familia de
potenciales de convolución para los cuales las condiciones de scattering se satisfacen.
Finalmente estudiaremos la dinámica del caso clásico.

ABSTRACT

We will study the operator HT , called the Thermal Hamiltonian, originally pro-
posed by Luttinger to study the e↵ects of a thermal gradient in the matter. We
will start by rigurously defining the initially formally self-adjoint operator HT , as
well as some unitarily equivalent operators. Then we will study their spectral prop-
erties, and compute their unperturbed time evolution, as their Green functions and
resolvent family. We will conclude that section by presenting a convolution poten-
tials family for which the scattering conditions are satisfied. Finally we will study
the dynamics defined by the classical case.
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1. Introduction

1.1. Main Results. Our principal subject of study is the operator HT p�, �q, from
now on called the Thermal Hamiltonian, initially in the space of Schwarz functions
as

HT ” HT p�, �q :“ p2 ` �

2

 
p2, � ¨ x

(
,

As given in equation (11). HT can be simplified through translations and rotations
to the operator T , given formally by

T ” 1

2

 
p2, x1

(
“ 1

2

`
p2x1 ` x1p

2
˘

as seen in equation (17). Both of these operators are thorougly studied in section
3. Further conjugating withe the Fourier transform we obtain pT

pT ” ´1

2

 
x2, p1

(
“ ´1

2

`
x2p1 ` p1x

2
˘

described in equation (19), studied in section 2. We will restrict ourselves to the one
dimensional case. We fully describe the self-adjoint extensions of these operators
initially defined on SpRq, further computing their spectral measures, resolvents,
unitary propagators and Green functions. We will also compute the Wave and
Scattering operators for HT and T , for a class of convolution potentials. In section
4 we will study the classical dinamics through both Hamiltonian and Lagrangian
formalism.

1.2. Motivation. The motion of an electron in a static magnetic field B inside a
medium is described by the (one-particle) Hamiltonian

(1) HpA, V q :“ KpAq ` V .

with

(2) KpAq :“ 1

2m

´
p ´ e

c
A

¯2
.

The parameters m, e and c describe the mass and the charge of the electron and
the speed of the light, respectively. The fixed (e↵ective) potential V takes care of
the interaction of the electron with the atomic structure of the medium and causes
only elastic scattering. The magnetic field enters in the kinetic term KpAq through
its vector potential (B “ rˆA). In Quantum Mechanics the Hamiltonian HpA, V q
is interpreted as a di↵erential operator acting on the Hilbert space L2pRdq where
the di↵erential part is provided by the momentum operator p :“ ´} ir (} being
the Planck constant). The potentials V “ V pxq and A “ Apxq are functions of the
position operator and act as multiplication operators.

The transport phenomena in matter are described by considering the response
of the system to an external perturbation F “ F pxq [Lut1, Lut2]. In the stationary
regime, that is when all the transient e↵ects due to the switching-on of the pertur-
bation are suppressed, the system reacts by generating a (stationary) drift current.
The latter can be computed (at least in the linear response regime, see e. g. [DL])
starting from the full dynamics generated by the perturbed Hamiltonian

(3) HpA,F, V q :“ H0pA,F q ` V .

In (3) the “free” Hamiltonian

(4) H0pA,F q :“ KpAq ` F
1



describes the motion of an electron that moves in the empty space under the influ-
ence of the (external) fields generated by A and F . The potential V in (3) describes
the interaction with the matter which generates elastic scattering of the particle.
Once the “free” dynamics generated by H0pA,F q is known one can study the in-
fluence of the matter by means of the scattering theory [RS3, Yaf] for the pair of
operators H0pA,F q and HpA,F, V q.

The best studied case concerns the response of the system to the perturbation
induced by a uniform electric field E. In this case the perturbation potential is
given by FEpxq :“ ´eE ¨ x (the “dot” denotes the product in the Euclidean space
Rd) and the associate perturbed Hamiltonian takes the form

(5) HpA,FE , V q :“ HSpAq ` V

where the “free” part is given by

(6) HSpAq :“ KpAq ´ eE ¨ x
according to (4). The operator HSpAq is known as (magnetic) Stark Hamiltonian.

The non-magnetic case HSpA “ 0q “ p
2

2m ´eE ¨x has been extensively studied since
the dawn of the Quantum Mechanics. Among the vast literature we will refer to
[AH] for a concise and rigorous presentation of the spectral theory of HSp0q and
the related scattering theory when the matter potential V is taken in consideration.
The spectral theory of HSpAq in presence of a uniform magnetic field is discussed
in [DP, ADF], among others.

In order to study the thermal transport in matter Luttinger proposed a model
which allows a “mechanical” derivation of the thermal coe�cients [Lut2]. Such
a model has been then applied and generalized successfully by other authors like
in [SS, VMT]. The essential point of the Luttinger’s model is that the e↵ect of
the thermal gradient in the matter is replaced by a “fictitious” gravitational field,
which can be easily described by a perturbation of the Hamiltonian in the spirit of
(3) and (4). More precisely one assumes that the particles are subject to a force
which has the direction of the thermal gradient rT (wher T is the distribution of
temperature) and which is proportional to the local content of energy divided by
c2 (in view of the mass-energy equivalence). The latter is given by the Hamiltonian
(2) itself. Such a thermal-gravitational field is given by the potential

(7)
FT : “ 1

2

„ˆ
rT

c2
¨ x

˙
HpA, V q ` HpA, V q

ˆ
rT

c2
¨ x

˙⇢

“ rT

c2
¨ 1
2

 
HpA, V q, x

(

where the anti-commutator t , u between HpA, V q and x is needed to make FT for-
mally self-adjoint (i. e. symmetric). The total perturbed Hamiltonian HpA,FT , V q
computed according to (3) can be written as

(8) HpA,FT , V q “ HT pAq ` W pV q
where the “free” part, called (magnetic) thermal Hamiltonian1, is given by

(9) HT pAq :“ KpAq ` rT

c2
¨ 1
2

 
KpAq, x

(

1An equivalently appropriate name for HT pAq could be (magnetic) Luttinger Hamiltonian.
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and the e↵ective gravitational-matter potential reads

(10) W pV q :“
ˆ
1 ` rT

c2
¨ x

˙
V

The thermal Hamiltonian HT pAq is the analog of the Stark Hamiltonian when the
system is perturbed by a gravitational-thermal field instead of an electric field. For
this reason it seems natural to look for the extension of the results valid for the
Stark Hamiltonian (e. g. [AH, DP, ADF]) to the case of the thermal Hamiltonian.
This consists of two consecutive problems: (i) the analysis of the spectral theory
of the “free” operator HT pAq; (ii) the study of the scattering theory for the pair
HT pAq and HpA,FT , V q. Both of these problems seem not to have been studied yet
in the literature, at least to the best of our knowledge. For this reason we devote
this work at the analysis of the questions (i) and (ii) above in the one-dimensional
case.

1.3. Mathematical Formulation. In order to formulate the problems sketched
above in a rigorous mathematical setting we will make some simplifications. The
most relevant concerns the absence of the magnetic field: From here on, unless
otherwise indicated, we will fix A “ 0. It is worth mentioning that this is not a
major restriction as long as one wants to consider only the one-dimensional regime.
Indeed in one spatial dimension the magnetic field is a pure gauge and can be
removed with a unitary transformation2 . The magnetic (multi-dimensional) case
will be the subject of a future work.

As usual in mathematics, we will normalize all the physical units: 2m “ } “ c “
e “ 1. Moreover, we will denote with � :“ |rT | the the strength of the thermal
gradient and with � :“ �´1

rT P Sd´1 its direction. With these simplifications the
thermal Hamiltonian reads

(11) HT ” HT p�, �q :“ p2 ` �

2

 
p2, � ¨ x

(
.

However, the quantum formalism need the Hamiltonian governing the time evo-
lution to be self-adjoint. Then, our first question is to prove the selfadjointness of
HT on suitable domain DpHT q.

2. The operator pT

The expression (11) is essentially formal until the domain of definition of HT

is specified. However, HT is evidently well defined on the space of the compactly
supported smooth function C

8
c pRdq or on the Schwartz space SpRdq. On these

dense domains the operator (11) acts as

(12)
`
HT 

˘
pxq :“ ´ p1 ` � � ¨ xq p� qpxq ´ � p� ¨ r qpxq ,  P SpRdq

where � :“ ∞
d

j“1
B2

Bx2
j

denotes the Laplace operator and and � ¨ r :“ ∞
d

j“1 �j
B

Bxj

.

We can simplify the last expression with the help of two unitary transformations
of the Hilbert space L2pRdq. The first one is the rotation

(13) pR� qpxq :“  
`
O´1
�

x
˘
,  P L2pRdq

2This fact can be interpreted as a consequence of the Stone-von Neumann theorem (see
e. g. [Ros]). Indeed, in one spatial dimension the pair x, ⇡f :“ p ` fpxq necessarily meets the
canonical commutation rule and so it is unitarily equivalent to the canonical pair x, p.

3



where the orthogonal matrix O� meets the condition O�� “ p1, 0, . . . , 0q. A short
computation shows that

`
R�HTR

˚
�
 

˘
pxq “ ´ p1 ` � x1q p� qpxq ´ �

B 
Bx1

pxq ,  P SpRdq

where x1 denotes the first component of the position vector x “ px1, xKq P Rd and
xK :“ px2, . . . , xdq P Rd´1 is its orthogonal component. Evidently, the rotation
R� has the role of aligning the thermal-gravitational field along the x1-axis

3. The
second transformation is the translation

(14) pS� qpx1, xKq :“  

ˆ
x1 ´ 1

�
, xK

˙
,  P L2pRdq

and a direct calculation provides

(15)
`
S�R�HTR

˚
�
S˚
�
 

˘
pxq “ �

„
´x1p� qpxq ´ B 

Bx1
pxq

⇢
,  P SpRdq .

The operator on the square brackets

(16) pT qpxq :“ ´x1p� qpxq ´ B 
Bx1

pxq ,  P SpRdq

agrees with the formal anti-commutator

(17) T ” 1

2

 
p2, x1

(
“ 1

2

`
p2x1 ` x1p

2
˘

when evaluated on su�ciently regular functions. With a slight abuse of notation
we will often use the representation (17) for the operator T instead of the more
precise definition (16).

The unitary equivalence between HT and �T given by S�R� implies that the
spectral theory of the thermal Hamiltonian coincides with the spectral theory of
the operator T and in fact leaves SpRdq invariant. For this reason one is led to
investigate if the operator T defined by (16) (or by (17)) admits some self-adjoint
extension and to compute the related spectrum. For technical reasons it results
easier to face the equivalent problems reformulated in the Fourier space. Let F :
L2pRdq Ñ L2pRdq be the Fourier transform defined by

pF qpkq :“ 1

p2⇡q d

2

ª

Rd

dx e´ i k¨x  pxq

on the dense subspace  P L1pRdq X L2pRdq. Let pT :“ FTF
˚ be the Fourier

transformed version of the operator (16). A direct computation provides

(18)
` pT 

˘
pxq :“ i

„
x1 pxq ` x2 B 

Bx1
pxq

⇢
,  P SpRdq

where x2 :“ ∞
d

j“1 x
2
j
. The operator defined by (18) agrees with the formal expres-

sion

(19) pT ” ´1

2

 
x2, p1

(
“ ´1

2

`
x2p1 ` p1x

2
˘

on su�ciently regular functions4.

3Clearly, in dimension d “ 1 the thermal-gravitational field is trivially aligned with the only
reference axis and therefore R� reduces to the identity.

4Formula (19) can be formally derived from (17) by using the well known transformations of
the canonical operators FpjF

˚ “ xj and FxjF
˚ “ ´pj for all j “ 1, . . . , d.

4



The representation (19) is quite intriguing if one compares the operator pT with
the typical generator of C0-groups associated to C8-flows [ABG, Chapter 4]. At first
glance it would seem that the general theory of C0-groups applies to pT . However,
a closer inspection to the R-flow associated to pT shows that this is not the case
in general (see Section 2.2 for more details). Therefore, the question of the self-
adjointness of pT needs to be investigated with other tools.

The first fundamental question is whether the operator pT admits self-adjoint
extensions or not. This is fortunately true.

Proposition 2.1. The operator pT as defined by (18), is symmetric (hence closable)
on SpRdq
Proof. Let  ,' P SpRdq. We then have

x pT ,'y “
ª

Rd

dx pT pxq'pxq

“
ª

Rd

dx

ˆ
ix2

B 
Bx1

pxq ` ix1 pxq
˙
'pxq

“
ª

Rd

dx

ˆ
i

B 
Bx1

p pxqxq
˙

¨ p'pxqxq

with ¨ being the usual inner product in Cd, anti-linear on the left side. Now using
integration by parts on the x1 coordinate we have, as both 'pxqx and  pxqx are
regular enough, we have

“ ´
ª

Rd

dx pi pxqxq ¨
ˆ B 

Bx1
p'pxqxq

˙

“
ª

Rd

dx  pxq
ˆ
ix2 B'

Bx1
pxq ` ix1'pxq

˙

“ x , pT'y
As this holds true for arbitrary vectors in the operator’s domain pT is symmetric.
This observation allows us to identify pT with its closure (still denoted with the
same symbol) defined on the domain

(20) D 0 :“ SpRdq || ||xT

obtained by the closure of SpRdq with respect to the graph-norm

|| ||2pT :“ || ||2 ` || pT ||2 .

The existence of self-adjoint extensions of pT is justified by the von Neumann’s
criterion as shown in A.5. Let C be the complex-conjugation (anti-linear) operator
on L2pRdq defined by C pxq “  pxq. Clearly the domains C

8
c pRdq or SpRdq are

left unchanged by C and a direct check shows that C pT “ pTC on these domains.
This is su�cient to prove the following preliminary result:

Proposition 2.2. The closed symmetric operator pT with domain D 0 has self-
adjoint extensions.

The latter result is preparatory for a precise definition of the family of thermal
Hamiltonians.

5



Definition 2.3 (Thermal Hamiltonian). Let pT✓ be a given self-adjoint extension
of the operator pT with domain Dp pT✓q Å D 0. Let U p�, �q :“ FS�R� be the uni-
tary operator given by the product of the Fourier transform F , the translation S�
defined by (14) and the rotation R� defined by (13). Then, the associated thermal
Hamiltonian is the self-adjoint operator

HT,✓p�, �q :“ � U p�, �q˚ pT✓U p�, �q , � ° 0, � P Sd´1

defined on the domain DpHT,✓q :“ U p�, �q˚rDp pT✓qs.

Definition (2.3) reduces the question of the spectral theory of the thermal Hamil-
tonian to the analysis of the self-adjoint realizations of the operator pT . This is
usually done by studying the deficiency subspaces

K˘ :“ Kerp i ¯ pT˚q .

The existence of the conjugation C for pT implies the equality of the deficiency
indices n˘ :“ dimpK˘q [RS2, Theorem X.3] which in turn ensures the existence of
self-adjoint extensions. In order to build the spaces K˘ and to compute n˘ one
needs to solve the equations pT˚ “ ˘ i which, in view of (18), is equivalent of
finding the weak solutions [RS1, Section V.4] to the di↵erential equations

(21) px2
1 `x2

Kq B 
Bx1

px1, xKq ` px1 ¯1q px1, xKq “ 0  P L2pRdqXS
1pRdq .

where S
1pRdq is the space of tempered distributions5. This problem will be solved

for the one-dimensional case in detail.

2.1. Self Adjoint Realizations. In the 1-dimensional case the operator pT is ini-
tially defined by

(22)

` pT 
˘
pxq “ i

„
x pxq ` x2 d 

dx
pxq

⇢

“ ix
d

dx
rx pxqs

 P SpRq .

Remark 2.4. The last equality allow us to formally identify

pT ” ´xpx

on su�ciently regular functions. û

The operator (22) is symmetric, hence closable and its closure (still denoted with
pT ) has domain D 0 given by (20). In order to give a more precise characterization
of D 0 we will benefit from the transformation

pB qpxq :“ 1

x
 

ˆ
1

x

˙
,  P L2pRq .

Lemma 2.5. B is a unitary involution.

5Similarly, one can consider weak solutions in L
2pRdq X D1pRdq where D1pRdq Å S1pRdq is the

space of distributions.
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Proof. A direct computation shows that

||B ||2 “
ª

R

1

x2

ˇ̌
ˇ̌ 

ˆ
1

x

˙ˇ̌
ˇ̌
2

dx “
ª `8

´8

ˇ̌
ˇ̌ 

ˆ
1

x

˙ˇ̌
ˇ̌
2

d

ˆ
1

x

˙
“
ª ´8

`8
| psq|2 ds “ || ||2.

Then B, initially defined on any good dense domain, extends to an isometry on
the whole L2pRq. From its definition it follows that B2 “  . This shows that B
is an involution, and in particular it is invertible. ⇤

Instead of pT let us consider the conjugated operator } :“ B pTB defined on the
domain Dp}q :“ BrD 0s. Using standard notation let Hkp⌦q :“ W k,2p⌦q Ä L2p⌦q
be the k-th Sobolev space6 with respect to the open set ⌦ Ñ R. Let us introduce
the space

H1
0 pRq :“

 
� P H1pRq

ˇ̌
�p0q “ 0

(

of the Sobolev functions on R vanishing in x “ 0. This condition makes sense, as
Sobolev functions can be uniquely identified with continuous functions [Bre, The-
orem 8.2]. In view of this we will continue to identify Sobolev functions with their
continuous representative so that the following inclusions H1

0 pRq Ä H1pRq Ä CpRq
hold.

Proposition 2.6. The closed symmetric operator } coincides with the momentum
operator on H1

0 pRq, namely

p}�qpxq “ ´ i�1pxq , � P Dp}q “ H1
0 pRq

where �1 is the weak derivative of �.

Proof. The unitarity of B implies that the graph norms of } and pT are related by
||�||} “ ||B�|| pT for all � P Dp}q. In fact

||�||} “ ||�|| ` ||}�|| “ ||�|| ` ||B pTB�|| “ ||B�|| ` || pTB�|| “ ||B�|| pT

This provides that

Dp}q “ BpD0q “ B
”
SpRq || ||xT

ı
“ BrSpRqs || ||}

.

Let � P BrSpRqs. Since B� P SpRq, one has from (22)

p pTB�qpxq “ ix
d

dx
rxpB�qpxqs “ ix

d

dx

„
�

ˆ
1

x

˙⇢
“ ´ i

x

d�

dx

ˆ
1

x

˙
.

Therefore

p}�qpxq “ pBp pTB�qqpxq :“ ´ i
d�

dx
pxq

acts as the momentum operator on BrSpRqs. This implies that the domain of the
closed operator } is given by the closure of BrSpRqs with respect the Sobolev norm
||�||2

H1 :“ ||�||2 ` ||�1||2. Let C
8
c pRzt0uq be the set of smooth functions having

compact support separated from the origin. Let us prove that

(23) C
8
c pRzt0uq Ä BrSpRqs Ä H1

0 pRq .
For that, let  P C8

c
pRzt0uq supported in r´b,´as Y ra, bs and � :“ B . A

direct inspection shows that � is a smooth function supported in r´a´1,´b´1s Y
rb´1, a´1s. This allows to conclude that BrC8

c pRzt0uqs Ñ C
8
c pRzt0uq. By exploiting

6For more details on the theory of Sobolev spaces we refer the reader to [Bre, Chapter 8 &
Chapter 9].
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the involutive character of B one gets BrC8
c pRzt0uqs “ C

8
c pRzt0uq Ä SpRq and in

turn C
8
c pRzt0uq Ä BrSpRqs. For the second contention let us take � P BpSpRqq

so that �pxq “ x´1 px´1q for some  P SpRq. Clearly, � is smooth in R ´ t0u,
and again one can check that � extends to a smooth function on R such that
�pnqp0q “ 0 for all n P N. In particular � P H1

0 pRq implying the second inclusion
BrSpRqs Ä H1

0 pRq. To conclude the proof it is enough to show that the closure of
the space C

8
c pRzt0uq with respect to the Sboolev norm || ||H1 is (identifiable with)

H1
0 pRq. Let R` :“ p0,`8q and R´ :“ p´8, 0q and observe that

C8
c pRzt0uq || ||

H1 “ C8
c pR´q ‘ C8

c pR`q || ||
H1

“ C8
c pR´q || ||

H1 ‘ C8
c pR`q || ||

H1

“ W 1,2
0 pR´q ‘ W 1,2

0 pR`q “ H1
0 pRq

(24)

where the notation for W 1,2
0 p⌦q was borrowed from [Bre, Section 8.3]. The last

equality in (24) is a consequence of the fact that every element of W 1,2
0 pR˘q can be

uniquely identified with a continuous function that vanishes on the boundary x “ 0
[Bre, Theorem 8.12]. The identification (24), along with the double inclusion (23),

implies Dp}q “ BrSpRqs || ||
H1 “ H1

0 pRq. ⇤
As a first consequence of Proposition 2.1 we have a precise description of the

domain of the closed operator pT , i. e.

(25) D 0 “ BrDp}qs “
"
 P L2pRq

ˇ̌
ˇ  pxq “ 1

x
�

ˆ
1

x

˙
, � P H1

0 pRq
*

.

Unlike the functions in H1
0 pRq, the elements of the domain D 0 are generally not

continuous and can show singularities in x “ 0. As an example consider �pxq :“
p1`x2q´ 1

3 e´ 1
x2 which evidently an element of H1

0 pRq. Its image  pxq :“ pB�qpxq “
px3 ` xq´ 1

3 e´x
2

is divergent in x “ 0. A better characterization of the elements of
D 0 is provided in the following result.

Proposition 2.7. Let  P D 0. Then it holds true that limxÑ˘8p|x| pxqq “ 0;

Proof. Property (i) follows from

lim
xÑ˘8

px pxqq “ lim
xÑ˘8

�

ˆ
1

x

˙
“ lim

tÑ0˘
�ptq “ 0

where in the last equality we used the fact that � P H1
0 pRq is continuous and

�p0q “ 0. The equality (25) follows from D 0 “ BrDp}qs along with the description
of Dp}q provided in Proposition 2.1. ⇤

We are now in position to study the self-adjoint realizations of pT . Again, we can
take advantage of the unitary transform B to study the self-adjoint realization of
singular momentum operator }. The latter is a classical problem strongly related
with the study of singular delta interactions for one-dimensional Dirac operators
[GS, BD, CMP] (see also [AGHG, Appendix J]).

It is of our interest to use Neumann’s method of deficiency subspaces shown in
A.9. to proceed, we will need an explicit realization of }˚.

Proposition 2.8. The operator }˚ acts as p´ ‘ p` in H1pR´q ‘ H1pR`q with
p˘ “ ´i 1 @ P H1pR˘q, acting as the weak derivative in the respective Sobolev
space.

8



Proof. As } was defined as the closure of the derivative acting in C
8
c pRzt0uq, we

can profit the general fact A
˚ “ A˚ to simplify computations. For  “  ´ `  ` P

H1pR´q ‘ H1pR`q, � “ �´ ` �` P C
8
c pRzt0uq “ C

8
c pR´q ‘ C

8
c pR`q we have

x}� ¨  y “ x}�` ¨  `y ` x}�´ ¨  ´y “ ipx�1
` ¨  `y ` x�1

´ ¨  ´yq
using integration by parts, as  ˘ P H1pR˘q

“ ´ipx�` ¨  1
`y ` x�´ ¨  1

´yq “ x� ¨ ´ip 1
´ `  1

`qy
Thus  P Dp}˚q and }˚ “ ´ip 1

´ `  1
`q “ p´ ´ ` p` `. Now let  P Dp}˚q

and let '˘ P C
8
c pR˘q Ä Dp}q. Let ⇧˘ be the projection operator acting as the

restriction over R˘. We then have

x´ip'˘q1 ¨  y “ x}'˘ ¨  y “ x'˘ ¨ }˚ y
As '˘ its first derivative have support containted in R˘ this is implies

x´ip'˘q1 ¨ ⇧˘ y “ x'˘ ¨ ⇧˘}˚ y
We conclude of this that ⇧˘ has a weak derivative and in fact ⇧˘ P H1pR˘q.
Computing that derivative we have ´ip⇧˘ q1 “ ⇧˘}˚ , and knowing both ⇧˘}˚ 
completely determines }˚ , we conclude

(26) }˚ “ ´ip⇧` q1 ` ´ip⇧´ q1

And

(27) Dp}˚q “ H1pR´q ‘ H1pR`q
⇤

Now having an explicit descritption of }˚ we will completely characterize the
self adjoint extensions of }, all which are restrictions of }˚

Proposition 2.9. The closed symmetric operator } has deficiency indices equal
to 1. Therefore, the self-adjoint extensions of } are in one-to-one correspondence
with the angles ✓ P S » r0, 2⇡q. The self-adjoint extension }✓ has domain

Dp}✓q :“
!
' P L2pRq

ˇ̌
ˇ' “ �` c⌘✓ ,� P H1

0 pRq , c P C
)

where7

⌘✓pxq :“

$
’’&

’’%

e´px´ i ✓

2 q if x ° 0

1 if x “ 0

e`px´ i ✓

2 q if x † 0

,
//.

//-
“ e´|x|e i sgnpxq ✓

2

and acts has

(28) }✓ p�` c⌘✓q :“ ´ i�1 ` c⌘✓`⇡ .

In addition, Dp}q ‘ C⌘✓ is a core for }✓. Finally, }0 agrees with the standard
momentum operator p with domain H1pRq.

7The sign function is defined by sgnpxq :“
$
&

%

x

|x| if x ‰ 0

0 if x “ 0 .
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Proof. As shown in in proposition 2.8 the adjoint of } acts as the weak derivative on
its domain Dp}˚q :“ H1pR´q‘H1pR`q. We will now determine the deficiency sub-
spaces, as given by the eigenvalues equations }˚�˘ “ ˘ i�˘. These correspond to
the di↵erential equations �1

˘ “ ¯�˘ which admit in Dp}˚q the unique (normalized)
weak solutions

�`pxq :“
#?

2e´x if x ° 0

0 if x † 0
, �´pxq :“

#
0 if x ° 0
?
2e`x if x † 0

.

According to Theorem A.9 one has that the self-adjoint extensions of } are parametrized
by the unitary maps from K` “ Cr�`s » C to K´ “ Cr�´s » C. The later are
identified by the angle ✓ P S

1 » r0, 2⇡q according to U✓�` :“ e´ i ✓ ´. One also
has that the domain of the self-adjoint extension }✓ is made by functions of the
type �` c1p�` ` e´ i ✓�´q “ �` c⌘✓ with � P H1

0 pRq and c, c1 P C suitable complex
coe�cients. The action of }✓ on the elements of its domain is given by

}✓
`
� ` c1p�` ` e´ i ✓�´q

˘
“ ´ i�1 ` i c1p�` ´ e´ i ✓�´q

which translates in the equation (28) in terms of the function ⌘✓. Evidently, the
standard momentum operator p is a self-adjoint extension of } since H1

0 pRq Ä
H1pRq. This extension corresponds to }0 in view of the fact that ⌘0 P H1pRq.
Finally, from A.10 one obtains the core for }✓ ⇤

Although the symmetric operator } admits several self-adjoint realizations, all
these realization are in a sense equivalent. To express this fact in a precise way we
need to introduce the family of unitary operators L✓ defined by

pL✓ qpxq :“ e i sgnpxq ✓

2 pxq ,  P L2pRq .
Proposition 2.10. The unitary operators L✓ intertwine all the self-adjoint real-
izations of the operator }. More precisely one has that

}✓ “ L✓pL
˚
✓
, ✓ P S1

where p “ }0 is the standard momentum operator. As a consequence one has that

�p}✓q “ �a.c.p}✓q “ R , ✓ P S1 .

Proof. A direct computation shows

(29) L˚
✓

“ L´✓ and L�⌘� “ ⌘�`� .

We will proceed by proving L✓pL˚
✓

Ä }✓. We start by checking the domain con-
tention, DpL✓pL˚

✓
q “ L✓Dppq Ä Dp}✓q.

Let L✓ P L✓Dppq. As  P H1pRq “ Dppq,  has a continious representative and
we can write  “ p ´ p0q⌘0q ` p0q⌘0. Let us note that L✓p ´ p0q⌘0q P H1

0 pRq;
as it satisfies the border condition, and for g P SpRq we have

xg1 ¨ L✓p ´  p0q⌘0qy “
ª `8

´8
g1pxqe i sgnpxq ✓

2 p pxq ´  p0q⌘0pxqqdx

“ e´ i ✓

2

ª 0

´8
g1pxqp 1pxq ´  p0qexqdx ` e i ✓

2

ª `8

0
g1pxqp pxq ´  p0qe´xqdx

integrating by parts

“ b ´ e´ i ✓

2

ª 0

´8
gpxqp 1pxq ´  p0qexqdx ´ e i ✓

2

ª `8

0
gpxqp 1pxq `  p0qe´xqdx

10



with b “ e´ i ✓

2 gpxqp pxq ´  p0qexq
����
0

´8
` e i ✓

2 gpxqp pxq ´  p0qe´xq
����
8

0

“ 0, thus

xg1 ¨ L✓p ´  p0q⌘0qy “ ´
ª `8

´8
gpxqe i sgnpxq ✓

2

´
 1pxq `  p0qsgnpxqe´|x|

¯
dx

This in turn gives us the derivative in question:
(30)
d

dx
pL✓p ´  p0q⌘0qq pxq “ e i sgnpxq ✓

2

´
 1pxq `  p0qsgnpxqe´|x|

¯
“

`
L✓ 

1˘ pxq`´i p0q⌘✓`⇡

which is square integrable as both  1 and e´|x| are. Also L✓p p0q⌘0q “  p0q⌘✓ and
as such L✓  P Dp}✓q.
We will now prove that both operators coincide in L✓Dppq. We have

pL✓pL˚
✓

qL✓ “ ´iL✓ 
1,

and

}✓L✓ “}✓L✓ pp ´  p0q⌘0q `  p0q⌘0q
“}✓ pL✓p ´  p0q⌘0q `  p0q⌘✓q

As we already saw L✓p ´  p0q⌘0q P H1
0 pRq, so by equation (28) and (30)

}✓L✓ “ ´ i
d

dx
L✓p ´  p0q⌘0q `  p0q⌘✓`⇡

“ ´i
`
L✓ 

1 ` ´i p0q⌘✓`⇡
˘

`  p0q⌘✓`⇡
“ ´iL✓ 

1

We conclude L✓pL˚
✓

Ä }✓, and as both are self adjoint, they must be equal. Finally
as two unitarily equivalent operators must have the same spectral decomposition,
we have �p}✓q “ �a.c.p}✓q “ R as can be seen in appendix A.1. ⇤

We are now in position to provide a complete description of the self-adjoint
extensions of the one-dimensional version of the operator pT .

Theorem 2.11 (Self-adjoint extensions: one-dimensional case). The self-adjoint
extensions of the closed symmetric operator pT initially defined by (22) are in one-
to-one correspondence with the angles ✓ P S. The self-adjoint extension pT✓ has
domain

Dp pT✓q : “
!
' P L2pRq

ˇ̌
ˇ' “  ` c⇣✓ , P D 0 , c P C

)

where

⇣✓pxq :“

$
’’’’&

’’’’%

1

x
e´p 1

x
` i ✓

2 q if x ° 0

0 if x “ 0

1

x
e`p 1

x
` i ✓

2 q if x † 0

,
////.

////-

“ 1

x
e´ 1

|x| e i sgnpxq ✓

2

and acts has
pT✓ p ` c⇣✓q :“ pT ` c⇣✓`⇡ .

All the self-adjoint realization are unitarily equivalent, i. e. pT✓ “ L✓ pT0L˚
✓
for all

✓ P S. In addition, Dp pT q ‘ C⇣✓ is a core for pT✓ Finally one has that

�p pT✓q “ �a.c.p pT✓q “ R , ✓ P S1 .
11



Proof. The theorem is a direct consequence of the unitary equivalence established
in Proposition which allows to define the self-adjoint realizations of pT by pT✓ :“
B}✓B. At this point the claim of the theorem is nothing more than a re-writing of
Proposition 2.9 and Proposition 2.10. The formula pT✓ “ L✓ pT0L˚

✓
is justified by

the commutation relation L✓B “ BL✓ and as such

pT✓ “ B}✓B “ BL✓}0L
˚
✓
B “ L✓B}0BL˚

✓
“ L✓ pT0L

˚
✓

⇤

Remark 2.12 (Standard realization). In view of the unitary equivalence among
all the self-adjoint realizations proved in Theorem 2.11 we can focus our attention
only in a preferred member of the family of the self-adjoint extension. We will refer
to pT0 as the standard realization of the operator initially defined by (22). û

Remark 2.13 (Boundary triplets). The business of the determination of the self-
adjoint realizations of } or pT can be also investigated inside the theory of the
boundary triplets, in subsection A.2. Let us start with the operator } and its
adjoint }˚. According to definiton A.11, a boundary triplet for }˚ is a triplet
pH,�0,�1q made by an Hilbert space H and linear maps �0,�1 from Dp}˚q to H
that satisfy the abstract Green’s identity

x}˚', y ´ x',}˚ y “ x�0',�1 yH ´ x�1',�0 yH , @ ', P Dp}˚q
and the mapping Dp}˚q Q ' fiÑ p�0',�1'q P HˆH is surjective. Since the operator
}˚ acts as the weak derivative on its domain Dp}˚q :“ H1pR´q ‘ H1pR`q, an
integration by parts provides

x}˚', y ´ x',}˚ y “ i
´
'p0´q p0´q ´ 'p0`q p0`q

¯
, @ ', P Dp}˚q

where 'p0˘q :“ limxÑ0˘ 'pxq and similarly for  p0˘q. A comparison with the
abstract Green’s identity shows that the triplet pH,�0,�1q can be fixed in the
following way: H :“ C;

�0' :“ 'p0`q ´ 'p0´q
i
?
2

, �1' :“ 'p0`q ` 'p0´q?
2

,

The surjectivity condition is obviously satisfied. Observe that Kerp�0qXKerp�1q “
H1

0 pRq “ Dp}q. By theorem A.13, the self-adjoint extensions of } are parametrized
by the self-adjoint operators acting on the closed subspaces of K “ C. For the
particular trivial operator acting on the t0u space we have:

(31) D :“
!
' P Dp}˚q

ˇ̌
ˇ�0' “ 0

)
“ H1pRq

Recovering the usual momentum operator. The other cases are all given by op-
erators acting as multiplication by a real number � P R defining a restriction
}� :“ }˚|D�

where the domain D� Ä Dp}˚q is defined by
(32)

D� : “
!
' P Dp}˚q

ˇ̌
ˇ��0' “ �1'

)

“
!
' P H1pR´q ‘ H1pR`q

ˇ̌
ˇp� ´ i q'p0`q “ p� ` i q'p0´q

)

“
!
' P H1pR´q ‘ H1pR`q

ˇ̌
ˇe´ i arctanp 1

� q'p0`q “ e` i arctanp 1
� q'p0´q

)
.
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A comparison with Proposition 2.9 shows that the self-adjoint extensions }✓ and

}� are related by the equation ✓p�q “ arctan
´

1
�

¯
. In particular, the standard

momentum is reidentified by � “ 8 which corresponds to ✓ “ 0. The definition
(32) provides the description of the domain of }✓ in therms of boundary conditions.
The same can be done for the the self-adjoint extensions pT✓ with the help of the
unitary operator B. A direct computation shows that

Dp pT✓q : “
!
' P BrH1pR´q ‘ H1pR`qs

ˇ̌
e´ i ✓

2 px'qp`8q “ e` i ✓

2 px'qp´8q
)

where px'qp˘8q :“ limxÑ˘8 x'pxq. It is interesting to note that for pT to be self
adjoint, boundary conditions in infinity must be satisfied, similarly to the case of
momentum operator over a finite interval.

2.2. Unitary propagator. Let

(33) U✓ptq :“ e´ i t pT✓ , t P R
be the unitary propagator defined by the self-adjoint operator pT✓ on L2pRq. The
description of U✓ptq is provided in the following theorem.

Theorem 2.14. Let U✓ptq be the unitary group defined by (33). It holds true that

(34)
`
U✓ptq 

˘
ptq “ e

i
2

`
1´sgnp1´txq

˘
sgnpxq✓

1 ´ tx
 

ˆ
x

1 ´ tx

˙
,  P L2pRq .

Proof. We can use the unitary equivalence pT✓ “ BL✓pL˚
✓
B proved in Theorem

2.11 which implies that U✓ptq “ BL✓e´ i tpL˚
✓
B along with the well-known fact

pe´ i tp qpxq “  px´tq. The proof of the claim follows by a direct computation. ⇤
For each t P R let us consider the map ft : R Y t8u Ñ R Y t8u defined by

(35) ftpxq :“

$
’’&

’’%

x

1 ´ tx
if x P Rztt´1u

8 if x “ t´1

´ t´1 if x “ 8 .

with the convention that ˘0´1 ” 8. The family of these maps defines an R-flow
in the sense, a direct check shows that the following relations hold:

(36)

$
’&

’%

f0 “ Id

ft1 ˝ ft2 “ ft1`t2

f´1
t

“ f´t

@ t, t1, t2 P R .

The flow ft allows to rewrite the action unitary propagator U✓ptq in the form

(37)
`
U✓ptq 

˘
ptq “ e

i
2

`
1´sgnp1´txq

˘`
sgnpxq✓`⇡

˘ a
pBxftqpxq  pftpxqq

When ✓ “ ⇡ equation (37) agrees with the definition of the C0-group associated to
the flow ft as defined in [ABG, Section 4.2]. It is interesting to notice that the flow
ft is not of class C8 and the generator of the flow

F pxq :“ dft
dt

ˇ̌
ˇ̌
t“0

pxq “ x2

has an unbounded first derivative. Therefore the flow ft doesn’t meet the conditions
of [ABG, Lemma 4.2.2 & Proposition 4.2.3]. The latter fact explains why [ABG,
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Proposition 4.2.3] doesn’t apply to the operator pT ” ´ 1
2 ppF pxq ` F pxqpq which

indeed is not essentially self-adjoint on C
8
c pRq.

2.3. Resolvent and Green Function. The resolvent of the of the operator pT✓ can
be derived from the resolvent of the standard momentum operator p by exploiting
the various unitary equivalences described in Section 2.1. For every ⇣ P CzR the
resolvent of pT✓ at ⇣ is defined as

(38) R⇣p pT✓q :“
´

pT✓ ´ ⇣1
¯´1

“ L✓B pp ´ ⇣1q´1 BL˚
✓
.

The explicit form of the resolvent is then computable and explicit:

Proposition 2.15. Let ⇣ :“ ✏ ˘ i � P CzR with � ° 0. The resolvent R⇣p pT✓q acts
as

`
R⇣p pT✓q 

˘
pxq “

ª

R
dy R

✓

⇣
px, yq  pyq ,  P L2pRq

with kernel given by

R
✓

✏˘ i �px, yq :“ e i
`
sgnpxq´sgnpyq

˘
✓

2

¯ ixy
⇥

ˆ
˘

ˆ
1

x
´ 1

y

˙˙
e i ✏p 1

x
´ 1

y qe´�| 1
x

´ 1
y |

where ⇥ is the Heaviside function. 8

Proof. The integral kernel R
0
⇣
of the resolvent of pT0 can be obtained from the

Green’s function G
0
⇣

of the standard momentum operator (see Appendix A.1). A
direct computation provides

`
R⇣p pT0q 

˘
pxq “

`
B pp ´ ⇣1q´1 B 

˘
pxq “ 1

x

ª

R
du G

0
⇣

ˆ
1

x
, u

˙
1

u
 

ˆ
1

u

˙
.

After the change of variables y “ u´1 The explicit expression of G
0
⇣
given in (104)

and a change of variable in the integral provide

R
0
⇣

px, yq :“ 1

xy
G

0
⇣

ˆ
1

x
,
1

y

˙
.

Since L✓ is a multiplication operator, the relation between the kernels for ✓ “ 0
and ✓ ‰ 0 is simply given by

R
✓

⇣
px, yq :“ e i

`
sgnpxq´sgnpyq

˘
✓

2 R
0
⇣

px, yq “ e i
`
sgnpxq´sgnpyq

˘
✓

2

xy
G

0
⇣

ˆ
1

x
,
1

y

˙
.

This concludes the proof.
⇤

8The Heaviside function is defined by ⇥pxq :“

$
’’&

’’%

1 if x ° 0

1

2
if x “ 0

0 if x † 0 .
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2.4. Spectral measure. Let µ✓
 
be the spectral measure of the operator pT✓ asso-

ciated with the normalized state  P L2pRq. We know from Theorem 2.11 that pT✓
as a purely absolutely continuous spectrum which coincides with R, and as such,
the spectral measure µ✓

 
is purely absolutely continuous and can be written as

µ✓
 

pd✏q :“ f✓
 

p✏q d✏

with f✓
 

P L1pRq a non-negative function whose integral equals to 1. The next result

provides a description of f✓
 
.

Proposition 2.16. Let µ✓
 

be the spectral measure of the operator pT✓ associated

with the (normalized) state  P L2pRq. Then µ✓
 

is absolutely continuous with
respect to the Lebesgue measure d✏ in R and

(39) µ✓
 

pd✏q :“ |p�✓p✏q|2 d✏

where p�✓ :“ F p�✓q is the Fourier transform of the function

�✓pxq :“ pL˚
✓
B qpxq “ e´ i sgnpxq ✓

2

x
 

ˆ
1

x

˙
.

Proof. Starting from the unitary equivalence pT✓ “ BL✓pL˚
✓
B one gets

F ✓
 

p⇣q :“ x , p pT✓ ´ ⇣1q´1 y “ x , BL✓pp ´ ⇣1q´1L˚
✓
B y “ F p

�✓
p⇣q .

Following the arguments in Appendix ?? on gets

lim
�Ñ0`

1

⇡
Im

`
F ✓
 

p✏` i �q
˘

“ fp

�✓
p✏q “ |p�✓p✏q|2 .

where the last equality is justified by (106). This concludes the proof. ⇤

3. The operators T and HT

In this section we will study the operators T and HT . As we are treating the
1-dimensional case, the rotation R� becomes either the identity or the inversion on
the spatial domain. Both cases can be covered considering � ° 0 and � † 0. Then
equation (15) becomes

(40) HT “ �S˚
�
TS� .

Also, from the relation pT :“ FTF
˚ comes that every self-adjoint extension of T

is unitarily equivalent to a self-adjoint extension of pT . The following proposition
illustrates this point

Proposition 3.1 (Self-adjoints extensions of T ). Every self adjoint extension of T
is of the form T✓ “ F

˚ pT✓F with domain DpT✓q “ F
˚
Dp pT✓q with ✓ P S.

Moreover, all the self-adjoint realization are unitarily equivalent, i. e.T✓ “ S✓T0S˚
✓

for all ✓ P S With the S✓ being given by

(41) cos
✓

2
´ sin

✓

2
H

With H the Hilbert transform, acting as

(42) H pxq “ 1

⇡

ª

R

 pyq
x ´ y

dy

15



Over su�ciently regular functions, with the integral taken as a Cauchy principal
value. Finally one has that

�p pT✓q “ �a.c.p pT✓q “ R , ✓ P S1 .

Proof. From theorem 2.11 we have

T✓ “ F
˚ pT✓F “ F

˚L✓ pT0L
˚
✓
F “ F

˚L✓FT0F
˚L˚

✓
F

We now set

(43) S✓ “ F
˚L✓F

As L✓ acts as multiplication by esign x i ✓{2 “ cos ✓{2 ` signx i sin ✓{2. As in seen

in equation (100) F
˚fpqqF “ fppq “ 1?

2⇡
qf ˚  . Finally It is known that

�psignxqpkq “ i
b

2
⇡
k´1. we have.

S✓ pxq “ F
˚L✓F “ cos

✓

2
 pxq`i sin

✓

2
sign ppq pxq “ cos

✓

2
´sin

✓

2

1

⇡

ª

R

 pyq
x ´ y

dy.

⇤
Remark 3.2 (Self-adjoint extensions of HT ). Analogously every self adjoint exten-
sion of HT,✓ is of the form HT,✓ “ �S˚

�
T✓S�. Aditionally, as translations commute

with the Hilbert transform, the di↵erent self adjoint extensions of HT are related by
HT,✓ “ S✓HT,0S˚

✓

From this point most explicit calculations will be done for T0 and HT,0 as to
simplify them.

3.1. Description of the domain. By construction the domain of T0 is given by

DpT0q :“ F
˚rDp pT0qs “ pF ˚BqrH1pRqs “ F

˚BFDpxq “ pBDpxq,
and analogously, as DpHT0q “ S˚

�
DpT0q

DpHT,0q “ S˚
�

pBDpxq
with pB :“ F

˚BF . These equalities are justified by Dp pT0q “ BrDppqs and Dppq “
H1pRq. Finally the domain of the momentum operator is the Fourier transform of
the domain of the position operator [RS2, Chapter IX]. Therefore, the domain of
T0 is made by functions in Dpxq transformed by the operator pB. To compute the
action of pB we will first have to compute a particular type of integral.

Lemma 3.3. On the dense domain L2pRq X L1pRq the operator pB “ F
˚BF acts

as an integral operator with kernel given by

(44) Bpx, yq :“ i
sgn pxq ´ sgnpyq

2
J0

´
2

a
|xy|

¯

Proof. Let us start with the computation of the kernel of pB acting on  P L2pRq X
L1pRq. Then F p q P L2pRqXC0pRq, namely F p q is a square-integrable continuous
function that vanishes at infinity. For every n P N, let �In

be the characteristic
function of the interval In :“ r´n,´n´1s Y rn´1, ns Since F p q ´ F p q�In

“
F p q�Ic

n
, where Ic

n
is the complement of In, one can prove that F p q�In

Ñ F p q
in the L2-topology when n Ñ `8. Thus, the unitarity of the Fourier transform
implies that  n Ñ  in the L2-topology where  n :“ F

˚pF p q�In
q “  ˚F

˚p�In
q

16



and ˚ denotes the convolution. Since pB is a unitary operator one gets pB n Ñ pB 
with respect to the L2-topology. An explicit computation provides

p pB nqpxq “ pF ˚BF nqpxq
“ pF ˚BF p ˚ F

˚�In
qq pxq

“ pF ˚BppF q�In
qqpxq

“ 1?
2⇡

ª

R
du e iux 1

u
pF q

ˆ
1

u

˙
�In

ˆ
1

u

˙

“ 1

2⇡

ª

In

du e iux 1

u

ˆª

R
dy e´ i y

u pyq
˙

where in the last two equalities we used the fact that IpF q�In
and  are L1-

functions (this justifies the use of the integral representation of F and F
˚) and

the equality �In
pu´1q “ �In

puq. Since the function gxpy, uq :“ 1
u
e i xue

´ i y
u  pyq is

absolutely integrable in RˆIn one can invoke the Fubini-Tonelli theorem to change
the order of integration. This provides

(45) p pB nqpxq “ 1

2⇡

ª

R
dy  pyq

ˆª

In

du
e i xue´ i y

u

u

˙
.

Corollary B.2 says that

lim
nÑ8

ª

In

du
e i xue´ i y

u

u
“ 2⇡ Bpx, yq .

And also gives the bound
ˇ̌
ˇ̌
ª

In

du
e i xue´ i y

u

u

ˇ̌
ˇ̌ § 4⇡

for all n ° n0. In view of the bound above one can use the Lebesgue’s dominated
convergence theorem in (45) providing the formula

(46) lim
nÑ`8

p pB nqpxq “
ª `8

´8
dy Bpx, yq  pyq .

Equation (46) says that B n converges pointwise to the integral in the right-hand
side. Since B n converges to B in the L2-topology it follows there exists a subse-
quence B nk

which converges pointwise (almost everywhere) to pB [Bre, Theorem

4.9 (a)]. Then the unicity of the limit assures that pB coincides with the right-hand
side of (46), thus completing the proof. ⇤
Remark 3.4. Much in the same sense of the Fourier transform, Lemma 3.3 states
that pB can be expressed as an integral operator only on the dense domain  P
L2pRq X L1pRq. For function in  P L2pRqzL1pRq in principle, we do not have
the right to write pB using the integral kernel. However, in the following, we will
tacitly use the following convention

p pB qpxq ” lim
RÑ8

ª `R

´R

dy B px, yq pyq , if  P L2pRqzL1pRq .

This identification must be understood as follows: (i) As the product  R :“
 �r´R,`Rs is in L2pRq X L1pRq pB R can be computed (pointwise) through the

integral formula; (ii)  R Ñ  , and in turn pB R Ñ pB , in the L2-topology; (iii)
17



Then, the identification above makes sense almost everywhere on subsequences [Bre,
Theorem 4.9 (a)]. û

Lemma 3.3 allows to describe the domain of T as follows:

DpT q “
"
 P L2pRq

ˇ̌
 pxq “

ª

R
dy Bpx, yq�pyq , � P Dpxq

*
.

An explicit computation (made of several changes of integration variable) shows
that the generic element  in DpT0q has the form

 pxq “ 1

x

ª `8

0
ds J0p?

sq �
´ s

x

¯
, � P Dpxq ,

and for an element  in DpHT,0q

 pxq “ 1

x ` 1
�

ª `8

0
ds J0p?

sq �
ˆ

s

x ` 1
�

˙
, � P Dpxq .

Theorem 2.11 provides an explicit of the action of pT0 along a core. The next
proposition will give us such a statement for our prefered realization for T0

Proposition 3.5. Action of T0 and HT,0 along a core. The domain

(47) D0pT q :“ SpRq ` Cr0s
with 0 :“ F

˚⇣0 “ p pBF
˚q⌘0 is a core for T0. The action of T0 is described by

(48) T0p ` c0q “ T ` c1

with 1 :“ F
˚⇣⇡ “ p pBF

˚q⌘⇡. Finally 0 and 1 explicitly given by:

(49) 0 “ ´ i

c
8

⇡
sgnpxq kei

´
2
a

|x|
¯

and

(50) 1 “ i

c
8

⇡
ker

´
2

a
|x|

¯
.

For HT,0, as SpRq is invariant under translations, the domain

(51) D0pHT q :“ SpRq ` CrS˚
�
0s

Is a core for HT,0. The action of HT,0 along this ore is given by

(52) HT,0p ` cS˚
�
0q “ HT,0 ` c�S˚

�
1

Proof. From (20) and Theorem 2.11 one infers that SpRq Ä D0 Ä Dp pT0q and SpRq`
Cr⇣0s is a core for pT0. Applying the Fourier transform, in view of the invariance of
the Schwartz space under it, we conclude D0pT q is a core. By construction we have
T00 “ 1. To compute an explicit formula for 0 and 1 we start by noting that
⌘0 and ⌘⇡ have known (inverse) Fourier transforms:

pF ˚⌘0qpxq “
c

2

⇡

1

1 ` x2
, pF ˚⌘⇡qpxq “ ´

c
2

⇡

x

1 ` x2
.

Then Lemmas B.3 and 3.3 provide

p pBF
˚⌘0qpxq “ ´ i

c
8

⇡
sgnpxq kei

´
2

a
|x|

¯
.

18



Since F
˚⌘⇡ P L2pRqzL1pRq, the transformed function pBF

˚⌘⇡ as to be computed
according to the prescription of Remark 3.4. In this case one has

p pBF
˚⌘⇡qpxq “ ´

c
2

⇡
lim

RÑ`8

ª `R

´R

dy
Bpx, yq y
1 ` y2

.

However, as shown in the proof of Lemma B.3, the integrant is absolutely integrable
for every values of x. This allows to forget the limit and one gets

pBF
˚⌘⇡qpxq “ i

c
8

⇡
ker

´
2

a
|x|

¯
.

⇤

3.2. Unitary propagator. Let

UT0p⌧q :“ e´ i ⌧T0

the unitary propagator associated with the self-adjoint operator T0. From the uni-
tary equivalence with pT0 we have

UT p⌧q “ F
˚e´ i ⌧ pT0F

With methods similar to Lemma 3.3 we can compute the integral kernel of UT ptq.
Proposition 3.6. On the dense domain L2pRq X L1pRq the unitary propagator
UT,0p⌧q with (⌧ ‰ 0) acts as an integral operator given by

(53) pUT0p⌧q qpxq :“
ª

R
dy U⌧ px, yq pyq

with

(54) U⌧ “ ´ i
signpxq ` signpyq

2⌧
e i px`yq

⌧ J0

ˆ
2

⌧

a
|xy|

˙
.

The unitary propagator of the Thermal Hamiltonian UHT,0 acts on L2pRq X L1pRq
as an integral operator given by

(55) pUHT,0p⌧q qpxq “
ª

R
dy U�⌧

ˆ
x ` 1

�
, y ` 1

�

˙
 pyq

Proof. Let In “
“
´n,´n´1

‰
Y

“
n´1, n

‰
and Jn “ |t|´1In ´ t´1. For  P L2pRq X

L1pRq we define  n “ F
˚p�Jn

q ‹ converging to  in the L2 topology. computing

UT p⌧q over  n we have, using the explicit formula for e´ i t pT0 found in (2.14)

pUT0p⌧q nqpxq “ pF ˚e´ i ⌧ pT0F nqpxq
“ pF ˚e´ i ⌧ pT0F p ˚ F

˚�Jn
qq pxq

“ pF ˚e´ i ⌧ pT0ppF q�Jn
qqpxq

“ 1?
2⇡

ª

R
du e iux 1

1 ´ ⌧u
pF q

ˆ
u

1 ´ ⌧u

˙
�Jn

ˆ
u

1 ´ ⌧u

˙

with the change of variables w “ u ´ ⌧´1 and checking w P In ô up1 ´ ⌧uq´1 P Jn

“ 1

2⇡

ª

In

dw e i pw` 1
⌧ qx 1

´⌧w

ˆª

R
dy e i yp 1

⌧
` 1

⌧2w
q pyq

˙
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As the integrand is absolutely integrable, by Fubini-Tonelli we can change the
integration order, giving us

pUT0p⌧q nqpxq “
ª

R
dy

e i x`y

⌧

´2⇡⌧
 pyq

˜ª

In

dw
e i pxw` y

⌧2w
q

w

¸

Which gives us an integral of the type seen in Corollary B.2. Repeating the argu-
ments used in Lemma 3.3 the proof for UT,0isfinished. For the unitary propagator
of HT,0, from the relation HT,0 “ �S˚

�
T0S� one gets UHT,0 “ S˚

�
UT p�⌧qS�, giving

us equation (55). ⇤

Remark 3.7 (). It is interesting to note that UT0 leaves both L2pR`
0 q and L2pR`

0 q
invariant. In fact, if  ` P L2pR`

0 q and x † 0:

pUT0p⌧q `qpxq “ ´ i

ª

R
dy

signpxq ` signpyq
2⌧

e i px`yq
⌧ J0

ˆ
2

⌧

a
|xy|

˙
 `pyq

“ ´ i

ª `8

0
dy

´1 ` 1

2⌧
e i px`yq

⌧ J0

ˆ
2

⌧

a
|xy|

˙
 `pyq “ 0

In the same manner, UHT,0p⌧q leaves invariant L2pp´1{�,`8qq and L2pp´8,´1{�qq,
thus the dynamics of both sides of ´1{� are independent from one another.

3.3. Resolvent and Green function. The resolvent of T0 can be computed as
the Laplace transform of the unitary propagator UT0p⌧q according to the well known
formula [Kat, eq. (1.28), p. 484]. For every ⇣ P CzR let

R⇣pT0q :“ pT0 ´ ⇣1q´1

be the resolvent of T0. Using the unitary equivalence between T0 and -x given by
pB, we can write

R⇣pT0q :“ pB 1

´x ´ ⇣1
pB

The following proposition consists in an explicit expressiof for R⇣pT0q as an integral
operator

Proposition 3.8. On the dense domain L2pRq X L1pRq the resolvent R⇣pT0q with
0 † � † ⇡, ⇣ “ |⇣|e˘i� acts as an integral operator given by

(56) R⇣pT0q “
ª

R
dy

`
sgnpxq ` sgnpyq

˘
F⇣px, yq pyq

Where

(57)

F⇣px, yq :“ I0

ˆ
2

a
|⇣|mint|x|, |y|ue˘ i

”
�

2 ´ ⇡

4

`
sgnpxq`1

˘ı˙

ˆ K0

ˆ
2

a
|⇣|maxt|x|, |y|ue˘ i

”
�

2 ´ ⇡

4

`
sgnpxq`1

˘ı˙
.

While the resolvent R⇣{HT,0 is given by
(58)

R⇣pHT,0q “ 1

�

ª

R
dy

ˆ
sgn

ˆ
x ` 1

�

˙
` sgn

ˆ
y ` 1

�

˙˙
F ⇣

�

ˆ
x ` 1

�
, y ` 1

�

˙
 pyq
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Proof. Let us start with  P L2pRq X L1pRq. Let us note that as Jp|u|q asymptoti-
cally behaves as |u´1{2| when u Ñ 8 we have

ª

R

dx

ˇ̌
ˇ̌ 1

´x ´ ⇣
pB pxq

ˇ̌
ˇ̌ §

ª

R

ª

R
dx dy

1

|x ` ↵|
ˇ̌
ˇJ0p2

a
|xy|q pyq

ˇ̌
ˇ † 8

As such, 1
´x´⇣1

pB P L2pRq X L1pRq and R⇣pT0q can be expressed as

R⇣pT0q pxq “
ª

R
dz i

sgn pxq ´ sgnpzq
2

J0
´
2

a
|xz|

¯ 1

´z ´ ⇣
ˆ

ˆª

R
dy i

sgn pzq ´ sgnpyq
2

J0
´
2

a
|yz|

¯
 pyq

˙

Due to the decay of J0 the function is absolutely integrable, then invoking Fubini-
Tonelli we can swap the integration order. Furthermore, using the identity

psignpxq ´ signpzqq psignpzq ´ signpyqq “ psignpxq ` signpyqq psignpzq ´ signpxqq
We have

R⇣pT0q pxq “
ª

R
dy psignpxq ` signpyqq pyq ˆ

ˆª

R
dz

signpzq ´ signpxq
4

1

z ` ⇣
J0

´
2

a
|xz|

¯
J0

´
2

a
|yz|

¯˙

with the change of variables u “ ´ signpxqz the inner integral, which we will from
know on call F↵px, yq, becomes

F↵px, yq “
ª

R
du

´ signpxqpu ` 1q
4

1

´ signpxqu ` ⇣
J0

´
2
a

|xu|
¯
J0

´
2

a
|yu|

¯

“ 1

2

ª 8

0
du

1

u ´ sign pxqq⇣ J0
´
2

a
|xu|

¯
J0

´
2

a
|yu|

¯

now setting u “ w2, noting

ˆa
|⇣|e˘ i

”
�

2 ´ ⇡

4

`
sgnpxq`1

˘ı˙2

“ ´ sign pxqq⇣

F↵px, yq “
ª 8

0

dw
wJ0

´
2
a

|x|w
¯
J0

´
2

a
|y|w

¯

w2 `
ˆa

|⇣|e˘ i
”
�

2 ´ ⇡

4

`
sgnpxq`1

˘ı˙2 .

We have ´⇡{2 † �

2 ´ ⇡

4

`
sgnpxq ` 1

˘
† ⇡{2, then using formula [GR, 6.541 (1)] we

obtain the stated expression. The expression for R⇣pHT,0q comes from the relation

R⇣pHT,0q “ S˚
�
R⇣p�T0qS� “ 1

�
S˚
�
R ⇣

�

pT0qS�.
⇤

3.4. Scattering by a convolution potential. In this section we will find a class
of convolution perturbations of T0 for which the scattering and wave operators
exist. A brief introduction to some relevant definitions may me found in appendix
A.3. Let g P L1pRq such that gp´xq “ gpxq and ||g||1 § 1, and and consider the
associated convolution potential Wg defined by

(59) Ng'pxq – pg ˚ 'qpxq “
ª

R
dy gpx ´ yq'pyq
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By equation (100) in appendix A.2 we have

(60) Ng “
?
2⇡ pgppq

With p the momentum operator. The following Lemma gives us a rigurous definition
for T0 ` Ng

Lemma 3.9. The operator T0 ` Ng with with domain DpT0q is self adjoint.

Proof. We start to check that Ng is in fact a bounded symmetric operator. As
FNgF

˚ “
?
2⇡pgpxq we have ||Ng|| “ ||

?
2⇡pgpxq|| “

?
2⇡||pg||8 § ||g||1.To check

for it being symmetric, for  ,' P L2pRq X C0pRq we have

xNg', y “
ª

R
dx

ª

R
dy gpx ´ yq'pyq pxq

swapping the integration order as the integrand is absolutely integrable and using
gp´uq “ gpuq

xNg', y “
ª

R
dy 'pyq

ª

R

dx gpy ´ xq pxq

“x', Ng y
Invoking the Kato-Rellich theorem stated in A.15, as Ng is bounded then T0 ` Ng

is well defined as a self-adjoint operator on the domain DpT0q. ⇤
Due to this it makes sense to consider the scattering theory of the pair pT0, T0 `

Ngq. However, rather than working directly with T0, we will make use of relation
T0 “ pBF q˚ppBF q and study the scattering theory of the pair pp, pgqq. where
pg :“ p ` Mg is the perturbation of the momentum given by the potential.

Mg – BFNgF
˚B .

Lemma 3.10. The potential Mg is the multiplication operator defined by

pMg qpxq :“
?
2⇡ĝ

ˆ
1

x

˙
 pxq ,  P  L2pRq .

where ĝ denotes the Fourier transform of g.

Proof. As Wg “
?
2⇡ pgppq, we have FWgF

˚ “
?
2⇡pgpxq. Then for  P L2pRq and

recalling the definition of B

Mg pxq “
?
2⇡ pBpgpxqBq p qpxq “

?
2⇡

1

x
pg

ˆ
1

x

˙
pB q

ˆ
1

x

˙
“

?
2⇡pg

ˆ
1

x

˙
 pxq

finishing the proof ⇤
We are now in condition to prove the following theorem fully describing the

scattering of the pair pT0, T0 ` Ngq.
Theorem 3.11 (Scattering theory for convolution perturbations in d “ 1). Let
g P L1pRq and Ng the associated convolution perturbation defined by (59). Then:

(i) The perturbed operator T0 ` Ng is self-adjoint with domain DpT0q, unitary
equivalent to T0 and

�
`
T0 ` Ngq “ �a.c.

`
T0 ` Ngq “ R .

Let pg be the Fourier transform of g such that
≥
R ds |pgpsq|

s2
† 8. Then:

22



(ii) The wave operators W˘ defined by

(61) W˘ :“ s-lim
tÑ˘

e i tpT0`Ngq e´ i tT0

exist and are complete;

(iii) The S-matrix Sg :“ pW`q˚W´ is a constant phase given by

Sg “ e´ i
?
2⇡

≥
R ds ĝpsq

s2 .

Proof. We start by the scattering theory of the pair pp, p` qpxqq with q a bounded
integrable real function, originally found in [Kat, Example 3.1, p. 530]. As is known
e´ i tp, acts as a translation by t. To find the group generated by p ` qpxq we first
define the unitary operator

(62) Iq pxq – e iQpxq pxq; Qpxq –
ª

x

0
dy qpyq.

Let us note that Iq, I˚
q

and Qpxq leave H1pRq “ Dppq invariant as Iq pxq has a
square integrable derivative given by iqpxqIq pxq ` Iq 1pxq. Then the commutator
rQpxq, ps “ qpxq has a well defined sense, and as rQpxq, rQpxq, pss “ 0 we have by
the Baker-Campbell-Hausdor↵ formula

(63) I˚
g
pIg “ p ` r´iQpxq, ps “ p ` qpxq

and in consequence

(64) e i tpp`qpxqq pxq “ I˚
g
e i tpIg pxq “ e´ iQpxqe iQpx`tq px ` tq.

Then to compute the wave operators we first write

(65) W ptq pxq “ e i tpp`qpxqqe´ i tp pxq “ e i pQpx`tq´Qpxqq pxq
Computing let us note that Qpx` tq ´Qpxq “ ≥

x`t

x
dy qpyq. Then for  ,� P L2pRq,

as qpxq is absolutely integrable,

x�,W ptq y “
ª

R
dx �pxqe i

≥
x`t

x
dy qpyq pxq ››››Ñ

tÑ`8

ª

R
dx�pxqe i

≥`8
x

dy qpyq pxq

Using the dominated convergence theorem using | pxq�pxq| as a bound. Taking
the analogous limit as t Ñ ´8 we finally get the wave operators

(66) W`pp`qpxq, pq “ exp i

ª `8

x

dy qpyq, W´pp`qpxq, pq “ exp´i

ª
x

´8
dy qpyq

Let us note that with an analogous computation the limits W˘pp, p ` qpxqq “
s-limtÑ˘8 e i tpe´ i tpp`qpxqq exist. as such the wave operators are complete. We
only need to compute the scattering matrix

Spp ` qpxq, pq “ W˚
`pp ` qpxq, pqW´pp ` qpxq, pq

“ exp

ˆ
´i

ª `8

x

dy qpyq
˙
exp

ˆ
´i

ª
x

´8
dy qpyq

˙
“ exp

ˆ
´i

ª `8

´8
dy qpyq

˙

Which acts as multiplication by a phase. Now for the pair pT0, T0 ` Ngq, we have

pT0 ` Ngq “ BF pp ` MgqF ˚B, pT0q “ BF ppqF ˚B,

and if the wave operators exist,

W˘pT0 ` Ng, T0q “ BFW˘pp ` Mg, pqF ˚B.
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Thus we need to check if Mg satisfies the same conditions as qpxq. As Mg acts as
multiplication by

?
2⇡pg

`
1
x

˘
† 8. Moreover, both integrals

ª 8

x

dy
?
2⇡pg

ˆ
1

y

˙
,

ª
x

´8
dy

?
2⇡pg

ˆ
1

y

˙

are finite as ª

R
dx

ˇ̌
ˇ̌?2⇡pg

ˆ
1

x

˙ˇ̌
ˇ̌ “

ª

R
dx

1

x2

?
2⇡|pgpxq| † 8.

Thus Mg satisfies the same conditions as qpxq and the wave operators exist and are
complete. The Scattering Matrix is given by

SpT0 ` Ng, T0q “ BFSpp ` Mg, pqpBF q˚ “ exp

ˆ
´ i

?
2⇡

ª

R
ds

ĝ psq
s2

.

˙

From the equivalence between p and p`qpxq we also obtain the equivalence between
T0 and T0 ` Ng. ⇤
Remark 3.12 (Scattering with a convolution potential forHT,0). From the relation
HT “ �S˚

�
TS� . and as convolution operators commute with translations, one has

under the same conditions for g

W˘pHT,0 ` Ng, HT,0q “ S˚
�
W˘ signp�qpT0 ` N�´1g, T0qS�,

and

SpHT,0 ` Ng, HT,0q “ S˚
�
Wsignp�qpT0 ` N�´1g, T0q˚W´ signp�qpT0 ` N�´1g, T0qS�

“ exp

ˆ
´ i

?
2⇡

|�|

ª

R
ds

ĝ psq
s2

.

˙
.

In this last calculation we use the fact that S˚ “ W˚
´W`

With this we close the study of the quantum Thermal Hamiltonian, and we give
a similar study to the Classical version.

4. Classical Case

In this last section we will study the classical dynamics induced by a thermal
gradient. The classic analogue of the Luttinger’s model is provided by the the
Hamiltonian function

(67) HT px, pq :“ p1 ` � � ¨ xq p2

2m
“ Kppq ` � T�px, pq ,

with parameters � ° 0 and � P Sd´1. The Hamiltonian HT can be seen as the sum
of the Hamiltonian of a free d-dimensional particle of mass m

Kppq :“ p2

2m
“ 1

2m

Nÿ

j“1

p2
j

coupled through the coupling constant � ° 0 with the thermal potential

T�px, pq :“ p� ¨ xq Kppq “
ˆ

p2

2m

˙ dÿ

j“1

�j xj

along the direction � P S
d´1. The coupling constant has the dimension of the

inverse of a distance, namely � “ `´1 with ` ° 0 the typical length of the thermal
field. Therefore, the limit � Ñ 0 describes the situation in which the typical length
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of the field is much larger than the typical length of the system (e. g. the size of
the particle). The potential T� is an example of what is known as a generalized
potential, namely a potential which depends not only on the position but also on
the the velocity.

4.1. Hamiltonian Formalism and Newton equation. The Hamilton equations
associated to (67) read

(68)

$
’’&

’’%

9x “ `rpHT “ p1 ` � � ¨ xq
m

p

9p “ ´rxHT “ ´� p2

2m
� .

The first equation can be inverted out of the critical plane

(69) ⌅c :“
 
x P Rd | � ¨ x ` ` “ 0

(

and provides

(70) ppx, 9xq “ m

p1 ` � � ¨ xq 9x

One can restore the usual relation p “ mT 9x between momentum and velocity by
introducing the position-dependent mass (PDM)

mT pxq :“ m

p1 ` � � ¨ xq .

It is interesting to notice that the Hamiltonian (67) can be rewritten as

(71) HT px, pq “ p2

2mT pxq ,

namely as the Hamiltonian of a free particle with a PDM. The second equation of
(68) can be rewritten as

(72) 9p “ ´� rxT� .

A straightforward computation allows to derive the Newton’s laws from (68):

m :x “ �p� ¨ 9xqp ´ � p1 ` � � ¨ xq p2

2m
� .

After introducing (70) in the las expression one obtains the Newton’s equation

m :x “ � FT px, 9xq
where the thermal force (which has the dimensions of a force times a distance) is
given by

(73) FT px, 9xq “ mT pxq
„

p� ¨ 9xq 9x ´ 9x2

2
�

⇢
.

A way of interpreting this Newton’s Equation is to say that the motion of the
PDM-particle is influenced by the e↵ect of its own internally self-produced force
field generated by the spatial dependence of the mass. The relation between the
force FT and the potential T� can be deduced by observing that

(74) ´ �rxT� “ ´� mT pxq2
m

9x2

2
�
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in view of the (72), (68) and (70), respectively. After some manipulation and the
use of equation (70) one gets

(75) FT px, pq “ ´rxT�px, pq ` RT px, pq
which shows that the thermal force is not simply given by ´rxT� , as for ordinary
conservative forces, but it includes an extra reacting term

(76) RT px, pq :“ d

dt
p� ¨ xq p “ m

d

dt
prpT�px, pqq

which is generally not aligned with the direction � of the field.

4.2. Qualitative analysis. Let us start with the analysis of the qualitative be-
havior of the solution of the Hamiltonian system (67). To simplify the study let us
fix convenient notations. The unit vector � can be completed to an orthonormal
basis by adding other d ´ 1 orthonormal vectors e1, . . . , ed´1. This allows to fix
the generalized coordinates x0 :“ � ¨ x, xj :“ ej ¨ x, and the generalized momenta
p0 :“ � ¨ p, pj :“ ej ¨ p with j “ 1, . . . , d ´ 1. In this coordinates the Hamiltonian
(67) reads

(77) HT px0, p1, . . . , pdq “ p1 ` �x0q p2

2m

and the Hamilton equations (68) become

(78)

$
’&

’%

9xj “ p1 ` � x0q pj
m

9pj “ ´�0,j �
p2

2m

j “ 0, . . . , d ´ 1 .

The integration of the equations for the “orthogonal” components of the momentum
immediately leads to

pjptq “ }j “ const. , j “ 1, . . . , d ´ 1 .

This can be seen as a consequence of the Noether’s theorem applied to the invariance
under translations of the Hamiltonian HT along all the directions orthogonal to �.
Let us introduce the constant of motion

}K :“
˜

d´1ÿ

j“1

}2
j

¸ 1
2

which quantifies the momentum in the orthogonal plane to the direction of the
thermal field. The square of the momentum at any time takes the form

(79) p2ptq “ p20ptq ` }2
K .

The value of the parameter }K strongly determines the behavior of the solutions
of the system (78). To see this, one can observe that the Hamiltonian HT is time-
independent and therefore the Noether’s theorem provides a further constant of
motion, i. e. the (total) energy

E0 :“ p1 ` � %0q }2
0 ` }2

K
2m

which is completely specified by the initial conditions

%0 :“ x0pt “ 0q , }0 :“ p0pt “ 0q .
26



The constraint

(80) HT pxptq, pptqq “ E0 , @ t P R

can be used to obtain the equation

(81) x0ptq “ 1

�

ˆ
2mE0

p2ptq ´ 1

˙
“ }2

0 ` }2
K

p20ptq ` }2
K

ˆ
1

�
` %0

˙
´ 1

�
,

which provides the time evolution of x0 once it is known the form of p20ptq and the
initial conditions %0 and }0,}1, . . . ,}N´1. In addition to this, the constraint (80)
also provides useful information for a qualitative study of the trajectory xptq of
the particle. A comparison between (77) and (80) shows that the sign of E0 only
depends on the quantity 1 ` �%0. More precisely, one has that

˘E0 • 0 ô ˘%0 • ¯` .

Thus, the critical plane ⌅c Ä RN separates the space into two regions labelled by
the sign of the energy E0. The full trajectory xptq of the particle is fully contained
in only one of these two half-spaces according to the initial position %0 along the
direction � at the initial time t “ 0. Moreover, the trajectory can touch the critical
plane only at the cost of a divergence in the value of the total momentum, p2 Ñ 8.

The existence of this critical impenetrable plane can be justified on the basis of
the Newton’s law m:xj “ � FT,j where the force (73) is given for components by

(82) FT,j “

$
’&

’%

E0

2
´ p1 ` �x0q }

2
K
m

if j “ 0

p1 ` �x0q p0}j

m
if j “ 1, . . . , d ´ 1 .

In the derivation of (82) from (73) we made use of (71) along with mT 9x “ p and the
conservation laws (79) and (80). The component FT,0 is proportional to E0 very
close to the critical plane (1 ` �x0 „ 0) and force the particle to stay inside the
half-space where the particle was at the initial time. When }2

K ‰ 0 the component
FT,0 changes sign su�ciently far from the critical plane and begins to attract the
particle towards ⌅c. This suggests that the motion of the particle must be bounded
in the direction � provided that the momentum has a non-vanishing component
orthogonal to � at the initial time. The components FT,1, . . . , FT,d´1 are due to the

reaction term RT (76). The conservation of the energy implies that |p0|9|1`�x0|´ 1
2

for x0 Ñ ´`. Therefore the orthogonal components of FT vanish when the particle
approaches the critical plane.

4.3. Exceptional solutions. The Hamilton equations (78) (or equivalently (68))
admit the exceptional family of solutions pptq “ 0 and xptq “ % for all t P R
parametrized by all the possible initial positions % P Rdz⌅c not belong to the critical
plane. In this case the particle is at every moment at rest in a configuration of total
zero energy E0 “ 0. This is not surprising even though the particle is immersed in
the thermal field. In fact the force FT produced by the field vanishes when p “ 0.
If at the initial time one has }j “ 0 for all j “ 0, . . . , d´1 and %0 ‰ ´`, then p2 “ 0
for all t P R (as a consequence of energy conservation) and therefore the particle is
not subject to any force. This allows the particle to stay in equilibrium forever at
the position %.
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Another family of exceptional solutions is again described by xptq “ % for all
t P R with the initial positions % P ⌅c. Also in this case the particle remains at rest
in a configuration of total zero energy E0 “ 0. However, since the particle lies in the
critical plane the total momentum is not forced to be zero. While the component
of the momentum orthogonal to � is constant and quantified by }K the component
p0ptq evolves in time according to the Hamilton equation (78) (with solutions (90)
if }K “ 0 or (83) when }K ‰ 0).

4.4. The general solution. Let us derive the general solution of the Hamiltonian
system (78) under the generic assumption }K ‰ 0. In this case the di↵erential
equation for p0 reads

9p0 “ ´� p20 ` }2
K

2m
and is solved by

(83) p0ptq “ }K tan
´
� ´ �

}K
2m

t
¯

where � :“ arctan
´
}0

}K

¯
is determined by the initial conditions. Equation (83)

shows that p0ptq diverges periodically at the critical times tpnq
c :“ tc ` nT , n P Z,

where

tc :“ p2�´ ⇡q `m
}K

, T :“ 2⇡
`m

}K
and ` “ �´1.

From (83) and (79) one immediately gets

p2ptq “ }2
K

cos
`
�´ �}K

2m t
˘2

and after some manipulations, equation (81) provides

(84) x0ptq “ %0 ` A�

„
cos

´
�´ �

}K
2m

t
¯2

´ cosp�q2
⇢

where we the amplitude A� is given by

A� :“ `
2mE0

}2
K

“ `` %0
cosp�q2 .

Equation (84) shows that the motion along the direction � is bounded and more
precisely is confined between the critical plane ⌅c which is reached periodically at

the critical times tpnq
c and the extremal plane

(85) ⌅e :“
#
x P Rd | � ¨ x “ %0 `

ˆ
}0

}K

˙2

p`` %0q
+

which is reached periodically at the extremal times tpnq
e :“ te`nT where te :“ 2� `m

}K
.

By inserting the solution (84) in the di↵erential equations for the other compo-
nents of the position one gets

9xjptq “ �
}j

m
A� cos

´
�´ �

}K
2m

t
¯2

, j “ 1, . . . , d ´ 1 .
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For each j, the corresponding di↵erential equation is integrated by

(86) xjptq “ %j ` �
}j

2m
A�t ´ A�

2

}j

}K

”
sin

´
2�´ �

}K
m

t
¯

´ sinp2�q
ı
.

Evidently the motion in the directions ej is unbounded when }j ‰ 0 due to the
linear term in t which describes a uniform motion with constant velocity vj,� :“
�A�

}j

2m .

Let us introduce the unit vector ⌫ :“ }´1
K

∞
d´1
j“1 }jej . By construction ⌫ is

orthogonal to � and } :“ }0�`}K⌫ describes the initial momentum of the particle
at t “ 0. From (84) and (86) one gets that

(87) xptq “ % ` A�
`
f0ptq� ` fKptq⌫

˘

with % :“ %� ` ∞
d´1
j“1 ⇢jej the initial position and

f0ptq :“ cos
´
�´ �

}K
2m

t
¯2

´ cosp�q2

fKptq :“ �
}K
2m

t ´ 1

2

”
sin

´
2�´ �

}K
m

t
¯

´ sinp2�q
ı
.

Equation (87) shows that the motion of the particle is essentially two-dimensional.
In fact the orbit xptq lies entirely in the a�ne plane spanned by µ and ⌫ and passing
through the initial position ⇢.

Remark 4.1 (2D-case). In view of (87) the general motion of a particle in the
thermal field is a two-dimensional motion provided that the initial momentum is
not aligned with the direction of the field. Therefore, one can always identify the
direction � of the field and the direction ⌫ of the orthogonal component of the initial
momentum with the x-axis and the y-axis of R2, respectively. This allows us to use
the “cozy” notation xptq and yptq for the two projections of the trajectory along
the direction � y ⌫, respectively. Let } “ p}x,}yq be the components of the initial
momentum projected along the two coordinate direction � and ⌫. Let us consider
here the special situation in which the total momentum is completely orthogonal
to �. This means that }0 “ }x “ 0 and }K “ |}y| “ |}|. This also implies that
� “ arctanp0q “ 0 and A� “ ` ` %x with %x “ %0 is the x-component of the initial
position % “ p%x, %yq. In this case the equations of motion for the position simplify
to

(88)

xptq “ %x ` p`` %xq
«
cos

ˆ
�

|}|
2m

t

˙2

´ 1

�
,

yptq “ %y ` p`` %xq
„
�

|}|
2m

t ` 1

2
sin

ˆ
�

|}|
m

t

˙⇢
.

The time evolution of the momentum is described by the equations

pxptq “ ´|}| tan

ˆ
�

|}|
2m

t

˙

and

pyptq “ }y.

û
29



4.5. The one-dimensional case. As discussed at the end of Section 4.4 (see Re-
mark 4.1) the general motion of a particle in the thermal field is two-dimensional
whenever }K ‰ 0. Therefore the condition }K “ 0, }0 ‰ 0 corresponds to consid-
ering the one-dimensional case. In fact, under these conditions, one immediately
gets from (78) that pjptq “ }j “ 0 for all j “ 1, . . . , d ´ 1. This in turn implies
9xj “ 0 for j “ 1, . . . , d ´ 1 and so

xjptq :“ %j “ const. , j “ 1, . . . , d ´ 1 .

This means that the only possible motion could take place exclusively in the direc-
tion �, namely it is one-dimensional.

Without loss of generality let us assume that %1 “ . . . “ %d´1 “ 0 which means
that xjptq “ 0 “ pjptq for all j “ 1, . . . , d ´ 1. Given that, the only interesting
degrees of freedom are x0 and p0 and we can simplify the notation identifying x0

with x and p0 with p. With this notation the (non-trivial) one-dimensional system
of Hamilton equations reads

(89)

$
’&

’%

9x “ p1 ` � xq p

m

9p “ ´� p2

2m
.

The equation for the momentum immediately integrated by

(90) pptq “ `
}

}

2m t ` `

with } “ pp0q the initial momentum. Notice that the value of the momentum
diverges at the critical time tc :“ ´` 2m

}
.

The time evolution of the position can be derived directly from equation (81)
which, after some algebraic manipulation, provides

(91) xptq “ p`` %q
`2

´ }

2m
t ` `

¯2
´ `

with % “ xp0q the initial position. The long time behavior of the trajectory is
determined by the sign of the coe�cient of t2 in (91), namely by the sign of `` %.
It follows that

lim
|t|Ñ8

xptq “ ˘8 if ˘ % ° ¯` .

The turning time in which the velocity changes sign is determined by 9xptq “ 0
and a simple computation shows that this time coincides with the critical time tc.
Moreover, one has that xptcq “ ´` independently of the initial value %0 ‰ ´`.
In conclusion the critical plane ⌅c separates the space into two regions and the
trajectory xptq is fully contained in only one of these two half-spaces according to
the initial position %. Moreover, the trajectory can touch the critical plane only
once at the critical time tc. These results are in accordance with the qualitative
analysis of Section 4.2.

4.6. The Lagrangian Formalism. By using the Legendre transformation LT px, 9xq “
9x ¨ p ´ HT px, pq one can compute the Lagrangian of the system:

(92) LT px, 9xq :“ 1

2

m

p1 ` � � ¨ xq 9x2 “ mT pxq 9x2

2
.
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Expressions of the type (92) are well studied in the literature under the name of
quasi-free PDM Lagrangian (see [MM, BDGP, Mu] and references therein). The
canonical momentum

ppx, 9xq :“ r 9xLT px, 9xq “ mT pxq 9x
is exactly that given by equation (70). To compute the Euler-Lagrange equations
of motion we need also

rxLT px, 9xq “ rxmT pxq 9x2

2
“ ´� mT pxq2

m

9x2

2
� .

A comparison with (74) shows that

rxLT “ 9p “ ´rxHT

and this assures that the Euler-Lagrange equation

d

dt
pr 9xLT q “ rxLT

is equivalent to the Hamilton system (68). An explicit computation provides

d

dt
pr 9xLT q “ mT pxq :x ` d

dt
pmT pxqq 9x

“ mT pxq :x ´ �
mT pxq2

m
p� ¨ 9xq 9x

and putting all the pieces together one gets

(93) mT pxq :x “ �
mT pxq2

m
p� ¨ 9xq 9x ´ �

mT pxq2
m

9x2

2
�

which is equivalent to the Newton’s equation m:x “ �FT with the force (73).

In the one-dimensional case it is useful to use the change of Lagrangian coordi-
nates px, 9xq fiÑ pq, 9qq implemented by

xpqq :“ e�q ´ 1

�
, 9xpq, 9qq :“ � e�q 9q .

The inverse is given by

qpxq :“ 1


log

ˆ
x ` 1

�

˙

and shows that the change of coordinates between x and q is one-to-one only when
x • ´`. However, as seen in Section 4.2, this is exactly the range of values of
interest for the problem. With this change of coordinates the Lagrangian becomes

(94) L
1
T

pq, 9qq :“ m � e�q
9q2
2

.

and the associated Euler-Lagrange equation reads

:q :“ ´� 9q2
2

.

This equation immediately provides the time-behavior of the generalized velocity

9qptq :“ 9q0
1 ` 9q0�

2 t

and a further integration gives

qptq :“ q0 ` 2

�
log

ˆ
1 ` 9q0�

2
t

˙
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where q0, 9q0 are the initial conditions. By coming back to the original variable one
can recover the expression (91) for xptq.
4.7. parallels between the Classical and Quantum Dynamics. Let us note
that the critical plane ⌅c as described in (69) also plays a role in the quantum case,
as seen in remark 3.7. In both cases, a particle (or an element of the Hilbert space)
localized in one side of ⌅c (in the quantum case, the point x “ ´1{�) doesn’t leave
that space. Moreover, we can further link the existance of this critical plane, with
the rather anomalous property of HT of not having the Schwarz functions as a core.
As we saw in section 3, HT has as a core SpRq`C rS˚

�
p0qs, composed of su�ciently

regular functions, except for a jump in x “ ´1{� given by S˚
�

p0q; Just describing
how HT acts over SpRq is not enough for it’s closure to be self adjoint. To be able
to give a satisfactory answer to the question of the transition quantum-to-ckassic,
one possible way lies in the WKB analysis, studying the limit of the quantum case
as ~ tends to 0. This is one of the open questions to be tackled in future works.

Appendix A. Appendix: Spectral Theory

A.1. The Momentum operator.

Definition A.1 (The Momentum operator p). The 1-dimensional momentum op-
erator p is defined by

(95) p'pxq “ ´i'1pxq, ' P H1pRq
with '1 being the weak derivative of ', and H1pRq the first Sobolev space.

This definition of p ensures one of the many possible quantizations of the classical
momentum operator, and the most usual one in the continous case, for it holds the
canonical commutation relation irp, xs “ I with the position operator x acting as
multiplication, and notably p is the generator of the translation group acting on
L2pRq : Uptq pxq “  px ´ tq. The spectral theory of the Momentum operator is
greatly simplified due to the following result.

Theorem A.2 (Diagonalization of the Momentum operator). The operator p is
unitarily equivalent to the position operator x, thoroughly defined by

(96) px'qpxq “ x'pxq; Dpxq “
"
' P L2pRq

ˇ̌
ˇ̌
ª

R
|x'pxq|2 dx † 8

*

The unitary equivalence is given by the Fourier transform:

(97) pF qpkq :“ 1

p2⇡q 1
2

ª

R
dx e´ i k¨x  pxq,

the inverse Fourier transform:

(98) pF ´1�qpxq “ pF ˚�qpxq :“ 1

p2⇡q 1
2

ª

R
dk e i x¨k �pkq,

and the relation

(99) FpF ˚ “ x

From this unitary equivalence we can also compute the spectrum of p, obtaining
�ppq “ �a.c.ppq “ R and also the functional calculus for p

fppq' “ F
˚fpxqF'
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fixing F' “ p', and as fpxq acts by multiplication

“ F
˚fpxq p' “ F

˚pf p'q
Using the convolution theorem we finally have

(100) fppq' “ 1?
2⇡

qf ˚ '.

An important family of functions to compute are the resolvent functions for p. Let
✏ P R, � ° 0 and

(101) R✏˘ i�ppq “ 1

p ´ p✏˘ i �q .

From the previous formula, and as fpxq “ p✏ ˘ i� ´ kq´1 has an explicit inverse
Fourier transform

(102) F
˚

ˆ
1

k ´ p✏˘ i �q

˙
pxq “ ˘ i e i ✏xe´�|x|⇥p˘xq

As such, we have the following proposition.

Proposition A.3. The resolvent family of operators R⇣ppq are integrals operators
given by

(103) R✏˘ i �ppq pxq “
ª

R
dyG 0

⇣
px, yq pyq,

with integral kernel

(104) G
0
✏˘ i �px, yq “ ˘ i e i ✏px´yq e´� |x´y|⇥

`
˘ px ´ yq

˘
.

We will now proceed to find an explicit expression for the expectral measure.
Let µA

 
be the spectral measure of the self-adjoint operator A associated with the

state  P L2pRq. The function FA

 
: CzR Ñ C defined by the scalar product

FA

 
p⇣q :“ x , pA ´ ⇣1q´1 y “

ª

R
dµA

 
p✏q 1

✏´ ⇣

is called the Borel-Stieltjes transformation of the finite Borel measures µA

 
. Since

Im
`
FA

 
p⇣q

˘
“ Imp⇣q

ª

R
dµA

 
p✏q 1

|✏´ ⇣|2 ,

it follows that FA

 
: C` Ñ C` is is a holomorphic map from the upper half plane

C` into itself. Such functions are called Herglotz or Nevanlinna functions (see [DK,
Section 1.4] or [AW, Appendix]). A classical result by de la Vallée-Poussin assures
that the limit FA

 
p✏q :“ lim�Ñ0` FA

 
p✏` i �q exists and is finite for Lebesgue-almost

every ✏ P R. Moreover, the absolutely continuous part of the spectral measure
µA

 
can be recovered from the imaginary part of FA

 
p⇢q according to the classical

formula [DK, Theorem 1.4.16.]

µA

 
|a.c.pd✏q “ fA

 
p✏q d✏,

with

(105) fA

 
p✏q :“ lim

�Ñ0`

1

⇡
Im

`
FA

 
p✏` i �q

˘
.
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It is known that the momentum operator has purely absolutely continuous spec-
trum, i. e.µp

 
“ µp

 
|a.c.. using the Fourier transform F one obtains that

F p

 
p✏` i �q :“ x , pp ´ p✏` i �q1q´1 y “

ª

R
dk

| p pkq|2
pk ´ ✏q ´ i �

,

where p :“ F p q is the Fourier transform of  . The application of the formula
(105) provides

fp

 
p✏q “ lim

�Ñ0`

ª

R
dk

1

⇡

�

pk ´ ✏q2 ` �2
| p pkq|2 “ | p p✏q|2

where in the last equality one used that 1
⇡

�

x2`�2 converges in the distributional
sense to �pxq when � Ñ 0`. In this way one recovers the well-known result

(106) µp

 
pd✏q “ | p p✏q|2 d✏ .

A.2. Self-Adjoint and Symmetric Operators. As the axioms of QM state,
every physical observable is given by a (possibly unbounded) self adjoint operator
acting on a Hilbert space H, thus the question of determining which operators are
self adjoint is one of the first to be asked.
We first start by stating the definition of the adjoint of an operator, in the particular
case of Hilbert spaces.

Definition A.4 (Adjoint of an operator). Let H be a Hilbert space and A : DpAq Ä
H Ñ H a densely defined linear operator. We start defining A‹ by its domain

DpA‹q “ tv P H; Dw P H : pv ¨ Auq “ pw ¨ uq @u P DpAqu
. A‹ is then the operator acting on the domain DpA‹q given by A‹v “ w.

In a sense, the relation between A and A‹ is essentialy

pv ¨ Auq “ pA‹v ¨ uq @u P DpAq, v P DpA‹q
where DpA‹q is the maximal domain where such property can take place. Naturally
an operator is self adjoint exactly when DpAq “ DpA‹q and

pv ¨ Auq “ pAv ¨ uq @u, v P DpAq.
If an operator B acting on H only satisfies this last property, it is called symmetric
and a simple computation shows that DpAq Ä DpA‹q. In general checking if an
operator is symmetric over a certain domain is a much more straightforward task,
thus we are interested in the question of determining the self adjoint extensions (if
there are any) of a given symmetric operator A. The following theorem due to Von
Neumann is a clasical result and usually one of the first criterions used.

Theorem A.5 (Von Neumann’s Theorem). Let A be a symmetric operator acting
on a domain DpAq and suppose that there exist a conjugation C : DpAq fiÑ DpAq
(that it, an antilinear operator that preserves the norm and satisfies C2 “ I) with
CA “ AC. Then A has equal deficiency indices, and thus self adjoint extensions.

It’s proof can be found in [RS2, Theorem X.3]. The main appeal of this theorem
is the relative simplicity of the conjugation C. An usual example C is Cfpxq “ fpxq,
thus earning the name of conjugation. Let us now proceed with some tools for
determining the self adjoint extensions. We start with an usual definition.
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Definition A.6 (Closed operator). Let H be a Hilbert space and A : DpAq Ä H Ñ
H a densely defined linear operator. We say A is closed if and only if for every
sequence pxnqnPN P DpAq such that xn Ñ x and Axn Ñ y we have x P DpAq and
Ax “ y.

This is equivalent to the graph of A �pAq being closed with the product topology.
Given an operator, we may be interested in the smallest closed extension it has, if
any. This motivates the following definition.

Definition A.7 (Closure of an Operator). Given A acting in H, we say A is
closable if and only if �pAq has the single-valued property, that is, p0, yq P �pAq ùñ
y “ 0. In that case, we can define the closure of A, denoted by A and given by

(107)
A : DpAq “ DpAq || ||A “

!
x P H : D y P H , px, yq P �pAq

)
Ñ H

Ax :“ y

Not every operator is closable, but every symmetric operator is closable. The
following definition and result characterises the degrees of freedom available when
defining a self adjoint extension of a symmetric operator.

Definition A.8 (Deficiency subspaces). Suppose that A is symmetric. Let

K˘ “ kerp i Id ¯ A˚q “ RanpiI ˘ AqK,(108)

and

n˘pAq “ dimK˘.(109)

K` and K´ are called the deficiency subspaces of A. The respective dimensions n`
and n´ are called the deficiency indices of A.

Theorem A.9 (Self-adjoint extensions of a closed symmetric operator). Let A be
a closed symetric operator with deficiency indices n` and n´, then:

(a) A is self-adjoint if and only if n` “ n´ “ 0.
(b) A has self adjoint extensions if and only if n` “ n´.

Moreover, every self-adjoint extension of A is determined by an isometry
U : K` Ñ K´, and given by

(110)
AU : DpAq ` pU ` IqK` Ñ H

AU p�` pU ` Iq `q “ A�` ipI ´ Uq `, � P DpAq , ` P K`

Remark A.10. If a symmetric non-closed operator A is such that A satisfies the
conditions of the last theorem, one has that AU : DpAq ` pU ` IqK` is instead a
core for AU , that is, the closure of AU is self-adjoint.

These results on deficiency spaces and their proofs can be found in [RS2, Section
X]. This way, the self-adjoint extensions of a closed symmetric operator with finite
and equal deficiency indices n´ “ n` “ N can be parametrized by an element of
GLpN,Cq after choosing orthonormal bases for K˘.
Another formulation for self adjoint extensions is given in [Sch, Chapter 14] in the
form of boundary triples, by the following definition

Definition A.11 (Boundary Triple). Let T be a densely defined symmetric operator
on a Hilbert space H. A boundary triplet for T˚ is a triplet pK,�0,�1q of a Hilbert

35



space pK, x¨yKq and linear mappings �0 : DpT˚q Ñ K and �1 : DpT˚q Ñ K such
that

(111) xT˚x ¨ yy ´ xx ¨ T˚yy “ x�1x ¨ �0yyK ´ x�0x ¨ �1yyK for x, y P DpT˚q

holds and the mapping DpT˚q Q x fiÑ p�0x,�1xq is surjective.

The name boundary triple is due to that, when T is a di↵erential operator,
�0 and �1 usually take the form of Boundary evaluations of the argument or it’s
derivatives. In this vein equation (111) is called the abstract Green’s Identity. the
following proposition coming from [Sch, 14.5] to links the existance of boundary
triples and the existance of self adjoint extensions, taking a step through deficiency
indices.

Proposition A.12. There exists a boundary triplet pK,�0,�1q for T˚ if and only if
the symmetric operator T has equal deficiency indices. We then have
n´pT q “ n`pT q “ dimK

The characterization of all self-adjoint extensions comes in the form of the fol-
lowing theorem:

Theorem A.13. Suppose pK,�0,�1q is a boundary triplet for T˚. Then S is a self
adjoint extension of T on H if and only if there is a self-adjoint operator B acting
on a closed subspace KB Ä K and S is a restriction of T˚ acting on the domain

(112) DpSq “ tx P DpT˚q : �0x P DpBq and B�0x “ PB�1xu

Where PBis the orthogonal projector over the domain of B.

Whose proof and a more extensive formulation can be found in [Sch, 14.10]. We
will finish this section with a classical theorem, that relates to small perturbations
of self-adjoint perturbations. For this goal we need the following definition.

Definition A.14. Let A and B be densely defined linear operators on a Hilbert
space H. Suppose that DpAq Ä DpBq and for some a, b P R and for al  P DpAq,

(113) kB�k § akA�k ` bk�k

Then B is said to be A-bounded. The infimum of such A is called the relative bound
of B with respect to A. In particular, if B is bounded, as

kB�k § kBkk�k

then it is also A-bounded with relative bound equal equal to 0.

Now we are ready to state the Kato-Rellich Theorem.

Theorem A.15 (Kato-Rellich). Suppose A and B are self-adjoint and symmetric
operators respectively, and B is A-bounded with relative bound a † 1. Then A ` B
is self-adjoint with DpA ` Bq “ DpAq and essentialy self adjoint on any core of A

The theorem can be found in [RS2, Theorem X.12] with it’s complete proof.
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A.3. Scattering Theory. In a broad sense, the basis of Scattering Theory is the
comparison of a system governed by a HamiltonianH, and a di↵erent, and hopefully
more well understood, Hamiltonian H0. Supposing for example, that the di↵erence
between H and H0 is localized in a region of space, we can reasonably expect that
it’s e↵ects will be negligible in the dynamics for starting from a given time. This
argument can be made more formal asking if there is a certain ⇢´ such that for a
given ⇢:

lim
tÑ`8

ke´itH0⇢` ´ e´itH⇢k “ 0

A way to interpret this condition is: For a given initial condition ⇢ evolving with
the dynamics determined by H, is there a state ⇢` such that the evolution of ⇢`
by a similar, and usually simpler Hamiltonian H0 is arbitrarily close to it? Using
the unitarity of evolution groups, the last condition may be rewritten as

s-lim
tÑ`8

eitHe´itH0⇢` “ ⇢.

To make this notions formal, we start with the following definition, from [RS3,
Section XI.3].

Definition A.16 (Generalized wave operators). Let H and H0 be self-adjoint op-
erators on a Hilbert space H and let Pa.c.pH0q be the projection onto the absolutely
continous subspace of H0. We say the generalized wave operators W˘pH,H0q exist
if the strong limits

(114) W˘pH,H0q “ s-lim
tÑ¯8

e iHte´ iH0tPa.c.pH0q

exist. When they exist we also define

H` “ RanW` and H´ “ RanW´

By construction, the wave operators are partial isometries from RanPacpH0q to
H`. Also, one can show

e i sHW˘pH,H0q “ s-lim
tÑ¯8

e iHpt`sqe´ iH0tPa.c.pH0q “ W˘pH,H0qe i ´sH0 ,

which can then be generalized up to

HW˘pH,H0q “ W˘pH,H0qH0Pa.c.pH0q
As we can already see, the wave operators are almost unitary equivalences between
the absolutely continuous part of H0 and H. To reach the desired equivalence just
the existance of generalized wave operators is not strong enough. The following
definition gives us conditions strong enough for such statements.

Definition A.17 (Complete wave operator). Suppose that W˘pH,H0q exist. We
say they are complete if and only if

H` “ H´ “ Pa.c.pHq
Or equivalently, W˘pH,H0q are complete if and only if W˘pH0, Hq exist.

Directly from this we get the following theorem

Theorem A.18. Let both W˘pH,H0q and W˘pH0, Hq exist, then

(115) W˘pH,H0q˚ “ W˘pH0, Hq.
37



Finally, if both exist we can also define the Scattering Operator or Scattering
Matrix:

(116) S – W`pH,H0q˚W´pH,H0q
Completing our initial analogy, when studying the dynamics of H, a perturbation of
H0, the scattering operator represents the e↵ect of the perturbation in the original
dynamics.
Most of times, finding conditions for completeness of wave operators is easier said
than done; in general one does not have an explicit expression for e´ i tH . The tools
to circumvent this issue are many, which we will not be reviewing in this appendix.

Appendix B. Appendix: Technical Tools

B.1. Some principal value integrals. All the integrals in this section will be
used in calculations for integral kernels. To streamline the other proofs, they were
placed in their own subsection.

Proposition B.1. Let

G˘
s

puq :“ e i spu˘ 1
u q

u
, s P R,

and IR,r “ r´R,´rs Y rr,Rs. Then the following principal value integral exists and
is given by

(117) P

ª

R
du G˘

s
puq :“ lim

RÑ`8
rÑ0`

ª

IR,r

du G˘
s

puq “ i p1 ˘ 1q⇡ signpsq J0 p2|s|q

where J0 is the 0-th Bessel function of the first kind. Moreover, the following bound
holds for r † 1 † R

(118)

ˇ̌
ˇ̌
ˇ

ª

IR,r

du G˘
s

puq
ˇ̌
ˇ̌
ˇ § 4⇡

Proof. For the trivial case s “ 0 one has that G˘
0 puq “ u´1 and

ª

IR,r

du

u
“ 0 , @ R ° r ° 0

since the function u´1 is odd and the integration domain IR,r is symmetric with
respect to the origin. For s ‰ 0 we have the symmetry

G˘
´|s|puq “ ´ G˘

|s|p´uq,
which provides

(119) P

ª

R
du G˘

´|s|puq “ P

ª

R
dp´uq G˘

|s|p´uq “ ´P

ª

R
du G˘

|s|puq .

The relation (119) guarantees that we can focus only on the case s ° 0. In this
case the computation of the principal value of G˘

s
requires the Cauchy’s residue

theorem. The function G˘
s

has a holomorphic extension to every bounded open
subset of Czt0u and has a singularity in 0. For u ‰ 0 expanding in series each
exponential we have

G˘
s

puq “ e i sue˘ i su´1

u
“ 1

u

8ÿ

n“0

p i suqn
n!

8ÿ

m“0

p˘ i su´1qm
m!
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As the exponential series is absolutely convergent we can manipulate the summation
order

G˘
s

puq “
ÿ

n,m•0

p˘1qmp i sqn`mun´m´1

n!m!

changing n for l “ n ´ m

G˘
s

puq “
`8ÿ

l“´8

`8ÿ

m“0

p˘1qmp i sql`2m

pm ` lq!m!
ul´1

The series following two series are absolutely summable and equal to
`8ÿ

m“0

p i sql`2m

pm ` lq!m!
“ Jlp2sq;

`8ÿ

m“0

p´1qmp i sql`2m

pm ` lq!m!
“ Ilp2sq

With Jl the Bessel Functions of the first kind, and Il the modified Bessel Function
of the first kind. We then have the writing as Laurent series for Gpm

s

G`
s

puq “
ÿ

nPZ
Jnp2sq un´1 ;G´

s
puq “

ÿ

nPZ
Inp2sq un´1

where the Jn are the Bessel function of the first kind and the Inpzq :“ p´ i qnJnp i zq
are the modified Bessel functions of the first kind.
By definition, the residue of G˘

s
is the coe�cient of its Laurent series for n “ ´1.

This provides

Resu“0pG´
s

q “ I0p2sq , Resu“0pG`
s

q “ J0p2sq .
From the Cauchy’s residue theorem one gets

i 2⇡Resu“0pG`
s

q “
¿

�R,r

dz G`
s

pzq “
˜ª

IR,r

`
ª

C
`
R

`
ª

C
´
r

¸
dz G`

s
pzq

And

0 “
¿

�1
R,r

dz G´
s

pzq “
˜ª

IR,r

`
ª

C
`
R

`
ª

C
`
r

¸
dz Gp

s
zq

where �R,r is a positively (counterclockwise) oriented simple closed curve composed
by the union of the domain IR,r on the real line, the semicircle C´

r
:“ tre i ✓ | ✓ P

r´⇡, 0su in the lower half-plane and the semicircle C`
R

:“ tRe i ✓ | ✓ P r0,⇡su in the
upper half-plane and �R,r also a positively oriented simple closed curve composed
by IR,r, C

`
R

and C`
r
. An explicit computation provides

ª

C`
R

dz G˘
s

pzq “ i

ª `⇡

0
d✓ e i spR˘R

´1q cos ✓e´spR¯R
´1q sin ✓ ,

and consequently one has the following estimate for R ° 1.
ˇ̌
ˇ̌
ˇ

ª

C`
R

dz G˘
s

pzq
ˇ̌
ˇ̌
ˇ §

ª `⇡

0
d✓ e´spR¯R

´1q sin ✓ § ⇡.

Since e´spR¯R
´1q sin ✓ Ñ 0 when R Ñ `8 for all ✓ P p0,⇡q, it follows from the

Lebesgue’s dominated convergence theorem that

(120) lim
RÑ`8

ª

C`
R

dz G˘
s

pzq “ 0 .
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A similar computation for the integral along C
´
r

provides
ª

C´
r

dz G`
s

pzq “ i

ª 0

´⇡
d✓ e i spr`r

´1q cos ✓e´spr´r
´1q sin ✓ .

One gets the following bound for r † 1
ˇ̌
ˇ̌
ª

C´
r

dz G`
s

pzq
ˇ̌
ˇ̌ §

ª 0

´⇡
d✓ espr´1´rq sin ✓ § ⇡ .

The latest inequality along with the Lebesgue’s dominated convergence theorem
provides

(121) lim
rÑ0`

ª

C´
r

dz G`
s

pzq “ 0.

Finally along C`
r

we have
ª

C`
r

dz G´
s

pzq “ i

ª
⇡

0
d✓ e i spr´r

´1q cos ✓e´spr`r
´1q sin ✓ ,

providing for r † 1
ˇ̌
ˇ̌
ª

C`
r

dz G´
s

pzq
ˇ̌
ˇ̌ §

ª
⇡

0
d✓ e´spr`r

´1q sin ✓ § ⇡ ,

and also giving us

(122) lim
rÑ0`

ª

C`
r

dz G´
s

pzq “ 0.

Putting together (120), (121) and the formula of the residue theorem one gets

(123) P

ª

R
du G`

s
puq “ i 2⇡J0p2sq , s ° 0 .

For the case s † 0 the relation (119) immediately provides

(124) P

ª

R
du G`

s
puq “ ´ i 2⇡J0p2|s|q , s † 0 .

And analogously for G´
s
putting together (120) and (122) and the residue theorem

we have

(125) P

ª

R
du G´

s
puq “ 0

Covering the cases. As J0 is bounded, reaching its maximum of 1 in 0, and from
the previous bounds we obtain (118). ⇤
Corollary B.2. The formula

P

ª

R
du

e i xue´ i y

u

u
“ i 2⇡

ˆ
sgnpxq ´ signpyq

2

˙
J0

´
2
a

|xy|
¯

and the bound ª

IR,r

du
e i xue´ i y

u

u
§ 4⇡

holds true for all px, yq P R2.
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Proof. Let us start by considering the singular situations xy “ 0. The case x “
0 “ y corresponds to

P

ª

R

du

u
“ 0

as proved at the beginning of Lemma B.1. The case y “ 0 is proportional to the
(well known) Fourier transform of the function u´1 and provides

P

ª

R
du

e i xu

u
“ ´

?
2⇡ F

ˆ
1

u

˙
“ i⇡ signpxq .

The case x “ 0 can be treated with the change of variables u fiÑ ´v´1 which
provides

P

ª

R
du

e´ i y

u

u
“ ´P

ª

R
dv

e i yv

v
“ ´ i⇡ signpyq .

The non singular situation xy ‰ 0 can be separated in two di↵erent cases: (a)
xy ° 0, and (b) xy † 0.

Case (a). Let a :“ ?
xy. Then, after the change of variables v :“ a

|y|u, one has

ª

IR,r

du
e i xue´ i y

u

u
“

ª

I
R1,r1

dv
e i x|y|

a
ve´ i signpyq a

v

v
“

ª

I
R1,r1

dv G´
s

pvq

where R1 :“ a|y|´1R, r1 :“ a|y|´1r and s “ a signpyq. Then, Lemma ??rovides

P

ª

R
du

e i xue´ i y

u

u
“ P

ª

R
dv G´

s
pvq “ 0 .

Case (b). Let b :“
a

|xy|. Then, after the change of variables v :“ b

|y|u, one has

ª

IR,r

du
e i xue´ i y

u

u
“

ª

I
R1,r1

dv
e i x|y|

b
ve´ i signpyq b

v

v
“

ª

I
R1,r1

dv G`
s

pvq

where R1 :“ b|y|´1R, r1 :“ b|y|´1r and s “ ´b signpyq. Again Lemma B.1 provides

P

ª

R
du

e i xue´ i y

u

u
“ P

ª

R
dv G`

s
pvq “ ´ i 2⇡signpyqJ0p2

a
|xy|q .

The observation that ´2signpyq “ signpxq ´ signpyq when xy † 0 completes the
point. Finally, the bound comes straightforwardly from lemma B.1. ⇤

B.2. Irregular Kelvin functions. The following integrals result in the irregular
Kelvin functions kei and ker, defined over R`

0 as

kerpxq “ ReK0

´
e

i⇡
4 x

¯
and keipxq “ ImK0

´
e

i⇡
4 x

¯

Both kerpxq and keipxq have an exponential decay of the type „ a
⇡

2xe
´ x?

2 when
x Ñ `8. The function keipxq is regular in the origin where it takes the value
keip0q “ ´⇡

4 . The function kerpxq diverges at the origin as „ ´ logpxq. In particular
one has that both Kelvin functions are in L2pR`q.
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Lemma B.3. Let Bpx, yq the kernel (44). Then, the following formulas hold true:
ª

R
dy

Bpx, yq
1 ` y2

“ ´ i 2 signpxq kei
´
2

a
|x|

¯

ª

R
dy

Bpx, yq y
1 ` y2

“ ´ i 2 ker
´
2

a
|x|

¯

Proof. After the change of variable s :“ xy one gets

I1pxq :“
ª

R
dy

Bpx, yq
1 ` y2

“ ix

ª 0

´8
ds

J0
´
2

a
|s|

¯

x2 ` s2
.

A second change of variable s :“ ´t2 provides

I1pxq “ i 2x

ª `8

0
dt t

J0 p2tq
x2 ` t4

setting
a
|x|u “ t

I1pxq “ i 2 signpxq
ª `8

0
du u

J0
´
2

a
|x|u

¯

u4 ` 1

“ ´ i 2 signpxq kei
´
2

a
|x|

¯

where the last equality is justified by [OMS, eq. 55:3:6].
The second formula can be proved with similar changes of variable and one gets

I2pxq : “
ª

R
dy

Bpx, yq y
1 ` y2

“ i

ª 0

´8
ds

J0
´
2

a
|s|

¯
s

x2 ` s2

“ ´ i 2

ª `8

0
dt t3

J0 p2tq
x2 ` t4

“ ´ i 2

ª `8

0
du u3

J0
´
2
a

|x|u
¯

u4 ` 1

“ ´ i 2 ker
´
2

a
|x|

¯

where the last equality comes from [OMS, eq. 55:3:5]. ⇤
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