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Abstract
Identifying natural selection in wild plant populations is a challenging task, as the reli-
ability of selection coefficients depends, among other factors, on the critical assumption 
of data independence. While rarely examined, selection coefficients may be influenced by 
the spatial and genetic dependence among plants, which violates the independence crite-
rion, leading to biased selection estimates. In this study, we examine the extent to which 
frugivore-mediated selection coefficients are influenced by spatial and genetic informa-
tion. We used Generalized Additive Models to deal with spatial and relatedness issues. We 
compared the fit of the Lande and Arnold multivariate model with models including spa-
tial, genetic relatedness, and spatial + genetic relatedness corrections. Our results indicate 
that fit in standard models was substantially increased after including the spatial structure. 
Likewise, the model including the genetic relatedness accounted for a variance fraction 
not explained by spatial structure, which permitted the identification of significant selec-
tion acting upon fruit size, a trait not detected under selection otherwise, and dealt better 
with autocorrelation that any other model. The model including spatial and genetic effects 
altogether accounted for 65% of the variance, compared to 13% of the standard model. 
The spatial structure and genetic relatedness played an important role in this system. As 
genetic effects revealed significant selection upon fruit traits otherwise hidden under stand-
ard selection estimates, field studies that control for plant dependency may provide more 
realistic selection estimates in natural plant populations.
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Introduction

Assessing the impact of natural selection on traits involved in the persistence of wild popu-
lations is a central question in evolutionary ecology. Those effects are usually estimated 
from the covariance between individual fitness and the phenotypic traits of interest (Endler 
1986). However, despite considerable advances in recent years, studying natural selection 
in the wild may be a challenging task as confounding factors often compromise data inde-
pendence. In a seminal paper, Lande and Arnold (1983) proposed an approach based on 
multiple linear regression methodology to estimate standardized selection coefficients that 
provide information on the direction and magnitude of selection experienced by phenotypic 
traits. Since then, Lande and Arnold’s equations have been extensively used to assess natu-
ral selection in various natural systems (see a review in Kingsolver et al. 2012). Despite 
the widespread implementation of Lande and Arnold’s methodology, there are some key 
statistical assumptions which are rarely examined: (1) independence of fitness values, (2) 
lack of error in phenotype measurements, and (3) normality of fitness error. Because of the 
inherent complexity of ecological systems, however, most studies are unable to fully meet 
these requirements (Rausher 1992; Pemberton 2010), resulting in unknown error distribu-
tion of selection estimates. For example, when some individuals contribute disproportion-
ally to the mean population fitness, the resulting error fitness distribution may differ from 
the normality assumption as it is often the case with the seed rain in some plant-frugivore 
systems (Jordano 1995; Weber and Kolb 2013). Likewise, biased selection estimates may 
occur from heterogeneous environments due to spurious fitness-trait covariation (Rausher 
1992). As indicated by Rausher (1992), this problem may be more complex as it compro-
mises the independence of the dataset, inflating the probability of type-I error. In some 
cases, this shortcoming may be avoided by having an appropriate sampling design defined 
a priori. However, in most situations, biological systems include an inherent degree of non-
independence as a result of natural ecological heterogeneity (Pemberton 2010), which can-
not be controlled by sampling design (e.g., biotic seed dispersal, host specificity among 
others). Perhaps the most frequent situation of data non-independence in ecological stud-
ies occurs in sessile organisms, such as plants, where the spatial distribution of abiotic 
resources like water, minerals, and nutrients, influence the spatial distribution of reproduc-
tive individuals hence violating the assumption of statistical independence among them 
(Fortin and Dale 2005; Legendre et al. 2002; Waser and Mitchell 1990). Recently, Marrot 
et al. (2015) proposed different alternatives to take spatial autocorrelation into account in 
selection analyses, such as spatially explicit models that provide more accurate selection 
coefficients (i.e., differentials and gradients of selection).

While accounting for spatial autocorrelation is the first step to solving data dependence 
problems in selection analyses, genetic relatedness is another important issue, albeit rarely 
considered. Individuals within a plant population share a number of alleles as a conse-
quence of limited dispersal and gene flow during reproduction (Galloway 2005; Donohue 
1999; Walsh and Lynch 2018). As individual responses to immediate microenvironmen-
tal conditions will be clearly influenced by genotype and genotype x environment inter-
actions, it is not unreasonable to expect that genetic relatedness and its spatial distribu-
tion are important hidden factors affecting selection estimates in wild populations. These 
issues may be highly relevant for some plant lifeforms such as mistletoes, as they depend 
on host plants for nutrients and water, and on biotic vectors to safely arrive and estab-
lish on host plants (Rawsthorne et al. 2011; Watson and Rawsthorne 2013). As in many 
host-parasite systems, mistletoes often present clumped distributions determined by the 



Evolutionary Ecology	

1 3

spatial arrangement of hosts and the behavior of biotic vectors responsible for seed disper-
sal (Medel et al. 2004). It has been shown that mistletoe clumps have high levels of genetic 
structure and relatedness (Fontúrbel et al. 2019), making mistletoe aggregations a useful 
study system to assess the independent contribution of spatial and genetic relatedness on 
selection coefficient estimates in wild plant populations.

This study aims to examine the extent to which the ability to detect selection of fruit 
traits involved in the seed dispersal process is influenced by the spatial structure and 
genetic relatedness among individuals. We compared the performance of different statisti-
cal models, including the spatial structure and relatedness covariates, using a frugivore-
mistletoe system. More specifically, in this study we examined the independent and com-
bined contribution of genetic relatedness and spatial structure effects on models used for 
Lande and Arnold’s phenotypic selection analyses using a mistletoe-host biological model.

Materials and methods

Dataset and study model

To test our spatial-and-genetic relatedness explicit approach, we reanalyzed the dataset of 
Fontúrbel and Medel (2017), which is freely available from the figshare repository (https​
://doi.org/10.6084/m9.figsh​are.46147​69). This dataset contains information about the 
seed dispersal interaction between the hemiparasitic mistletoe Tristerix corymbosus (Lor-
anthaceae) and its sole legitimate disperser (southwards 37ºS), the relict marsupial Dro-
miciops gliroides (Amico et  al. 2011). Tristerix corymbosus is a hemiparasitic mistletoe 
that is common in central and southern Chile. While in central Chile sclerophyllous forests 
this mistletoe is dispersed by birds (mainly the Chilean Mockingbird Mimus thenca), in 
the temperate rainforests of southern Chile is almost exclusively dispersed by D. gliroides 
seemingly due to a fruit color variation between these habitats (fruits in the temperate 
forests remain green when ripe; Amico et  al. 2011).This highly specialized plant-frugi-
vore system represents a good study model to assess frugivore-mediated selection on the 
plant’s phenotype as it excludes the potential confounding effects of other frugivore spe-
cies (Fontúrbel and Medel 2017). We collected this information between 2011 and 2012 
at the Valdivian Coastal Reserve (39º57′S 73º34′W), which is the largest (~ 50,000  ha) 
remnant of Valdivian temperate rainforest in Chile. The dataset contains records from 70 
T. corymbosus individuals, their relative fitness values (estimated as the product of fruit 
removal and germination rates), measurements of three phenotypic traits (fruit size, dry 
seed weight, and sugar content), and their geographic coordinates (in UTM coordinate sys-
tem, datum WGS84). The sampling area covered ~ 100 ha and distances between mistletoe 
individuals ranged from 2 to 9785 m (average distance 3264 m). More details about the 
study area can be found at Fontúrbel and Medel (2017).

DNA processing and genotyping

To assess inter-individual relatedness among individuals, we amplified microsatellite 
markers from DNA of leaf samples in the same 70 T. corymbosus individuals aforemen-
tioned. Eight microsatellite markers specifically developed for this species were analyzed 
by following the protocols of Fontúrbel et al. (2016). The complete microsatellite library 
is freely available from Fontúrbel et al. (2017). After getting multilocus genotype data, we 

https://doi.org/10.6084/m9.figshare.4614769
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used MICROCHECKER 2.2.3 software (Van Oosterhout et al. 2004) to identify possible 
genotyping mistakes, along with the presence of null alleles in the microsatellite data. Due 
to multiple missing data, we had to remove one individual from every subsequent analysis 
(i.e., we also excluded this individual from the phenotypic trait dataset and conducted the 
analyses with N = 69 plants).

Multidimensional scaling of genetic data

In order to include genetic relatedness into models, we first loaded the microsatellite loci 
database using the packages ‘adegenet’ (Jombart 2008) and ‘PopGenReport’ (Adamack 
and Gruber 2014), which was converted to a Euclidean distance matrix and then per-
formed a multidimensional scaling (MDS) to get two-dimensional coordinates (Mardia 
et al. 1979). MDS computes the best-fitting k-dimensional representation such that the dis-
tances between the points obtained are approximately equal to the genetic distances on the 
matrix. Let us suppose we have coordinates of n points in a p-dimensional Euclidean space, 
denoted by xr where xr = (xr1,…, xrp)T with r = 1,…, n; The Euclidean distance between the 
rth and sth point is given by:

We can define the inner product matrix B as follows

So, if we know the distances drs we can find matrix B, and from B obtain the unknown 
coordinates (Cox and Cox 2001). Mardia et al. (1979) proved that dissimilarities work as 
well as distances. We performed this analysis using the cmdscale from the ‘stats’ package 
in R 3.6.0 (R Development Core Team 2019).

Statistical modeling

We used a Generalized Additive Model (GAM hereafter) approach to examine the influ-
ence of spatial and genetic relatedness on phenotypic selection estimates, including spline 
terms containing the UTM coordinates as well as the coordinates obtained from the genetic 
distance MDS (as a proxy of inter-individual relatedness) for each sampled plant (Dor-
mann et al. 2007). To compare the estimates for selection coefficients (β) we fitted: (i) a 
model without spline terms (i.e., a classic Lande and Arnold’s model), (ii) a model with a 
spline term for spatial coordinates only, (iii) a model with a spline term for genetic related-
ness only and, (iv) a model with spline terms for both spatial and genetic relatedness infor-
mation (error terms are denoted by ε).

The models selected were:

	 (i)	 Wi = �0 + �1Fruit diameteri + �2Seed weighti + �3Sugar contenti + �

	 (ii)	 Wi = �0 + �1Fruit diameteri + �2Seed weighti + �3Sugar contenti + spline1Spacei + �

	 (iii)	 Wi = �0 + �1Fruit diameteri + �2Seed weighti + �3Sugar contenti + spline1Geneticsi + �

	 (iv)	 Wi = �0 + �1Fruit diameteri + �2Seed weighti + �3Sugar contenti + spline1Spacei
+spline2Geneticsi + �
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We fitted GAM models in R using the package ‘mgcv’ (Wood and Scheipl 2014). Model 
performance was compared using R2, deviance, and the Bayesian Information Criterion 
(BIC). Then, we used univariate spline correlograms to assess the efficiency of each model 
to deal with residual autocorrelation. We also used partial Mantel correlograms (using 12 
distance classes of equal distance intervals) to assess autocorrelation significance at each 
distance class (Borcard et al. 2004; Dray et al. 2006). For these analyses we used the R 
packages ‘spdep’ (Bivand 2014) and ‘mpmcorrelogram’ (Matesanz et al. 2011).

After fitting the models, we checked for “model health” by inspecting model overfit-
ting and residual distribution using the function gam.check function of the ‘mgcv’ pack-
age. Then, we checked if models were affected by multicollinearity using two approaches: 
(1) examining the variance inflation factor (VIF hereafter) estimated using the vif.gam 
function of the ‘mgcv.helper’ package (available from the GitHub repository: https​://githu​
b.com/samcl​iffor​d/mgcv.helpe​r) and (2) examining model concurvity for those models 
including smooth terms, using the concurvity function of the ‘mgcv’ package. While VIF 
is the most common approach to assess multicollinearity, its application on GAM models 
has two shortcomings: it is based on a thumb rule (VIF > 4 may be interpreted as strong 
multicollinearity) and does not take the smooth terms into account. Concurvity, on the 
other hand, takes the smooth term(s) into account and provides an index ranging from 0 
(no problem) to 1 (total lack of identifiability).

Results

We fitted four GAM models to estimate linear selection gradients using the four model 
alternatives proposed. The standard model (i.e., classic Lande and Arnold’s model, without 
spatial or relatedness correction) showed the lowest R2 and deviance values, explaining 
only 13.3% of the total variance. Next, when we add the genetic relatedness term, the vari-
ance explained raises to 33.0%, and this value rises to 62.1% when we include the spatial 
term instead. When we include both genetic relatedness and spatial terms in the model, 
R2 and deviance values reach their maximum, explaining 65.0% of the total variance 
(Table 1). Whereas the spatial term had the largest contribution to improving model fit, the 
genetic relatedness term also contributed to explaining an additional 3% of the variance, 
not captured by data’s spatial structure. Examining BIC values, the spatial model was the 
best, followed by the spatial + genetic relatedness model, and the genetic relatedness model 
had the largest BIC value (larger than the standard model).

Besides the increase in model fit, accounting for space and genetic relatedness also pro-
vide valuable biological information. In the example developed here, we detected a signifi-
cant negative selection on fruit size (meaning that mistletoes with smaller fruits have larger 
fitness values than those with larger fruits) when the genetic relatedness term was included 
alone, which was not possible otherwise (Fig. 1). After model comparisons it was evident 
that selection acting upon seed weight and sugar content was variable. However, the direc-
tion and significance of the selection gradients were consistent, albeit showing smaller 
errors when we included the spatial term. Examining the correlograms, the spatial and spa-
tial + genetic relatedness models dealt better with autocorrelation than the standard model, 
and the genetic relatedness models (Fig. 2). The partial Mantel correlograms showed sig-
nificant autocorrelation in the standard model. In contrast, no significant autocorrelation 
was observed in the spatial and genetic relatedness models, but the spatial + genetic relat-
edness model was less capable of dealing with autocorrelation (Fig. 3).

https://github.com/samclifford/mgcv.helper
https://github.com/samclifford/mgcv.helper
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Regarding “model health”, our models showed no overfitting (Table S1 available online 
as Supplementary Material) or problems in residual distribution (Figure S1). Also, our 
models did not show multicollinearity problems in any case (VIF estimations are presented 
in Table 2). Regarding concurvity (Table 3), the models containing smooth terms for spa-
tial and genetic relatedness had no multicollinearity problems (the genetic relatedness 

Table 1   Results of the generalized additive models fitted to obtain linear selection gradients for fruit size, 
seed weight, and sugar content traits, using four combinations: no terms, spatial term, genetic relatedness 
term, and spatial and genetic relatedness terms included as splines

Trait results are presented as estimate plus standard error in parentheses. Spline values correspond to an F 
statistic. To measure model fit, we present adjusted R2, deviance explained, and Bayesian Information Cri-
terion (BIC) values
Significance abbreviations: ns, P ≥ 0.1; *P < 0.05; **P < 0.01; ***P < 0.001

Trait Standard model Spatial model Genetic model S + G model

Intercept 0.300 (0.034)*** 0.298 (0.214)*** 0.301 (0.307)*** 0.298 (0.023)***
Fruit size −0.061 (0.044)ns 0.016 (0.034)ns −0.089 (0.043)* 0.035 (0.037)ns

Seed weight 0.096 (0.043)* 0.082 (0.034)* 0.119 (0.042)** 0.076 (0.035)*
Sugar content −0.095 (0.035)** −0.083 (0.027)** −0.097 (0.033)** −0.083 (0.026)**
Spatial spline – 8.456*** – 7.004***
Genetic spline – – 2.814* 0.621ns

R2 adj. 0.093 0.557 0.245 0.571
Deviance exp. 13.3% 62.1% 33.0% 65.0%
BIC 36.838 8.680 38.885 14.607
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Fig. 1   Comparison of selection gradients for fruit size, seed weight, and sugar content traits estimated by a 
the standard model, b the spatial model, c the genetic relatedness model, and d the spatial + genetic related-
ness model. Dashed lines represent one standard error. Values on the x-axis correspond to the standardized 
trait measurement (mean = 0, SD = 1), and values on the y-axis represent the relative fitness (estimated from 
individual fruit removal/mean population fruit removal, and individual seed germination rates/mean popu-
lation germination rate). Plots were generated using the R function plot.gam 
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model had the lowest concurvity values), albeit the spatial and genetic relatedness model 
may be influenced by multicollinearity to some extent as it is the model with the largest 
number of parameters.

Discussion

Our results showed that genetic relatedness among individuals and spatial structure 
increased the fraction of the variance explained by the models used to estimate selection 
coefficients. Also, models containing spatial and genetic relatedness terms differed in the 
ability to detect selection on some traits (i.e., fruit size), which are likely to be influenced by 
data non-independence in wild populations resulting from non-random mating (influenc-
ing inter-individual genetic relatedness) and non-random spatial arrangements (influencing 
mistletoe spatial structure as a result of host distribution and vector behavior). The GAM 
approach that we used has the advantage of allowing the inclusion of linear (i.e., the meas-
ured traits) and non-linear terms (i.e., the spatial and genetic information) into the model, 
obtaining linear estimates, such as directional selection gradients, in the sense of Lande 
and Arnold (1983) approach, but taking into account both spatial and genetic relatedness 
terms to effectively deal with autocorrelation and improve model explanatory power. Spa-
tial and genetic relatedness structures are likely to be non-linear as individuals are usually 
non-randomly distributed in the space (Dormann et al. 2007); therefore, using non-linear 
approaches may be more informative. In this sense, mistletoes are a good example of this 
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Fig. 2   Univariate spline correlograms for a the standard model, b the spatial model, c the genetic related-
ness model, and d the spatial and genetic relatedness model. The y-axis represents residual correlation and 
shaded area represents the 95% confidence interval
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situation due to their parasitic lifeform, involving complex interactions with animals (i.e., 
pollinators and seed dispersers) and their host plants (Watson 2004, 2009), which are usu-
ally quite specialized (Watson and Rawsthorne 2013).

The spatial structure accounted for most of the explained variance, and its inclusion 
significantly improved model fit and reduced estimation errors. However, although genetic 
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Fig. 3   Partial Mantel correlograms for a the standard model, b the spatial model, c the genetic relatedness 
model, and d the spatial and genetic relatedness model. Open squares denote non-significant autocorrela-
tion, and closed squares denote significant autocorrelation at a given distance class

Table 2   Multicollinearity 
assessment of the models fitted 
using the Variance Inflation 
Factor (VIF) for each linear term. 
VIF estimates were obtained 
using the R function vif.gam 

Model Parameter VIF

Classic Fruit size 1.64
Seed weight 1.64
Sugar content 1.06

Spatial Fruit size 2.00
Seed weight 2.10
Sugar content 1.22

Genetic Fruit size 1.87
Seed weight 1.84
Sugar content 1.09

Spatial + genetic Fruit size 2.43
Seed weight 2.25
Sugar content 1.24
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information accounted for a small fraction of the explained variance in comparison, its 
inclusion into the equation contributed 20% of explained variance relative to the stand-
ard model and an additional 3% of the explained variance when included altogether with 
the spatial structure, but dealt very well with spatial autocorrelation. Therefore, when we 
include both terms, models explained most of the data variance with smaller errors. On the 
other hand, the model containing the genetic information was less affected by multicol-
linearity while the model including both spatial and genetic information may be potentially 
influenced by multicollinearity due to the large number of terms and redundant informa-
tion. Accounting for plant spatial structure deals with most of the spatial autocorrelation, 
which may include part of the variance associated with genetic distances. Closer individu-
als are expected to be more related to each other (Fontúrbel et al. 2019). This is particularly 
evident in mistletoes, as they depend on dispersal biotic vectors, which often deposit seeds 
on already infected host trees from which they feed (Medel et al. 2004). Therefore, indi-
viduals within large mistletoe clumps may be more genetically related to each other than 
expected by chance.

In this study, the main outcome in biological terms was the detection of directional 
selection on fruit size after including the genetic relatedness term into the phenotypic 
selection analysis, which was not revealed otherwise. Detecting selection on fruit size in 
the wild could be difficult as this trait (i) covaries with seed size (Fontúrbel and Medel 
2017; Palacio et  al. 2016), and (ii) is likely to be strongly influenced by the parental 
genotype, as observed in most dispersal-related traits in plants (e.g., fruit size, seed size, 
sugar content, among others; Wolf and Wade 2009). Thus, detecting selection on dis-
persal-related traits under field conditions may be a formidable task that can be largely 
improved in future studies by taking genetic relatedness into account. Consideration of 
relatedness in this study allowed detection of selection on fruit size (which was non-
significant in the standard, spatial, and spatial + genetic relatedness models). According 
to these results, the genetic model would be useful for detecting selection in dispersal 
related traits, dealing better with autocorrelation and multicollinearity, but the perfor-
mance of the models including the spatial information is better. Therefore, spatial and 
genetic relatedness models may be telling us different parts of the story. In principle, 

Table 3   Multicollinearity 
assessment of the models 
fitted with smooth terms using 
concurvity estimates obtained 
using the R function concurvity 

Concurvity values range from 0 (no problem) to 1 (total lack of 
identifiability) and are calculated for the linear parameters and the 
smooth terms (spatial and genetic relatedness). Measurement mean-
ings: ‘observed’ is the value obtained from the model, ‘estimate’ is 
the expected value from the F-norm distribution, and ‘worst’ is largest 
possible value representing a pessimistic scenario

Model Measure Parameter Spatial Genetic

Spatial Worst 0.0021 0.3207 –
Observed 0.0021 0.1146 –
Estimate 0.0021 0.1242 –

Genetic Worst 0.0018 – 0.1524
Observed 0.0018 – 0.0409
Estimate 0.0018 – 0.0368

Spatial + genetic Worst 0.0027 0.6996 0.6691
Observed 0.0027 0.5401 0.4803
Estimate 0.0027 0.3517 0.3602
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dispersal-related traits in wild plants result from coevolutionary processes, being a cer-
tain amount of phenotypic integration expected (i.e., traits are not expected to evolve 
independently). However, this does not imply that all traits evolve in the same man-
ner. Rather, the direction and magnitude of the selection forces acting upon them may 
depend strongly on the ecological context (e.g., Fontúrbel and Medel 2017). In conse-
quence, conflicting selection forces is not an unexpected result, as it is usually revealed 
in studies of selection for fruit size and seed size (e.g., Alcántara and Rey 2003).

The idea of combining spatial and genetic relatedness information in trait analysis in 
a macroecology framework has been initially proposed by Kühn et al. (2009), although 
there was previous work on this subject (Ritland 1990). Further, (Marrot et  al. 2015) 
proposed several alternatives to deal with spatial autocorrelation on selection estimates. 
The use of a GAM approach in selection analyses is more recent (e.g., Fontúrbel and 
Medel 2017), but so far, it has not been combined with molecular information. While 
the genetic relatedness component is usually included in statistical analyses as phyloge-
netic distances, to the best of our knowledge, this is the first study dealing with genetic 
distances to account for natural selection in wild plant populations, which have particu-
larities that limit the application of what we know from animals. As genetic effects are 
relevant for plant adaptation (Galloway 2005), affecting fruit and seed traits in response 
to a changing environment (Wang et  al. 2012; Borgman et  al. 2014; Fontúrbel 2020), 
they seem to be a critical characteristic that together epigenetic effects influence the out-
come of frugivore-mediated selection.

Our analyses showed that consideration of the spatial structure and genetic relat-
edness improve largely the fit and explanatory power of phenotypic selection models, 
resulting in more realistic selection estimates in wild plant populations. Current compu-
tational power and non-linear modeling approaches (e.g., GAM) offer powerful tools to 
deal with the lack of data independence due to spatial structure and relatedness among 
sampled individuals. Instead of avoiding the ‘noise’ produced by spatial structure and 
genetic relatedness, we can build powerful models to deal with them. Natural variation 
is inherent to many (if not, most) biological systems as a result of ecological and evolu-
tionary processes occurring in the wild. The simple methodological approach presented 
here, exemplified by the mistletoe T. corymbosus, is extensible to any wild plant popula-
tion from which we can obtain geographic coordinates and DNA samples.
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