
Mathematical Programming
https://doi.org/10.1007/s10107-020-01571-5

FULL LENGTH PAPER

Series A

Performance guarantees of local search for minsum
scheduling problems

José R. Correa1 · Felipe T. Muñoz2

Received: 5 August 2019 / Accepted: 21 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020

Abstract
We study the worst-case performance guarantee of locally optimal solutions for the
problem of minimizing the total weighted and unweighted completion time on parallel
machine environments. Our method makes use of a mapping that maps a schedule into
an inner product space so that the norm of the mapping is closely related to the cost
of the schedule. We apply the method to study the most basic local search heuristics
for scheduling, namely jump and swap, and establish their worst-case performance in
the case of unrelated, restricted related and restricted identical machines.

Keywords Local search · Performance guarantee · Parallel machines · Total
weighted completion time

Mathematics Subject Classification 90B35 · 90C59 · 68M20 · 68W40

1 Introduction

Machine scheduling problems have been widely studied in recent decades because
of their practical relevance in production and communication systems and their the-
oretical interest. As these problems are typically NP-hard, designing and analyzing
approximation algorithms has been a central object of study to the theoretical computer
science community. However, these algorithms are often impractical so the real-world
methods of choice boil down to heuristic approaches including integer programming,
constraint programming and local search. In this paper, we focus on the latter method
and study its worst-case performance guarantees. Local search methods are indeed

B José R. Correa
correa@uchile.cl

Felipe T. Muñoz
fmunoz@ubiobio.cl

1 Department of Industrial Engineering, Universidad de Chile, Santiago, Chile

2 Department of Industrial Engineering, Universidad del Bío-Bío, Concepción, Chile

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01571-5&domain=pdf
http://orcid.org/0000-0002-3012-7622

J. R. Correa, F. T. Muñoz

widely used in practice and exhibit good empirical behavior, but little is known about
their worst-case performance. We refer the reader to the surveys of Angel [3] and
Michiels, Aarts and Korst [29] who present a review of performance guarantees and
other theoretical aspects of local search for a wide variety of combinatorial problems,
including scheduling problems.

Specifically, in this paper we consider the problem ofminimizing the total weighted
completion time on parallel machine environments, and study the worst-case perfor-
mance guarantee of local optima solutions for jump and swap neighborhoods. We
provide a systematic method to analyze the worst-case performance of these basic
local search heuristics for scheduling with the weighted completion time objective.
The method, which turns out to be quite simple, involves relating the local optimality
conditions with an appropriate schedule mapping that maps a schedule into an inner
product space, and allows to write the condition in terms of the inner product of the
mappings of a global optimum and a local optimum [11].

1.1 Scheduling problems

In a typical parallel machine scheduling problem, we are given a set of n jobs to be
scheduled on a set of m machines. Jobs must be scheduled without interruption on a
single machine, and each machine can process one job at a time. Each job is associated
with a weight and a processing time. The characteristics of the processing times of
jobs define what is known as the machine environment. The simplest setting is that of
identical parallel machines (P) in which the processing time of a job is equal in all
machines. If, in addition, the machines have different processing speeds we have the
so-called related parallel machine environment (Q), while in case the processing time
of a job can arbitrarily depend on the machine which process it we have the unrelated
machine environment (R). Furthermore, a common practical constraint refers to the
fact that a given job can only be processed by a job-specific subset of machines (M j

for job j). These environments are known as restricted parallel machines and make
sense in the case of identicalmachines or relatedmachines. Of course, themost general
machine environment is that of unrelated parallel machines.

For the problems considered in this paper, a schedule is an assignment of jobs
to machines together with an ordering of the jobs within each machine. Here, we
consider that the order within a machine is always taken to be the decreasing order of
the weight to processing time ratio, also known as Smith ratio [35]. Therefore, for our
purposes, a schedule is fully determined by the assignment of jobs to machines. Given
a schedule, we denote by C j the completion time of job j . With this, we can define
the three most widely studied objective functions. First, in the Total completion time
objective the goal is to find a schedule minimizing

∑
j C j . Second, the Total weighted

completion time objective aims at minimizing
∑

j w jC j , where w j ≥ 0 is the weight
of job j . Finally, theMakespan objective looks for a schedule of minimum maximum
completion time, i.e., minimizing Cmax = max j

{
C j

}
.

Taking as reference the standard three field scheduling notation [19], we represent
the problems by α|β|γ , where α can be R, Q or P , β can be empty orM j representing
the machine eligibility restrictions (according to notation of the book of Pinedo [30])

123

Performance guarantees of local search for minsum scheduling…

and γ can be
∑

C j or
∑

w jC j . Specifically, the problems we study are: R||∑ w jC j ,
R|| ∑C j , Q|M j | ∑ w jC j , Q|M j | ∑C j , P|M j | ∑ w jC j , and P|M j | ∑C j .

Graham et al. [19] initiated the systematic study of algorithms and complexity
for scheduling problems. For any parallel machine environment, minimizing the total
completion time (

∑
C j) can be performed in polynomial time. More precisely, the

problem P||∑C j can be solved in O(n log n) using the Shortest processing time
(SPT) rule [12]. For the problem Q||∑C j , complexity increases to O(n log nm)

using a generalization of the SPT rule, where jobs are assigned sequentially to the
machine that allows a shorter completion time, according to their workload and speed
[12,23]. The problem R||∑C j can be solved in polynomial time by bipartitematching
techniques [22]. If the objective is to minimize the total weighted completion time
(
∑

w jC j) or the makespan (Cmax), the problems are NP-hard [18], even for the case
of two identical machines [8,26]. When m is part of the input, these problems are
strongly NP-hard [17], independent of the parallel machine environment considered
[23,25].

1.2 Local search and approximation

Since for the makespan and total weighted completion time objectives the machine
scheduling problems become NP-hard, it is natural to look for approximate solutions.
There is indeed a rich literature on approximation algorithms for scheduling problems
and we mention the current best known factors for the problems considered in this
paper in Table 1. Another approach, vastly used in practice and the main focus of this
paper is to use local search techniques.

Typically, when designing a good local search heuristic we require that the size of
the neighborhood (where new solutions will be sought) is small enough. Furthermore,
a key aspect is that local optima are close, in objective function value, to a global
optimum [2]. Oneway to evaluate the quality of local optima is byworst-case analysis,
but this is often notoriously difficult, or simply impossible since there may exist very
bad local optima. In this paper we provide a systematic study of two basic local search
algorithms and prove that they have a good worst-case performance. Specifically we
study the Jump neighborhood (also known as move or insertion), which is defined as
moving a job fromonemachine to another. Alsowe study the Swap neighborhood (also
known as exchange or interchange), in which a local move is defined as selecting two
jobs assigned to different machines, and then interchanging their machine allocations.
Both, jump and swap neighborhood are polynomial size neighborhoods.

Other neighborhoods that have been used for scheduling in parallel machines envi-
ronments include lexjump, push, multi-exchange and split. Lexjump is a polynomial
size neighborhood that extends the jump neighborhood. A push move can be seen as
a sequence of jump moves while a multi-exchange move can be seen as a sequence
of swap moves, so in a way these are generalization of the most basic local search
algorithms. While push is of polynomial size, multi-exchange is exponential. Finally,
split is an exponential size neighborhood introduced by Brueggemann et al. [7] for
the problem P||Cmax . In terms of their use, lexjump was first used for minimiz-
ing the makespan [7,31–33]. Push was introduced by Schuurman and Vredeveld

123

J. R. Correa, F. T. Muñoz

Table 1 Performance guarantees

Problem Best approximation Jump and swap performance guaranteea References

R||Cmax 2 [27] unbounded [33]

Q|M j |Cmax 2 [
√

1
4 + (m − 1)smax, [31,32]

1
2 +

√
1
4 + (m − 1)smax]

P|M j |Cmax 2 1
2 +

√
m − 3

4 [31,32]

Q||Cmax PTAS [14,21] 1+√
4m−3
2 [10,33]

P||Cmax PTAS [20] 2 − 2
m+1 [15,33]

R|| ∑ w j C j
3
2 − c [4,28]b 2.618 [1], Theorems 1 and 5

Q|M j |
∑

w j C j
3
2 − c 2.618 Theorems 1 and 5

P|M j |
∑

w j C j
3
2 − c [1.75, 1.809] Theorems 3 and 7

P|| ∑ w j C j PTAS [34]
[
6
5 , 3

2 − 1
2m

]c
[6]

R|| ∑C j Poly-time [22] 2 Theorems 2 and 6

Q|M j |
∑

C j Poly-time 2 Theorems 2 and 6

P|M j |
∑

C j Poly-time [1.525, 1.618] Theorems 4 and 8

a In the table, the numbers 1.618, 2.618 and 1.809 are actually numerical approximations of φ, 1+ φ, and
1 + φ/2, respectively, where φ is the golden ratio
b For c > 1/6000
c Only jump neighborhood

[33] for P||Cmax and Q||Cmax , while Recalde et al. [31] extended its application
to P|M j |Cmax and Q|M j |Cmax . Multi-exchange was introduced by Frangioni et al.
[16] for R||Cmax , and then used for the problems P, Q, R||Cmax [33].

In Table 1 we present a summary of the performance guarantees that have been
obtained for the Jump and Swap neighborhoods. In particular we remark that Bruegge-
mann et al. [6] studied the performance guarantee of Jump solutions for P||∑w jC j

and determined that for these solutions the performance guarantee is within the range
[6/5, (3m − 1)/(2m)]. Additionally, they determine that the performance guarantee
for the special case where all jobs have the same Smith ratio is (9 − √

6)/6. Finn
and Horowitz [15], and Cho and Sahni [10] obtain upper bounds for the performance
guarantee of Jump solutions for P||Cmax and Q||Cmax . Later, Schuurman and Vre-
develd [33] establish that these bounds are tight. Combined neighborhoods of jump
with other neighborhoods for P||Cmax were treated by Brueggemann et al. [7] while
the performance guarantee of Jump for R||Cmax , Q|M j |Cmax and P|M j |Cmax were
studied by Recalde et al. [31], Rutten et al. [32] and Schuurman and Vredeveld [33].
The efficiency of local search methods under jump neighborhood for related problems
have also received attention [5,33].

Decentralized and game theoretic versions of the problems R||∑w jC j , Q|M j |∑
w jC j and P|M j | ∑w jC j have also been considered recently [1,9,11,13]. Here

jobs are agents who selfishly decide the machine to be processed. Since this decision
in made considering only the job’s cost (rather than the overall objective) the implied

123

Performance guarantees of local search for minsum scheduling…

results for the price of anarchy [24] do not directly apply to our setting. Furthermore
the focus of most of this line of research is to design machine processing policies that
achieve good worst-case performance, whereas in our case this is just given by Smith
rule. An exception is the result of Abed et al. [1] who consider the more general setting
in which agents may own multiple jobs and as a consequence they establish that the
performance guarantee of Jump optimal solutions for R||∑w jC j is at most 2.618.

1.3 Our results

In this paper we establish upper and lower bounds on the performance guarantee for
the Jump and Swap neighborhoods in several scheduling settings, namely for the unre-
lated, restricted related and restricted parallelmachines environments and the objective
functions

∑
C j and

∑
w jC j . The specific bounds for each problem are summarized

in Table 1. However, we believe that rather than the numeric improvements our main
contribution is more conceptual. We devise a simple method for bounding the perfor-
mance of local search heuristics borrowing ideas form the work of Cole et al. [11].
The rough idea is to first establish a simple necessary condition for local optimality
that takes the form of a certain inequality. Then we relate the right-hand side of this
inequality to the costs of an optimal schedule and a locally optimal schedule by using
a scheduling mapping that assigns to each schedule an integrable function. Finally
we apply some basic inequalities for real and/or integer numbers to obtain the final
guarantee. We also present lower bound instances for all the considered problems.

Let us mention that the bound of 2.618 for R||∑w jC j is implied by the the work
of Abed et al. [1]. However, our proof here is much simpler and does not go through
the more complicated game theoretic setting.
Roadmap. The rest of the paper is structured as follows. We present preliminary
background in § 2. The main tools of the proof are presented in § 3 while the upper
bounds on the performance guarantee of jump are established in § 4. Then in § 5 we
present tight or nearly tight lower bound instances for all considered problems.

2 Preliminaries

2.1 Basic definitions and problem statement

Consider J a set of n jobs to be scheduled on a set M of m machines. Let pi j
denote the non-negative processing time of job j ∈ J on machine i ∈ M. Jobs
must be scheduled without interruption on a single machine, and each machine can
process one job at a time. In addition all jobs and machines are available from the
beginning. Depending on the precise machine environment the processing times pi j
satisfy additional requirements. Specifically in this paper we consider the following:

– Identical machines (P) All machines are identical, meaning each job needs the
same processing time on each machine: pi j = p j ,∀i ∈ M.

– Restricted identical machines (P|M j |·) This is a variant of identical machines
according to which each job j can be processed only on some specified subset of

123

J. R. Correa, F. T. Muñoz

machines M j ⊆ M. For this environment, processing times are: pi j = p j ,∀i ∈
M j ; pi j = ∞,∀i /∈ M j .

– Relatedmachines (Q)Themachinesmay have different speeds, and the processing
timeof a job is inversely proportional to the speed: pi j = p j/si , where si represents
the speed of machine i .

– Restricted relatedmachines (Q|M j |·)This is a variant of relatedmachines accord-
ing towhich each job j can be processed only on some specified subset ofmachines
M j ⊆ M. For this environment, processing times are: pi j = p j/si ,∀i ∈ M j ;
pi j = ∞,∀i /∈ M j .

– Unrelated machines (R) The processing times are arbitrary. All environments of
parallel machines are a particular case of unrelated parallel machines.

In terms of objective functions we consider two of themost prominent ones, namely
the total completion time and the total weighted completion time. Denoting by w j the
weight of job j and by C j its completion time under a particular schedule, in the
former objective the goal is to minimize

∑
j∈J C j while in the latter the goal is to

minimize
∑

j∈J w jC j .
More precisely, a schedule corresponds to an assignment of jobs to machines,

represented by a vector x, where x j gives the machine to which job j is assigned, that
is, x j = i if job j is assigned to machine i in schedule x. Given such an assignment
x, it is standard to assume that jobs are processed according to the WSPT rule or
Smith rule, which simply sequence jobs in decreasing order of w j/pi j , since this is
optimal for a fixed assignment [35].1 When there are ties in the ratio, these are broken
arbitrarily and to avoid confusion we denote by ≺i the precedence relation of jobs in
machine i . Therefore, letting Ji (x) the set of jobs assigned to machine i in schedule
x, we can write the completion time of job j in schedule x as

C j (x) = px j j +
∑

k∈Jx j (x)

k≺x j j

px j k =
∑

k∈Jx j (x)

k	x j j

px j k .

Here, for convenience, we have introduced the notation 	i to include all predeces-
sors of a job on machine i and the job itself.

The cost of schedule x (total weighted completion time) and the weighted sum of
processing times are defined as follows:

C(x) =
∑

j∈J
w jC j (x) =

∑

i∈M

∑

j∈Ji (x)

w jC j (x), (1)

η (x) =
∑

i∈M

∑

j∈Ji (x)

w j pi j . (2)

1 When there are no weights, these are taken to be 1, and therefore the rule is just the shortest processing
time first rule.

123

Performance guarantees of local search for minsum scheduling…

With these definitions we have the following identities

C(x) =
∑

i∈M

∑

j∈Ji (x)

∑

k∈Ji (x)
k	i j

w j pik = η(x) +
∑

i∈M

∑

j∈Ji (x)

∑

k∈Ji (x)
k≺i j

w j pik . (3)

C(x) =
∑

i∈M

∑

j∈Ji (x)

∑

k∈Ji (x)
k
i j

wk pi j = η(x) +
∑

i∈M

∑

j∈Ji (x)

∑

k∈Ji (x)
k�i j

wk pi j . (4)

2.2 Local search neighborhoods

For the general machine scheduling problems studied in this paper the goal is to
minimize C(x). In this paper we will consider only locally optimal solutions for the
two most basic neighborhoods, namely jump and swap.

In the jump neighborhood, also known as move or insertion neighborhood, a jump
move is defined as moving a single job from one machine to another. A successful
jump reduces the objective function. Given a solution, if it is not possible to improve it
in this way, we have a local optimum and call this solution Jump-Opt. More precisely,
given a schedule x we look for a schedule x′, such that x and x′ differ in exactly
one coordinate and C(x′) < C(x). Similarly, in a swap neighborhood, also known as
exchange or interchange neighborhood, a swap move consists of selecting two jobs
assigned to different machines, and then interchanging the machine allocations for
these jobs. A successful swap reduces the objective function. Additionally, the swap
neighborhood contains the jump neighborhood by allowing to take an empty job in
the swap. Given a solution, if it is not possible to obtain improvements in this way,
we have a local optimum and call it Swap-Opt. More precisely, given a schedule x we
take two coordinates u, v and construct x′ from x by exchanging the values in these
coordinates and check whether C(x′) < C(x). Both, jump and swap are polynomial
size neighborhoods.

In our results for the worst-case performance of local search, we prove the upper
bounds for the jump neighborhood and therefore the results also apply to the swap
neighborhood. One the other hand, in all our lower bounds the Swap–Opt solutions
are also Jump-Opt solutions and thus all our results apply to both neighborhoods.

2.3 Machine eligibility

Since all our results apply to machine environments in which the set of available
machines for a given job can be a restricted set, we can consider a reduction to a
situation in which each job j has only two available machines: the machine in which
an optimal solution processes it and the machine in which a locally optimal solution
processes it. More precisely, let I be an instance of the problem R||∑w jC j , where
the job j can be processed by a set M j ⊆ M. That is, pi j = ∞, for all i /∈ M j . Let
x∗ be some optimal solution of I, where the job j is processed by machine x∗

j , and x
some Jump–Opt solution, where the job j is processed by the machine x j . Consider a

123

J. R. Correa, F. T. Muñoz

new instance whereM′
j = {x j , x∗

j } ⊆ M j is the reduced set of machines which can
process the job j , and call it I ′. This (machine eligibility) reduction satisfies:

i. C(x) will be the same in both instances, I and I ′.
ii. C(x∗) will be the same in both instances.
iii. If x is a Jump-Opt solution of I, then x is a Jump-Opt solution of I ′.
iv. If x∗ is optimal for I, then x∗ is optimal for I ′.

Therefore, we can restrict ourselves to instances in which jobs can be assigned to
at most two machines2.

2.4 Basic inequalities

In order to determine upper bounds for the performance guarantees of Jump–Opt
solutions, we need to establish some inequalities.

Lemma 1 For non-negative real numbers a, b and β, it holds that

ab ≤ β

2
a2 + 1

2β
b2.

Proof The statement follow from the fact that (aβ − b)2 ≥ 0, for real numbers a, b
and β. ��
Lemma 2 For every pair of non-negative integers a and b, it holds that

ab ≤ 1

2

(
a2 + b2 − a + b

)
.

Proof The statement follow from the fact that (a − b)2 ≥ a − b, for integer values of
a and b. ��
Lemma 3 For every pair of non-negative integers a, b and φ = 1+√

5
2 , it holds that

ab ≤ 1

2φ2 a
2 + φ2

2
b2 + φ

2
a − φ2

2
b.

Proof The inequality canbe rewritten as f (a, b) = 1
2φ2 a

2+φ2

2 b2+φ
2 a−φ2

2 b−ab ≥ 0.
Clearly, if either a = 0 or b = 0 the inequality follows directly. Thus it only remains to
prove that f (a, b) ≥ 0, for all a ≥ 1 and b ≥ 1. Then the problem can be formulated

as min { f (a, b) : a ≥ 1, b ≥ 1}. Note that f (a, b) = (a√
2φ

− b φ√
2
)2 + φa

2 − φ2b
2 and

thus convex. Letting λa and λb be the multipliers of a ≥ 1 and b ≥ 1, respectively,
the Karush-Kuhn-Tucker (KKT) conditions for the problem are:

a

φ2 + φ

2
− b − λa = 0

2 Note that it is possible that |M′
j | = 1.

123

Performance guarantees of local search for minsum scheduling…

φ2b − φ2

2
− a − λb = 0

λa(a − 1) = λb(b − 1) = 0

a, b ≥ 1

λa, λb ≥ 0

As the solution for the KKT conditions is a = b = 1, λa = 1
2φ2 , and λb = 1

2φ , we
conclude that the minimum value is f (1, 1) = 0. Therefore f (a, b) ≥ 0 for a, b ≥ 1.
��

3 Local optima and schedule mapping

3.1 Local optima condition

In this section we establish a local optima condition for Jump–Opt solutions for the
general case of unrelated parallel machines.

Lemma 4 For any optimal schedule x∗ and any Jump-Opt solution x of R||∑ w jC j ,
it holds that

2C(x) ≤ η(x) + η(x∗) +
∑

i∈M

∑

j∈Ji (x)

∑

k∈Ji (x∗)
w jwk min

{
pik
wk

,
pi j
w j

}

.

Proof From the machine eligibility reduction of § 2.3, we can assume that each job
j ∈ J can only be processed bymachines x j or x∗

j , without changing the performance
guarantee. Let δ j be the amount by which C(x) decreases if job j is removed from
machine x j and let δ′

j be the increment in C(x) if job j is moved to machine x∗
j .
3

Thus,

δ j = w jC j (x) + px j j
∑

k∈Jx j (x)

k�x j j

wk .

δ′
j = w j px∗

j j
+ w j

∑

k∈Jx∗j (x)

k≺x∗j j

px∗
j k

+ px∗
j j

∑

k∈Jx∗j (x)

k�x∗j j

wk .

Note that it may happen that x j = x∗
j but in this case δ j = δ′

j . Therefore, schedule
x will be a Jump-Opt solution if and only if δ j ≤ δ′

j for all j ∈ J , which happens if
and only if

3 Observe that job j has to be inserted on machine x∗
j at the appropriate position (defined by WSPT rule).

123

J. R. Correa, F. T. Muñoz

w jC j (x) + px j j
∑

k∈Jx j (x)

k�x j j

wk ≤ w j px∗
j j

+ w j

∑

k∈Jx∗j (x)

k≺x∗j j

px∗
j k

+ px∗
j j

∑

k∈Jx∗j (x)

k�x∗j j

wk .

Adding w j px j j to both sides we get that the latter is equivalent to

w jC j (x) + px j j
∑

k∈Jx j (x)

k
x j j

wk ≤ w j px j j + w j px∗
j j

+ w j

∑

k∈Jx∗j (x)

k≺x∗j j

px∗
j k

+ px∗
j j

∑

k∈Jx∗j (x)

k�x∗j j

wk .

Finally, recalling that if k ≺x∗
j

j , then
px∗j k
wk

≤
px∗j j
w j

, and otherwise
px∗j j
w j

≤
px∗j k
wk

.
Therefore, in a Jump-Opt solution we have that:

w jC j (x)+ px j j
∑

k∈Jx j (x)

k
x j j

wk ≤ w j (px j j + px∗
j j

)+
∑

k∈Jx∗j (x)

w jwk min

{ px∗
j k

wk
,
px∗

j j

w j

}

.

We sum over all j ∈ J and use Equations (2) and (4) to conclude that

∑

j∈J
w jC j (x)+C(x) ≤ η(x)+η(x∗)+

∑

i∈M

∑

j∈Ji (x)

∑

k∈Ji (x∗)
w jwk min

{
pik
wk

,
pi j
w j

}

.

Concluding the proof of the result. ��
Clearly, we can apply this result to the more specific objectives considered in this

paper by specializing the last lemma to more restricted settings.

3.2 Schedule mapping

Cole et al. [11] study a scheduling game where the jobs are allocated to unrelated
parallel machines and propose decentralized mechanism for the problem, considering
the minimization of the weighted completion time. To determine the price of anarchy
Cole et al. [11] propose a mapping from the set of schedules to a certain inner product
space such that the norm of the mapping will closely correspond to the cost of the
schedule. We make use of this schedule mapping here as well. Consider the function
ϕ : MJ → L2 ([0,∞))M, which maps every schedule s to a vector of functions
(one for each machine) as follows. If f = ϕ(s), then for each machine i ∈ M

fi (y) =
∑

j∈Ji (s): pi jw j
≥y

w j . (5)

123

Performance guarantees of local search for minsum scheduling…

We will use some basic properties of this mapping ϕ which are contained in the
work of Cole et al. [11]. We provide a proof for the sake of completeness.

Lemma 5 Let s1 and s2 be two schedules of an instance of R||∑w jC j , with f =
ϕ(s1) and g = ϕ(s2). Then

∑

i∈M

∫ ∞

0
fi (y)dy =

∑

i∈M

∑

j∈Ji (s1)

pi j , (6)

∑

i∈M

∫ ∞

0
fi (y)

2dy = 2C(s1) − η(s1), (7)

∑

i∈M

∫ ∞

0
fi (y)gi (y)dy =

∑

i∈M

∑

j∈Ji (s1)

∑

k∈Ji (s2)

w jwk min

{
pik
wk

,
pi j
w j

}

. (8)

Proof For (6),

∑

i∈M

∫ ∞

0
fi (y)dy =

∑

i∈M

∫ ∞

0

∑

j∈Ji (s1): y≤ pi j
w j

w j dy

=
∑

i∈M

∑

j∈Ji (s1)

w j

∫ ∞

0
1
y≤ pi j

w j

dy

=
∑

i∈M

∑

j∈Ji (s1)

w j
pi j
w j

=
∑

i∈M

∑

j∈Ji (s1)

pi j .

For (8),

∑

i∈M

∫ ∞

0
fi (y)gi (y)dy =

∑

i∈M

∫ ∞

0

∑

j∈Ji (s1): y≤ pi j
w j

w j

∑

k∈Ji (s2): y≤ pik
wk

wkdy

=
∑

i∈M

∑

j∈Ji (s1)

∑

k∈Ji (s2)

w jwk

∫ ∞

0
1
y≤ pi j

w j

1y≤ pik
wk

dy

=
∑

i∈M

∑

j∈Ji (s1)

∑

k∈Ji (s2)

w jwk min

{
pik
wk

,
pi j
w j

}

.

To prove (7), we start by using (8) and then apply Equations (3) and (4).

∑

i∈M

∫ ∞

0
fi (y)

2dy =
∑

i∈M

∑

j∈Ji (s1)

∑

k∈Ji (s1)

w jwk min

{
pik
wk

,
pi j
w j

}

123

J. R. Correa, F. T. Muñoz

=
∑

i∈M

∑

j∈Ji (s1)

∑

k∈Ji (s1)

(

w j pik1 pik
wk

≤ pi j
w j

+ wk pi j1 pik
wk

>
pi j
w j

)

=
∑

i∈M

∑

j∈Ji (s1)

∑

k∈Ji (s1)
k	i j

w j pik +
∑

i∈M

∑

j∈Ji (s1)

∑

k∈Ji (s1)
k�i j

wk pi j

= 2C(s1) − η(s1).

��

4 Quality of local optima

In this section we combine the local optimality condition of Lemma 4, the properties
of the scheduling mapping of Lemma 5, together with the basic inequalities shown in
§ 2.4 to obtain tight or nearly tight upper bounds on the performance of Jump–Opt
solutions. The specific environments we consider include unrelated parallel machines
with weighted and unweighted completion time objectives, and restricted identical
parallel machines again with weighted and unweighted completion time objectives.

Theorem 1 The performance guarantee of Jump–Opt solutions for R||∑w jC j is at
most 1 + φ ≈ 2.618.

Proof By Lemma 4 and (8), we have

2C(x) ≤ η(x) + η(x∗) +
∑

i∈M

∫ ∞

0
fi (y) f

∗
i (y)dy,

where fi (y) and f ∗
i (y) are the mappings of x and x∗, respectively. Since both f ∗

i (y)
and fi (y) are real numbers, we can use inequality from Lemma 1. Thus,

2C(x) ≤ η(x) + η(x∗) +
∑

i∈M

∫ ∞

0

(
β

2
f ∗2
i (y) + 1

2β
f 2i (y)

)

dy.

By (7), we have

(

2 − 1

β

)

C(x) ≤ βC(x∗) +
(

1 − 1

2β

)

η(x) +
(

1 − β

2

)

η(x∗).

Also from (3), we have that η(x∗) ≤ C(x∗) and η(x) ≤ C(x). So assuming that,
(1 − 1/(2β)) ≥ 0 and (1 − β/2) ≥ 0 (i.e., 1/2 ≤ β ≤ 2), we have that

(

2 − 1

β

)

C(x) ≤
(

1 − 1

2β

)

C(x) +
(

1 + β

2

)

C(x∗).

123

Performance guarantees of local search for minsum scheduling…

Thus for 1/2 ≤ β ≤ 2 we have that

C(x)

C(x∗)
≤ (2 + β)β

2β − 1
.

Minimizing the right-hand side over β we get that the optimal choice is β = φ =
1+√

5
2 ≈ 1.618, yielding the upper bound on the performance guarantee C(x) ≤

(1 + φ)C(x∗). ��

Theorem 2 The performance guarantee of Jump–Opt solutions for R||∑C j is at
most 2.

Proof By Lemma 4 and (8), we have

2C(x) ≤ η(x) + η(x∗) +
∑

i∈M

∫ ∞

0
fi(y) f

∗
i (y)dy,

where fi (y) and f ∗
i (y) are the mappings of x and x∗, respectively. Since w j = 1 for

all j ∈ J , both fi (y) and f ∗
i (y) are non-negative integers, so we can use Lemma 2.

Thus,

2C(x) ≤ η(x) + η(x∗) + 1

2

∑

i∈M

∫ ∞

0

(
f 2i (y) + f ∗2

i (y) − fi (y) + f ∗
i (y)

)
dy.

Again using that w j = 1 by (6) we can write η(x) = ∑
i∈M

∫ ∞
0 fi(y)dy and

η(x∗) = ∑
i∈M

∫ ∞
0 f ∗

i (y)dy. Finally from (7) in Lemma 5, we have

2C(x) ≤ η(x) + η(x∗) + 1

2

(
2C(x) − η(x) + 2C(x∗) − η(x∗) − η(x) + η(x∗)

)
,

thus, C(x) ≤ η(x∗) + C(x∗) and since by (3) we have η(x∗) ≤ C(x∗), we can
conclude the upper bound on the performance guarantee. ��

In the last two results we will consider restricted identical parallel machines and
therefore we have that pi j = p j , for all i ∈ M, j ∈ J . Then, η(x) = η(x∗). So, we
can let η = η(x) = η(x∗) = ∑

j∈J w j p j .

Theorem 3 The performance guarantee of Jump–Opt solutions for P|M j | ∑w jC j

is at most 1 + φ
2 ≈ 1.809.

Proof By Lemma 4 and (8) we have

2C(x) ≤ 2η +
∑

i∈M

∫ ∞

0
fi(y) f

∗
i (y)dy,

123

J. R. Correa, F. T. Muñoz

where fi (y) and f ∗
i (y) are the mappings of x and x∗, respectively. Since now f ∗

i (y)
and fi (y) are real numbers, we use Lemma 1. Thus,

2C(x) ≤ 2η +
∑

i∈M

∫ ∞

0

(
β

2
f ∗2
i (y) + 1

2β
f 2i (y)

)

dy.

From (7), we conclude 2C(x) ≤ 2η+ β
2 (2C(x∗) − η)+ 1

2β (2C(x) − η) or equiv-
alently (

2 − 1

β

)

C(x) ≤ βC(x∗) +
(

2 − β

2
− 1

2β

)

η.

Finally, assuming that 2 − β/2 − 1/(2β) ≥ 0, and using η ≤ C(x∗), we have that

(

2 − 1

β

)

C(x) ≤
(

2 + β

2
− 1

2β

)

C(x∗).

Thus,
C(x)

C(x∗)
≤ β2 + 4β − 1

2(2β − 1)
.

Minimizing the right-hand side we obtain that the optimal choice is β = φ = 1+√
5

2 ≈
1.618whichmoreover satisfies the assumption.Using 1+φ = φ2 amounts to conclude
that C(x) ≤ (1 + φ/2)C(x∗). ��

Theorem 4 The performance guarantee of Jump–Opt solutions for P|M j | ∑C j is
at most φ ≈ 1.618.

Proof By Lemma 4 and (8) we have

2C(x) ≤ 2η +
∑

i∈M

∫ ∞

0
fi(y) f

∗
i (y)dy,

where fi (y) and f ∗
i (y) are the mappings of x and x∗, respectively. Since w j = 1

for all j ∈ J , fi (y) and f ∗
i (y) are non-negative integers so we can use Lemma 3 to

conclude that

2C(x) ≤ 2η +
∑

i∈M

∫ ∞

0

(
1

2φ2 f 2i (y) + φ2

2
f ∗2
i (y) + φ

2
fi (y) − φ2

2
f ∗
i (y)

)

dy.

Again by the unit weight assumption and (6), we have

∑

i∈M

∫ ∞

0
fi (y)dy =

∑

i∈M

∫ ∞

0
f ∗
i (y)dy =

∑

j∈J
p j = η.

123

Performance guarantees of local search for minsum scheduling…

Combining this with (7) we get that,

(

2 − 1

φ2

)

C(x) ≤
(

2 − 1

2φ2 − φ2 + φ

2

)

η + φ2C(x∗).

Finally, since η ≤ C(x∗) and 1 + φ = φ2, we have C(x) ≤ φC(x∗). ��

5 Lower bounds

In order to determine lower bounds for the performance guarantee of Jump–Opt solu-
tions and Swap–Opt solutions, we present hard instances for both restricted related
and restricted identical parallel machines environments for weighted and unweighted
cases. These instances amount to conclude that the bounds in Theorems 1 and 2 are
best possible. For Theorems 3 and 4 our lower bounds are close to the upper bounds
but not tight. Our first two bounds apply even to the case of restricted related parallel
machines.

5.1 Restricted related parallel machines, weighted case

Theorem 5 The performance guarantee of Jump–Opt and Swap–Opt solutions for
Q|M j | ∑w jC j is at least φ ≈ 2.618.

Proof We consider an instance I with n jobs and m = n + 1 machines. Jobs have
identical weight and processing time, p j = w j = φ2− j for j = 1, . . . , n. Machine
speed is si = φ4−2i for machine i = 2, . . . , n + 1, and s1 = 1 for machine 1, where

φ = 1+√
5

2 is the golden ratio.
In optimal solution x∗, job j is allocated onmachine j , whereas in local optimum x,

it is allocated on machine j +1. Figure 1 shows a schematic representation of instance
I, where each machine is represented by a node, and each job is represented by a
directed edge. The origin of edge k indicates the machine on which job k is assigned
in the optimal solution, while the endpoint indicates the machine on which job k is
assigned in the local optimum.

First, we note that any job k ∈ J can only be moved to machine k, and is not
possible to perform any swap move. Then, a Jump-Opt solution is also a Swap-Opt
solution for instance I. Let δ j be the reduction in C(x) if job j is removed from
machine j + 1 and δ′

j be the increment in C(x) if job j is moved to machine j . Since
w j = p j , all jobs have Smith’s ratio 1. Therefore, if more than one job is assigned
to any machine, the sequencing is arbitrarily. Here, we assume that the moved job is
placed last. Then,

δ j =w j
p j

s j+1
, for all j = 1, . . . , n

δ′
j =

{
w1 p1 , for j = 1

w j
(p j−1+p j)

s j
, for all j = 2, . . . , n

123

J. R. Correa, F. T. Muñoz

sn−1

s
n−2

s
n−3s5

s4

s3

s2

s1 s
n+1

sn

j3

j4 jn−3

jn−2

jn−1

jnj1

j2

Fig. 1 Worst-case instance for restricted related parallel machines

Schedule x will be a Jump-Opt solution if and only if δ j ≤ δ′
j for all j = 1, . . . , n.

For instance I, we have p j−1 = φ p j for all j ∈ J , and φ2s j+1 = s j for j ≥ 2
and s1 = s2. Thus, δ j ≤ δ′

j is reduced to φ2 ≤ φ + 1 for all j ≥ 2, and 1 ≤ 1 for
j = 1. Therefore, x is a Jump-Opt solution for instance I.
For x and x∗, we have

C(x∗) =
n∑

j=1

w j p j

s j
= φ2 +

n∑

j=2

w j p j

s j
= φ2 + n − 1 = n + φ,

C(x) =
n∑

j=1

w j p j

s j+1
=

n∑

j=1

φ2 = nφ2.

Then, the performance guarantee for x is

C(x)

C(x∗)
= nφ2

n + φ
= φ2

1 + φ
n

.

Finally, for any ε > 0 and for sufficiently large n, the performance guarantee is
C(x)
C(x∗) = φ2 − ε, which completes the proof. ��

123

Performance guarantees of local search for minsum scheduling…

5.2 Restricted related parallel machines, unweighted case

Theorem 6 The performance guarantee of Jump–Opt and Swap–Opt solutions for
Q|M j | ∑C j is at least 2.

Proof We consider an instance I similar to the instance presented in proof of Theo-
rem 5. Instance I have n jobs and m = n + 1 machines. Each job have unit weight
and processing time, so w j = p j = 1 for j = 1, . . . , n. Machine speed is s1 = 1 for
machine 1, and si = 22−i for machines i = 2, . . . , n + 1.
In optimal solution x∗, job j is allocated on machine j , whereas in local optimum x, it
is allocated on machine j + 1. Figure 1 shows a schematic representation of instance
I, where each machine is represented by a node, and each job is represented by a
directed edge. The origin of edge k indicates the machine on which job k is assigned
in the optimal solution, while the endpoint indicates the machine on which job k is
assigned in the local optimum.

First, we note that any job k ∈ J can only be moved to machine k, and is not
possible to perform any swap move. Then, a Jump-Opt solution is also a Swap-Opt
solution for instance I.

Let δ j be the reduction in C(x) if job j is removed from machine j + 1 and δ′
j

be the increment in C(x) if job j is moved to machine j . Since w j = p j , all jobs
have Smith’s ratio 1. Therefore, if more than one job is assigned to any machine, we
assume that the moved job is the last. Then,

δ j = 1

s j+1
, for all j = 1, . . . , n

δ′
j =

{
1 , for j = 1
2
s j

, for all j = 2, . . . , n

Schedule x will be a Jump-Opt solution if and only if δ j ≤ δ′
j for all j = 1, . . . , n.

For instance I, we have s j = 2s j+1 for all j ≥ 2, and s1 = s2. Thus, δ j ≤ δ′
j is

reduced to 1 ≤ 1 for all j ≥ 1. Therefore, x is a Jump-Opt solution for instance I.
For x and x∗, we have

C(x∗) =
n∑

j=1

1

s j
= 1 +

n∑

j=2

1

s j
= 1 +

n∑

j=2

2 j−2 = 1 +
n−2∑

j=0

2 j = 2n−1,

C(x) =
n∑

j=1

1

s j+1
=

n∑

j=1

2 j−1 =
n−1∑

j=0

2 j = 2n − 1.

Then, the performance guarantee for x is

C(x)

C(x∗)
= 2n − 1

2n−1 = 2 − 1

2n−1 .

123

J. R. Correa, F. T. Muñoz

job-set 1

job-set 2

job-set k

job-set k+1

job-set 2k

job-set 2k+1

machine-set 0

machine-set 1

machine-set k

machine-set k+1

machine-set 2k

machine-set 2k+1

Fig. 2 Worst-case instance for P|M j |
∑

w j C j

Finally, for any ε > 0 and for sufficiently large n, the performance guarantee is
C(x)
C(x∗) = 2 − ε, which completes the proof. ��

5.3 Restricted identical parallel machines, weighted case

To establish a lower bound instance for the problem P|M j | ∑w jC j , we use an
instance inspired by the work of Caragiannis et al. [9] who obtained a lower bound
for the price of anarchy of weighted load balancing in identical servers.

Theorem 7 The performance guarantee of Jump–Opt and Swap–Opt solutions for
P|M j | ∑w jC j is at least 1.75.

Proof We consider an instance I with 2k+1 sets of jobs and 2k+2 sets of machines.
Inside each set, jobs and machines are identical. The instance is depicted in Fig. 2,
where eachmachine is represented by a node, and each job is represented by a directed
arc. The origin of the arc k indicates the machine where the job k is allocated in the
optimal solution x∗. The endpoint indicates the machine in which it is allocated in
local optimum x.

First, we note that for instance I is not possible to perform any swap move. Then,
a Jump-Opt solution is also a Swap-Opt solution.

Let jt be some job of job-set t , for t = 1, . . . , 2k + 1. These jobs can only be
processed in some machine of machine-sets t − 1 and t . In x, some machine of
machine-set t − 1 processes job jt , while in x∗ it is processed by some machine of
machine-set t .

123

Performance guarantees of local search for minsum scheduling…

For all jobs in job-set t , the processing time and weight is defined by:

wt = pt =

⎧
⎪⎨

⎪⎩

(2
3

)t
, ∀t = 1, . . . , k

(2
3

)k (1
2

)t−k−1
, ∀t = k + 1, . . . , 2k

2
(1
3

)k
, t = 2k + 1

The cardinality of each machine-set is,

qt =

⎧
⎪⎨

⎪⎩

3t , ∀t = 0, . . . , k

3k2t−k, ∀t = k + 1, . . . , 2k

6k, t = 2k + 1

For schedule x∗, all machines process a single job, except for the machine in
machine-set 0, which does not process any job. For schedule x, machines in machine-
sets i = 0, . . . , k−1will process three jobs,machines inmachine-sets i = k, . . . , 2k−
1 will process two jobs, machines in machine-set 2k will process only one job, and
machines in machine-set 2k + 1 do not process any job.

Let δt be the reduction inC(x) if some job in job-set t is removed from the machine
where it was assigned in the local optimum and δ′

t be the increment in C(x) if that
job is moved to some eligible machine in machine-set t . Then, schedule x will be a
Jump-Opt solution if and only if δt ≤ δ′

t for all t = 1, . . . , 2k + 1.
For t = 1, . . . , k − 1, if some job in job-set t is moved from some machine in

machine-set t−1 to some elegiblemachine inmachine-set t , it would have δt = 3wt pt
and δ′

t = wt (3pt+1 + pt). As pt+1 = (2/3)pt , it holds that δt = δ′
t . Hence, no moves

are made for jobs in job-sets t = 1, . . . , k − 1.
For t = k, if some job in job-set k is moved from some machine in machine-set

k − 1 to some elegible machine in machine-set k, it would have δk = 3wk pk and
δ′
k = wk (2pk+1 + pk). As pk+1 = pk , it holds that δk = δ′

k . Hence, no moves are
made for jobs in job-set k.

For t = k + 1, . . . , 2k − 1, if some job in job-set t is moved from some machine in
machine-set t−1 to some elegiblemachine inmachine-set t , it would have δt = 2wt pt
and δ′

t = wt (2pt+1 + pt). As pt+1 = (1/2)pt , it holds that δt = δ′
t . Hence, no moves

are made for jobs in job-sets jt , t = k + 1, . . . , 2k − 1.
For t = 2k, if some job in job-set 2k is moved from some machine in machine-set

2k−1 to some elegible machine in machine-set 2k, it would have δ2k = 2w2k p2k and
δ′
2k = w2k (p2k+1 + p2k). As p2k+1 = p2k , it holds that δ2k = δ′

2k . Hence, no moves
are made for jobs in job-set 2k.

Finally, if some job in job-set 2k + 1 is moved from some machine in machine-set
2k to some elegible machine in machine-set 2k+1, no changes occur inC(x), because
machines in machine-set 2k + 1 don’t have any jobs assigned in x. Therefore, x is a
Jump-Opt solution for instance I.

123

J. R. Correa, F. T. Muñoz

The cost for Jump-Opt solution x is

C(x) = 6
k∑

t=1

qt−1wt pt + 3
2k∑

t=k+1

qt−1wt pt + q2kw2k+1 p2k+1

= 6
k∑

t=1

3t−1 (2
3

)2t + 3
2k∑

t=k+1

3k2t−k−1 (2
3

)2k (1
2

)2(t−k−1) + 4 · 6k (1
3

)2k

= (8
3

) k−1∑

t=0

(4
3

)t + 3
(4
3

)k
k−1∑

t=0

(1
2

)t + 4
(2
3

)k = 14
(4
3

)k − 8 − 2
(2
3

)k
.

The cost for optimal solution x∗ is

C(x∗) =
2k+1∑

t=1

qtwt pt

=
k∑

t=1

qtwt pt +
2k∑

t=k+1

qtwt pt + q2k+1w2k+1 p2k+1

= sumk
t=13

t (2
3

)2t +
2k∑

t=k+1

3k2t−k (2
3

)2k (1
2

)2(t−k−1) + 4 · 6k (1
3

)2k

=
k∑

t=1

(4
3

)t + 2
(4
3

)k
k−1∑

t=0

(1
2

)t + 4
(2
3

)k = 8
(4
3

)k − 4.

Then, the performance guarantee for x is

C(x)

C(x∗)
= 14

(4
3

)k − 8 − 2
(2
3

)k

8
(4
3

)k − 4
= 7 − 4

(3
4

)k − (1
2

)k

4 − 2
(3
4

)k .

Finally, for any ε > 0 and for sufficiently large k, the performance guarantee is
C(x)
C(x∗) = 7

4 − ε, which completes the proof. ��

5.4 Restricted identical parallel machines, unweighted case

For the problem P|M j | ∑C j we consider a fixed finite instance depicted in Fig. 3,
and use it to determine a lower bound for the performance guarantee of Jump–Opt
and Swap–Opt solutions. The instance has 186 jobs and 168 machines. All jobs have
unit weight and processing time. As usual, each machine is represented by a node,
and each job is represented by a directed edge. The origin of edge k indicates the
machine on which job k is assigned in the optimal solution x∗, whereas the endpoint
of edge k indicates the machine on which job k is assigned in the local optima solution

123

Performance guarantees of local search for minsum scheduling…

Fig. 3 Worst-case instance for restricted identical parallel machines

Table 2 Local optima for P|M j |
∑

C j instance

Machines quantity Jobs assigned Unitary contribution Partial contribution

1 6 21 21

2 5 15 30

5 4 10 50

10 3 6 60

30 2 3 90

60 1 1 60

60 0 0 0

C(x) = 311

x. Checking that these solutions form a global and local optimum respectively is
straightforward. For this instance is not possible to perform any swap move, so a
Jump-Opt solution is also a Swap-Opt solution.

For x∗, we have 18 machines that process two jobs and 150 machines that process
only one job. Then, the cost for x∗ is C(x∗) = 204. While for the solution x, we have
C(x) = 311 (the details are shown in Table 2). Then, the performance guarantee for
x is 311

204 ≈ 1.5245.
This amounts to conclude the following result.

Theorem 8 The performance guarantee of Jump–Opt and Swap–Opt solutions for
P|M j | ∑C j is at least 311/204.

123

J. R. Correa, F. T. Muñoz

We remark that by increasing the size of the instance and considering the local
optimality conditions, we have been able to design instances with a performance
guarantee of 1.533, however it is unclear how to further approach the upper bound of
Theorem 4.

Acknowledgements We thank Fidaa Abed for providing the instance presented in § 5.4. We also thank
two anonymous referees for many helpful suggestions that greatly improved the presentation of the paper.
This work was partially supported by ANID Chile through grants BASAL AFB-180003 and BASAL AFB-
170001.

References

1. Abed, F., Correa, J.R., Huang, C.: Optimal coordination mechanisms for multi-job scheduling games.
In: ESA (2014)

2. Ahuja, R., Ergun, O., Orlin, J., Punnen, A.: A survey of very large-scale neighborhood search tech-
niques. Discrete Appl. Math. 123(1–3), 75–102 (2002)

3. Angel, E.: A survey of approximation results for local search algorithms. In: Bampis, E., Jansen,
K., Kenyon, C. (eds.) Efficient Approximation and Online Algorithms: Recent Progress on Classical
Combinatorial Optimization Problems and New Applications, vol. 3484, pp. 30–73. Springer, Berlin
(2006)

4. Bansal, N., Srinivasan, A., Svensson, O.: Lift-and-round to improve weighted completion time on
unrelated machines. In: STOC (2016)

5. Brucker, P., Hurink, J., Werner, F.: Improving local search heuristics for some scheduling problems.
part II. Discrete Appl. Math. 72(1), 47–69 (1997)

6. Brueggemann, T., Hurink, J.L., Kern, W.: Quality of move-optimal schedules for minimizing total
weighted completion time. Op. Res. Lett. 34(5), 583–590 (2006)

7. Brueggemann, T., Hurink, J.L., Vredeveld, T., Woeginger, G.J.: Exponential size neighborhoods for
makespan minimization scheduling. Naval Res. Logist. 58(8), 795–803 (2011)

8. Bruno, J., Coffman Jr., E.G., Sethi, R.: Scheduling independent tasks to reduce mean finishing time.
Commun. ACM 17(7), 382–387 (1974)

9. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for
selfish and greedy load balancing. Algorithmica 61(3), 606–637 (2011)

10. Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM J. Comput. 9(1), 91–103
(1980)

11. Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V., Olver, N.: Decentralized utilitarian mechanisms for
scheduling games. Games Econ. Behav. 92, 306–326 (2015)

12. Conway, R., Maxwell, W., Miller, L.: Theory of Scheduling. Addison-Wesley, Reading (1967)
13. Correa, J.R., Queyranne, M.: Efficiency of equilibria in restricted uniform machine scheduling with

total weighted completion time as social cost. Naval Res. Logist. 59(5), 384–395 (2012)
14. Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related and identical parallel

machines. Algorithmica 39(1), 43–57 (2004)
15. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT

Numer. Math. 19(3), 312–320 (1979)
16. Frangioni, A., Necciari, E., Scutellà, M.G.: A multi-exchange neighborhood for minimum makespan

parallel machine scheduling problems. J. Comb. Optim. 8(2), 195–220 (2004)
17. Garey, M.R., Johnson, D.S.: Strong NP-Completeness results: motivation, examples, and implications.

J. ACM 25(3), 499–508 (1978)
18. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory of NP-Completness.

WH Freeman and Co, San Francisco (1979)
19. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in

deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)
20. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems theo-

retical and practical results. J. ACM 34(1), 144–162 (1987)

123

Performance guarantees of local search for minsum scheduling…

21. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform
processors: using the dual approximation approach. SIAM J. Comput. 17(3), 539–551 (1988)

22. Horn, W.A.: Technical note-minimizing average flow time with parallel machines. Op. Res. 21(3),
846–847 (1973)

23. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling nonidentical processors. J.
ACM 23(2), 317–327 (1976)

24. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2), 65–69 (2009)
25. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: algo-

rithms and complexity. Handb. Op. Res. Manag. Sci. 4, 445–522 (1993)
26. Lenstra, J., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine scheduling problems. Ann.

Discrete Math. 1, 343–362 (1977)
27. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel

machines. Math. Program. 46(1–3), 259–271 (1990)
28. Li, S.: Scheduling to minimize total weighted completion time via time-indexed linear programming

relaxations. In: FOCS (2017)
29. Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search. Springer Science & Business

Media, Berlin (2007)
30. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Berlin (2016)
31. Recalde, D., Rutten, C., Schuurman, P., Vredeveld, T.: Local search performance guarantees for

restricted related parallel machine scheduling. In: LATIN (2010)
32. Rutten, C., Recalde, D., Schuurman, P., Vredeveld, T.: Performance guarantees of jump neighborhoods

on restricted related parallel machines. Op. Res. Lett. 40(4), 287–291 (2012)
33. Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multiprocessor scheduling.

INFORMS J. Comput. 19(1), 52–63 (2007)
34. Skutella, M., Woeginger, G.J.: A ptas for minimizing the total weighted completion time on identical

parallel machines. Math. Op. Res. 25(1), 63–75 (2000)
35. Smith, W.E.: Various optimizers for single-stage production. Naval Res. Logist. 3(1–2), 59–66 (1956)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Performance guarantees of local search for minsum scheduling problems
	Abstract
	1 Introduction
	1.1 Scheduling problems
	1.2 Local search and approximation
	1.3 Our results

	2 Preliminaries
	2.1 Basic definitions and problem statement
	2.2 Local search neighborhoods
	2.3 Machine eligibility
	2.4 Basic inequalities

	3 Local optima and schedule mapping
	3.1 Local optima condition
	3.2 Schedule mapping

	4 Quality of local optima
	5 Lower bounds
	5.1 Restricted related parallel machines, weighted case
	5.2 Restricted related parallel machines, unweighted case
	5.3 Restricted identical parallel machines, weighted case
	5.4 Restricted identical parallel machines, unweighted case

	Acknowledgements
	References

