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A B S T R A C T   

The prediction of carbon uptake by forests across fertility gradients requires accurate characterisation of how 
biochemical limitations to photosynthesis respond to variation in key elements such as nitrogen (N) and 
phosphorus (P). Over the last decade, proxies for chlorophyll and photosynthetic activity have been extracted 
from hyperspectral imagery and used to predict important photosynthetic variables such as the maximal rate of 
carboxylation (Vcmax) and electron transport (Jmax). However, little research has investigated the generality of 
these relationships within the nitrogen (N) and phosphorus (P) limiting phases, which are characterised by mass 
based foliage ratios of N:P ≤ 10 for N limitations and N:P  >  10 for P limitations. 

Using measurements obtained from one year old Pinus radiata D. Don grown under a factorial range of N and 
P treatments this research examined relationships between photosynthetic capacity (Vcmax, Jmax) and measured 
N, P and chlorophyll (Chla+b). Using functional traits quantified from hyperspectral imagery we then examined 
the strength and generality of relationships between photosynthetic variables and Photochemical Reflectance 
Index (PRI), Sun-Induced Chlorophyll Fluorescence (SIF) and chlorophyll a + b derived by radiative transfer 
model inversion. 

There were significant (P  <  .001) and strong relationships between photosynthetic variables and both N 
(R2 = 0.82 for Vcmax; R2 = 0.87 for Jmax) and Chla+b (R2 = 0.85 for Vcmax; R2 = 0.86 for Jmax) within the N 
limiting phase that were weak (R2  <  0.02) and insignificant within the P limiting phase. Similarly, there were 
significant (P  <  .05) positive relationships between P and photosynthetic variables (R2 = 0.50 for Vcmax; 
R2 = 0.58 for Jmax) within the P limiting phase that were insignificant and weak (R2  <  0.33) within the N 
limiting phase. 

Predictions of photosynthetic variables using Chla+b estimated by model inversion were significant 
(P  <  .001), positive and strong (R2 = 0.64 for Vcmax; R2 = 0.63 for Jmax) within the N limiting phase but 
insignificant and weak (R2  <  0.05) within the P limiting phase. In contrast, both SIF and PRI exhibited 
moderate to strong positive correlations with photosynthetic variables within both the N and P limiting phases. 
These results suggest that quantified SIF and PRI from hyperspectral images may have greater generality in 
predicting biochemical limitations to photosynthesis than proxies for N and chlorophyll a + b, particularly 
under high foliage N content, when P is limiting.   
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1. Introduction 

The use of optical data to predict biochemical, structural and phy-
siological traits from leaves and plant canopies has increased rapidly 
over the last two decades (for reviews see Hill et al., 2019; Watt et al., 
2019). Key attributes of interest that have been successfully estimated 
include water content (Buddenbaum et al., 2011; Buddenbaum et al., 
2015; Colombo et al., 2008; Fang et al., 2017; Malenovský et al., 2006;  
Riaño et al., 2005), leaf morphological traits such as specific leaf area 
(Asner and Martin, 2008) and leaf mass per area (Asner et al., 2011b;  
Doughty et al., 2011), pigments such as chlorophyll (Croft et al., 2014;  
Curran et al., 2001; Gitelson et al., 1996; Tsay et al., 1982; Yoder and 
Pettigrew-Crosby, 1995; Zarco-Tejada et al., 2019), carotenoids 
(Hernández-Clemente et al., 2012; Hernández-Clemente et al., 2014) 
and foliar concentrations of most key nutrients, particularly nitrogen 
(N) and phosphorus (P) (Asner and Martin, 2008; Asner et al., 2011a;  
Curran et al., 2001; Dechant et al., 2017; Gillon et al., 1999; Luther and 
Carroll, 1999; Masaitis et al., 2014; Petisco et al., 2005; Schlerf et al., 
2010; Serbin et al., 2014; Stein et al., 2014; Tsay et al., 1982; Wang 
et al., 2018; Wang et al., 2015; Yoder and Pettigrew-Crosby, 1995). 
However, the remote sensing of attributes associated with photo-
synthesis has progressed at a far slower rate. 

The rate of carbon assimilation under ambient conditions (A) is 
strongly influenced by light intensity, air temperature, water avail-
ability and leaf biochemistry (Farquhar et al., 1980; Leuning, 1995). 
These factors have been combined into a C3 photosynthesis model that 
shows the rate of carbon assimilation to be limited under ambient 
conditions by the maximal rate of ribulose-1,5-bisphosphate (RuBP) 
carboxylase‑oxygenase (Rubisco) carboxylation (Vcmax) and the max-
imal electron transport rate driving regeneration of RuBP (Jmax). In 
combination Vcmax and Jmax define the plants biochemical limitations to 
photosynthesis and these two variables will be, hereafter, collectively 
termed photosynthetic capacity. 

Previous research shows that photosynthetic capacity ranges widely 
both within and among species, and is sensitive to variation in en-
vironmental conditions (Groenendijk et al., 2011; Xu and Baldocchi, 
2003). Despite this variation, a fixed value for Vcmax is often assumed in 
Terrestrial Biosphere Models which provide the main means of pre-
dicting regional and global estimates of terrestrial carbon (Beer et al., 
2010). Many studies have investigated the use of plant functional traits 
such as leaf phosphorus (P), specific leaf area (SLA) and leaf nitrogen 
(N) to account for variation in photosynthetic capacity (Walker et al., 
2014). As N is a primary component of Rubisco and the light-harvesting 
complexes that regulate photosynthesis (Niinemets and Tenhunen, 
1997), studies have often successfully used N to predict photosynthetic 
capacity (Dechant et al., 2017), although seasonal variation in parti-
tioning of N to photosynthetic fractions can complicate predictions 
(Croft et al., 2017). Chlorophyll content has also been found to be a 
useful predictor of photosynthetic capacity (Croft et al., 2017) as this 
pigment is involved in light harvesting and there is a direct relationship 
between this pigment and Jmax (Collatz et al., 1991; Sellers et al., 1992), 
which in turn is usually strongly and linearly related to Vcmax, across a 
large range of species (Medlyn et al., 2002). 

Chlorophyll fluorescence has been widely shown to serve as a proxy 
for electron transport rate and photosynthetic activity (Genty et al., 
1989; Weis and Berry, 1987). As chlorophyll fluorescence is dependent 
on chlorophyll concentration, which has been found to be closely 
aligned to photosynthetic capacity (Croft et al., 2017; Houborg et al., 
2013), a strong link has also been shown between Sun Induced Chlor-
ophyll Fluorescence (SIF) and Vcmax (Rascher et al., 2015). A recent 
review has outlined the progress in SIF retrievals over the last 50 years 
(Mohammed et al., 2019) and research has demonstrated the utility of 
SIF in predicting photosynthetic activity at both the leaf and the canopy 
scales from a range of remote sensing platforms (Cendrero-Mateo et al., 
2015; Zarco-Tejada et al., 2013a; Zarco-Tejada et al., 2016). 

A parallel line of investigation over the last two decades has 

focussed on the use of Photochemical Reflectance Index (PRI) to predict 
photosynthetic activity of vegetation. This index, which is determined 
from narrow band reflectance at 531 and 570 nm (Gamon et al., 1992;  
Gamon et al., 1997) and in closely related bands in derivative versions 
(Gamon et al., 1993), has been widely used to predict photosynthetic 
status across a range of vegetation types. PRI provides a linkage with 
the efficiency of photosystem II through characterising variation in 
xanthophyll pigments and as such quantifies changes in non-photo-
chemical quenching and light use efficiency (Gamon et al., 1997). This 
index has been successfully used to predict photosynthetic rate (Drolet 
et al., 2008; Fuentes et al., 2006; Gamon et al., 1997; Guo and Trotter, 
2004; Hilker et al., 2008; Middleton et al., 2009; Nichol et al., 2000;  
Penuelas et al., 1995; Stylinski et al., 2000) and the photosynthetic 
response of plants subject to a range of stresses (Dobrowski et al., 2005;  
Hernández-Clemente et al., 2011; Scholten et al., 2019; Suárez et al., 
2008) and is responsive to seasonal changes in pigments (Gitelson et al., 
2017). PRI can be readily used to scale photosynthesis to the canopy 
level as recently launched satellite based hyperspectral imagers (e.g. 
PRISMA, DESIS) and planned missions (e.g. EnMAP) are capable of 
measuring this variable. In addition, Sentinel-2 and in particular the 
Sentinel-3 satellite OLCI and SLSTR sensors enable the estimation of 
vegetation pigments using the red edge spectral region and spectral 
bands centered at the green region for the assessment of the xantho-
phyll pigment dynamics and Vcmax at global scales using the SCOPE 
model (Prikaziuk and van der Tol, 2019). Although many studies show 
that PRI is an effective proxy for photosynthesis (Hernández-Clemente 
et al. 2019) the index has been shown to be affected by canopy struc-
ture, leaf pigments and background (Suárez et al., 2009; Suárez et al., 
2008), which can negatively impact predictions of photosynthesis 
(Rascher and Pieruschka, 2008). 

In this context, physically based modelling has been widely used as 
a method for generalising the spatial prediction of important vegetation 
traits. As these models are able to account for the influence of variations 
in background, canopy architecture and conditions during the image 
acquisition on reflectance they can be more generally applied than 
other approaches (Hill et al., 2019; Watt et al., 2019). One of the most 
widely used models is PROSAIL which uses PROSPECT (Jacquemoud 
and Baret, 1990) to simulate leaf reflectance and transmittance which 
are then fed into SAIL (Verhoef, 1984), which predicts canopy re-
flectance from this input and soil optical properties and illumination 
geometry (Berger et al., 2018). When PROSAIL is run in inverse mode 
this model can be used to predict chlorophyll content and other bio-
chemical constituents of foliage from canopy reflectance (Le Maire 
et al., 2008; Zarco-Tejada et al., 2004b; Zhang et al., 2005). Given the 
importance of chlorophyll in the photosynthetic process, predictions of 
this pigment from PROSAIL have considerable potential for spatially 
describing variation in key photosynthetic variables. As described in the 
review by Jacquemoud et al. (2009) PROSAIL has been developed for 
homogeneous and uniform canopies, and requires more complex ap-
proximations to account for forest architecture. For this purpose, ra-
diative transfer approaches such as DART (Gastellu-Etchegorry et al., 
1996), 4-Scale (Chen et al., 1997) and FLIGHT (North, 1996) have been 
used with success but these require a large number of inputs. 

Considerable research has demonstrated that N and P independently 
limit both plant growth and photosynthetic capacity and that the N:P 
ratio can be used to partition ranges that are either limited by N or P 
(Bown et al., 2007; Domingues et al., 2010; Ingestad, 1971, 1979;  
Ingestad and Lund, 1986). The underlying premise of this approach is 
that a N:P ratio of 10 (Knecht and Göransonn, 2004) marks a threshold 
and deviations from this lead to nitrogen (N:P ≤ 10) or phosphorus 
(N:P  >  10) deficiencies (Aerts and Chapin, 2000; Marschner, 1995;  
Reich and Schoettle, 1988). This assumption of independent limitations 
clearly influences how models linking photosynthetic capacity to pre-
dictors derived from hyperspectral data are interpreted. These hyper-
spectral predictors may have a stronger association with photosynthetic 
capacity within either the N or P limiting range or alternatively could 
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be applied using a single equation across both ranges. Despite this, we 
are unaware of any research that has examined how generalisable re-
lationships between key hyperspectral variables and photosynthetic 
capacity are within N and P limiting ranges. 

Within the southern hemisphere Pinus radiata D. Don (radiata pine) 
is the most widely planted plantation species and is particularly 
abundant within New Zealand where it constitutes 90% of the 1.7 M ha 
plantation area (NZFOA, 2018). A key limitation of photosynthesis and 
growth in P. radiata plantations is nutrient supply (Raison and Myers, 
1992; Sheriff et al., 1986; Watt et al., 2005) and previous research has 
established relationships between Vcmax, Jmax and foliar concentration 
of N and P in this species (Bown et al., 2007; Walcroft et al., 1997). 
However, we are unaware of any research that has investigated the 
utility of hyperspectral imagery for predicting photosynthetic capacity 
in P. radiata. 

In this study, measurements of hyperspectral imagery, foliage nu-
trition and photosynthesis were taken from an experiment that included 
a factorial combination of N and P treatments applied to P. radiata. 
Using this data, the overall goal of this research was to better under-
stand the key determinants of photosynthetic capacity and how hy-
perspectral imagery can best be used to predict photosynthetic capa-
city. Specifically, we examined relationships between photosynthetic 
capacity and measured chlorophyll (Chla+b), N and P within both the N 
and P limiting ranges. Using plant functional traits derived from hy-
perspectral data we then explored the strength and generality of re-
lationships between photosynthetic capacity and PRI, SIF and chlor-
ophyll a + b derived by radiative transfer model inversion. 

2. Methods 

2.1. Experimental set up 

The experiment was undertaken within the Scion nursery, located in 
Rotorua, New Zealand. A total of 120 P. radiata seedlings were trans-
planted into pots with a 15 l volume during October 2018. The medium 
into which the plants were transplanted consisted of a mixture of perlite 
and vermiculite which are silica-based products without any nutritional 
content. Plants were grown in a thermostatically controlled greenhouse 
where temperature in spring fluctuated between 10 and 24 °C during 
the day and between 10 and 16 °C during the night. These plants were 
watered weekly over the duration of the trial so that root-zone water 
content did not limit growth. This study reports on detailed measure-
ments taken from a subsample of 30 trees, within this trial, that in-
cluded six trees from each of the five treatments. 

The five fertiliser treatments consisted of a factorial combination of 
N and P that were applied as 500 ml of nutrient solution per plant every 

fortnight starting on the 20th February 2019. These five treatments 
included application of water only (Control), low N–low P (N0P0), low 
N–high P (N0P1), high N–low P (N1P0) and high N–high P (N1P1). 
Nutrient solutions consisted of two levels of nitrogen (N0 = 1.43 and 
N1 = 7.14 mol m−3) and phosphorus (P0 = 0.084 and 
P1 = 0.420 mol m−3). Following Ingestad (1979) N was provided at 
concentrations of 100 ppm (7.14 mM) and P at 13 ppm (0.420 mM) as 
the high-N and high-P supply regimes. The low-N (1.43 mM) and low-P 
(0.084 mM) supply regimes were chosen as one-fifth of the high-N and 
high-P concentrations, respectively. Nitrogen was supplied as NH4NO3 

and phosphorus as KH2PO4 and nutrients other than N and P were 
provided in optimum proportions in relation to N, as defined by In-
gestad (Ingestad, 1971, 1979). 

2.2. Hyperspectral data capture 

2.2.1. Data capture 
A hyperspectral camera (FX10, Specim, Spectral Imaging Ltd., Oulu, 

Finland) was used to acquire hyperspectral imagery outside of the 
greenhouse, under clear sky conditions, from 10:30 am to 1:30 pm on 
the 4th October 2019. This push-broom camera captures 448 bands 
with wavelengths ranging from 400 to 1000 nm with a spectral full 
width at half maximum (FWHM) of 5.5 nm. The camera is designed for 
industrial applications and as such has a high maximum frame rate of 
9900 frames per second with one band, and 330 frames per second 
using the full range of bands, as well as a high Signal-to-Noise Ratio 
(SNR) of 600:1. Within the field of view of 38° the spatial sampling 
comprises 1024 pixels. We used the Lumo Recorder software interface 
to manage the image acquisition. 

The camera was mounted 2 m above ground on a cross beam that 
was supported by two posts, and a conveyor belt was used to move the 
plants through the field of view. The speed of the conveyor belt was 
adapted to fit the frame rate of the camera, which in turn was depen-
dent on the exposure time, which had to be adjusted to the current 
illumination conditions. During the measurements, the conveyor belt 
speed and frame rate were kept constant and the exposure time was 
adjusted to avoid over or undersaturation. A diffuse white reference 
standard (Spectralon, North Hutton, NH, USA) was placed so that it was 
visible in every frame allowing calibration of the imagery as a function 
of the changing illumination conditions. 

2.2.2. Pre-processing of hyperspectral data 
All pre-processing of the hyperspectral data was carried out using 

Matlab (The MathWorks, Inc., Natick, Massachusetts, United States) 
following the methods described in Buddenbaum et al. (2019). Pixels 
with NDVI ≥0.5 and reflectance at 780 nm ≥ 0.2 were selected as 

Fig. 1. Images of individual trees selected from the treatments (left) and their corresponding canopy reflectance (right).  
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vegetation pixels. Pixels with absolute first difference values ≥0.1 were 
masked out. Sample reflectance spectra for trees that are representative 
of the treatments are shown in Fig. 1. Following these steps the number 
of pixels selected ranged from 16,000–112,000 pixels/tree, with an 
average of 52,267 pixels/tree. The mean of all pixels for each tree was 
calculated to represent the whole plant. 

Following these steps, the tree level spectra were smoothed using 
the Savitzky-Golay filter (Mouazen et al., 2010) as this filter has con-
sistently been found to be one of the best available pre-processing 
transformations (Vasques et al., 2008). This smoothing used a third 
order polynomial which was applied across a moving window of 27 
spectral bands. Reflectance and the 1st derivative of reflectance were 
extracted from these smoothed spectra. As there was considerable noise 
at either end of the smoothed spectral data, the 52 bands that occurred 
both below 415 nm and above 951 nm, were excluded from further 
analyses. Following these exclusions, 396 bands (415–951 nm) de-
scribing reflectance and 395 bands (416–951 nm) describing the 1st 
derivative of reflectance were available for analyses. 

2.2.3. Radiative transfer model inversion 
Pure vegetation reflectance spectra extracted from the hyperspectral 

data acquired from the seedlings was used to invert PROSAIL to esti-
mate chlorophyll a + b content (Chla+b PROSAIL). Although SAIL is 
designed for homogeneous canopies and this condition was not met by 
our experimental set-up, an inversion of PROSAIL was undertaken 
(Jacquemoud et al., 2009) using the spectra extracted from pure ve-
getation pixels (as in Zarco-Tejada et al., 2018). The PROSPECT model 
has been demonstrated to be valid for simulating needle reflectance in 
Jack Pine (Pinus banksiana Lamb.) stands for chlorophyll a + b content 
estimation (Zarco-Tejada et al., 2004a). The proposed PROSPECT and 
SAIL models used here were successful for chlorophyll content esti-
mation when targeting pure vegetation pixels in forest areas (Zarco- 
Tejada et al., 2001). Thus, we used a combination of PROSPECT-D 
(Féret et al., 2017) and 4SAIL (Verhoef et al., 2007) model versions, and 
inverted the spectra using the function lsqcurvefit in Matlab, following 
an approach by Jay et al. (2016). Parameters with low sensitivity were 
fixed so that only a limited number of parameters needed to be opti-
mized. The leaf inclination distribution type was set to 2 so that only 
the average leaf inclination angle (ALA) was included in the model. The 
soil spectrum was also fixed. The model code includes spectra for a dark 
wet and a bright dry soil. We used a linear combination of 10% dark soil 
and 90% bright soil. Further model parameters are listed in Table 1. 

2.2.4. Calculation of PRI and sun induced chlorophyll fluorescence 
The reflectance spectra were interpolated to a 1 nm resolution 

within Matlab. Using the interpolated spectra, calculations of PRI 
(PRI531,570) were made using the following (Gamon et al., 1992), 

= +PRI (R R )/(R R )531 570 531 570 (1)  

We also trialled an alternative formulation of PRI (PRI528,567) that 
utilised 528 nm and 567 nm (Gamon et al., 1993) and this variation was 
used in analyses as it was more precisely correlated to photosynthetic 
capacity than PRI531,570. Although PRI was developed to track changes 
in xanthophyll pigments, it has been reported that such spectral bands 
in the 530–570 nm region are also influenced by confounding effects 
related to the absorption of other photosynthetic pigments, structure of 
the canopy, and the soil and background (Suárez et al., 2009; Suárez 
et al., 2008; Zarco-Tejada et al., 2013b). Thus, changes observed in PRI 
are potentially due to the combined changes of chlorophyll and xan-
thophylls, and structural effects over the course of the experiment. 

Sun-Induced Chlorophyll Fluorescence (SIF) was quantified using 
the 760 nm O2-A band using the in-filling method based on the 
Fraunhofer Line Depth principle (FLD) calculated from a total of three 
spectral bands (FLD3) as follows, 

=SIF E L E L
E E

out in in out

out in (2) 

where radiance, L, corresponds to Lin (L761), Lout (average of L747 and 
L780 bands), and the irradiance, E, to Ein (E761), and Eout (average of E747 

and E780 bands). Values of SIF were rescaled through addition of an 
offset value to ensure that calculations of SIF from Eq. 2 were not ne-
gative. 

2.3. Photosynthetic capacity 

Measurements of photosynthetic capacity were made using a cou-
pled chlorophyll fluorescence and gas-exchange system (Imaging-PAM 
M-Series and GFS-3000, Walz, Effeltrich, Germany) from the 7th to 
16th of October 2019 following measurements of hyperspectral data. 
For each of the 30 plants, the response of assimilation to intercellular 
CO2 concentration (A/Ci response) was measured on two to three fully 
expanded young fascicles that were selected from the upper third of the 
canopy. These needles were arranged inside the 6 cm2 cuvette without 
overlap and the area for these needles was determined by differ-
entiating thresholded pixels using the Imaging-Win software of the 
coupled system. During the course of the measurements, conditions in 
the cuvette were maintained at 20 °C, with a relative humidity of 60% 
and an irradiance of 1000 μmol photons m−2 s−1. The external CO2 

concentration (Ca) supplied to the plants included the following series: 
400, 300, 200, 100, 75, 50, 400, 600, 800, 1000, 1200, 1500, 
2000 μmol mol−1. Measurements were recorded after values of A, Ci 

and gs were stable. 
A/Ci curves were analysed using Farquhar-type equations (Long and 

Bernacchi, 2003). A generalised nonlinear least squares regression (gnls 
function, nlme package in R) was used to estimate Vcmax and Jmax. 

2.4. Determination of foliage N, P and chlorophyll 

Following the completion of the A/Ci response curves, approxi-
mately 10 fully extended fascicles, were selected from the upper third of 
the crown of each plant. These fascicles were dried at 70 °C for at least 
48 h to constant dry mass and transported to the Landcare Research 
laboratory (Palmerston North, New Zealand) for analysis of N and P. 
Foliage samples were finely ground, acid digested by the Kjeldahl 
method, and the N and P concentrations were determined color-
imetrically (Blakemore et al., 1987). Approximately 20 fully extended 
fascicles were selected for measurements of chlorophyll a + b (Chla+b). 
These needles were placed in tubes and frozen at −80 °C before being 
transported with dry ice to Plant and Food Laboratory (Lincoln, New 

Table 1 
Model parameters used within PROSAIL.       

Variable parameters 

Parameter Symbol Unit Min Max  

Mesophyll structure parameter N  1.4 1.6 
Chlorophyll a + b Chla+b μg cm−2 25 60 
Carotenoids Ccx μg cm−2 1 15 
Anthocyanins Canth μg cm−2 0 5 
Water content Cw g cm−2 0.0002 0.06 
Dry matter content Cm g cm−2 0.0001 0.03 
Average leaf inclination angle ALA (LIDFa) ° 0 90 
Leaf area index LAI  0.5 5       

Fixed parameters 

Parameter Symbol Unit Value  

Brown pigments Cbp  0 
Hot spot parameter Hot  0.1 
Observation zenith angle θo ° 0 
Illumination zenith angle θs ° 45 
Relative azimuth angle ψ ° 0 
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Zealand) where analysis was undertaken using Chla+b estimation by 
spectrometry. From finely ground foliage samples, plant materials were 
extracted with acetone. This extraction was undertaken in the dark and 
the samples were kept on ice throughout the process to avoid pigment 
degradation. The absorbance of the extracts in the wavelengths 645, 
652, 663, and 700 nm were read against 80% acetone and these values 
were then used to compute the chlorophyll concentration (Holden, 
1965). All values of chlorophyll reported here refer to the total chlor-
ophyll (Chla+b). 

Specific leaf area, (SLA) was determined from needles sampled for 
chlorophyll and expressed on a hemisurface leaf area basis. Following  
Bown et al. (2009b) leaf area was determined from [nld(1 + π/n)]/2, 
where d is fascicle diameter, l is fascicle length and n is the number of 
needles per fascicle. SLA was expressed in μg cm−2 as the quotient of 
dry weight and leaf area. Measurements of SLA were used to convert 
foliage nutrient and pigment concentrations to a hemisurface area 
basis. 

2.5. Measurements of tree dimensions 

Tree height, root collar diameter and crown diameter were mea-
sured on the 22nd October 2019. Crown diameter was measured in two 
perpendicular directions at the widest point and these measurements 
were averaged. Electronic calipers were used to measure root collar 
diameter and both height and crown width were measured using a tape. 

2.6. Data analysis 

All analyses were undertaken at the plant level using a combination 
of Matlab (The MathWorks, Inc., Natick, Massachusetts, United States) 
and R (R Development Core Team, 2011). Matlab was used to plot the 
spectra and invert PROSAIL while all other analyses were undertaken 
using R. 

2.6.1. Treatment differences 
Tree dimensions, foliage nutrient content, photosynthetic variables, 

and PROSAIL output were tabulated and one-way analysis of variance 
was used to test for treatment differences between these variables. 
Multiple range testing, using the Tukey test, was used to determine 
which treatments significantly differed for all variables in which 
treatment had a significant effect. 

Treatment variation in hyperspectral variables was plotted. We 
undertook a one-way analysis of variance across each of the 396 re-
flectance bands to identify which bands were most sensitive to the 
treatments. This band level ANOVA was also undertaken on four dif-
ferent treatment contrasts to isolate the influence of N and P on re-
flectance. The influence of N was determined through contrasting re-
flectance for low and high N treatments at both low (N0P0 vs N1P0) 
and high P (N0P1 vs. N1P1). Similarly, the influence of P on reflectance 
was identified through contrasting low and high P treatments at both 
low (N0P0 vs N0P1) and high N (N1P0 vs. N1P1). Using a Bonferroni 
correction these contrasts were deemed to be significant at P  <  .0125. 

2.6.2. Prediction of photosynthetic variables 
Nutrient ratios were used to separate the dataset into plants that 

were either N or P limiting to gain greater insight into the processes 
regulating photosynthetic capacity within each of these two phases. 
Following previous literature (Aerts and Chapin, 2000; Knecht and 
Göransonn, 2004; Marschner, 1995; Reich and Schoettle, 1988) trees 
with an N:P ratio (expressed on a mass basis) of ≤10 were categorised 
as N deficient, while those with N:P  >  10 were categorised as P de-
ficient. The foliage N:P within sampled trees ranged from 2.6–27.9, of 
which 9 observations were P limited while the remaining 21 were N 
limited (Fig. 2). 

Following Kattenborn et al. (2019) all modelling used nutrient 
concentrations expressed on an area basis. Initial analyses examined 

correlations between N, P, and PRI and SIF. Bivariate relationships were 
then developed between the photosynthetic variables and N, P, Chla+b 

to examine the role that these variables played in regulating photo-
synthetic capacity. The potential of predicting Vcmax and Jmax from 
hyperspectral data was then investigated through development of 
models that included either Chla+b PROSAIL, PRI or SIF. In all developed 
models only significant variables were included in the models and 
variables were used in the models in either linear formulations, and 
where significant, in a polynomial formulation. 

3. Results 

3.1. Tree characteristics 

All physical dimensions varied significantly between treatments 
(Appendix 1) and dimensions for the two high N treatments were 
markedly greater than those for the three low N treatments. Mean 
height, root collar diameter and crown width in N1P1 were, respec-
tively, 85.8 cm, 15.9 mm and 31.6 cm, which exceeded corresponding 
mean values for these three dimensions in the Control, N0P1 and N0P1, 
by respectively, 58, 31 and 64%. There were no significant treatment 
differences in SLA and values averaged 2467 μg cm−2 across treatments 
(Appendix 1). 

3.2. Foliar nutrition 

The applied treatments resulted in a wide range in N and P (Fig. 2) 
and both elements significantly varied between treatments when ex-
pressed on either a mass or area basis (Appendix 1). Values of N ranged 
from 0.41–2.00% when expressed on a mass basis and 
11.1–45.8 μg cm−2 on an area basis while P varied from respectively 
0.053–0.278% and 1.41–6.47 μg cm−2. The relationship between N and 
P was weakly significant (Fig. 2) when data was expressed on a mass 
basis (P = .03; R2 = 0.224) but insignificant when expressed on an 
area basis (P = .10; R2 = 0.155). The relationship between N and Chla 

+b was positive, highly significant and very strong when expressed on 
either a mass (P  <  .001; R2 = 0.887) or area basis (P  <  .001; 
R2 = 0.870). 

When expressed on an area basis there were no significant differ-
ences in N or Chla+b (Appendix 1) between the two high N treatments 
(N1P0, N1P1) or the two low N treatments (N0P0, N0P1). Similarly, P 

Fig. 2. Relationships between mass based nitrogen and phosphorus. The 
treatment designation for individual trees are denoted by filled circles while 
treatment means are shown as large crosses with differing colours. The dashed 
line represents a N:P ratio of 10. Values of foliage N and P content above the 
line are N limited while those below the line are P limited. 
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did not significantly differ between the two low P treatments (N0P0, 
N1P0) or the two high P treatments (N0P1, N1P1). There was an 
identical significance pattern for N, P and Chla+b expressed on a mass 
basis (Appendix 1), except for the pairwise comparison of N for the two 
high N treatments (N1P0 and N1P1) which exhibited significant dif-
ferences. This low level of lack of significance provided a sound basis 
for the pairwise testing of the impacts of N and P on both photo-
synthetic capacity and hyperspectral imagery, that is described below. 

3.3. Photosynthesis capacity 

Differences between treatments were highly significant for both 
Vcmax and Jmax (P  <  .001). The mean values of Vcmax and Jmax for 
N1P1, were respectively, 34.9 and 90.5 μmol m−2 s−1 which exceeded 
those in the Control treatment by ca. three-fold for both variables 
(Appendix 1). Most variation between the treatments was attributable 
to addition of N (Appendix 1). Values for the two high N treatments 
(N1P0, N1P1) significantly exceeded those of the two low N treatments, 
with equivalent P additions (N0P0, N0P1) by respectively 55 and 51% 
for Vcmax and Jmax (Appendix 1). Addition of P to the low N treatment 
(i.e. N0P1 vs N0P0) increased Vcmax and Jmax by respectively 7.8 and 
3.3%, while addition of P to the high N treatment (i.e. N1P1 vs N1P0) 
resulted in greater increases to Vcmax and Jmax of respectively, 11.5 and 
16.2% (Appendix 1). 

3.4. Hyperspectral data 

Fig. 3 shows variation in canopy reflectance and the 1st derivative 
of reflectance at the tree level while Fig. 4 describes variation in 

reflectance across the entire spectrum and within three narrow wave-
length ranges for data averaged by treatment (Fig. 4 a – d) and type of 
limitation (Fig. 4e – h). Tree level variation in reflectance was relatively 
tightly clustered within treatments highlighting the consistency of the 
data (Fig. 3a). Treatment level reflectance was higher in the low N 
treatments between 450 and 680 nm with the highest values recorded 
in the Control treatment (4a – d). There was also a marked shift in the 
lower wavelengths of the red edge for the low N treatments compared 
to those with high N (Fig. 4d). Both of these treatment influences on 
reflectance were significant, with the highest levels of significance oc-
curring at wavelengths centred in the red edge at 700 nm and the green 
peak at 580 nm (Fig. 5), with significant treatment differences occur-
ring at all other wavelengths between 472 and 728 nm (Fig. 5). 

The first derivative of reflectance for the three low N treatments 
exhibited marked increases between 500 and 550 nm (Fig. 3b), com-
pared to the two high N treatments and peak values for the first deri-
vative were reached at lower wavelengths, with both features being 
most marked for the Control treatment (Fig. 3b). Significant treatment 
differences were noted in the first derivative in almost all wavelengths 
between 422 and 811 nm with the most significant differences occur-
ring at wavelengths centred around 497 and 647 nm (Fig. 5). 

Analysis of variance, using treatment combinations that partitioned 
the impact of N and P, showed that treatment differences were mainly 
attributable to variation in N. For reflectance, comparisons of low and 
high P at similar values of N, that were either low (i.e. N0P0 vs. N0P1, 
red circles, Fig. 6a) or high (i.e. N1P0 vs. N1P1, blue circles, Fig. 6a) did 
not significantly differ. The small influence of P on reflectance is also 
clearly evident in figures showing spectral changes across discrete 
ranges which shows these two P contrasts almost overlap between 400 

Fig. 3. Tree level variation in (a) canopy reflectance and (b) the 1st derivative of canopy reflectance against wavelength. Treatment identity is denoted by lines with 
differing colours. 
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and 700 nm (Figs. 4b–d). Similarly, for the first derivative, these two 
treatment comparisons were mostly non-significant, with the exception 
of a few wavelengths, scattered across the spectral range (Fig. 6b). 

In contrast, comparisons of reflectance for low and high N, made at 
low values of P (green circles, Fig. 6a) or high values of P (black circles,  
Fig. 6a) showed significant differences between treatments from ca. 
500–730 nm, reaching highest significance for both comparisons in the 
red edge region, and at wavelengths centred around 534 nm for N0P1 
vs. N1P1 (Fig. 6a). Treatment contrasts shown for discrete spectral re-
gions (Figs. 4b–d) show that higher N markedly reduces reflectance, 
compared to low N, for both contrasts and that these differences are 
particularly marked within the green peak region (Fig. 4c). 

Treatment comparisons were in general more significantly different 
for the first derivative of reflectance than reflectance (Fig. 6b). 

Differences in the first derivative for these two N treatment compar-
isons were significant across most of the spectral range, from ca. 
432–763 nm, with the most significant values occurring in the red-edge 
region for N0P0 vs. N1P0 and at wavelengths centred around 504, 608 
and 651 nm for N0P1 vs. N1P1 (Fig. 6b). 

When expressed by the type of limitation, trees that were limited by 
N had higher reflectance than P limited trees within both the red edge 
range and visible spectrum above 430 nm (Fig. 4e). These differences 
were most marked within the green peak region (Fig. 4g). There was 
also a marked shift in the lower wavelengths of the red edge for the N 
limited plants compared to those that were P limited (Fig. 4h). 

Fig. 4. Variation in (a, e) canopy reflectance across the entire spectrum and between (b, f) 400–500 nm, (c, g) 500–600 nm and (d, h) 600–700 nm for data averaged 
by (a – d) treatment and (e – h) limitation type. 
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3.5. Relationships between nutrient content and spectral indices 

Within the N limiting range there were significant positive re-
lationships between N and both PRI (P  <  .001; R2 = 0.83; Fig. 7a) and 
SIF (P  <  .001; R2 = 0.59; Fig. 7c) but relationships between N and 
both of these variables were insignificant and weak, within the P lim-
iting range (Fig. 7a, c). In the P limiting range, strong significant po-
sitive relationships were found between P and both SIF (P  <  .01; 
R2 = 0.697) and PRI528, 567 (P  <  .001; R2 = 0.792), as shown by the 
filled teal circles, respectively, in Figs. 7d and b. Within the N limiting 
range, the relationship between P and SIF was insignificant and weak 
(P = .23; R2 = 0.076), while the relationship between P and PRI528, 567 

was only marginally significant but very weak (P = .048; R2 = 0.190). 

3.6. Models of photosynthetic capacity 

3.6.1. Use of measured variables 
Under both N and P limiting conditions Chla+b was most strongly 

related to both Vcmax (P  <  .001; R2 = 0.85) and Jmax (P  <  .001; 
R2 = 0.82) and both relationships were positive (Fig. 8a, c; Table 2). 
There were strong positive relationships between N and both Vcmax 

(P  <  .001; R2 = 0.84) and Jmax (P  <  .001; R2 = 0.82), that were only 
marginally weaker than the relationships with Chla+b (Fig. 9a, c;  
Table 2). Under N limiting conditions these relationships generally re-
mained at similar strength, although N was a slightly stronger predictor 
of Jmax than Chla+b (R2 = 0.87 vs. 0.86). Under P limiting conditions, 
relationships between photosynthetic capacity and either N (Fig. 9 a, c) 
or Chl a+b (Fig. 8 a, c) were very weak (R2  <  0.02) and insignificant 
(Table 2). 

Under P limiting conditions, relationships between P and both Vcmax 

(Fig. 9b) and Jmax (Fig. 9d) were positive, significant and of a moderate 
strength, with respective R2 of 0.50 and 0.58 (Table 2). In contrast, 
relationships between P and photosynthetic capacity (Vcmax, Jmax) were 
insignificant under either N limiting conditions or across the entire 
dataset (Figs. 9b, d; Table 2). 

3.6.2. Use of derived variables 
There was a strong linear relationship (R2 = 0.88) between area 

based measured chlorophyll (Ca+b) and chlorophyll predicted by model 
inversion (Ca+b PROSAIL). Values of Ca+b were overpredicted by Ca+b 

PROSAIL at low values and underpredicted at high values, but there was 
little treatment bias in the predictions (Fig. 10). 

Using all the data, Chla+b PROSAIL exhibited strong positive linear 
relationships (Fig. 8b, d) with both Vcmax (P  <  .001; R2 = 0.79) and 
Jmax (P  <  .001; R2 = 0.76). These relationships remained significant 
and relatively strong using data restricted to N limiting conditions 
(Table 2). However, there was no significant relationship between Chla 

+b PROSAIL and either both Vcmax and Jmax under P limiting conditions, 
with R2  <  0.04 for both relationships (Table 2; Fig. 8b, d). 

Using all the data there were strong relationships between PRI528, 

567 and both Vcmax (P  <  .001; R2 = 0.84) and Jmax (P  <  .001; 
R2 = 0.84) that were best described using quadratic terms (Table 2;  
Fig. 11a, c). These relationships remained strong, but the precision was 
slightly reduced when data was restricted to N limiting conditions 
(Table 2). Under P limiting conditions positive correlations of moderate 
strength were found between PRI528, 567 and Vcmax (P = .06; R2 = 0.42) 
and Jmax (P = .029; R2 = 0.51), that were generally aligned with 
predictions under N limiting conditions (Table 2; Fig. 11a, c). 

Using all the data SIF exhibited strong positive linear relationships 
with both Vcmax (P  <  .001; R2 = 0.78) and Jmax (P  <  .001; 
R2 = 0.80), which were slightly reduced in strength when data was 
restricted to N limiting measurements (Table 2; Fig. 11b, d). Under P 
limiting conditions, SIF was moderately related to Vcmax (P = .09; 
R2 = 0.35) and strongly related to Jmax (P  <  .01; R2 = 0.68) and these 
relationships aligned very well with predictions made under N limiting 
conditions (Fig. 11b, d). 

4. Discussion 

Our results show that N and P were only significantly related to 
Vcmax and Jmax, within the N and P limiting ranges, respectively, 

Fig. 5. Variation in treatment significance, as indicated by the P-value, for reflectance (open red circles) and the first derivative of reflectance (filled blue circles). The 
grey region shown at the top of the figure outlines the area of insignificance at P  >  .05 while the dashed line is drawn at P = .001. The y-axis is shown as a 
logarithmic scale to highlight the significance strength. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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suggesting that photosynthetic capacity is independently regulated by 
these elements. Predictions of photosynthetic capacity (Vcmax, Jmax) 
using variables derived from hyperspectral imagery showed contrasting 
generality across the dataset. Strong positive relationships were ob-
served between Chla+b PROSAIL and both Vcmax and Jmax in the N limiting 
phase but these relationships were insignificant in the P limiting range. 
However, both SIF and PRI528, 567 exhibited moderate to strong positive 
relationships with photosynthetic capacity in both the N and P limiting 
phases suggesting that these variables are more generalisable than Chla 

+b PROSAIL. 
The treatments used here created a wide range in N and P that 

exceeded the ranges in content and N:P ratio typically found in field 
grown P. radiata. When expressed on a mass basis foliage N ranged from 
0.41 to 2.0% while foliage P ranged from 0.05 to 0.28%. Within a de-
signed field experiment, located at 20 sites spanning almost all varia-
tion in soil fertility found in New Zealand plantations, ranges were 
markedly lower varying from 0.75–1.64% for N and from 0.09–0.18% 
for P (Watt et al., 2009). Our reported values in N and P covered ranges 
considered to be deficient, marginal and sufficient for both elements 
(Mead, 2013). 

The use of ratios provided a useful means of separating N from P 
limitations. Nutrient ratios have been extensively used to identify 

optimum nutrition and account for particular nutrient limitations 
(Ingestad, 1971, 1979; Ingestad and Lund, 1986). In terrestrial plants 
an optimum N:P ratio of 10 has been found for a wide range of species 
(Knecht and Göransonn, 2004) which agrees with our results that show 
photosynthetic capacity peaks at ratios of 9.3–11.3 (data not shown). 
Several authors (Aerts and Chapin, 2000; Marschner, 1995; Reich and 
Schoettle, 1988) suggest that deviations from this N:P ratio of 10 should 
lead to nitrogen (N:P ≤ 10) or phosphorus (N:P  >  10) deficiencies. 
Our results strongly support this suggestion through showing that N and 
P were only significantly related to Vcmax and Jmax, within the N and P 
limiting ranges, respectively. 

Overall our results show that Chla+b and N had the largest influence 
on photosynthetic capacity. The strong relationships found here be-
tween photosynthetic capacity and both Chla+b and N under N limiting 
conditions have a sound physiological basis. Nitrogen is a major com-
ponent of Rubisco (Niinemets and Tenhunen, 1997) and at least 50% of 
leaf nitrogen is invested in the photosynthetic apparatus of plants 
(Niinemets and Sack, 2006). As Rubisco catalyses the carboxylation 
reaction, there is a mechanistic link between the leaf Rubisco content 
and the maximum capacity of carboxylation, Vcmax. 

Similarly, chlorophyll also plays an important role in photosynth-
esis. Chlorophyll which is embedded in the thykaloid membranes of 

Fig. 6. Variation in treatment significance, as indicated by the P-value, for (a) reflectance and (b) the first derivative of reflectance, for comparisons of P under low 
(red circles) and high N (blue circles) and comparisons of N under low (green circles) and high P (black circles). The grey region shown at the top of the figure 
outlines the area of insignificance at P  >  .0125 while the dashed line is drawn at P = .001. The y-axis is shown as a logarithmic scale to highlight the significance 
strength. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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chloroplasts, provides the principal means of harvesting light (Croft 
et al., 2017). This light harvest provides the energy to supply electrons, 
via the cytochrome b6f complex, to produce nicotinamide adenine di-
nucleotide phosphate (NADPH) and chemical energy as adenosine tri-
phosphate (ATP), for the reactions of the Calvin–Benson cycle. Chlor-
ophyll content has been shown to be related to the amount of light 
harvested across a range of species (Collatz et al., 1991; Evans, 1996), 
and photosynthetically active radiation absorbed by the leaf drives the 
potential rate of electron transport, J (Collatz et al., 1991; Sellers et al., 
1992). Although chlorophyll is theoretically more closely related to 
Jmax, in practice a strong linear relationship between Vcmax and Jmax, is 
often observed across a range of species (Medlyn et al., 2002) as was 
found for our data (P  <  .001; R2 = 0.939). This tight coupling, which 
is thought to reflect coordination between these two rate-limiting bio-
chemical cycles (Kattge and Knorr, 2007; Leuning, 1997; Medlyn et al., 
2002; Walker et al., 2014), means that in practice Chla+b can be used as 
a predictor for both variables. 

Under N limiting conditions, relationships between photosynthetic 
capacity and both Chla+b and N were found to have a very similar 
precision. This suggests that wavelengths associated with N in the SWIR 
range are not as important for predicting photosynthetic capacity in P. 
radiata as those associated with chlorophyll in the VNIR range. 
Examination of spectral differences between treatments confirm the 

importance of chlorophyll as a key predictor of photosynthetic capacity. 
These analyses show the most significant treatment differences occur 
within the green and red edge spectral regions which have previously 
been found to be key spectral predictors of chlorophyll content (Carter, 
1994; Gitelson and Merzlyak, 1996; Horler et al., 1983; Rock et al., 
1988; Vogelmann, 1993). 

The significant positive relationships that we found between P and 
both Vcmax and Jmax within the P limiting range were associated with 
high values of N. Results from a P. radiata nutrition experiment with a 
similar design (Bown et al., 2009a), that investigated relationships 
between nutrition and photosynthetic capacity, were very similar to 
ours and found a significant relationship between P and photosynthetic 
capacity in the P limiting range. This result is also consistent with a 
meta-study undertaken by Walker et al. (2014) who observed little gain 
in Vcmax and Jmax under increasing P at low N, but a doubling of 
modelled gross carboxylation rates across a P range under high N levels, 
which is analogous to the P limiting range in our study. The importance 
of P in regulating Vcmax and Jmax has a sound theoretical basis as the 
availability of P has an impact on many important aspects of photo-
synthesis including membrane solubility, ATP, and NADPH production 
(Marschner, 1995; Taiz et al., 2015). 

Our results demonstrate very little spectral alteration associated 
with P but do show significant relationships between P and both PRI528, 

Fig. 7. Relationships between nitrogen and phosphorus content and (a, b) Photochemical Reflectance Index and (c, d) Sun Induced Chlorophyll Fluorescence, under 
N (open brown circles) and P limiting conditions (filled teal circles). Lines have been fitted to relationships that are significant at P  <  .048 with the brown and teal 
lines fitted respectively to N and P limited data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 
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567 and SIF within the P limiting range. After controlling for N, results 
clearly show little discernible change in reflectance or the first deri-
vative of reflectance between plants with high or low P. This is con-
sistent with previous literature as P does not directly absorb energy in 

the shortwave spectrum and consequently predictions of P typically rely 
on strong positive correlations with N (Asner and Martin, 2008; Gillon 
et al., 1999; Porder et al., 2005). While this is a useful approach for 
vegetation with normal ratios of N and P, this empirical relationship is 
likely to break down when ratios of N and P deviate from normal va-
lues, and there is little correlation between N and P. Within the P 
limiting range there were moderate to strong positive, linear relation-
ships between P and both SIF and PRI suggesting that these variables 
may act as proxies for P and the effect of this element on photosynthetic 
capacity. 

Although the three variables, derived from the hyperspectral data, 
used to predict photosynthetic capacity had similar precision, there 
were marked differences in their utility for predicting photosynthetic 
capacity. The significant relationship found here between Chla+b 

PROSAIL and photosynthetic capacity is consistent with previous research 
that has used chlorophyll derived from physically based models to 
predict Vcmax and Jmax (Croft et al., 2017; Dechant et al., 2017). Our 
results generally support Croft et al. (2017), who advocate the use of 
chlorophyll as a potentially useful proxy for photosynthetic capacity 
but extend these findings through showing that chlorophyll should be 
used with caution under P limiting conditions, where we found this 
relationship to be weak and insignificant. 

SIF was strongly correlated with both Vcmax and Jmax and, in con-
trast to Chla+b PROSAIL, predictions exhibited relatively robust 

Fig. 8. Relationships between measured chlorophylla+b and inverted chlorophylla+b and (a, b) Vcmax and (c, d) Jmax under N (open brown circles) and P limiting 
conditions (filled teal circles). Lines have been fitted to relationships that are significant at P  <  .05 with the brown lines fitted to N limited data. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Summary of model precision, as denoted by the coefficient of determination 
(R2) for models describing the maximal carboxylation capacity (Vcmax) and the 
maximal electron transport rate (Jmax). Measured predictors include area based 
measurements of nitrogen (N), phosphorus (P) and chlorophyll (Chla+b). 
Predictors that were derived from hyperspectral data included Photochemical 
Reflectance Index (PRI), Sun-Induced Chlorophyll Fluorescence (SIF) and 
chlorophyll derived from the PROSAIL inversion (Chla+b PROSAIL).         

Predictor(s) All data N limiting P limiting 

Vcmax Jmax Vcmax Jmax Vcmax Jmax  

Measured variables 
N 0.84*** 0.82*** 0.82*** 0.87*** 0.01ns 0.02ns 

P 0.04ns 0.06ns 0.33ns 0.31ns 0.50* 0.58* 
Chla+b 0.85*** 0.82*** 0.85*** 0.86*** 0.02ns 0.01ns  

Derived predictors 
Chla+b PROSAIL 0.79*** 0.76*** 0.64*** 0.63*** 0.03ns 0.04ns 

SIF 0.78*** 0.80*** 0.69*** 0.70*** 0.35ns 0.68** 
PRI 0.84*** 0.84*** 0.73*** 0.75*** 0.42ns 0.51* 
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correlations across both the N and P limiting ranges. Although SIF has 
been widely used to predict gross primary productivity (Meroni et al., 
2009; Porcar-Castell et al., 2014; Rascher et al., 2015), and photo-
synthesis (Frankenberg et al., 2011; Guanter et al., 2014; Smith et al., 
2018), in a range of species, with few exceptions (Camino et al., 2019) 

little research has linked SIF to Vcmax and Jmax at a fine scale. As found 
here, there is generally a strong relationship between chlorophyll and 
SIF as leaves with a higher chlorophyll will absorb more light and 
produce a higher leaf SIF, although this effect is complicated by the fact 
that emitted SIF is scattered and reabsorbed throughout the canopy 
(Verrelst et al., 2015). It has been hypothesised that SIF is a useful 
predictor of photosynthetic capacity as it can be used to selectively 
measure the quantity of absorbed light in chlorophyll (Rascher et al., 
2015). However, in contrast to Chla+b, our results suggest that SIF can 
at least partially account for the role of P on photosynthetic capacity at 
high values of N as supported by the strong relationship found between 
SIF and P under P limiting conditions. 

Similarly, PRI was also strongly related to photosynthetic capacity 
and was able to account for variation in Vcmax and Jmax across both N 
and P limitations. Research has widely demonstrated the utility of PRI 
for predicting light use efficiency (Garbulsky et al., 2011; Peñuelas 
et al., 2011) and key photosynthetic parameters under a range of 
stresses including severe drought conditions (Ripullone et al., 2011), 
cold winter temperatures (Gamon et al., 2016; Wong and Gamon, 
2015a, 2015b) and herbicide damage (Scholten et al., 2019). The re-
lationship found here between PRI and photosynthetic capacity is 
consistent with Scholten et al. (2019) and has a strong theoretical basis 
as PRI can track plant photosynthetic activity through its intimate link 
with the dissipation of excess energy by nonphotochemical quenching 
(NPQ) via the xanthophyll cycle. The xanthophyll cycle is activated 
during periods of excess excitation energy in the leaf and through this 
process violaxanthin is de-epoxidized to zeaxanthin. These increased 
concentrations in zeaxanthin reduce reflectance at wavelengths around 

Fig. 9. Relationships between area based nitrogen and phosphorus and (a, b) Vcmax and (c, d) Jmax under N (open brown circles) and P limiting conditions (filled teal 
circles). Lines have been fitted to relationships that are significant at P  <  .05 with the brown and teal lines fitted respectively to N and P limited data. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Relationship between measured chlorophyll and estimated chlorophyll 
derived from the PROSAIL inversion. The 1:1 line is shown as a solid line and 
treatments are denoted by filled circles with differing colours. 
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531 nm, which results in reductions in PRI. Nevertheless, PRI has been 
demonstrated to be related to the absorption of chlorophyll content, in 
addition to the xanthophyll pigments, as well as by the canopy structure 
and soil (Suárez et al., 2009; Suárez et al., 2008; Zarco-Tejada et al., 
2013b). Results found in this experiment show the potential contribu-
tion of both xanthophylls and chlorophyll in the observed relationships 
with photosynthetic capacity. As with SIF, our results suggest that PRI 
may provide a more generalisable means of predicting photosynthetic 
capacity under a range of nutritional limitations than chlorophyll de-
rived from physically based models. 

Predictions of photosynthetic capacity estimated by PRI and SIF 
could be scaled up using satellite imagery. As summarised in  
Mohammed et al. (2019) measurements of SIF are currently taken from 
a number of satellite platforms (e.g. GOME-2, OCO-2) and the first 
satellite mission designed for SIF measurement, FLEX, is scheduled for 
launch in 2022. The recently launched PRISMA and DESIS hyperspec-
tral imagers, and the EnMAP sensor, which is scheduled for launch in 
2021, are particularly suitable for estimating PRI and will provide 
imagery at a spatial resolution of 30 m with a relatively fine spectral 
resolution of up to 6.5 nm within the VNIR range (Guanter et al., 2015). 
In addition, Sentinel-3 has been proposed for Vcmax estimation at global 
scales using radiative transfer models such as SCOPE (Prikaziuk and 
van der Tol, 2019). 

In conclusion, results from this study clearly demonstrate the utility 
of SIF and PRI for prediction of photosynthetic capacity across both the 
N and P limiting ranges. Although results clearly highlight the 

importance of N and Chla+b as key predictors of photosynthetic capa-
city we also show that these relationships break down within the P 
limiting range. The use of a N:P ratio to separate N from P limitations 
provided insight into relationships that would have otherwise have 
been concealed. Further research should examine the utility of this 
approach for development of models that link nutrient content and 
hyperspectral data to photosynthesis at increased scale across a broader 
range of species. 
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Fig. 11. Relationships between Photochemical Reflectance Index and Sun Induced Chlorophyll Fluorescence and (a, b) Vcmax and (c, d) Jmax under N (open brown 
circles) and P limiting conditions (filled teal circles). The black lines were fitted to the combined N and P limited dataset. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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Appendix A. Treatment variation in tree characteristics, photosynthetic variables, foliage nutrition, and predictor variables derived from 
hyperspectral data. Values shown include the mean followed by the standard deviation. Values presented for the ANOVA include the F- 
value followed by the P category, in which asterisks ***, **, represent significance at P = .001 and 0.01, respectively, ns = non-significant 
at P = .05. For all variables with significant treatment differences multiple range testing was undertaken using the Tukey test. Treatment 
values followed by the same letter were not significantly different at P = .05        

Variable Control N0P0 N0P1 N1P0 N1P1 ANOVA  

Tree characteristics 
Height (cm) 54.2 (5.11)a 66.3 (7.07)a 63.2 (7.27)a 85.3 (19.8)b 85.8 (6.70)b 10.5*** 
Tree diam. (mm) 13.2 (1.88)a 12.9 (1.50)a 12.1 (1.45)a 14.7 (1.95)ab 15.9 (1.08)b 5.49** 
Crown diam. (cm) 20.1 (3.70)a 22.4 (3.83)ab 19.2 (3.25)a 26.5 (3.33)bc 31.6 (2.36)c 14.3*** 
SLA (μg cm−2) 2858 (573) 2306 (518) 2406 (226) 2288 (234) 2478 (647) 1.44ns  

Photosynthetic variables 
Vcmax (μmol m−2 s−1) 13.5 (3.60)a 20.6 (1.61)b 22.2 (2.87)b 31.3 (3.73)c 34.9 (3.16)c 46.6*** 
Jmax (μmol m−2 s−1) 31.6 (10.8)a 54.7 (7.31)b 56.5 (8.36)b 77.9 (11.7)c 90.5 (10.3)c 32.3***  

Foliage nutrition – mass based 
N (%) 0.447 (0.045)a 0.758 (0.120)b 0.759 (0.131)b 1.81 (0.127)c 1.58 (0.194)d 119*** 
P (%) 0.065 (0.019)a 0.093 (0.011)ab 0.214 (0.075)c 0.078 (0.013)ab 0.162 (0.039)c 15.7*** 
Chla+b (%) 0.399 (0.165)a 0.878 (0.140)b 0.849 (0.113)b 1.78 (0.192)c 1.68 (0.162)c 85.3***  

Foliage nutrition – area based 
N (μg cm−2) 12.0 (1.21)a 18.4 (2.93)b 17.6 (3.05)b 41.4 (2.91)c 36.7 (4.50)c 105*** 
P (μg cm−2) 1.74 (0.51)a 2.26 (0.26)a 4.98 (1.74)b 1.79 (0.29)a 3.76 (0.89)b 14.3*** 
Chla+b (μg cm−2) 10.7 (4.42)a 21.4 (3.41)b 19.7 (2.63)b 40.6 (4.39)c 39.0 (3.76)c 71.2***  

Derived predictor traits 
Inverted Chlab (μg cm−2) 14.9 (3.47)a 23.7 (2.82)b 22.4 (1.86)b 34.5 (3.27)c 33.7 (1.51)c 56.6*** 
PRI −0.150 (0.018)a −0.112 (0.006)b −0.115 (0.012)b −0.089 (0.004)c −0.078 (0.004)c 42.4*** 
SIF (W m−2 nm−2 sr−1) 1.14 (1.11)a 3.08 (0.67)ab 2.46 (0.65)b 4.90 (0.54)c 6.04 (1.08)c 32.1***  
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