Tabla de Contenido

1.	Intr	Introducción							
	1.1. Motivación								
	1.2.	Objetivos	2						
		1.2.1. Objetivo General	2						
		1.2.2. Objetivos específicos	2						
	1.3.	Alcances	2						
2.	Ant	Antecedentes							
	2.1.	Ecuaciones básicas	3						
		2.1.1. Cinemática y ecuación de movimiento	3						
		2.1.2. Relaciones constitutivas	4						
		2.1.3. Problema de valor de frontera	5						
	2.2.	Ecuaciones incrementales	5						
3.	Met	todología							
4.	Modelos constitutivos								
	4.1.	1. Modelo con comportamiento límite de deformación							
	4.2.	. Modelo no lineal para roca							
	4.3.	4.3. Modelo no lineal de hormigón							
		4.3.1. Fitting Modelo no lineal de Hormigón	13						
5.	Solución de algunos problemas unidimensionales de valor de frontera								
	5.1.	Esfera bajo inflación	15						
		5.1.1. Modelo con comportamiento límite de deformación	20						
		5.1.1.1. Solución numérica de la ecuación de onda	21						
		5.1.2. Modelo no lineal de roca	23						
		5.1.2.1. Solución numérica de la ecuación de onda	24						

		5.1.3.	Modelo no lineal de hormigon	27				
	5.2.	Tubo	cilíndrico bajo inflación	29				
		5.2.1.	Modelo con comportamiento límite de deformación	32				
			5.2.1.1. Solución numérica de la ecuación de onda	34				
		5.2.2.	Modelo no lineal de roca	37				
			5.2.2.1. Solución numérica de la ecuación de onda	38				
		5.2.3.	Modelo no lineal de hormigón	39				
	5.3.	Tubo (cilíndrico bajo corte telescópico e inflación	42				
		5.3.1.	Modelo con comportamiento límite de deformación	47				
			5.3.1.1. Solución numérica de la ecuación de onda	49				
		5.3.2.	Modelo no lineal de roca	50				
			5.3.2.1. Solución numérica de la ecuación de onda	53				
		5.3.3.	Modelo no lineal de hormigón	54				
	5.4.	Tubo (cilíndrico bajo corte circunferencial e inflación	55				
		5.4.1.	Modelo con comportamiento límite de deformación	60				
			5.4.1.1. Solución numérica de la ecuación de onda	62				
		5.4.2.	Modelo no lineal de roca	63				
			5.4.2.1. Solución numérica de la ecuación de onda	65				
		5.4.3.	Modelo no lineal de hormigón	67				
	5.5.	infinita sujeta a compresión en sus dos caras	67					
		5.5.1.	Modelo con comportamiento límite de deformación	70				
		5.5.2.	Modelo no lineal de roca	71				
6.	Aná	ilisis d	e resultados	73				
٠.	21110	uibib u	o rosarvados					
7.	Con	clusio	nes	7 9				
Bi	ibliog	grafía		80				
\mathbf{A}_{1}	nexo	A. Co	$ ext{eficientes } \mathcal{C}_{ijkl}$	83				
A.1. Coeficientes caso esférico con inflación								
A.A.1. Modelo con Comportamiento límite de deformación								
A.A.1.1. Modelo no lineal de roca y de hormigón								
		A.A.2.	Coeficientes caso cilíndrico con inflación	84 85				
			A.A.2.1. Modelo con Comportamiento límite de deformación	85				
			A.A.2.2. Modelo no lineal de roca y de hormigón	86				

A.A.3.	Coeficier	ites caso	cilíndrico: corte telescópico e inflación	87
	A.A.3.1.	Modelo	con Comportamiento límite de deformación	87
	A.A.3.2.	Modelo	no lineal de roca y de hormigón	88
A.A.4.	Coeficier	ites caso	cilíndrico: corte circunferencial e inflación	89
	A.A.4.1.	${\bf Modelo}$	con Comportamiento límite de deformación	89
	A.A.4.2.	Modelo	no lineal de roca y hormigón	90
A.A.5.	Coeficier	ites caso	placa semi-infinita	91
	A.A.5.1.	${\bf Modelo}$	con Comportamiento límite de deformación	92
	A.A.5.2.	Modelo	no lineal de roca v de hormigón	92