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B S T R A C T

constitutive relation is proposed for viscoelastic bodies that is a generalization of the classic Kelvin–Voigt model, wherein the left Cauchy–Green tensor, the
ymmetric part of the velocity gradient, and the Cauchy stress tensor are implicitly related. The model developed includes several models that are being used in
he literature to describe the elastic and viscoelastic response of bodies. In this paper, we study special homogeneous deformations of a slab within the context
f the implicit viscoelastic model.
. Introduction

The material moduli of many polymeric materials depends on pres-
ure (see [3–7]) as do the properties of geological and composite
aterials, especially soils (see [8,9]; see also the discussion in [10]

oncerning the dependence of the material properties of solids on
ressure). Also, it is well known that many viscoelastic solids exhibit
hear-thinning. Thus, it would seem reasonable to consider the response
haracteristics of shear-thinning viscoelastic solids whose properties
re pressure dependent, and this is the main purpose of this study.
nfortunately, none of the experimental literature cited determine the
ressure dependence of materials that can also shear thin and hence
re not relevant to the thrust of this study, namely the response of com-
ressible viscoelastic bodies that are also capable of shear-thinning. The
xperimental data determine the effect of pressure on the relaxation
odulus and glass transition. Thus, even though experimental results
ertinent to our study are not available now, we believe that they will
ecome available in the near future as understanding the response of
uch materials is important. One of the difficulties that has proved to be
n impediment with regard to experiments that can describe materials
hose properties depend on the mean value of the stress and the shear

ate is that data reduction would require implicit models that can be
sed to interpret the data (see [10–12] for reasons why implicit models
re necessary). As classical models are incapable of describing such
ehaviour, we generalize a popular viscoelastic solid model, namely the
elvin–Voigt model so that its properties are pressure dependent and

he model is also capable of describing shear-thinning, by developing
n implicit constitutive relation.

∗ Corresponding author.
E-mail address: rogbusta@ing.uchile.cl (R. Bustamante).

1 An early implicit model to describe the viscoelastic response of a fluid is due to Burgers [1]. The even earlier model due to Maxwell [2] is not an implicit
onstitutive relation as the symmetric part of the velocity gradient can be expressed explicitly in terms of the stress and a time derivative of the stress.

Kelvin [13], Voigt [14] and Boltzmann [15] developed early models
to describe the viscoelastic response of solids. Boltzmann developed
an integral model to describe the linear response of viscoelastic solids
while Kelvin and Voigt independently developed the eponymous dif-
ferential viscoelastic solid model. Nearly a hundred years later, these
efforts were greatly generalized by the development of integral models
by Green and Rivlin [16] and Green et al. [17] to describe the finite
deformation of viscoelastic solids, but such models are not amenable
to use as the solution of specific initial–boundary value problems lead
to very cumbersome nonlinear integral equations that rarely allow
simple analytical solutions and also lead to very difficult computational
problems within the context of numerical solutions. Also, in view of
the stress being given by non-linear integral representation, there is
an inherent non-uniqueness in determining the material moduli that
appear in the constitutive relation since many functions can lead to
the same value for the integral. The models developed by Kelvin and
Voigt, Boltzmann, Green and Rivlin and others are constitutive rela-
tions wherein the stress is expressed explicitly in terms of appropriate
kinematical quantities.

A detailed treatment of constitutive relations for the viscoelastic
response of bodies as well as extensive literature can be found in
Lockett [18] and Truesdell and Noll [19]. In this paper, we shall discuss
a generalization of the differential type models developed by Kelvin
and Voigt. We shall consider constitutive relations wherein the stress,
and the kinematical quantities are implicitly related,1 and as we are
interested in the finite deformation of isotropic viscoelastic solids we
shall assume that the Cauchy stress 𝐓, the Cauchy–Green tensor 𝐁 and
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the symmetric part of the velocity gradient 𝐃 are the main variables
with regard to the modelling. This constitutive relation includes as
a special case isotropic elastic bodies defined through implicit con-
stitutive relations (see Rajagopal [11,20,21]) and fluids defined by
algebraic implicit constitutive relations, namely constitutive relations
between the stress and the symmetric part of the velocity gradient (see
Rajagopal [11,12]). Rajagopal and Srinivasa [22,23] have provided a
thermodynamic framework for implicit constitutive relations for elastic
bodies. Also, Rajagopal and Srinivasa [24] have recently developed
a rate-type model, within a thermodynamic framework, to describe
the response of thermo-viscoelastic bodies. A multi-network approach
is adopted to describe the constitution of the body and attention is
restricted to small deformations, though such an approach can be gen-
eralized to take into account large deformations. The model developed
in this paper does not appeal to thermodynamics, and unlike the model
put into place by Rajagopal and Srinivasa [24] it is an algebraic model
in the sense that the model is an algebraic expression of the Cauchy
stress, the left Cauchy–Green tensor and the symmetric part of the
velocity gradient, no rates of any of these quantities appear in the
constitutive relation. Unlike the case of the analysis by Rajagopal and
Srinivasa [24] there is no restrictions concerning the smallness of the
deformation when boundary value problems are considered.

We introduce a generalization of the classical Kelvin–Voigt model
with four material moduli, one of which is a constant and the others
depending on three of the invariants, one of them being the mean value
of the stress tr𝐓 (thus allowing us to take into account the material
moduli depending on the ‘mechanical pressure’2), the second being
tr (𝐃2) (allowing one to allow for shear thinning and shear thickening)
and the third being the det 𝐅 which allows us to take into account
ompressibility of the body. Using such a reduced model we consider
he homogeneous deformations of a slab which is subject to a special
orm for the stress (shear stress superposed on a normal stress). In
ddition to assuming a special structure for the stress field, we also
ssume a specific expression for the deformation. The general govern-
ng equations, even for such a special case are much too complicated
o be solved exactly. On making further simplifying assumptions for
he constitutive model, we first obtain an exact analytical solution to
he problem. Later, we solve the full nonlinear governing equations
umerically.

Since experimental results are not available for the class of initial–
oundary value problems we are considering, we are unable to cor-
oborate our work against such experimental data. However, since
uch models could be useful for describing the response of a variety
f viscoelastic solids, especially polymeric and geological matter, we
eel that such experimental data will be eventually available. While
he study is a parametric study as it stands, we feel the model being
onsidered, a model for viscoelastic solid body that is compressible and
xhibits shear thinning/shear thickening, normal stress differences in
hear and pressure dependent material moduli, would be useful.

The organization of the paper is as follows. In the next section we
rovide the basic kinematical definitions and record the balance laws.
n Section 3, we introduce a generalization of the Kelvin–Voigt consti-
utive relation. The homogeneous deformation of a slab is introduced
nd an exact solution is established in Section 4. We also solve the
ully nonlinear problem numerically in that section. Some concluding
emarks are made in Section 5.

. Basic equations

A point 𝑋 in a body ℬ occupies the position 𝐗 = 𝜿𝑟(𝑋) in the
eference configuration 𝜿𝑟(ℬ). In the current configuration the position
f the point is denoted 𝐱, and it is assumed that there exists a one-to-one
apping 𝝌 such that 𝐱 = 𝝌(𝐗, 𝑡). The current configuration is denoted

2 The terminology ‘pressure’ has been used to signify a variety of different
hysical quantities (see Rajagopal [25] for a discussion of the same).
 n

2

Table 1
Material constants for the model (5).
𝜇0 [Pa s] 6.9 × 107 , 6.24 × 109

𝛿 1/[Pa] 8 × 10−9

𝛽 [s2] 1, 10
𝑛 −0.5, 0, 0.5
𝛾 0, 9.52, 95.2, 952, 9520, 47600
𝜆 [Pa] 0, 9.52, 95.2, 95200, 1.05 × 105 , 9.52 × 106

𝑚 0, 1, 5, 10

𝜿𝑡(ℬ). The deformation gradient, the left Cauchy–Green tensor, and the
ymmetric part of the velocity gradient are defined through

=
𝜕𝝌
𝜕𝐗

, 𝐁 = 𝐅𝐅T, 𝐃 = 1
2

[

𝜕𝐱̇
𝜕𝐱

+ 𝜕𝐱̇
𝜕𝐱

T]

, (1)

The Cauchy stress tensor is denoted by 𝐓 and it satisfies the equa-
tions of motion

𝜌𝐱̈ = div𝐓 + 𝜌𝐛, (2)

where 𝜌 is the density of the body and 𝐛 represents the body forces in
the current configuration, and where we use the notation ̇[ ] for the
material time derivative. More details on the kinematics of continua
can be found in [26].

We use the round brackets ( ) to denote the arguments of a
function.

3. Implicit constitutive relation

We are interested in a special sub-class of the viscoelastic materials
described by the implicit constitutive relation:

F(𝐓,𝐁,𝐃) = 𝟎, (3)

namely

𝐓 + 𝜑𝐈 − 𝛼𝐁 − 𝜇𝐃 = 𝟎, (4)

where 𝛼 is a constant and we assume that

𝜇 = 𝜇(𝐼1, 𝐼2) = 𝜇0𝑒
𝛿𝐼1 [1+2𝛽𝐼2]𝑛, 𝜑 = 𝜑(𝐼1, det 𝐅) = [𝛾𝐼1+𝜆][det 𝐅]𝑚, (5)

where 𝜇0, 𝛿, 𝛽, 𝑛, 𝛾, 𝜆 and 𝑚 are constants3 and

𝐼1 = tr𝐓, 𝐼2 =
1
2

tr (𝐃2). (6)

he above model allows us to describe a material whose response
epends on the ‘mechanical pressure’ and that is capable of ‘shear
hinning/shear thickening’.

In Table 1 we present the values of the different constants to be used
n our calculations in the later sections.

An important restriction that the model (4), (5) must satisfy is that
hen 𝐅 ≡ 𝐈, for all time, then the stress has to be zero, that is, 𝐓 ≡ 𝟎
nd the condition is satisfied if

= 𝜆, and 𝛾 ≠ 1
3
. (7)

That 𝐅 ≡ 𝐐, where 𝐐 is an orthogonal transformation, when 𝐓 ≡ 𝟎, is
far from easy to show.

3 It is not at all surprising that one needs eight constants to capture the
esponse of a viscoelastic solids whose viscosity depends on the pressure and
hear-rate, whose elastic response depends on the pressure, and the material is
ompressible, given a popular model for an isotropic viscoelastic fluid model
eveloped by Oldroyd requires six constants (see [27]), popular models due
o Ogden to describe the isotropic elastic solid behaviour requires six and
ight constants (see [28]), and a linearized orthotropic material requires nine
onstants to describe its response (see [29]). The point is, if one needs to
escribe a variety of response characteristics one needs as many constants as
ecessary to capture the response.
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4. Homogeneous deformations and stresses of a slab

Let us study the response of a viscoelastic slab described in the
reference configuration through

−
𝐿𝑖
2

≤ 𝑋𝑖 ≤
𝐿𝑖
2
, 𝑖 = 1, 2, 3. (8)

his slab is subjected to a stress tensor field of the form

= 𝜎2(𝑡)𝐞2 ⊗ 𝐞2 + 𝜏(𝑡)[𝐞1 ⊗ 𝐞2 + 𝐞2 ⊗ 𝐞1], (9)

hich represents time dependent extension/compression in the 2-
irection and shear in the 1-2 plane.

In this problem we assume that there is no body force and that |𝐮̈|
an be neglected, such that the equation of motion is approximately
atisfied for the above homogeneous distribution of stresses.

Let us assume that the slab deforms under the influence of the above
tress field that is given by

= ℵ(𝑡)𝑋 + 𝜅(𝑡)𝑌 , 𝑦 = ℘(𝑡)𝑌 , 𝑧 = 𝓁(𝑡)𝑍, (10)

where in this and in some of the subsequent problems we use the
notation 𝑥, 𝑦, 𝑧 for 𝑥𝑖, 𝑖 = 1, 2, 3 and 𝑋, 𝑌 , 𝑍 for 𝑋𝑖, 𝑖 = 1, 2, 3
respectively. In general, the assumptions (9) and (10) might not be
compatible, however for the problem under consideration, it is.

The deformation gradient and the left Cauchy–Green tensors are

𝐅 = ℵ(𝑡)𝐞1 ⊗ 𝐄1 + 𝜅(𝑡)𝐞1 ⊗ 𝐄2 +℘(𝑡)𝐞2 ⊗ 𝐄2 + 𝓁(𝑡)𝐞3 ⊗ 𝐄3, (11)
𝐁 = [ℵ(𝑡)2 + 𝜅(𝑡)2]𝐞1 ⊗ 𝐞1 + 𝜅(𝑡)℘(𝑡)[𝐞1 ⊗ 𝐞2 + 𝐞2 ⊗ 𝐞1]

+℘(𝑡)2𝐞2 ⊗ 𝐞2 + 𝓁(𝑡)2𝐞3 ⊗ 𝐞3, (12)

whereas

𝐃 = ℵ̇
ℵ
𝐞1⊗𝐞1+

1
2

[

𝜅̇
℘

− 𝜅ℵ̇
℘ℵ

]

[𝐞1⊗𝐞2+𝐞2⊗𝐞1]+
℘̇
℘
𝐞2⊗𝐞2+

𝓁̇
𝓁
𝐞3⊗𝐞3, (13)

here we have used the relations 𝜕𝑋
𝜕𝑥 = 1

ℵ , 𝜕𝑋
𝜕𝑦 = − 𝜅

ℵ℘ , 𝜕𝑌
𝜕𝑦 = 1

℘
and

𝜕𝑍
𝜕𝑧 = 1

𝓁
From (11), (12), (13) and (6) we have

1 = 𝜎2(𝑡), det 𝐅 = 𝓁(𝑡)℘(𝑡)ℵ(𝑡), (14)

and

𝐼2 =
1
2

{

[

ℵ̇
ℵ

]2
+ [ℵ𝜅̇ − 𝜅ℵ̇]2

2℘2ℵ2
+
[

℘̇
℘

]2
+
[

𝓁̇
𝓁

]2
}

. (15)

Using (9), (11), (12) and (13) in (4) we obtain the four ordinary
differential equations:

𝜆[ℵ2 + 𝜅2] + 𝜇 ℵ̇
ℵ

= 𝜑, (16)

𝜆℘2 + 𝜇
℘̇
℘

= 𝜎2 + 𝜑, (17)

𝜆𝓁2 + 𝜇 𝓁̇
𝓁

= 𝜑, (18)

𝜅℘ +
𝜇
2

[

𝜅̇
℘

− 𝜅ℵ̇
℘ℵ

]

= 𝜏, (19)

where 𝜑 and 𝜇 are given in (5) in terms of the invariants 𝐼1, 𝐼2 and
det 𝐅 that are defined in (14), (15), i.e.,

𝜇 = 𝜇(𝑡) = 𝜇(𝜎2(𝑡), ℵ(𝑡), ℵ̇(𝑡),℘(𝑡), ℘̇(𝑡),𝓁(𝑡), 𝓁̇(𝑡), 𝜅(𝑡), 𝜅̇(𝑡)),

𝜑 = 𝜑(𝑡) = 𝜑(𝜎2(𝑡), ℵ(𝑡),℘(𝑡),𝓁(𝑡)).

The Eqs. (16)–(19) must be solved to find the functions ℵ(𝑡), 𝜅(𝑡),
(𝑡) and 𝓁(𝑡) for given 𝜏(𝑡) and 𝜎2(𝑡). The initial conditions are

(0) = 1, 𝜅(0) = 0, ℘(0) = 1, 𝓁(0) = 1. (20)
3

4.1. Exact solutions for the case 𝑛 = 0 and 𝑚 = 0

In the special case 𝑛 = 0 and 𝑚 = 0 from (5) we have

= 𝜇0𝑒
𝛿𝐼1 , 𝜑 = 𝛾(𝐼1) + 𝜆. (21)

rom the above results we deduce that 𝜇 = 𝜇(𝐼1) = 𝜇(𝜎2(𝑡)) and
= 𝜑(𝐼1) = 𝜑(𝜎2(𝑡)).
In the particular case that 𝑛 = 0 and 𝑚 = 0 (18) becomes

𝓁2 + 𝜇0𝑒
𝛿𝜎2 𝓁̇

𝓁
= 𝛾𝜎2 + 𝜆, (22)

which is an equation of the Bernoulli type. Let us assume that 𝐿(𝑡) =
[𝓁(𝑡)]−2 then the above equation becomes

𝐿̇(𝑡) = −2
[𝛾𝜎2(𝑡) + 𝜆]

𝜇0
𝑒−𝛿𝜎2(𝑡)𝐿(𝑡) + 2𝜆

𝜇0
𝑒−𝛿𝜎2(𝑡). (23)

In the special case 𝜎2(𝑡) = 0 the solution of the above equation is

𝐿(𝑡) = 𝐴̃𝑒
− 2𝜆𝑡

𝜇0 + 1, (24)

where 𝐴̃ is a constant. In the more general case where 𝜎2(𝑡) ≠ 0 the
solution of (22) for 𝓁(𝑡) when 𝑛 = 0, 𝑚 = 0 and of (17) for ℘(𝑡) > 0 are:

𝓁(𝑡) =
exp

(

∫ 𝑡
0

𝜑(𝜎2(𝜁 ))
𝜇(𝜎2(𝜁 ))

d𝜁
)

[

1 + 2𝜆 ∫ 𝑡
0

exp
(

2 ∫ 𝜉
0

𝜑(𝜎2(𝜂))
𝜇(𝜎2(𝜂))

d𝜂
)

𝜇(𝜎2(𝜉))
d𝜉

]1∕2
, (25)

℘(𝑡) =
exp

(

∫ 𝑡
0

𝜑(𝜎2(𝜁 ))+𝜎2(𝜁 )
𝜇(𝜎2(𝜁 ))

d𝜁
)

[

1 + 2𝜆 ∫ 𝑡
0

exp
(

2 ∫ 𝜉
0

𝜑(𝜎2(𝜂))+𝜎2(𝜂)
𝜇(𝜎2(𝜂))

d𝜂
)

𝜇(𝜎2(𝜉))
d𝜉

]1∕2
. (26)

The above solutions are studied for the following cases:

A) 𝜎2(𝑡) =
𝜎2𝑜
𝑡𝑜

𝑡[1 −(𝑡 − 𝑡𝑜)] + 𝜎2𝑜(𝑡 − 𝑡𝑜), 𝜏(𝑡) = 0, (27)

(B) 𝜎2(𝑡) = 0, 𝜏(𝑡) =
𝜏𝑜
𝑡𝑜
𝑡[1 −(𝑡 − 𝑡𝑜)] + 𝜏𝑜(𝑡 − 𝑡𝑜), (28)

here (𝑡) is the Heaviside step function, and 𝜎2𝑜 , 𝜏𝑜 > 0 and 𝑡𝑜 > 0
are constants (for some of the cases to be studied in Section 4.2 we
also consider the case 𝜎2(𝑡) =

𝜎2𝑜
𝑡𝑜

𝑡[1 − (𝑡 − 𝑡𝑜)] + 𝜎2𝑜(𝑡 − 𝑡𝑜) and
𝜏(𝑡) = 𝜏𝑜

𝑡𝑜
𝑡[1 − (𝑡 − 𝑡𝑜)] + 𝜏𝑜(𝑡 − 𝑡𝑜) simultaneously). The behaviour

f 𝓁(𝑡), ℘(𝑡), 𝜅(𝑡) and ℵ(𝑡) when 𝑡 → ∞ is presented now (some details
f the calculations are omitted for the sake of brevity):

ase (A): In the case 𝜎2(𝑡) =
𝜎2𝑜
𝑡𝑜

𝑡[1 −(𝑡 − 𝑡𝑜)] + 𝜎2𝑜(𝑡 − 𝑡𝑜), if 𝑡 ≫ 𝑡𝑜
we have 𝜎2 = 𝜎2𝑜 that is constant. Then from (23) we obtain

𝐿̇ = 𝐴̃
[

2𝜆𝑒−𝛿𝜎2𝑜
𝜇̂0𝐴̃

− 𝐿
]

, (29)

where

𝐴̃ = 2
[𝛾𝜎2𝑜 + 𝜆]

𝜇̂0
𝑒−𝛿𝜎2𝑜 , (30)

where 𝜇̂0 = 𝜇0𝑒
𝛿𝛾𝜎2𝑜 . Therefore for 𝐿 we have

lim
𝑡→∞

𝐿(𝑡) = 𝜆
𝛾𝜎2𝑜 + 𝜆

, (31)

then

lim
𝑡→∞

𝓁(𝑡) =
[ 𝛾𝜎2𝑜 + 𝜆

𝜆

]1∕2

. (32)

With regard to ℘(𝑡) in the case 𝑡 ≫ 𝑡𝑜 Eq. (17) becomes

𝜆℘2 + 𝜇̂0
℘̇
℘

= [1 + 𝛾]𝜎2𝑜 + 𝜆. (33)

Taking 𝑝 = ℘−2 we obtain

𝑝̇ = −
2{[1 + 𝛾]𝜎2𝑜 + 𝜆}

𝑝 + 2𝜆 . (34)

𝜇̂0 𝜇̂0
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(

Fig. 1. Comparison of the behaviour of the slab considering two possible values for the constant 𝜇0 in (5), namely (A) 𝜇0 = 6.9× 107, (B) 𝜇0 = 6.24× 109. (a) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 0.
b) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 0. (c) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (d) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (e) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 106. (f) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 106. (g) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 106. (h) Case
𝜎2𝑜 = −106, 𝜏𝑜 = 106.
Following the same steps as before we have

lim
𝑡→∞

℘(𝑡) =

{

[1 + 𝛾]𝜎2𝑜 + 𝜆

𝜆

}1∕2

. (35)

In this case 𝜅(𝑡) = 0 is a solution of Eq. (19) that satisfies the
initial condition 𝜅(0) = 0. Taking 𝑀 = ℵ−2, from Eq. (16) we
have
d𝑀
d𝑡

= 2𝜆
𝜇

−
2𝜑
𝜇

𝑀, (36)

and we obtain

ℵ(𝑡) =
exp

(

∫ 𝑡
0

2𝜑(𝜁 )
𝜇(𝜁 ) d𝜁

)

⎡

⎢

⎢

⎢

⎣

1 + 2𝜆∫

𝑡

0

exp
(

∫ 𝜂
0

2𝜑(𝜂)
𝜇(𝜂) d𝜂

)

𝜇(𝜁 )
d𝜁

⎤

⎥

⎥

⎥

⎦

1∕2
. (37)

Case (B): In the case 𝜎2(𝑡) = 0, 𝜏(𝑡) = 𝜏𝑜
𝑡𝑜
𝑡[1 − (𝑡 − 𝑡𝑜)] + 𝜏𝑜(𝑡 − 𝑡𝑜),

from (22) we obtain

𝜆𝓁2(𝑡) + 𝜇0
𝓁̇(𝑡)
𝓁(𝑡)

= 𝜆, (38)

which has three solutions 𝓁(𝑡) = 1 and 𝓁(𝑡) = ±1
√

1+exp(2[𝐶−𝑡𝜆∕𝜇0])
,

where 𝐶 is a constant, and since 𝓁(𝑡) > 0 only the + solution is
4

valid. From the initial condition 𝓁(0) = 1 only the solution 𝓁(𝑡) =
1 is possible, because we can observe that it is not possible to
find 𝐶 such that 𝓁(0) = 1 for the solution 𝓁(𝑡) = 1

√

1+exp(2[𝐶−𝑡𝜆∕𝜇0])
.

In the case of ℘(𝑡) the structure of the Eq. (17) is the same as
(38) and the solutions are similar as the ones just discussed for
𝓁(𝑡), therefore ℘(𝑡) = 1 is the only valid solution. Taking into
account the above and recalling the definition 𝜇̂ = 𝜇0𝑒𝜆𝛿 , for
𝑡 > 𝑡0 we have 𝜏 = 𝜏𝑜, and we proceed to obtain asymptotic
solutions for ℵ and 𝜅 rewriting (16) and (19) as
dℵ
d𝑡

= 𝜆
𝜇̂
{

1 − [ℵ2 + 𝜅2]
}

ℵ, d𝜅
d𝑡

= 1
𝜇̂
{

2𝜏0 − 𝜆[ℵ2 + 𝜅2]𝜅
}

. (39)

Considering the classical approach, the study of the equilibrium
points is translated into the following system ℵ2 + 𝜅2 = 1,
2𝜏0−𝜆𝜅 = 0. Then, the following equilibrium points are obtained

𝜅𝑒 =
2𝜏0
𝜆

, ℵ𝑒 =

√

1 −
[

2𝜏0
𝜆

]2
. (40)

Writing the system field as 𝐹 (ℵ, 𝜅) =

⎛

⎜

⎜

⎜

⎝

𝜆
𝜇̂

{

1 − [ℵ2 + 𝜅2]
}

ℵ

1
𝜇̂

{

2𝜏0 − 𝜆[ℵ2 + 𝜅2]𝜅
}

⎞

⎟

⎟

⎟

⎠

,

linearizing around the equilibrium point (ℵ𝑒, 𝜅𝑒) we obtain

𝐹 (ℵ, 𝜅) ≈ − 2𝜆
𝜇̂

(

ℵ2
𝑒 ℵ𝑒𝜅𝑒

1

)

(

[ℵ − ℵ𝑒]
)

and the eigenvalues

ℵ𝑒𝜅𝑒 𝜅 − 2 [𝜅 − 𝜅𝑒],
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Fig. 2. Comparison of the behaviour of the slab for two possible values for the constant 𝛽 in (5), namely (A) 𝛽 = 1, (B) 𝛽 = 10. (a) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 0. (b) Case 𝜎2𝑜 = −106,
𝜏𝑜 = 0. (c) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (d) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (e) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 106. (f) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 106. (g) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 106. (h) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 106.
t
d

of the matrix associated with the above system are

𝜄1 = − 𝜆
2𝜇̂

{

1 + [𝜅𝑒 − 1]𝜅𝑒 −
√

9 − 4𝜅𝑒[1 + 𝜅𝑒][3 + 𝜅𝑒{3𝜅𝑒 − 5}]
}

,

𝜄2 = − 𝜆
2𝜇̂

{

1 + [𝜅𝑒 − 1]𝜅𝑒 +
√

9 − 4𝜅𝑒[1 + 𝜅𝑒][3 + 𝜅𝑒{3𝜅𝑒 − 5}]
}

.

If ℜ(𝜄𝑖) < 0 then ℵ → ℵ𝑒, and 𝜅 → 𝜅𝑒.

ase (B) when 𝜆 = 0: In the case 𝜎2(𝑡) = 0 and 𝜆 = 0 from (16) and
(19) we obtain

ℵ(𝑡) = exp
(

∫

𝑡

0

𝜑(𝜁 )
𝜇(𝜁 )

𝑑𝜁
)

, (41)

𝜅(𝑡) = exp
(

∫

𝑡

0

𝜑(𝜁 )
𝜇(𝜁 )

d𝜁
)

∫

𝑡

0

2𝜏(𝜁 )℘(𝜁 )
𝜇(𝜁 )

exp
(

−∫

𝜁

0

𝜑(𝜂)
𝜇(𝜂)

𝑑𝜂
)

d𝜁.

(42)

4.2. The fully nonlinear problem

The original system of nonlinear ordinary differential Eqs. (16)–(19)
is solved numerically. Taking into account that the function 𝜇 contains
the first derivatives of the different unknown functions, in order to use
the standard methods for solving ordinary differential equations with
initial conditions, we take the derivative of (16)–(19) in time, obtaining
 l

5

respectively4:

2𝜆[ℵℵ̇ + 𝜅𝜅̇] + 𝜇
[

ℵ̈
ℵ

− ℵ̇2

ℵ2

]

+
{

𝜕𝜇
𝜕𝐼1

𝜕𝐼1
𝜕𝜎2

𝜎̇2 +
𝜕𝜇
𝜕𝐼2

[

𝜕𝐼2
𝜕ℵ

ℵ̇ +
𝜕𝐼2
𝜕ℵ̇

ℵ̈

+
𝜕𝐼2
𝜕℘

℘̇ +
𝜕𝐼2
𝜕℘̇

℘̈ +
𝜕𝐼2
𝜕𝓁

𝓁̇ +
𝜕𝐼2
𝜕𝓁̇

𝓁 +
𝜕𝐼2
𝜕𝜅

𝜅̇ +
𝜕𝐼2
𝜕𝜅̇

𝜅̈
]}

ℵ̇
ℵ

=
𝜕𝜑
𝜕𝐼1

𝜕𝐼1
𝜕𝜎2

𝜎̇2

+
𝜕𝜑

𝜕 det 𝐅

[

𝜕 det 𝐅
𝜕𝓁

𝓁̇ + 𝜕 det 𝐅
𝜕℘

℘̇ + 𝜕 det 𝐅
𝜕ℵ

ℵ̇
]

,

(43)

2𝜆℘℘̇ + 𝜇
[

℘̈
℘

−
℘̇2

℘2

]

+
{

𝜕𝜇
𝜕𝐼1

𝜕𝐼1
𝜕𝜎2

𝜎̇2 +
𝜕𝜇
𝜕𝐼2

[

𝜕𝐼2
𝜕ℵ

ℵ̇ +
𝜕𝐼2
𝜕ℵ̇

ℵ̈

+
𝜕𝐼2
𝜕℘

℘̇ +
𝜕𝐼2
𝜕℘̇

℘̈ +
𝜕𝐼2
𝜕𝓁

𝓁̇ +
𝜕𝐼2
𝜕𝓁̇

𝓁 +
𝜕𝐼2
𝜕𝜅

𝜅̇ +
𝜕𝐼2
𝜕𝜅̇

𝜅̈
]}

℘̇
℘

= 𝜎̇2 +
𝜕𝜑
𝜕𝐼1

𝜕𝐼1
𝜕𝜎2

𝜎̇2

+
𝜕𝜑

𝜕 det 𝐅

[

𝜕 det 𝐅
𝜕𝓁

𝓁̇ + 𝜕 det 𝐅
𝜕℘

℘̇ + 𝜕 det 𝐅
𝜕ℵ

ℵ̇
]

, (44)

2𝜆𝓁𝓁̇ + 𝜇
[

𝓁
𝓁
− 𝓁̇2

𝓁2

]

4 By taking the time derivative of (16)–(19) we have increased the order of
he equation and hence need to supply additional initial conditions to obtain a
eterminate set of equations. We discuss how we augment the initial conditions
ater.
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𝛾
(

Fig. 3. Comparison of the behaviour of the slab for six possible values for the constant 𝛾 in (5), namely (A) 𝛾 = 0, (B) 𝛾 = 9.52, (C) 𝛾 = 95.2, (D) 𝛾 = 952, (E) 𝛾 = 9520, (F)
= 4.76 × 104. (a) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 0. (b) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 0. (c) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (d) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (e) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 106. (f) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 106.

g) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 106. (h) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 106.
a

℘

+
{

𝜕𝜇
𝜕𝐼1

𝜕𝐼1
𝜕𝜎2

𝜎̇2 +
𝜕𝜇
𝜕𝐼2

[

𝜕𝐼2
𝜕ℵ

ℵ̇ +
𝜕𝐼2
𝜕ℵ̇

ℵ̈ +
𝜕𝐼2
𝜕℘

℘̇ +
𝜕𝐼2
𝜕℘̇

℘̈ +
𝜕𝐼2
𝜕𝓁

𝓁̇

+
𝜕𝐼2
𝜕𝓁̇

𝓁 +
𝜕𝐼2
𝜕𝜅

𝜅̇ +
𝜕𝐼2
𝜕𝜅̇

𝜅̈
]}

𝓁̇
𝓁

=
𝜕𝜑
𝜕𝐼1

𝜕𝐼1
𝜕𝜎2

𝜎̇2 +
𝜕𝜑

𝜕 det 𝐅

[ 𝜕 det 𝐅
𝜕𝓁

𝓁̇

+ 𝜕 det 𝐅
𝜕℘

℘̇ + 𝜕 det 𝐅
𝜕ℵ

ℵ̇
]

, (45)

and

𝜆[𝜅̇℘ + 𝜅℘̇] +
𝜇
2

{

𝜅̈
℘

− 𝜅ℵ̈
℘ℵ

− 1
℘2ℵ2

[ℵ𝜅̇ − 𝜅ℵ̇][ℵ℘̇ +℘ℵ̇]
}

+
{

𝜕𝜇
𝜕𝐼1

𝜕𝐼1
𝜕𝜎2

𝜎̇2 +
𝜕𝜇
𝜕𝐼2

[

𝜕𝐼2
𝜕ℵ

ℵ̇

+
𝜕𝐼2
𝜕ℵ̇

ℵ̈ +
𝜕𝐼2
𝜕℘

℘̇ +
𝜕𝐼2
𝜕℘̇

℘̈ +
𝜕𝐼2
𝜕𝓁

𝓁̇ +
𝜕𝐼2
𝜕𝓁̇

𝓁 +
𝜕𝐼2
𝜕𝜅

𝜅̇ +
𝜕𝐼2
𝜕𝜅̇

𝜅̈
]}

× 1
2

[

𝜅̇
℘

− 𝜅ℵ̇
℘ℵ

]

= 𝜏̇, (46)

where from (14)1 we have
𝜕𝐼1
𝜕𝜎2

= 1, (47)

and from (15) we obtain
𝜕𝐼2
𝜕ℵ

= ℵ̇
2℘2ℵ3

{𝜅𝜅̇ℵ − [𝜅2 + 2℘2]ℵ̇}, (48)

𝜕𝐼2 = 1 [𝜅2ℵ̇ + 2℘2ℵ̇ − 𝜅𝜅̇ℵ], (49)

𝜕ℵ̇ 2℘2ℵ2

6

𝜕𝐼2
𝜕℘

= − 1
2℘3

{

2℘̇2 + 1
ℵ2

[𝜅̇ℵ − 𝜅ℵ̇]2
}

, (50)

𝜕𝐼2
𝜕℘̇

=
℘̇

℘2
,

𝜕𝐼2
𝜕𝓁

= − 𝓁̇
𝓁2

,
𝜕𝐼2
𝜕𝓁̇

= 𝓁̇2

𝓁2
, (51)

𝜕𝐼2
𝜕𝜅

= ℵ̇
2℘2ℵ2

[𝜅ℵ̇ − 𝜅̇ℵ],
𝜕𝐼2
𝜕𝜅̇

= 𝜅̇ℵ − 𝜅ℵ̇2

2℘2ℵ
, (52)

nd finally from (14)2
𝜕 det 𝐅
𝜕𝓁

= ℘ℵ, 𝜕 det 𝐅
𝜕℘

= 𝓁ℵ, 𝜕 det 𝐅
𝜕ℵ

= 𝓁℘. (53)

The system of Eqs. (43)–(46) can be rewritten as

ℵ̈(𝑡) = 1(ℵ(𝑡), ℵ̇(𝑡),℘(𝑡), ℘̇(𝑡),𝓁(𝑡), 𝓁̇(𝑡), 𝜅(𝑡), 𝜅̇(𝑡), 𝜎2(𝑡), 𝜎̇2(𝑡), 𝜏̇(𝑡)), (54)
̈ (𝑡) = 2(ℵ(𝑡), ℵ̇(𝑡),℘(𝑡), ℘̇(𝑡),𝓁(𝑡), 𝓁̇(𝑡), 𝜅(𝑡), 𝜅̇(𝑡), 𝜎2(𝑡), 𝜎̇2(𝑡), 𝜏̇(𝑡)), (55)
𝓁(𝑡) = 3(ℵ(𝑡), ℵ̇(𝑡),℘(𝑡), ℘̇(𝑡),𝓁(𝑡), 𝓁̇(𝑡), 𝜅(𝑡), 𝜅̇(𝑡), 𝜎2(𝑡), 𝜎̇2(𝑡), 𝜏̇(𝑡)), (56)
𝜅̈(𝑡) = 4(ℵ(𝑡), ℵ̇(𝑡),℘(𝑡),𝓁(𝑡), 𝓁̇(𝑡), ℘̇(𝑡), 𝜅(𝑡), 𝜅̇(𝑡), 𝜎2(𝑡), 𝜎̇2(𝑡), 𝜏̇(𝑡)), (57)

where the functions 𝑖, 𝑖 = 1, 2, 3, 4 are not shown explicitly for brevity.
The above system of nonlinear ordinary differential equations can be
solved using standard methods that have been developed for handling
such equations.

Apart from the initial conditions (see (20)) ℵ(0) = 1, 𝜅(0) = 0,
℘(0) = 1 and 𝓁(0) = 1, we need conditions for ℵ̇(0), 𝜅̇(0), ℘̇(0) and
𝓁̇(0), which can be obtained by replacing (20) in the original system of
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c
s

Fig. 4. Comparison of the behaviour of the slab for five possible values for the constant 𝜆 in (5), namely (A) 𝜆 = 0, (B) 𝜆 = 9.52, (C) 𝜆 = 952, (D) 𝜆 = 9.52 × 104, (E) 𝜆 = 9.52 × 106.
a) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 0. (b) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 0. (c) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (d) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (e) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 106. (f) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 106. (g) Case
𝜎2𝑜 = −106, 𝜏𝑜 = 106. (h) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 106.
𝜅

equations5 (16)–(19) thereby obtaining

𝜆 + 𝜇(𝜎2(0), 1, ℵ̇(0), 1, ℘̇(0), 1, 𝓁̇(0), 0, 𝜅̇(0))ℵ̇(0) = 𝜑(𝜎2(0), 1, 1, 1), (58)
𝜆 + 𝜇(𝜎2(0), 1, ℵ̇(0), 1, ℘̇(0), 1, 𝓁̇(0), 0, 𝜅̇(0))℘̇(0)

= 𝜑(𝜎2(0), 1, 1, 1) + 𝜎2(0), (59)
𝜆 + 𝜇(𝜎2(0), 1, ℵ̇(0), 1, ℘̇(0), 1, 𝓁̇(0), 0, 𝜅̇(0))𝓁̇(0) = 𝜑(𝜎2(0), 1, 1, 1), (60)

𝜇(𝜎2(0), 1, ℵ̇(0), 1, ℘̇(0), 1, 𝓁̇(0), 0, 𝜅̇(0))
𝜅̇(0)
2

= 𝜏(0), (61)

which is a system of equations whose solutions are ℵ̇(0), 𝜅̇(0), ℘̇(0) and
𝓁̇(0). From (58) and (60) we obtain

𝜇(𝜎2(0), 1, ℵ̇(0), 1, ℘̇(0), 1, 𝓁̇(0), 0, 𝜅̇(0))[𝓁̇(0) − ℵ̇(0)] = 0, (62)

and from (5) we have that 𝜇(𝜎2(0), 1, ℵ̇(0), 1, ℘̇(0), 1, 𝓁̇(0), 0, 𝜅̇(0)) ≠ 0
therefore

𝓁̇(0) = ℵ̇(0). (63)

Taking the difference between (59) and (58) we have

𝜇(𝜎2(0), 1, ℵ̇(0), 1, ℘̇(0), 1, ℵ̇(0), 0, 𝜅̇(0))[℘̇(0) − ℵ̇(0)] = 𝜎2(0). (64)

5 Such a procedure of evaluating the equation at 𝑡 = 0 and obtaining a
ondition can be adopted if the problem under consideration has sufficiently
mooth solutions. We assume such to be the case.
7

Therefore, in order to find ℵ̇(0), 𝜅̇(0) and ℘̇(0) we need in general to
solve numerically the nonlinear algebraic system of Eqs. (58), (61) and
(64).

In the special case that 𝜏(0) = 0 and 𝜎2(0) = 0 from (61) and (64)
we have that

̇ (0) = 0, ℘̇(0) = ℵ̇(0), (65)

and in this case we need to find, for example, ℵ̇(0) from (58), which
becomes

𝜆 + 𝜇(0, 1, ℵ̇(0), 1, ℵ̇(0), 1, ℵ̇(0), 0, 0)ℵ̇(0) = 𝜑(0, 1, 1, 1). (66)

For the special case 𝜏(0) = 0 and 𝜎2(0) = 0 from (5) and (66) we
obtain 𝜇0[1+2𝛽𝐼2]𝑛𝜒̇(0) = 0, where 𝐼2 =

3
2 ℵ̇(0)

2, but the above equation
is satisfied if ℵ̇(0) = 0 and thus we conclude ℘̇(0) = 0 and 𝓁̇(0) = 0.

We display some numerical results for (54)–(57) in the case the
loads 𝜎2(𝑡) and 𝜏(𝑡) are given alternatively as in (27) and (28). The
values taken for 𝜎2𝑜 and 𝜏𝑜 are ±106 Pa and 106 Pa, respectively, and
for 𝑡𝑜 we assume that 𝑡𝑜 = 10 s. In these plots the dimensionless time 𝑡
is defined as 𝑡 = 𝑡∕𝑡𝑜.

In Fig. 1 results are presented for the functions ℵ(𝑡) and 𝜅(𝑡) for
the two possible values for the constant 𝜇0 from Table 1, for some
combinations of external loads taking into consideration (27) and (28).
In Fig. 1(a) and (b) we have results when we consider only the effect
of 𝜎 (𝑡) (see (27)) in tension (case (a)) and compression (case (b)).
2
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Fig. 5. Comparison of the behaviour of the slab considering three possible values for the constant 𝑛 in (5), namely (A) 𝑛 = −0.5, (B) 𝑛 = 0, (C) 𝑛 = 0.5. (a) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 0.
b) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 0. (c) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (d) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (e) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 106. (f) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 106. (g) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 106. (h) Case
𝜎2𝑜 = −106, 𝜏𝑜 = 106.
i
s

In Figs. 1(c) and (d) we show results for the case 𝜎2(𝑡) = 0 and 𝜏(𝑡)
given through (28), in the case of (c) we portray the behaviour of
ℵ(𝑡) and in (d) of 𝜅(𝑡). In Figs. 1(e), (f) and (g), (h) we present results
when both external loads 𝜎2(𝑡) and 𝜏(𝑡) are present, i.e., when 𝜎2(𝑡) =𝜎2𝑜
𝑡𝑜

𝑡[1 −(𝑡− 𝑡𝑜)] + 𝜎2𝑜(𝑡− 𝑡𝑜) and 𝜏(𝑡) = 𝜏𝑜
𝑡𝑜
𝑡[1 −(𝑡− 𝑡𝑜)] + 𝜏𝑜(𝑡− 𝑡𝑜).

rom these results we can see that for a larger value of 𝜇0 we have a
ody that is stiffer. In cases (a) and (b) the shear 𝜅(𝑡) was not affected
hen only normal loads 𝜎2(𝑡) are applied, and so results are not shown

or that function. In cases (c) and (d) where we only have shear stress
(𝑡), the function ℵ(𝑡) almost does not change in time. In all the cases
resented in these plots the behaviour of the functions ℘(𝑡) and 𝓁(𝑡)

are very similar to ℵ(𝑡) and for the sake of brevity such results are not
shown here. To obtain the results portrayed in this figure we assumed
that 𝛾 = 95.2, 𝜆 = 952, 𝛽 = 1, 𝑛 = 0 and 𝑚 = 1.

In Fig. 2 we have displayed the results with regard to the behaviour
of the slab when we consider two possible values for 𝛽. As in the previ-
ous case we show results for ℵ(𝑡) and 𝜅(𝑡) for different combinations of
external loads 𝜎2(𝑡), 𝜏(𝑡) (see (27) and (28)). For the results presented in
this figure we assumed that 𝛾 = 95.2, 𝜇0 = 6.9 × 107, 𝜆 = 952, 𝑛 = −0.5
and 𝑚 = 1. From the different plots it is possible to observe that the
body becomes less stiffer when 𝛽 is increased.

In Fig. 3 results are presented for ℵ(𝑡) and 𝜅(𝑡) when the constant
𝛾 takes six different values as presented in Table 1. From the results
presented in the plots (a) and (b) it is possible to see the body becomes
less stiff when 𝛾 is increased (see also plots (e) and (g)). The shear 𝜅(𝑡)
8

s not affected by changes in 𝛾 when there is only shear stress 𝜏(𝑡) on the
lab. For the cases when there is combination of normal stress 𝜎2(𝑡) and

shear 𝜏(𝑡), the function 𝜅(𝑡) is affected by changes in 𝛾. To obtain the
results presented in this figure we assumed that 𝜇0 = 6.9×107, 𝜆 = 952,
𝛽 = 1, 𝑛 = 0 and 𝑚 = 1.

In Fig. 4 we portray the results for the deformation of the slab,
considering five possible values for the constant 𝜆 from Table 1. From
these results it is observed that there is not much difference in the
behaviour of the slab for the cases where 𝜆 is equal to 0, 9.52, 952
and 9.54 × 104, and the only difference is when 𝜆 = 9.52 × 106, where
from plots (a) and (b) we note that the body deforms more (see also
the plots (e) and (g)). To obtain the results presented in this figure we
assumed that 𝜇0 = 6.9 × 107, 𝛾 = 95.2, 𝛽 = 1, 𝑛 = 0 and 𝑚 = 1.

In Fig. 5 results are displayed for ℵ(𝑡) and 𝜅(𝑡) for three values for
𝑛 (see Table 1). From Fig. 5(a) (the slab in tension) we can see that
the body becomes softer for decreasing values for 𝑛. From Fig. 5(b)
it is not possible to see any difference in the behaviour of the slab in
compression, and the same happens in the cases (c) and (d) where only
shear stresses are applied on the body (something similar is observed
in the results presented in Fig. 5(g) and (h)). To obtain the results
presented in this figure it was assumed that 𝜇0 = 6.9 × 107, 𝛾 = 95.2,
𝜆 = 952, 𝛽 = 1 and 𝑚 = 1.

In Fig. 6 results are presented for 4 different values for the constant
𝑚 that appear in (5) (see Table 1). In the plots (a) and (b) results are
portrayed for the case of the function ℵ(𝑡) for tension (case (a), compare
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(

Fig. 6. Comparison of the behaviour of the slab for four possible values for the constant 𝑚 in (5), namely (A) 𝑚 = 0, (B) 𝑚 = 1, (C) 𝑚 = 5, (D) 𝑚 = 10. (a) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 0.
b) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 0. (c) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 0. (d) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (e) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (f) Case 𝜎2𝑜 = 0, 𝜏𝑜 = 106. (g) Case 𝜎2𝑜 = 106, 𝜏𝑜 = 106. (h) Case
𝜎2𝑜 = 106, 𝜏𝑜 = 106. (i) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 106. (j) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 106. (k) Case 𝜎2𝑜 = −106, 𝜏𝑜 = 106. Legend for figures (a), (b), (d), (e), (f), (g), (h), (i) and (j) appears on
the right of figure (h). Legend for figures (c) and (k) appears on the upper right side of the figure.
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also with the case (g)), and compression (case (b)), where in both the
cases considered there are no shear stresses. In Fig. 6(c) ℵ(𝑡) and ℘(𝑡)
are displayed when there is only compression of the slab and no applied
shear stress. From the plots presented in Fig. 6(d), (e) and (f) it is
possible to glean that ℵ(𝑡), ℘(𝑡) and 𝜅(𝑡) exhibit similar characteristics
for the four different values for 𝑚 (see also case (h) for 𝜅(𝑡) for the slab
in tension and shear). From the results presented in (a) (slab in tension)
it is possible to see that the body becomes softer for larger values for
𝑚, however from (b) where the slab is in compression, the effect is the
opposite, i.e., for larger values for 𝑚 the body becomes stiffer. To obtain
the results presented in this figure it was assumed that 𝜇0 = 6.9 × 107,
𝛾 = 95.2, 𝜆 = 952, 𝛽 = 1, 𝑛 = 0.

5. Conclusions

In this study, we have developed a model that is capable of describ-
ing the response of a compressible viscoelastic solid whose viscosity
is dependent on the mean value of the stress and the shear rate and
whose elastic response is also dependent on the pressure. The model
is characterized by three material functions, a generalized viscosity
𝜇 = 𝜇0[𝑒𝛿𝐼1 (1 + 2𝛽𝐼2)𝑛], a generalized isotropic compressibility function
𝜑 = [𝛾𝐼1 + 𝜆](det 𝐅)𝑚 and an elastic modulus 𝛼 = 𝜆, making a total
of seven material constants. Four of the constants (𝜇0, 𝛿, 𝛽, and 𝑛) go
towards describing the nature of the viscosity, namely its dependence
on the mean value of the stress and the shear rate, and three constants
(𝛾, 𝜆, and 𝑚) go towards describing the dependence of the elastic
response on the mean value of the stress and compressibility. When
 N

9

𝑛 = 𝑚 = 𝛿 = 𝛾 = 0, and 𝜆 = 1, the constitutive relation reduces to the
lassical Kelvin–Voigt constitutive relation. We find, not surprisingly,
hat the body becomes stiffer when 𝜇0 or 𝛽 increase, other constants
eing held constant, as an increase in either 𝜇0 or 𝛽 increases the
iscosity.
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