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Soil physical properties influence vineyard behavior, therefore the knowledge of their spatial variability is essen-
tial for making vineyard management decisions. This study aimed to model and map selected soil properties by
means of knowledge-based digital soil mapping approach. We used a Random Forest (RF) algorithm to link en-
vironmental covariates derived from a LiDAR flight and satellite spectral information, describing soil forming fac-
tors and ten selected soil properties (particle size distribution, bulk density, dispersion ratio, Ksat, field capacity,
permanent wilting point, fast drainage pores and slow drainage pores) at three depth intervals, namely 0-20, 20—
40, and 40-60 cm at a systematic grid (60 x 60 m?). The descriptive statistics showed low to very high variability
within the field. RF model of particle size distribution, and bulk density performed well, although the models
could not reliably predict saturated hydraulic conductivity. There was a better prediction performance (based
on 34% model validation) in the upper depth intervals than the lower depth intervals (e.g., R? of 0.66; nRMSE
of 27.5% for clay content at 0-20 cm and R? of 0.51; nRMSE of 16% at 40-60 cm). There was a better prediction
performance in the lower depth intervals than the upper depth intervals (e.g., R? of 0.49; nRMSE of 23% for dis-
persion ratio at 0-20 cm and R? of 0.81; nRMSE of 30% at 40-60 cm). RF model overestimated areas with low
values and underestimated areas with high values. Further analysis suggested that Topographic position Index,
Topographic Wetness Index, aspect, slope length factor, modified catchment area, catchment slope, and longitu-
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dinal curvature were the dominant environmental covariates influencing prediction of soil properties.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Soil mapping is regarded as key for guiding decision-makers in nat-
ural resource assessment, environmental modeling, and land use stud-
ies. However, it requires the knowledge of experienced pedologists for
the stages of soil mapping (Kempen et al., 2012; Resende et al., 2014).
Many environmental and agro-economic activities require accurate in-
formation about the spatial variability of soil types and soil properties.
Therefore, this information is being generated increasingly through dig-
ital soil mapping (DSM) techniques (Minasny and McBratney, 2016).
Digital soil mapping (DSM) aims at the creation of an population of a
spatial soil information system by numerical models inferring the spa-
tial and temporal variation of soil types and soil properties from soil ob-
servation and knowledge and from related environmental variables
(Lagacherie and McBratney, 2007). DSM has been applied at local, re-
gional (Heung et al., 2014; Lacoste et al., 2011), national or a global
scale in mapping soil classes and properties (Arrouays et al., 2014).
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The conducted review on the use of DSM for soil mapping (Caten et
al., 2012), indicated that approaches used up to 2011 show three main
classification models applied for DSM (artificial neural networks, logis-
tic regression, and decision tree). McBratney et al. (2003) stated that ad-
vances in remote sensing and information system have created the way
for DSM, which couples soil point data with statistically correlated aux-
iliary data. This approach overcomes the imitations of the traditional
mapping methods by reducing both the workload and costs involved
(Giasson et al., 2015). However, it only allows the prediction of one var-
iable at a time. The auxiliary data include the soil forming factors that
were proposed by Jenny (1941), which was later modified by
McBratney et al. (2003) into a now widely used Scorpan model in
which is a set of soil properties at the same location (s), climate (c), or-
ganism (o), relief (r), parent material, age (a) and spatial location (n).
In DSM, this auxiliary data is mostly derived from digital elevation
model (DEM) and available conventional maps. In addition, further ad-
vances are foreseen with the availability of satellite imagery data with
high spatial, spectral and temporal resolution to improve mapping accu-
racy (Forkuor, 2014) at a given location in the landscape. The combina-
tion of the environmental covariates derived from DEM with radar
imagery data has great potential for improving prediction accuracy for
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a targeted soil properties. While DSM can be said to now be operational,
there are still unresolved methodological issues regarding to the num-
ber of predictor variables that can be used to predict the property of in-
terest. Soil properties vary spatially and temporally within a landscape
and within the soil profile (Mulla and McBratney, 2002). Thus, soil prop-
erties determined for soil samples taken in close proximity are often
highly correlated relative to samples taken further apart. Several studies
reported that soil properties vary at different spatial scales (Outeiro et
al., 2008; Goovaerts, 1998) primarily due to heterogeneity of internal
factors and anthropogenic impacts generating complex spatial soil pat-
terns (Kilic et al., 2012; Liu et al., 2009) and land use (Saglam and
Dengiz, 2012). Spatial variability of soil properties results in the change
in the values of certain soil properties over space and time (Ettema and
Wardle, 2002). According to recent studies, understanding of spatial
variability of soil physicochemical characteristics in both its static (e.g.
texture and mineralogy) and dynamic (e.g. water content, compaction,
organic matter, etc.) forms is necessary for site-specific management of
agricultural practices, as it is directly contributing to variability in crop
yield and quality (Jabro et al., 2010; Silva Cruz et al., 2011). Soil physical
properties influence vineyard behavior, therefore the knowledge of
their spatial variability is essential for making vineyard management
decisions. Chile is the world's eighth-largest producer of wine and
fifth-largest exporter (Felzensztein et al., 2011) and the Chilean wines
are positioned as the countrys' most emblematic and best-known
world ambassador. The Maule region of Southern Chile is one of the
most wine producers in the country and most vineyards produce
rainfed vine, which indicates that the distribution of water in the profile
solely depends on soil properties and environmental variables such as
precipitation and evapotranspiration.

Ubalde et al. (2007) stated that the aim of modern oenology is to
produce wines of recognized quality and typicality, which can then be
differentiated in a market with growing demand. Therefore to achieve
all this, it is essential to consider that the potential quality of the wine
is established in vineyards. However, one of the challenges facing the
vineyards managers is how to manage the yield and quality variability
of the vineyard to identify uniform batches of good-quality fruits
(Bramley, 2005). The soil in vineyards is subject to frequent traffic asso-
ciated with soil tillage, weed control or plant protection and harvesting
of vines. Unamunzaga et al. (2014) noted that there is little work that
has been conducted at high resolution on soil properties at depths
lower than 0.30 m which are of special relevance to perennial crops. It
is noted that wine quality is often strongly influenced by spatial variabil-
ity of soil properties such as soil texture and soil depth due to their rela-
tionship with soil water holding capacity (WHC) because vine behavior
is closely related to water uptake (Van Leeuwen et al., 2004). Therefore,
the main objective of this study was to model and map the selected soil
properties of the 29ha vineyard from knowledge-based digital soil map-
ping and the application of remote sensing data.

2. Material and methods
2.1. Site description

The study was carried out in a 29 ha vineyard situated 20 km away to
the west from the Cauquenes city, in the Maule Region, central Chile
(36° 02’ 27.18" SL, 72° 28’ 09.47" WL) at 202 m asl (Fig. 1).

The site is characterized by a sub-humid Mediterranean climate with
winter rainfall. According to Uribe et al. (2012), the mean annual pre-
cipitation of the area is 690 mm, mainly concentrated in winter months
(June-July). The temperature regimes are moderate with cold winters,
with maximum average temperatures ranging between 14 and 29 °C
and the minimum between 3 and 12°C. The total annual evapotranspi-
ration of the area is 1128 mm, with minimum and maximum (40-162
mm) occurring in July and January, respectively. According to CIREN
(Centro de Informacién de Recursos Naturales Chile) (1997), the soils
are belonging to Cauquenes soil Associations and classified as Ultic

Palexeralf, which corresponds to deep soils (2100 cm depth) with in-
creasing clay content in the deeper horizons and slopes gradient rang-
ing from 1 to >30% in a hilly landscape. The soils are developed in situ
from weathered granite, rich in quartz and feldspars. The vineyard cor-
respond to “Pais” variety and is more than 50 years old with a plant den-
sity of approximately 10,000 plants per ha with a spacing of 1 x 1 m?.
The vines are produced under dryland condition, without irrigation.

2.2. Soil sampling and storage

To study the spatial and vertical variability of selected soil physical
properties, the following methodology was performed. A systematic
sampling grid (60 x 60 m) was used, and 62 soil pits were opened as
close as possible to vine rows (Fig. 1). At each sampling point, three un-
disturbed core samples were vertically taken with soil core sampler
from each sampling depth (0-20 cm, 20-40 cm and 40-60 cm) and
186 disturbed soil samples (4 4 kg) were collected from each sampling
point and depth for further analysis. The sampling density was two soil
pits per hectare and all the sampling points were geo-referenced using
global positioning system (GPS) receiver (accuracy of +4 m). Undis-
turbed samples were used for the determination of soil bulk density,
the water retention curve at low suctions (>100 kPa) and Ksat. Dis-
turbed soil samples were thoroughly air-dried, mixed and 300 g of rep-
resentative soil was ground to pass 2 mm sieve and the amount that
could not pass through was also recorded then was used for the deter-
mination of particle size distribution and microaggregate stability.
None sieved soil samples were used for water retention relationship at
higher suctions (>100 kPa) using a pressure plate apparatus.

2.3. Laboratory analysis

2.3.1. General soil physical properties

Under laboratory conditions, disturbed soil samples (2 mm sieved,
186 samples in total) were used to particle size distribution, according
to methodologies detailed in Sandoval et al. (2012). To quantify the po-
rous system, bulk density (BD) was measured using the cylinder
method (Grossman and Reinsch, 2002).

2.3.2. Soil water retention curves and pore size distribution

To prepare the soil samples for water retention measurements, the
first step was to saturate the soil cores using a capillary rise saturation
method. Thereafter, the soil water retention curve was done using a
sandbox (Eijkelkamp) and pressure plate apparatus (Soil Moisture
equipment) according to the method described Sandoval et al. (2012)
applying increasing pressures to saturated samples (0.2, 6, 33, 500 and
1500 kPa). The volumetric water content at field capacity (FC) and the
permanent wilting point (PWP) were considered when the equilibrium
was reached at —33 and —1500 kPa, respectively. The pore size distri-
bution was derived from the water retention curves data for each sam-
pling point according to Hartge and Horn (2009), calculating the fast
drainage pores (FDP > 50 um) as the difference between water content
at metric equilibrium of —0.2 and the equilibrium at —6 kPa; the slow
drainage pores (SDP 10-50 um) were calculated based on the difference
between water content at —6 and —33 kPa.

2.3.3. Micro aggregate stability

The stability of the microaggregates (1-2 mm) was determined by
the dispersion ratio (DR) method according to Seguel et al. (2003).
Two soil samples of 50 g with aggregates between 1 and 2 mm in diam-
eter were obtained by sieving air-dried soil; one of the subsamples was
subjected to a slight dispersion in 150 cm? distilled water, while the
other sample was subjected to a drastic dispersion with the same
amount of distilled water and 25 cm® of sodium pyrophosphate. Both
samples were left overnight. The drastically dispersed sample was
then mechanically shaken for 5 min in a 75 cycle Hamilton Beach
blender. Finally, samples were poured into 1000 mL measuring
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Fig. 1. Location of the study area located in the Maule region, Cauquenes, Chile central with 62 sampling points and a distance of 60 m x 60 m.

cylinders filled up to 1000 cm® with distilled water. The density of the
suspension was measured with a hydrometer along with the tempera-
ture 40 s after the start of the decanting process. The clay and silt con-
tent of both samples was calculated by the Bouyoucos hydrometer
method based on Stoke's law (Dane and Topp, 2002) and the DR was
calculated using the equation:

(S+C)sd

DR= 5~ ¢ag 10 (1)

where DR is the dispersion ratio, (S + C) Sd is the percentage of clay +
silt content of slightly dispersed samples (without sodium pyrophos-
phate and no mechanical agitation) and (S + C)dd is the percentage of
total clay and silt (with drastic dispersion). The lower values of DR indi-
cates the highest stability.

2.3.4. Saturated hydraulic conductivity

Saturated hydraulic conductivity, Ksat (LT™!), values of the soils
were measured for all depths (0-20, 20-40 and 40-60 cm) in the labo-
ratory using the constant head soil core method (Eijkelkamp) (SSSA,
2008). The samples were fully saturated using capillarity method then
water was allowed to flow through the soil at a steady rate under a con-
stant hydraulic head gradient. The measurements of volume were taken
after 1 h and 5 h, respectively for all the samples. The Ksat processed
using Darcy's formula of water flow:

4VL

Ksat = ——— 2
md?-At-AH @

where V (L) is the volume of water collected during time interval At, L
is the length of soil sample in the core, AH (L) is the difference in

elevation between the water level in the reference tube and water level
in the side arm of the outflow dripper and d. is the inside diameter of the
core sample.

24. Digital elevation model and remotely sensed imagery attributes

The LiDAR point cloud was acquired in 2009 with an average point
cloud density of 4.64 points m~2 and a spatial resolution of 5 m. The dig-
ital crown height model (DCM) was calculated by the difference be-
tween the DSM and the DTM. Then the 5 m x 5 m digital elevation
model (DEM) and Sentinel-2A optical images from November 2018
(available from the European Space Agency, ESA), were used to calcu-
late topographic attributes and vegetation indices in SAGA GIS 1.3
(Conrad, 2014) and with R, respectively.

Terrain attributes were calculated, including slope, aspect, plan cur-
vature, profile curvature, flow line curvature, elevation (DEM), catch-
ment area, wetness index, stream power index, length slope factor (LS
Factor), flow accumulation, convergence index, curvature classification,
Multiresolution index of valley bottom flatness (MRVBF), multires-
olution index of ridge top flatness (MRRTF), topographic position
index (TPI), analytical Hillshading, and topographic wetness index
(TWI). These terrain attributes give information about the depositions,
water flow and accumulations. For example curvature, flow accumula-
tion controls the movement of water and fine materials within the
field. Topographic position index is the difference between the elevation
ata cell and the average elevation in a neighbourhood surrounding that
cell. Positive values means that the cell is higher than its neighbours (in-
dicate ridges and hills) while negative values means the cell is lower
(indicates valleys). Atmospherically corrected imagery, were extracted
from Copernicus data hub and used to calculate the spectral indices
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such as, Green-Red Vegetation Index (GRVI), and three-band spectral
index (TBSI-V, TBSI-T and TBSI-W) computed according to formulations
of Verrelst et al. (2015), Tian et al. (2014) and Wang et al. (2012), re-
spectively. This data was obtained for 62 georeferenced pixels where
the measurements of soil physical properties were carried out and sam-
ples were collected. Preliminary processing was carried out on these re-
cords to remove outliers due to the presence of clouds. Only images
without the presence of clouds were used in the analysis. The technical
aspect can be obtained from Van derWerff and Van der Meer (2016).

2.5. Selection of environmental covariates

Due to the large amount of data available for use as covariates in
modeling, it was necessary to use a data-mining technique to select
the most appropriate dataset as an optimal set of predictors to run the
model, affording the lowest error. When selecting some environmental
covariates, it is advisable to select the most appropriate variables that
are involved in the processes that determine soil properties. The process
of selecting appropriate predictors was done using a methods of vari-
able selection, which consist of selecting a subset of characteristics
from a set of complete data, maintaining high precision according to
Ladha and Deepa (2011). The method was the Recursive Feature Elimi-
nation (RFE) algorithm which is an example of “backward” feature de-
letion, in an iterative process according to Guyon et al. (2002). The
variables that were eliminated are the ones that had a negative influ-
ence on the model and are not included in final models. RFE calculates
a measure of model performance, which in this case was the root of
the mean square error (RMSE) according to Cabezas and Galleguillos
(2016). Then, collinearity was checked among predictors following
Lopatin et al. (2016) methodology.

2.6. Statistical analysis

2.6.1. Descriptive statistics

Statistical parameters which are generally regarded as indicators of
the central tendency and spread of the data were analysed. They in-
cluded the determination of mean, minimum, maximum values, stan-
dard deviation, range, coefficient of variation (CV), kurtosis and
skewness. The normal frequency distribution was decided through the
evaluation of skewness according to Paz-Gonzalez et al. (2000). The
data were analysed using the SPSS version 25.0 software. The CV was
used to assess the variability of the different data set. Normality test
was carried out using the Quantile-quantile plots, Shapiro-Wilk, Kolmo-
gorov-Smirmov, histogram plot and therefore the data that did not fol-
low the normal distribution was log transformed to stabilize the
variance. The normality tests were recalculated using the log-trans-
formed data, as asymmetry in the distribution of data has an important
effect on the variability analyses. The correlation between soil physical
properties and environmental variables was tested using the Pearson
correlation coefficient accepting a confidence level of 95%.

2.6.2. Statistical modeling

After the environmental covariates were selected for each of the se-
lected soil properties, the predictive models were generated. The non-
parametric Random Forest (RF) model proposed by Breiman (2001)
was chosen. RF uses a collection of decision tree classifiers, where
each forest tree has been trained using a bootstrap sample of individuals
from the data, and each division attribute in the tree is chosen from the
random subset of attributes (Reif et al., 2006). The RF model is insensi-
tive to noise and allows the incorporation of many environmental co-
variates without a problem, and that make RF more useful compared
to other prediction models. For this study, we applied the parameteriza-
tion describes in Castillo-Riffart et al. (2017). All the procedures were
carried out using the packages “Random Forest” (Liaw and Wiener,
2002), “caret” (Kuhn, M (Contributions from Jed Wing), et al., 2017)
of the R-project software.

2.6.3. Random forest model performance

For validation of purposes, the best RF models were embedded in
bootstrap with 500 iterations. To evaluate the prediction performance
by the soil properties models, the data set was divided into two separate
subsets by a random selection procedure using the “sample” function in
R package before modeling. In using the sample function, approximately
66% of the total population (n = 40.3) were earmarked for model cali-
bration while the remaining 34% of the population (n = 20.7) was
used for model testing. The following two parameters were computed
on the validation subset, using the R statistical software package (R
Development Core Team, 2013).

nRMSE = [RMSE/[max (number of attributes)

—-min (number of attributes)|] x 100

where RMSE was calculated as;

RMSE = \E S (v —31)2 (3)

where y denotes reference parameter values,y predicted value, and n
sample size.

2

Xl (ri—8)

R? =
—3
2L (0i—6)

(4)

where n denotes data point, O; and P;are observed and predicted soil se-
lected properties values at the i point and 6; are the respective means.
High values of R? and low values of nRMSE indicate high model quality.

2.6.4. Predictive maps of selected soil properties

The best models generated for each of the soil spatial variables. For
this, the maps were obtained as proposed by Castillo-Riffart et al.
(2017), where maps were calculated based on 500 iterations of Boot-
strap, using the best performed models selected in each iteration. The
environmental covariates used for the generation of the models are spa-
tially explicit, all correspond to “rasters”, which allows extrapolation to
areas that were not covered by the pixels used for the construction of
the models, which correspond to the sampling plots (Castillo-Riffart et
al.,, 2017;). Finally, coefficient of variation values maps for selected soil
properties predictions, as obtained from the 500 bootstrap iterations
were produced for the entire study field.

3. Results
3.1. Descriptive statistics and Pearson correlation

The descriptive statistics calculated for each of the soil properties
studied and for all the sampling depths (0-20, 20-40 and 40-60 cm)
are presented in Table 1. The soil texture of the study area varied from
silt loam to silty clay loam. The values of bulk density for surface soil
(0-20 cm) ranged between 1.17 Mg m > and 1.67 Mg m >, with an av-
erage BD of 1.48 Mg m >, whereas BD for subsoil (40-60 cm) varied be-
tween 1.46 Mg m—> and 1.77 Mg m 3, with a mean of 1.68 Mg m .
Surface soil microaggregate stability (DR) values varied between 21%
and 76%, with an average of 43.1%, and DR values for the subsoil ranged
from 13% and 85%, with an average of 28%. The values of Ksat for surface
soil ranged between 0.0 cm h™! and 290 cm h™!, with a mean of 50.6
cm h™!, whereas Ksat for lower depth varied between 0.0 cm h™! and
330 cm h™!, with a mean of 18.4 cm h™. In addition, the values of sur-
face volumetric water content at FC and PWP values varied between
14% and 29%, 6.0% and 20%, respectively, with the means of 20% and
12%, respectively, whereas FC and PWP for the lower soil depth varied
between 17% and 47%, 11% and 29%, with the means of 28% and 20%, re-
spectively. The values of surface soil FDP and SDP varied between 2%
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Table 1

Descriptive statistics for selected soil properties at 0-20, 20-40 and 40-60 cm soil depths.
Variables Min Max Mean SD v Median Range Skewness Kurtosis
0-20 cm soil depth
Clay (%) 6.8 32.7 14.9 53 35.1 13.1 26.0 117 1.07
Silt (%) 9.4 29.6 204 35 174 204 20.2 -0.38 1.30
Sand (%) 484 78.9 64.7 6.4 9.9 65.9 30.5 —0.38 0.03
BD (Mg m~3) 1.17 1.67 148 0.12 7.9 1.48 0.5 —041 —0.16
DR (%) 212 75.5 43.1 11.3 263 423 54.3 043 0.12
Ksat (emh™") 0.0 290.1 50.6 52.8 104.4 322 290.1 2.27 6.31
FC (%) 14.0 29.0 20.0 4.0 17.8 20.0 15.0 0.58 0.08
PWP (%) 6.0 20.0 12.0 3.0 233 12.0 14.0 0.53 0.02
FDP (%) 2.0 25.0 15.0 4.0 27.9 15.0 23.0 —0.03 0.60
SDP (%) 2.0 8.0 5.0 1.0 26.6 5.0 6.0 0.30 0.63
20-40 cm soil depth
Clay (%) 9.7 45.1 294 8.5 28.9 30.7 354 —0.14 —0.64
Silt (%) 13.5 26.3 18.7 29 15.5 18.8 12.8 0.33 0.01
BD (Mg m™3) 143 1.73 1.59 0.07 4.40 1.60 0.30 —0.28 —0.54
DR (%) 11.7 76.4 30.0 13.1 47.5 234 64.7 1.52 2.14
Ksat (cmh™1) 0.0 186.3 226 36.3 197.3 25 186.3 2.77 745
FC (%) 15.0 36.0 25.0 4.0 17.2 26.0 21.0 —0.34 0.38
PWP (%) 9.0 30.0 19.0 4.0 20.8 19.0 21.0 —0.14 0.34
FDP (%) 4.0 20.0 9.0 3.0 34.1 9.0 16.0 0.97 0.92
SDP (%) 1.0 7.0 3.0 1.0 35.8 3.0 6.0 0.85 1.12
40-60 cm soil depth
Clay (%) 15.6 46.3 343 7.3 21.2 36.2 30.7 —0.62 —0.34
Silt (%) 33 26.2 16.5 37 221 16.0 229 —0.17 2.62
Sand (%) 352 68.4 49.2 7.2 14.7 48.1 333 0.46 —041
BD (Mg m™?) 1.46 1.77 1.68 0.07 4.47 1.63 0.31 —0.07 —0.54
DR (%) 13.0 85.4 27.7 14.8 493 25.6 724 1.60 242
Ksat (emh™") 0.0 330.7 184 52.0 229.9 2.5 330.7 4.04 18.62
FC (%) 17.0 47.0 28.0 5.0 16.7 28.0 30.0 0.93 3.12
PWP (%) 11.0 29.0 20.0 4.0 17.8 21.0 18.0 —0.24 0.40
FDP (%) 4.0 16.0 8.0 3.0 33.0 8.0 12.0 0.47 —0.39
SDP (%) 1.0 7.0 3.0 1.0 36.7 3.0 6.0 1.29 2.05

N = 62, SD = standard deviation, CV = coefficient of variation (%), BD = bulk density, DR = dispersion ratio, Ksat = saturated hydraulic conductivity, FC = field capacity, PWP = per-

manent wilting point, FDP = fast drainage pores, SDP = slow drainage pores.

and 25%, 2% and 8%, respectively, with the means of 15.0% and 5%, re-
spectively. Whereas the lower soil depth FDP and SDP varied between
4% and 16.0%, 1.0% and 7.0%, respectively, with the means of 8.0% and
3.0%, respectively. Generally, the mean values of clay, BD, FC and PWP
increased with the increasing soil depth (Table 1), whereas the mean
values of sand content decreased with soil depth.

The coefficient of variation values (CV) was used to interpret the var-
iability in soil properties. The criteria proposed by Gomes and Garcia
(2002) was used to classify the soil properties into low (<10%), medium
(10%-20%), high (20%-30%) and very high (>30%) variability. The low-
est and the highest CVs obtained for surface soil were 7.9% for BD and
104.4% for Ksat, respectively, and lowest and highest CVs for the lower
soil depth (40-60 cm) were 4.47% for BD, and 230% for Ksat. Based on
CVs, except for BD in all the depths and sand content in surface soil,
both surface and subsoil had high to very high spatial variability. Zhou
et al. (2010) noted that the CV is the most important factor in defining
the variability of soil properties than other parameter such as SD,
mean and median (Xing-Yi et al., 2007). In addition, variability of clay,
silt, BD, FC and PWP decreased with soil depth (Table 1), whereas vari-
ability of sand, DR, Ksat, FDP and SDP increased with the soil depth. Log-
arithmic transformation was used for the data with a skewness above
1.0. In spite of skewness and kurtosis of the distribution of the soil prop-
erties, the mean and median values were similar with means equal to or
almost equal to the median.

Pearson correlations between all analysed parameters for soil
properties of the entire data set of 62 sampling points for all the
sampling depths (0-20 cm, 20-40 cm and 40-60 cm) are shown
in Table 2.

In the surface soil (0-20 cm), the clay content was significantly (p <
.01) positively correlated with properties such as FC (r = 0.49), PWP
(r = 0.74), but negatively with sand (r = —0.83), FDP (r = 0.27) and

SDP (r = —0.27) (Table 2). The volumetric water content at FC was sig-
nificantly (p < .01) positively correlated with properties such as clay (r
= 0.49), and silt (r = 0.34), but negatively with sand (r = —0.59) and
Ksat (r = —0.44) (Table 2). However, there was no significant correla-
tion between clay content and aggregate stability test (DR), and Ksat.
Correlation results between the properties of sub-soils (20-40 cm)
depth shows that BD was significantly (p < .05) positively correlated
with properties such as DR (r = 0.26), but significantly (p <.01) nega-
tively correlated with Ksat (r = —0.40) and FDP (r = —0.32) (Table 2).
Nevertheless, DR was significantly positively correlated with silt (r =
0.36), BD (r = 0.26) and significantly negatively correlated with clay
(r = —0.25). On the other hand, Ksat at the depth of 20-40 cm was sig-
nificantly positively correlated with sand (r = 0.27) and significantly
negatively correlated with BD (r = —0.40), FC (r = —0.50), PWP
(r = —0.39) and FDP (r = —0.30). Lastly, the Pearson correlation re-
sults of sub-soils (40-60 cm) depth shows that Ksat was significantly
(p < .01) negatively correlated with clay content (r = —0.49) and sig-
nificantly positive correlated with sand and clay content (r = 0.31 and
r p= 0.34, respectively), while DR was significant positively correlated
with silt (r = 0.31), sand (r = 0.34) and significant negatively corre-
lated with clay (r = —0.49) see Table 2.

3.2. Statistical models

3.2.1. Particle size distribution

Based on the averaged importance measured across 500 runs of the
Random Forest model, the environmental variables that had the
greatest influence on the model error rate for soil surface clay, sand
and silt content, respectively were: elevation, topographic wetness
index; catchment slope, slope; convexivity and green-red vegetation
index, respectively (Fig. 2.1 to 2.5). The environmental variables that
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Table 2
The Pearson correlation relationships between variables at 0-20 to 40-60 cm soil depth.
Variables Clay Silt Sand BD DR Ksat FC PWP FDP SDP
0-20 cm soil depths
Clay 1
Silt 0.03 1
Sand —0.83* —0.58"" 1
BD 0.08 0.05 —0.09 1
DR —0.16 031" —0.04 0.25" 1
Ksat —0.10 —0.47"" 0.34™ —0.48™" —0.24 1
FC 0.49™ 0.34* —0.59%" 0.14 0.05 —0.44*" 1
PWP 0.74™ 0.28" —0.76"" 0.18 —0.04 —043"" 0.77*" 1
FDP -0.27" —0.01 0.23 —0.70"" —0.14 0.45™ —0.44" —0.40™ 1
SDP —027" 032" 0.04 —0.17 0.14 —0.12 —0.04 —0.06 0.43*" 1
20-40 cm soil depth
Clay 1
Silt —0.27" 1
Sand —0.94"" —0.07 1
BD —0.01 —0.02 0.02 1
DR —0.29" 0.36™ 0.17 0.26 1
Ksat —0.24 —0.04 027" —0.40"" 0.12 1
FC 0.66™ 0.01 —0.69"" 0.18 —0.06 —0.50"" 1
PWP 0.73" —0.09 —0.73"" 0.15 —0.16 —0.39" 0.80™" 1
FDP —0.40"" 0.10 0.38" —0.36"" 0.08 037" —0.75"" —0.55"" 1
SDP —0.51"" 0.17 047" —0.09 0.08 0.01 —0.30" —0.36™ 0.14 1
40-60 cm soil depth
Clay 1
Silt —0.26" 1
Sand —0.87"" —0.24 1
BD —0.26" —0.04 0.28" 1
DR —0.49™" 031" 0.34™ 0.15 1
Ksat —0.02 —0.002 0.02 —0.16 —0.04 1
FC 0.38™ —0.05 —0.36™ —0.02 0.17 —0.09 1
PWP 0.61* —0.05 —0.59"" —0.09 —0.11 —0.16 0.69"" 1
FDP —0.24 0.00 0.24 —0.15 0.09 —0.06 —0.44"" —0.49™ 1
SDP —0.42"* 0.20 0.32* —0.30" 0.07 —0.04 —0.39" —0.42" 0.46™ 1

* dk

N =62,", " Significant at p <.05 and p <.01, respectively.

had the greatest influence on subsurface particle size distribution model
error rate for final predictive models, averaged across 500 runs, were
modified catchment area, longitudinal curvature; modified catchment
area, topographic position index; and SAGA TWI and green-red vegeta-
tion index, respectively (Fig. 2.1 to 2.5). The average error rate for the
final models used to generate the predictive map of clay, sand and silt
content for all the sampled depth was ranging between 16 and 28%,
8.6-13% and 14-19%, respectively (Fig. 3b and Supplementary Material
I). The particle size distribution results also showed that the combina-
tion of the various environmental variables can account for R? of 0.51
to 0.66, 0.48 to 0.52, and 0.42 to 0.50 of the variation in clay, sand, and
silt, respectively (Fig. 3a and Supplementary Material I).

The variation in soil texture shows a progressive transition from the
coarse texture (sand) along the fringes of the northern part of the vine-
yard to finer texture towards the Southern part. When looking at the
predictive maps for surface clay content, there were few areas where
more than 25% of clay content was predicted (Fig. 4.1). The areas that
were predicted to have a greater amount of clay content were predom-
inantly in basins and the low lying areas in the Southern and Southern
Western part of the vineyard, and along the footslope of hills. In addi-
tion, when looking at the predictive map for subsoil (40-60 cm) clay
content, there was a large area were more than or equal to 31% clay
was predicted (Fig. 4.3) and the map showed moderate overall variation
with the majority of the area being classified as having 31% to having be-
tween 37% and 42% clay content (Fig. 4.3). On the other hand, the ob-
tained sand predictive maps show that the RF model predicted the
following minimum and maximum values for surface (55-78%), and
subsoil (37-60%) (Supplementary Material II). According to the surface
sand predictive map, the sand content is predicted to be high in upper
elevation compared to lower lying elevations (Supplementary Material
Il). The predictive maps showed that there were larger areas where

more than 16, 15 and 9% silt content was predicted for all the three
depths, respectively (Supplementary Material II). The higher values of
the silt content are predicted to be along the fringes of the Western
part of the vineyard. The maps showed moderate to high variability at
all depths. In addition, the coefficient of variation maps obtained from
500 bootstrap prediction of the RF model (Fig. 5 and Supplementary
Material III) showed that sand content values were predicted with low
variation (0-12%), while the prediction for clay and silt content showed
moderate variation. There was a tendency towards higher variation in
low elevation areas compared to areas of high elevation (Fig. 5 and Sup-
plementary Material III).

3.2.2. Bulk density

Based on the averaged importance measured across 500 runs of the
Random Forest model, the environmental variables that had the
greatest influence on the model error rate for soil bulk density for 0-
20, 20-40 and 40-60 cm, respectively were: aspect, SAGA TWI; longitu-
dinal curvature, Ls factor; analytical Hillshading and TBSI-W, respec-
tively (Fig. 2.1 to 2.5). The average error rate (nRMSE) for the final
models used to generate the predictive map of bulk density for all the
sampled depth was ranging between 4 and 7% (Fig. 3b and Supplemen-
tary Material I). The bulk density results also showed that the combina-
tion of the various environmental variables can account for R? of 0.26 to
0.51 of the variation in bulk density (Fig. 3a and Supplementary Mate-
rial I). The model predicted the minimum and maximum bulk densities
for all the three sampling depths; 1.27-1.65 Mg m—3, 1.40-1.70
Mg m~3, and 1.53-1.74 Mg m >, respectively (Fig. 4.4 to 4.6). The pre-
dictive map for surface bulk density showed little overall spatial varia-
tion, with the majority of the area being classified as having less than
or equal to 1.46 Mg m > bulk density. The areas that were predicted
to have greater values of bulk density were predominantly in the
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Fig. 2. lllustration of variable importance derived from Random Forest model for prediction of soil properties within the vineyard.
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Fig. 3. Performance of random forest model (RFM) in modeling selected soil properties.
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Fig. 3 (continued).

Western part of the field. The predictive map of the bulk density at the
lower soil depths (40-60 cm) showed little variation, the majority of the
area is being classified as having less than or equal to 1.63 Mg m > (Fig.
4.6). The higher predicted values of bulk density are at the flat slope and
the lowest values are at the east towards the Southern part of the vine-
yard. The CV map showed that bulk density was predicted with low var-
iation (0-7%).

3.2.3. Dispersion ratio

The averaged variable importance from 500 runs of the Random
Forest model for soil surface, subsurface and lower depth dispersion
ratio showed that topographic position index, topographic wetness
index; elevation, longitudinal curvature and elevation, topographic
position index, respectively were the important variables (Fig. 2.1 to
2.5). The error rate for the Random Forest model predicting for all
the sampling depths (0-20, 20-40 and 40-60 cm) was ranging be-
tween 23 and 33% and bias —0.5-0 (Fig. 3 and Supplementary Mate-
rial I). In addition, the dispersion ratio results also showed that the
combination of the various environmental variables can account for
R? of 0.49 to 0.81 of the variation in dispersion ratio (Fig. 3). The min-
imum and maximum dispersion ratio values predicted by the RF
model at all the depths; 26.2-62.3%, 13.6-64%, and 16.4-61.9%, re-
spectively (Fig. 3 and Supplementary Material I). The predictive map
of soil surface dispersion ratio showed high overall variation, with
the majority of the area being classified as having greater 44.2% (Fig.
4.10). The areas that were predicted to have a greater amount of dis-
persion ratio were predominantly in edges of the Western and Eastern
part of the field (Fig. 4.11). However, the lower predicted dispersion
ratio values are distributed within the field. The predictive map for
subsurface dispersion ratio again showed high overall variation, with
the majority of the area being classified as having less than 26.2%

(Fig. 4.12). The highest and lowest dispersion ratio predicted values
are found in the Western and Eastern part of the field, respectively
(Fig. 4.12).

3.2.4. Saturated hydraulic conductivity

The averaged variable importance from 500 runs of the Random
Forest model for soil surface, subsurface and lower depth Saturated
hydraulic conductivity showed that longitudinal curvature, TBSI-T;
topographic position index, TWI-SAGA and flow accumulation,
catchment area, respectively played an important role in predicting
the Ksat (Fig. 2.1 to 2.5). The error rate for the Random Forest
model predicting for all the sampling depths (0-20, 20-40 and 40-
60 cm) was ranging between 91 and 194% and —10.5-1.04 (Fig. 3b
and Supplementary Material I). In addition, the Ksat results also
showed that the combination of the various environmental variables
can account for R? of 0.26 to 0.57 of the variation in Ksat (Fig. 3a and
Supplementary Material I). The RF model predicted the minimum
and maximum saturated hydraulic conductivity values for all the
three sampling depths; 9.2-144 cm hr~', 0.79-149 cm hr~'and
0.27-88.6 cm hr™!, respectively (Supplementary Material II). All of
the predictive maps showed strong variation, with the majority of
the areas being classified as having Ksat of 76.7, 37.8 and 22.4 cm
hr™!, respectively (Supplementary Material II). The predictive map
of the surface Ksat showed that the high predicted values were
scattered within the field. While on the other hand, the predictive
map of the subsurface Ksat showed that greater values were pre-
dicted on the edges of the West facing slope (Supplementary Mate-
rial II). The CV maps obtained from RF model showed that Ksat
values were predicted with high variation more especially in the
lower soil depth (Supplementary Material III). These results corre-
spond with the error rate (nNRMSE) which were the highest for Ksat.
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Fig. 4. Spatial distribution of predicted soil properties using Random Forest model in vineyard for three layers.
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3.2.5. Soil water retention characteristics

Based on the averaged importance measured across 500 runs of the
Random Forest model, the environmental variables that had the
greatest influence on the model error rate for soil surface FC, PWP,
SDP and FDP, respectively were: green-red vegetation index, MrVBF; el-
evation, MrVBF; modified catchment area, elevation and analytical
Hillshading, longitudinal curvature, respectively (Fig. 2.1 to 2.5). The en-
vironmental variables that had the greatest influence on 40-60 cm soil
depth soil water retention characteristics (FC, PWP, SDP and FDP)
model error rate for final predictive models, averaged across 500 runs,
were analytical Hillshading, topographic wetness index; topographic
position index, topographic wetness index; modified catchment area,
SAGA TWI and analytical Hillshading, modified catchment area, respec-
tively (Fig. 2.1 to 2.5). The average error rate for the final models used to
generate the predictive map of FC, PWP, SDP and FDP for all the sampled
depth was ranging between 16 and 32%, 15-19%, 26-32% and 24-34%,
respectively (Fig. 3b). The particle size distribution results also showed
that the combination of the various environmental variables can ac-
count for R? of 0.40 to 0.54, 0.48 to 0.57, 0.31 to 0.54 and 0.20 to 0.50
of the variation in soil water retention characteristics, respectively
(Fig. 3a).

The predictive map for surface water content at permanent wilting
point (PWP) and field capacity showed high variation and moderate
to high variation, with the majority of the area being classified as having
less than 14% and 24%, respectively (4.7 and Supplementary Material II).
The areas that were predicted to have a greater amount of water content
at PWP and FC were predominantly in the areas with low elevations (4.7
and Supplementary Material II). On the other hand, the predictive map
of the water content at PWP for subsurface (20-40 cm) showed high
variation within the field, with the majority of the area being classified
as 24% water content. Also, the predictive map for the water content
at PWP (40-60 cm) showed moderate or medium variation within the
field, with the majority of the area being classified as being 22% water
content (Supplementary Material II). The RF model predicted high
values of FC water content at the Southern part of the field as shown
in Fig. 4.7. On the other hand, the predictive map of subsurface water
content at FC showed high variability, with the majority of the areas
being classified as having 29% (Fig. 4.8). The areas that were predicted
to have a greater amount of FC water content were predominantly dis-
tributed across the field (Fig. 4.17). When looking at the predictive map
for lower depth water content at FC, with the majority of the areas being
classified as having less than 31% of water content at field capacity (Fig.
4.18). The predictive map of 40-60 cm soil depth FC showed that
greater values were predicted at the lower areas of the field and the
South to South Western parts of the field.

In addition, the predictive map of surface slow and fast drainage
pores showed high variation within the field, with the majority of
the areas classified as having 4% and less than 11%, respectively.
The high volume of slow draining pores was predicted in the low
lying slope on the Western side of the field (Supplementary Material
IT). The predictive map of the subsurface SDP showed high variation,
with the majority of the area being classified as having between 3
and 2% (Supplementary Material II). The areas that were predicted
to have a greater amount of SDP were predominantly in Northern
and lower values are predicted in the Southern part of the vineyard.
The predictive map of the lower depth (40-60 cm) SDP showed high
variation, with the majority of the areas being classified as having
less than 3%. The higher values are distributed in the Western side
of the vineyard. The highest pores are distributed in the Eastern di-
rection of the vineyard and the lowest were are at the Western
part of the field. The predictive map for subsurface FDP again showed
high variation, with the majority of the area being classified as being
6%. The low FDP values are scattered within the field. On the other
hand, the predictive map of the lower depth (40-60 cm) FDP showed
high spatial distribution within the field, with the majority of the
area being classified as 11%. The lower FDP (<6%) are predicted to

be at the flat area of the vineyard, which is situated in the middle
of the field (Fig. 4.24). The CV maps obtained from 500 bootstrap
prediction of the RF model showed that PWP and FC values were pre-
dicted with relatively moderate variation, while the prediction for
SDP and FDP showed higher variation (Fig. 5 and Supplementary
Material III).

4. Discussion
4.1. Descriptive statics and statistical models

4.1.1. Particle size distribution

The studied site produces vines under dryland conditions, therefore
the distribution and movement of soil moisture content and nutrients
within the soil profile mainly depend on soil properties. Particle size dis-
tribution is one of the properties that drive other soil properties, for ex-
ample, determining the potential soil moisture that drives crop yield
potential (Akpa et al., 2014). The results of the particle size distribution
(Table 1) showed high variability in fine particles (3-29% silt and 6-46%
clay). The soil particle size distribution is vital in most hydrological, eco-
logical, and environmental risk assessment models (Liess et al., 2012).
The clay content would be influenced by depositions (Ayuba et al.,
2007; Sharu et al., 2013) and erosion processes at the surface
(Amusan et al., 2005; Salako et al., 2006). The mean sand content is
higher than clay and silt contents for each soil depth, which is com-
monly found in soil rich in quartz and granitic parent material as it is
the case for this study (Sauer, 2010; Graham and O'Geen, 2010). The
high sandiness and its decrease with soil depth could be due to the
larger particle size of sand and its decreased transportability while silt
and clay sizes are smaller and lighter hence easily moved in suspension
both vertically and horizontally.

The coefficient of variations (CV) showed higher variation or hetero-
geneity in clay fraction compared to silt and sand fractions and the re-
sults are in agreement with the findings by Odeh et al. (2003) and
Oku et al. (2010), but in contrast to Buchanan et al. (2012) and
Adhikari et al. (2013) who reported a higher variability in sand content
compared to clay and silt contents. The high variation could be due to
depositions and differences in landscape. The low kurtosis values for
clay, silt, and sand contents at all soil depths indicates lack of outliers
in their data sets. The Clay content had a positive significant correlation
with other attributes such as water contents at field capacity and per-
manent wilting point (Table 2). The reason for the positive correlation
between clay and water content at both field capacity and the wilting
point could be due to the pore size and water holding capacity of the
clay fraction at all soil depths (Rowls et al., 2003 ). However, the negative
correlation between clay content, fast drainage pores, slow drainage
pores is explained by the pore sizes. While the silt content was nega-
tively correlated with the saturated hydraulic conductivity because of
its particle size which does not allow a constant flow of water within
the soil profile due to its small particle size compared to sandy soils.
However, on the other hand, a sand fraction is completely different
from the clay and silt because it is characterized by a larger volume of
macropores which drains water quickly when exposed to suction
(Jury and Horton, 2004). Sand had a significant negative correlation
with water retention at field capacity and at the permanent wilting
point at all soil depths. This is associated with high volume of
macropores (FDP) that releases water quickly when exposed to suction
leading to low water available for crops.

In predicting the spatial variability of the particle size distribution for
three soil depths within the vineyard, RF model performed significantly
better at the top 40 cm compared with the lower sampling depths for all
the particles. The opposite was observed for clay content, with the per-
formance improvements with depth. Opposite results were reported by
several authors (Henderson et al., 2005; Minasny et al., 2006; Malone et
al., 2013). This could be accounted for by the nature of the environmen-
tal covariates used (Adhikari et al., 2013) and the effect of lower data
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density with depth. In addition, most of the predictor variables used are
more based on land surface features which are likely to have a strong in-
fluence on the topsoil than subsoil properties. The prediction accuracy
for lower depth soil properties could be improved by the inclusion of
predictor variables such as Gamma-radiometric and or electromagnetic
induction (EM38) that allows accurate prediction of soil properties up
to approximately 2 m soil depth (Cook et al., 1996; Rawlins et al.,
2009; Priori et al., 2014).

In terms of prediction accuracy, clay content had the highest error
rate (nRMSE) values across all depths whereas the lowest nRMSE was
associated with the modeling of sand content at all soil depths. This var-
iation is in disagreement with the work reported by studies using simi-
lar modeling approaches (Akpa et al, 2014; Niang et al., 2014;
Buchannan et al,, 2012). However, the results are in agreement with
the work reported by Odeh et al. (2003) which studied the spatial com-
position of soil particle size fraction as compositional data, which came
to a different conclusion as this current study. The variables that proved
important for predicting particle size distribution included elevation, to-
pographic position index, modified catchment area, green-red vegeta-
tion index, slope, MrVBF, topographic wetness index, and longitudinal
curvature. Although not highly ranked as an important variables in the
models, the influence of flow accumulation and aspect can be seen in
the predictive maps for subsurface soil clay content. However, the rela-
tive importance of the variables differs with depth and from one particle
to another. Other authors have also reported the relationship between
terrains attributes and soil properties, especially particle size distribu-
tion (Moore et al.,, 1993; Odeh et al.,, 1995; Greve et al., 2012a, 2012b),
with terrain attributes explaining 20 and 88% of the variation
(Thompson et al., 2006).

This could be explained to their impact on the vertical and horizontal
movement of soil particles through erosion and deposition in low areas
of the field. Sand content is also influenced by geology and rates of
weathering. However, the influence of geology and soil type on spatial
distribution soil texture in Chile is not well documented and few studies
are available (Bernhard et al., 2018). The spatial distributions of soil tex-
ture in general effect and control runoff generation, slope stability,
depth of accumulation, and soluble salt content (Yoo et al., 2006;
Gochis et al., 2010; Crouvi et al., 2013). For soil properties such as tex-
ture, it becomes important to also pay attention to other observations
made at the field site to determine what the dominant processes were
influencing soil properties.

4.1.2. Bulk density

The sandy texture also influenced the bulk density values
(Chaudhari et al., 2013), which were considered slightly high (1.48 <
1.59 < 1.63 Mg m—>) for all soil depths (see Table 1). The average
bulk density within the field increases with the soil depth. This behavior
could be explained by the influence of soil organic matter, which de-
crease the soil bulk density by its own low value of bulk density
(Seguel and Horn, 2006). Based on CVs values of bulk density, all soil
showed low spatial variability within the vineyard. The low variability
of bulk density could also be because of uniform parent material in the
area. The obtained results are in agreement with the work of Osama
et al. (2008) that aimed at investigating the spatial variability of pene-
tration resistance. According to Ellerbrook et al. (2005) and Eynard et
al. (2006), soil organic matter interacts with other soil properties to in-
fluence water behavior in soils. The skewness and kurtosis showed that
the data set had low trails. The Pearson correlation results show that
bulk density had a significant (p < .01, 0.05) negative correlations
with Ksat and fast drainage pores and significant (p < .01, 0.05) positive
correlation with sand, and dispersion ratio. The significant negative cor-
relation with Ksat and Fast drainage pores is associated with total poros-
ity, where the increase in bulk density will affect the total porosity and
reduce water penetration.

The Random Forest model was able to take a set of noisy data and
still identify correlations between soil bulk density and environmental

covariates that could be interpreted as landscape processes acting on
the soil. The variables that proved important for predicting bulk density
included aspect, topographic wetness index SAGA, longitudinal curva-
ture, slope length factor, analytical Hillshading, and TBSI-W for
predicting soil bulk density, which is associated with soil mineralogy.
From the list of important covariates used to predict the bulk density,
aspect, longitudinal curvature and analytical Hillshading proved to be
the most important variables of them all. Therefore the removal of
these variables from the list of predictors would increase the error
rate by reducing accuracy. Some of these covariates influence the or-
ganic matter, which affects the bulk density of the soil surface (Liu
et al., 2015; Hu et al., 2019). These variables include curvatures and
slope length which are associated with erosion and distribution of sur-
face materials such as leaf litter and the directional flow. The RF model
had the lowest error rate for predicting spatial variability in soil bulk
density for all soil depths. However, surface soil layer had higher R?
and nRMSE compared to lower soil depths. This variation could be ex-
plained by different environmental covariates used for prediction of
bulk density at each sampling depths. Some covariates such as remote
sensing data as in this case are well known to directly predict topsoil
variables compared lower depths. Similar results were reported by
Adhikari et al. (2014). As it was expected, the predictive maps showed
an increase in bulk density with soil depths. Looking at its distribution,
soils in the northern part of the field appeared to have high density
than soils of the central and Eastern vineyard, especially in the 0-20
cm depth. The spatial variability of bulk density in the vineyard could
also be associated with variation in texture and organic matter
(Adams, 1973) within the field.

4.1.3. Dispersion ratio

The soil micro-aggregate stability was evaluated by the dispersion
ratio method (DR), for the three sampling depths. The mean values of
the DR index associated with micro-aggregate stability showed an in-
crease with soil depth; however, the lowest values of DR index indicate
high micro-aggregate stability within the soil profile. This was probably
due to the increase in clay content and presence of Fe oxides in the
lower soil depths, as was suggested by Brunel et al. (2010) in the
same soil series with different tillage system. The micro-aggregate sta-
bility results are in agreement with the work reported by Seguel et al.
(2003) which stated that clay content plays an important role in the for-
mation of micro-aggregates. It is well known that organic material binds
the soil particles together to resist the degradation and improves the po-
rosity of the soil, thus reduces the slaking and dispersion (Chenu et al.,
2000). The CV values of micro-aggregate indicate high to very high var-
iability within the field in all the three sample depths according to the
criteria proposed by Gomes and Garcia (2002). However, in the study
area, the high variability of stability could be ascribed to pedogenic
processes.

The predictive maps of DR showed the increase of the aggregate sta-
bility (lower DR values) with soil depth and the spatial variability, with
the 40-60 cm soil depths showing more variability. The reason for the
variation could be explained by organic matter content across the field
and the variation in clay content (Seguel et al., 2003). The RF models
of microaggregate stability showed that TPI, TWI, modified catchment
area, MRVBEF, digital elevation model, longitudinal curvature, secondary
curvature, catchment slope, and slope were the dominant factors affect-
ing the stability. Several studies also showed that spatial variability of
aggregate stability is closely related to the terrain attributes such as
slope, curvatures, and aspect through their impacts on various soil prop-
erties (Rhoton and Duiker, 2008) which are associated with erosion and
distribution of surface materials such as leaf litter, clay particles and the
detainment of water. However, Rhoton et al. (2006) noted that studies
on the spatial variability of aggregate stability and its relationship with
topography are rare and focused on the assessment of soil aggregate
stability in different parts of the slope than on their direct relationship
with topographic derivatives (Canton et al., 2009). Therefore based on
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this study, topographic wetness index and slope played more impact in
the prediction of spatial variability of aggregate stability, through their
impact on various properties (Rhoton and Duiker, 2008). In terms of
prediction accuracy, the surface depth had the lowest error rate
(nRMSE) whereas the highest error rate was associated with the predic-
tion of dispersion ratio at all 20-40 and 40-60 cm soil depth. This could
be attributed to the nature of the environmental variables used
(Adhikari et al., 2013) and the effect of lower data density with depth.
However, all the depths has demonstrated promising results and high
values of the determinant coefficient in the case of dispersion ratio.

4.1.4. Saturated hydraulic conductivity

The results obtained in this study showed that saturated hydraulic
conductivity (Ksat) decreases with soil depth (50.6 > 22.6 > 18.4 cm
hr~!) see Table 1. The reason for this variation within the soil profile
is associated with soil physical properties such organic matter, soil tex-
ture, bulk density and total porosity (Hillel, 1980). The Ksat of the sur-
face was on average about two times greater than for the lower soil
depths, therefore increased Ksat values in the surface depth could be
due to lower bulk density owing to the presence of organic material
and high total porosity. A similar conclusion was reported by Rasse et
al. (2000) and Igbal et al. (2005). The CV values of saturated hydraulic
conductivity (Ksat) increases with soil depth (1044 < 1973 <
229.9%) and the Ksat is considered as highly variable within the field ac-
cording to Mulla and McBratney (2002). The high CV values of Ksat are
high because it is affected by many other soil properties. There are sev-
eral arguments regarding the magnitude of the spatial variability of sat-
urated hydraulic conductivity across the agricultural fields from which,
Biggar and Nielsen (1976) reported Ksat as the one with the highest
variability. For example, Jury and Horton (2004) indicated the values
of coefficient of variation for saturated hydraulic conductivity in the
range of 50-300%. Therefore the present study is in agreement with
the work that was reported by the above literature. The Ksat data was
log-transformed because it was skewed, as a result, mean values and
median values were not similar. The Pearson correlation results show
that Ksat had a significant (p < .01, 0.05) negative correlations with
silt, bulk density, water content at field capacity and permanent wilting
point for 0-20 cm and 20-40 cm depths, except for the lower depth
(40-60 cm) which showed that statistically there was no significant
correlation between Ksat and other soil physical properties. Ksat at 0-
20 cm and 20-40 cm depths also showed significant (p <.01,0.05) pos-
itive correlation with sand, and fast drainage pores (Table 2). The ob-
tained significant correlation between Ksat and other soil properties is
in agreement with the work of Candemir and Giilser (2012) which
found that Ksat significantly increased with increasing sand and de-
creasing clay content. The results reported by Igbal et al. (2005) stated
that increased Ksat values in the surface horizon could be due to
lower bulk density owing to the presence of macro-porosities.

An appropriate estimation of saturated hydraulic conductivity (Ksat)
was necessary, as it is an essential part of management practices includ-
ing, irrigation, drainage, flood protection and erosion control in addition
to water flow and transport modeling in soil. As expected, the Ksat de-
creased with soil depths. The trend is associated with other soil proper-
ties such as macropores, texture, bulk density, organic matter and water
retention (Kotlar et al., 2019). The predictive maps of Ksat showed
higher spatial variability within the vineyard, compared to other pre-
dicted soil properties. There were areas within the field that showed
very low saturated hydraulic conductivity more especially the areas at
the centre of the field, which makes them more at risk of being eroded.
The variables that proved important for predicting saturated hydraulic
conductivity for all soil depths included longitudinal curvature, TBSI-T,
topographic position index, topographic wetness index, flow accumula-
tion and catchment area. Therefore the removal of any of these variable
from the final predictive model would result in the increase of error
rate, thus reducing model accuracy. These variables played an important
role in the prediction of Ksat because they control erosion and

distribution of fine materials such as clay particles and the accumulation
of water. For an example, TWI described soil moisture pattern in the wa-
tershed based on topography. However, the relative importance of
these variables varies with soil depths. During the fieldwork, it was ev-
ident that some areas that had low Ksat were washed off or eroded. The
RF model had the highest error rate for predicting spatial variability in
Ksat. However, the error rate and precision varied with soil depths.
The variation of in prediction accuracy of the models can be associated
with the nature of environmental covariates used for the prediction of
the Ksat at each soil depth. The prediction accuracy can be improved
by using the soil properties (clay, sand, silt, bulk density, water content,
and organic matter) that affect Ksat as input for predictive models
(Nemes et al., 2005). The values are in accordance with the previous
studies using similar methods. Agyare et al. (2007) while estimating
Ksat obtained R? and RMSE about 0.6 and 0.42, respectively. On the
other hand, Merdun et al. (2006) obtained R? range and RMSE varied
from 0.44 to 0.95 and 0.020 to 3.51, respectively. The study area pro-
duces vines under dryland condition, which means that the distribution
of water within the profile mainly depends on other soil properties and
precipitation. Therefore it was necessary to predict saturated hydraulic
conductivity using machine learning (RF model) because measuring
Ksat is time-consuming and very costly, it varies much within time
and space.

4.1.5. Soil water retention characteristics

The results of water retention characteristics showed that the water
content at field capacity and permanent wilting point increase with soil
depth. The reason for this trend is associated with relatively higher clay
content, low total porosity and high bulk density in lower soil depths
which allow clay particle to hold moisture to its micropores and less
water is released (Warrick, 2002). The pore size distribution mean
values decreases with soil depth, this is associated with particle size dis-
tribution. For example, the decrease in fast-draining pores with soil
depth is influenced by the increase in clay content in lower depths.
The contribution of slow drainage pores is necessary to improve the
amount of usable water for the plant growth according to Hartge and
Horn (2009). All the CV values of soil water retention characteristics
showed high and very high variability (10% to >30%) within the field.
Similar results for water retention data was obtained by Malla et al.
(1996), observing the variance tends to decrease with increasing
depth. Water release through more uniform pores may explain it,
particularly for high water tension values. In this study, a lower variance
for high water retention values may be explained by water retention
caused by absorption rather than capillarity since it's controlled by po-
rosity (Warrick, 2002). The availability of water content within the
soil profile is influenced by many other soil physical properties such as
texture, organic matter, and pore size distribution depending on soil
structure (Warrick, 2002). A high significant positive correlation was
found between water content at field capacity (33 kPa) and permanent
wilting point (1500 kPa) and soil properties such as clay, silt contents,
and dispersion ratio. This was expected because the increase in organic
matter helps improve the water holding capacity of the soil and clay
content helps retain more water. However, the water that is absorbed
by micropores of clay fraction is not available for the plants. On the
other hand, significant (p < .05, < 0.01) negative correlation was
observed between PWP, FC and sand content, saturated hydraulic con-
ductivity (Table 2). This was expected because sandy soil contains a
high volume of macropores that drains water quickly when exposed
to suction, which then leaves the soil with less water at field capacity
and at permanent wilting point (Jury and Horton, 2004). The reduction
of water content at field capacity and the wilting point when sand con-
tent increase reduces the water retention within the profile, which
would then leave the plants water-stressed and thus others dying
(Hillel, 1980).

This study would not be complete if we did not characterize the pore
size distribution, because pores play an important role in vertical and
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horizontal movement of water and nutrients within the soil profile. The
soil pore sizes in the vineyard were classified as fast draining pores
(non-capillary) pores, slow draining pores (coarse capillary) and
water-holding pores according to Behaver and Gardner (1972). The
predictive maps of pores size distribution showed the decrease of fast-
draining pores (FDP, >50 um) with soil depth (see Supplementary
Material II to 4.24), the reason for the variation could be explained by
associated with soil texture (clay, sand, and silt) content, soil structure
and organic matter across the field. Similar results were reported by
Seguel et al. (2015). These pores are responsible for the vertical flow
of water that is available for root uptake and helps in solute movement
in the soil. The study by Chen and Wagenet (1992) showed that FDP
comprise only a small portion of the total soil voids, but under some
conditions, vertical flow through macropores dominate during infiltra-
tion. The topsoil contains a high volume of FDP because of the domina-
tion of coarse-textured soil which drain first after rainfall and play a
significant effect of soil moisture content at field capacity. The main rea-
son for the characterization of the pores was the fact that the ability of
pores to conduct water is mainly controlled by pore size, continuity,
and distribution of pores in the soil. However, on the other hand, predic-
tive maps of slow draining pores (SDP, 10-50 pm) showed a decrease of
this kind of pores with soil depth. This could be associated with soil tex-
ture and soil aggregation. These pores help the horizontal and upward
movement of water due to the presence of cohesion and adhesion
forces. The spatial variability of slow draining pores is associated with
other soil properties such as soil texture, organic matter, soil depth
and soil aggregation or arrangement of soil particles.

In terms of prediction accuracy, slow drainage and fast drainage
pores had the highest error rate (nRMSE) values across all depths
whereas the lowest nRMSE was associated with the modeling of
water content at field capacity and permanent wilting point at all soil
depths. This could be associated with environmental variables used in
prediction of soil water retention characteristics. The predictive maps
of water retention characteristics showed the increase of the moisture
content (FC and PWP) with soil depth. According to Yoon et al.
(2007), at low matric tension, the water retention depends on soil struc-
ture, while at higher matric tension (PWP) water retention depends on
the soil texture. For example, clay content contains a large volume of
micropores which holds more water. However, some of that adsorbed
water is available for plants and some are not available to be taken up
by plants. The predictive maps showed the high prediction of soil mois-
ture content in the areas with low elevation, which is associated with
the depositions of fine materials more especial in the south to south-
west areas. Moisture content combined with other soil properties
plays an important role in rainfed vine production, as it influences the
movement of nutrients within the soil. The spatial variability demon-
strated by the predictive maps of water retention characteristics is asso-
ciated with the spatial of other soil properties such as silt, clay, sand,
bulk density, and organic matter which affects water holding capacity
and water uptake (Van Leeuwen et al.,, 2004). The areas with the lesser
available water content at lower depth are more likely to be water stress
and affect the vine size because vine behavior is closely related to water
uptake. The horizontal spatial variability of available water content is in
agreement with the work reported by Tsegaye and Hill (1998).

The variables that proved important for predicting soil water reten-
tion characteristics included elevation, topographic position index,
modified catchment area, green-red vegetation index, analytical
Hillshading, MrVBF, topographic wetness index, and longitudinal curva-
ture among others. However, the relative importance varied with soil
depths. The predictors such as elevation, topographic position index, to-
pographic wetness index and curvature were expected to affect the
water content because they affect the local climate (microclimate), con-
trols depositions and accumulation of water. Predictor variables such as
MrVBF represent areas of accumulation of sediments according to the
topographic surrounding context and has demonstrated its relevance
to explain soil physical properties among different landcovers for the

same study region (Soto et al., 2019). In this sense, Taylor et al. (2013)
reported MRVBF as a relevant predictor of water table depths under
Mediterranean landscape of southern France. Therefore lower areas
had the lowest MRVBF and accumulation of sediments was possible. It
was also interesting to see remote sensing predictors such as green-
red vegetative index playing an important role in predicting the soil
moisture content of the topsoil because vegetation vigour can be indi-
rectly used to predict the soil properties.

The RF model showed promising results in predicting the soil water
content, however, it showed little accuracy during the prediction of
available water content. The prediction results obtained in this study
are in agreement with the work reported by Szabd et al. (2019) which
mapped soil hydraulic properties based on random forest based on
Pedotransfer functions and geostatistics. Even though the final RF
model performed fairly well, it can still be improved by reducing the
number of predictors and using predictor variables related to water dis-
tribution (channel network, valley depth...etc.). The accurate final
models would be used to design sustainable agricultural system man-
agement strategies responsive to fluctuating soil moisture regime
within the vineyard because it is essential for modeling agricultural sys-
tem productivity. The final models showed a slight tendency to overes-
timate areas with low pore sizes and to produce a slight underestimate
of areas high pore sizes. This could be associated with model calibration.
Less to none work published about the prediction of draining pores, rea-
son why the predicted pore sizes results can be used as input for further
hydraulic property analysis within the vineyard.

5. Conclusion

A field study was conducted to investigate and characterize the spa-
tial variability of selected soil properties using digital soil mapping
within the vineyard. The following conclusions are inferred from the
study:

Low to very high spatial variability in selected soil properties was ob-
served across the experimental field but the magnitude varied with soil
depth. The soil properties that showed a considerable degree of varia-
tion were clay content, saturated hydraulic conductivity, available
water content and dispersion ratio. The applied DSM approach includ-
ing Random Forest model as a relatively tool in the field of soil science
for prediction of selected soil properties yielded promising results as
the accuracy of the model and generated prediction maps were accept-
able. Soil particle distribution is directly correlated with soil draining
pores, water content and hydraulic conductivity. All these results indi-
cate that a better understanding of spatial variability of soil properties
at a depth deeper than 40 cm can help improve the quality and yield
from the vineyard.

The main environmental predictors for soil properties variability in
the vineyard were analytical Hillshading, topographic wetness index,
topographic position index, longitudinal curvature, secondary curva-
ture, modified catchment area, GRVI, TBSI-W, TBSI-V and TBSI-T,
MRVBF, DEM, aspect, convergence index, and length slope factor. The
remote sensing data also played a role in the prediction and can be
used with success as input for digital soil mapping. Random Forest
model provided a promising framework for the spatial prediction of
soil properties as the accuracy of the model performance was accept-
able. RF model predicted particle size distribution, bulk density, and
water content at permanent wilting point significantly well. The RF
model can be improved by applying predictor variables that are directly
related to the variable of interest. As DSM mapping showed satisfactory
concordance with the conventional soil map, in combination with the
other observations made in this study, the application of pedometric
methods such as DSM algorithms should be seriously considered as a
complementary approach to conventional methods for mapping soil
properties in the Mediterranean vineyards. The saturated hydraulic
conductivity was predicted with high variation and bulk density was
predicted with low variation according to the CV maps. Finally, the
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produced predictive maps can be used for modeling agricultural system
productivity within the vineyard and can be used for site-specific
management.
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