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In this paper, we propose a novel support vector regression (SVR) approach for time series analysis. An
efficient forward feature selection strategy has been designed for dealing with high-frequency time series
with multiple seasonal periods. Inspired by the literature on feature selection for support vector
classification, we designed a technique for assessing the contribution of additional covariates to the
SVR solution, including them in a forward fashion. Our strategy extends the reasoning behind
Auto-ARIMA, a well-known approach for automatic model specification for traditional time series anal-
ysis, to kernel machines. Experiments on well-known high-frequency datasets demonstrate the virtues of
the proposed method in terms of predictive performance, confirming the virtues of an automatic model
specification strategy and the use of nonlinear predictors in time series forecasting. Our empirical
analysis focus on the energy load forecasting task, which is arguably the most popular application for
high-frequency, multi-seasonal time series forecasting.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Feature selection is a very important element in designing
expert systems, especially in supervised learning and forecasting
(Jiang, Chin, Wang, Qu, & Tsui, 2017; Sanz-García, Fernández-
Ceniceros, Antonanzas-Torres, Pernia-Espinoza, & de Pison, 2015;
Zbikowski, 2015). Identifying and selecting the relevant informa-
tion in machine learning has several advantages, such as a better
generalization of new objects, a better understanding of the pro-
cess that generated the data, and the reduction of data collection
costs (Maldonado, Pérez, & Bravo, 2017).

Support vector regression (SVR) (Smola & Schólkopfmola &
Schólkopf, 1998) is a well-known kernel method that has been suc-
cessfully used for time series forecasting, thanks to its ability to
construct nonlinear regressors (Karmy & Maldonado, 2019; Sanz-
García et al., 2015; Wu, Tzeng, & Lin, 2009). This method, however,
is not able to derive the feature importance automatically
(Maldonado & López, 2018). In this sense, SVR and ARIMA are sim-
ilar, and a search strategy can be useful in defining an automatic
model specification approach for kernel-based regression.
This paper provides a multi-purpose methodological develop-
ment designed for high-frequency, multi-seasonal time series data,
with a special focus on energy load forecasting. This task is argu-
ably the most popular application in the literature for this type
of data (Anderson & Torriti, 2018; Taylor, 2010; Son & Kim,
2015). Feature selection via machine learning can be extremely
useful in this domain for the following reasons:

� A small gain in predictive performance can be extremely prof-
itable. Knowing as accurately as possible how much electricity
will be consumed each hour is a must for providing a certain
level of service and reducing operative/production costs. It
was estimated that an extra 1% on the forecasting error
increases these costs up to £10 million per year (Gross &
Galiana, 1987).
� Energy load forecasting problem is intrinsically nonlinear
(Henley & Peirson, 1997), and therefore kernel machines could
be very useful for boosting prediction. The main disadvantage
of kernel methods is that they are prone to overfitting in appli-
cations with few data samples, which is usually the case in time
series forecasting. Although some studies argue that complex
models tend not to perform as well as simpler ones in this
domain (see e.g. Makridakis & Hibon, 2000), feature selection
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has shown to be extremely useful at alleviating the risk of over-
fitting in machine learning (Guyon, Gunn, Nikravesh, and Zadeh,
2006).
� Understanding which seasonal patterns are relevant for a given
forecasting task can be useful for making better managerial
decisions, especially medium and long term decisions
(Martínez, Frías, Pérez-Godoy, & Rivera, 2018). A model that is
able to identify these patterns automatically can facilitate gain-
ing important insights into the application.
� In the case of multivariate time series, exogenous data is often
collected from external sources (Nicholson, Matteson, & Bien,
2017). Variable acquisition costs can be reduced through an
adequate feature selection process that discards variables that
do not improve performance (Maldonado et al., 2017).

Our contribution is twofold. First, we establish a parallel
between feature selection in machine learning and the automatic
model specification process for time series analysis; theory pro-
posed by Hyndman and Khandakar (2008) with their well-known
approach Auto-ARIMA. Variables in time series analysis are essen-
tially lagged versions of the target variable over successive inter-
vals, and the choice of these lags is usually arbitrary. Auto-
ARIMA, however, finds the relevant lags in traditional time series
analysis automatically by performing a search strategy, thus eval-
uating various ARIMA models in terms of Akaike information crite-
rion (AIC) (Hyndman & Khandakar, 2008). We extend this idea to
forecasting via machine learning.

Our second contribution is the development of an efficient and
automated approach, called SVR-FFS (SVR – Forward Feature Selec-
tion), for kernel-based forecasting and model specification. Our
strategy extends the reasoning behind the well-known SVM-RFE
(Support Vector Machine – Recursive Feature Elimination)
approach for binary classification, in which those variables whose
removal has less impact on the objective function of the SVM
problem are removed iteratively. Our proposal, in contrast, selects
variables in a forward fashion, avoiding solving high-dimensional
SVR problems with a high degree of redundancy.

Our proposal was applied to seven energy load forecasting data-
sets of different nature. This task is very challenging since it faces
high-frequency data, which translates into large running times,
especially for machine learning algorithms. Additionally, effective
models must consider multiple seasonal patterns, such as daily,
weekly, and yearly seasonality. Our experiments have permitted
us to conclude that our proposal is the most suitable approach
for dealing with such complex data.

The remainder of this paper is organized as follows: Section 2
provides a review of prior work on energy load forecasting, SVR
for time series analysis, and forward feature selection for SVMs.
The proposed SVR-FFS method for automatic model specification
is presented in Section 3. Experimental results on energy load fore-
casting datasets are discussed in Section 4. Finally, in Section 5 the
key conclusions are summarized, and future developments are
proposed.
2. Previous work

There are many approaches designed to deliver a solution to the
energy load forecasting problem, ranging from more traditional
techniques, such as exponential smoothing with seasonality and
ARIMA models (Hyndman & Khandakar, 2008; Taylor, 2010,
2003), to more sophisticated machine learning models (Ng, 2017;
Sapankevych & Sankar, 2009). They all contribute to the develop-
ment and understanding of algorithms which bring insights that
contribute to reaching better forecasting in the different applica-
tions and variants of electrical consumption.
With this given, and due to the enormous sustainability and
economic benefits that forecasting within the energy load context
imply, and the challenging nature of such a problem, there has
been a huge amount of research focused on finding the best
approach to this matter depending on the planning horizon, such
as short (STLF), medium (MTLF), and long term load forecasting
(LTLF).

Prediction of electric demand in residential areas was studied in
STLF by Son and Kim (2015), who combined SVR and fuzzy-rough
feature selection with particle swarm optimization. Several studies
used artificial neural networks (ANN) for this task with mixed
results, mostly due to the known overfitting issue (Hippert,
Pedreira, & Souza, 2001; Lee, Cha, & Park, 1992; Srinivasan,
1998). Traditional methods such as autoregressive moving average
(Huang & Shih, 2003) and exponential smoothing (Christiaanse,
1971) are still used instead to face this challenge thanks to their
simplicity and good predictive performance.

Regarding the MTLF problem, Hu, Bao, Chiong, and Xiong (2015)
and Hu, Bao, and Xiong (2013) used multi-output SVR andmemetic
algorithms for feature selection. In Chikobvu and Sigauke (2013),
the authors incorporated the influence of the temperature on the
daily electric peak using segmented regressions. In Srinivasan
(2008), mid term load forecasting was presented through GMDH
networks for a monthly based energy demand prediction, leading
to effective and accurate models. A hybrid method proposed by
Amjady and Keynia (2008) uses a combination of different tech-
niques to build up an evolutionary algorithm.

For the LTLF application, a combination of k-nearest neighbors,
mutual information, and nonparametric noise estimation was pro-
posed in Sorjamaa, Hao, Reyhani, Ji, and Lendasse (2007) for time
series analysis and input selection. In another study, particle
swarm optimization (PSO) was used, leading to superior perfor-
mance (AlRashidi & El-Naggar, 2010).

SVR for time series analysis is formalized next in Section 2.1,
while some feature selection methods for SVMs that are relevant
to our proposal are discussed in Section 2.2.
2.1. SVR for time series

SVR is a machine learning model that has the flexibility of bal-
ancing the trade-off between minimizing the empirical error and
the complexity of the resulting fitted function, reducing the risk
of overfitting (Smola & Schólkopfmola & Schólkopf, 1998). Its
well-deserved popularity is due to this property, which usually
leads to the best predictive results in time series analysis
(Sapankevych & Sankar, 2009).

The raw input for this task consists of a series of time-
dependent values Y. A matrix of covariates X is constructed by
computing lagged versions of the Y vector. Then, the m inputs for
the supervised learning model can be seen as tuples
f x1; y1ð Þ; . . . ; xi; yið Þ; . . . ; xm; ymð Þg, where xi is the vector containing
all the lags considered for period i, and withm being the total num-
ber of periods considered for training. The e-SVR method solves the
following problem (Smola & Schólkopfmola & Schólkopf, 1998):

min
w;b;n;n�

1
2
kwk2 þ Ce>ðnþ n�Þ s:t: y � ðAwþ beÞ 6 eeþ n; n � 0;

ðAwþ beÞ � y 6 eeþ n�; n� � 0; ð1Þ

where A ¼ ½x1 x2 . . .xm�> 2 Rm�n; y ¼ ðy1; y2; . . . ; ymÞ 2 Rm; e 2 Rm is
a vector of ones, n; n� 2 Rm are slack vectors that indicate whether
or not the samples are inside the e-insensitive tube, and C > 0 is
the hyper-parameter that controls the trade-off between complex-
ity and empirical error minimization (Drucker, Burges, Kaufman,
Smola, & Vapnik, 1997).
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The introduction of kernel functions lead to a nonlinear
approach through an implicit mapping of the input data to a
higher-dimensional space. In this study, the linear kernel (Eq.
(2)) and the Radial Basis Function (RBF) were considered. With
the inclusion of kernel functions, the dual form of e-SVR (Eq. (1))
results in the following problem:

max
a;a�

y>ða� a�Þ � ee>ðaþ a�Þ � 1
2
ða� a�Þ>KðA;A>Þða� a�Þ

s:t: e>ða� a�Þ ¼ 0; 0 6 a 6 Ce; 0 6 a� 6 Ce; ð2Þ

where a and a� are the dual variables related to the constraints of
Eq. (1), while KðA;A>Þ 2 Rm�m is the kernel matrix whose elements
are kis ¼ Kðxi;xsÞ. The RBF kernel has the following form:

Kðxi;xsÞ ¼ exp �cjjxi � xsjj2
� �

ð3Þ

where c ¼ 1
2r2, and r > 0 is the hyper-parameter that controls the

shape of the kernel.
In addition to its application in energy load forecasting, SVR has

been used in time series analysis in a wide variety of domains, such
as finance, transportation systems, wind speed prediction, and
sales forecasting, among others (S.Dhiman et al., 2019; Karmy &
Maldonado, 2019; Kazem, Sharifi, Hussain, Saberi, & Hussain,
2013; Xu, Chan, & Zhang, 2019; Zbikowski, 2015).

2.2. Forward feature selection for SVMs

As discussed above in the introductory section, feature selection
is a relevant topic in machine learning since it leads to several
advantages in terms of predictive performance, interpretation,
training efficiency, and cost reduction. Feature selection
approaches for SVMs can be classified into three groups: filter,
wrapper, and embedded methods (Guyon et al., 2006).

Filter methods assess the variable contribution before the learn-
ing process, filtering out irrelevant covariates, for example by using
statistical measures (Guyon et al., 2006). The main issue with filter
approaches in time series analysis is that the correlation between
lags is not taking into account, and this is an important issue since
lags are usually highly correlated. Another disadvantage is that the
interaction between covariates and the model is also not consid-
ered. However, filter methods are fast strategies that provide good
results in classification tasks (Fleuret, 2004; Pal & Foody, 2010;
Song, Smola, Gretton, Bedo, & Borgwardt, 2012).

Wrapper methods evaluate a given predictive method using
various subsets of input variables, computing their performance
and selecting the one with the best predictive capabilities. Since
exhaustive evaluation of possible subsets is intractable, even for
medium-size problems, efficient heuristics and meta-heuristics
are usually used (Guyon et al., 2006). For example, Gheyas and
Smith (2010) proposed a wrapper method that combines simu-
lated annealing with genetic algorithms to develop a method
(SAGA) in order to improve convergence.

The main issue with the wrapper strategies is that they usually
lead to very large training times due to the size of the SVM models.
In order to remedy this problem, hybrid filter-wrapper approaches
have been proposed. For example, Peng, Long, and Ding (2005)
used the minimum redundancy-maximum relevance (mRMR) as
a filter method for the first stage, and subsequently performed
backward/forward feature selection to create a compact set of final
selected features.

Embedded methods define model-based evaluation metrics for
assessing the contribution of the variables, or penalizing the use of
features during model training (Ghaddar & Naoum-Sawaya, 2018;
Zhao, Chen, Pedrycz, & Wang, 2019). The SVM-RFE algorithm fits in
the first category, which is relevant for our proposal. There are also
several approaches that perform feature penalization have been
reported in the literature (Lal, Chapelle, Weston, & Elisseeff,
2006; Maldonado & López, 2018; Maldonado & Weber, 2010).
SVM-RFE uses a backward elimination strategy, removing those
covariates whose elimination has less impact on the objective
function of the SVM model (Guyon, Weston, Barnhill, & Vapnik,
2002).

Forward selection can be used for developing embedded strate-
gies while avoiding the issue of computing large SVM models
(Ambroise & McLachlan, 2002; Lin & Wei, 2005; Liu et al., 2007).
For example, Weston et al. (2001) used forward selection based
on SVM metrics for the bounds on the leave-one-out error (Span-
bound and RW-bound). The approach called grafting (Perkins,
Lacker, & Theiler, 2003) computes the gradient of a loss function
that includes three different regularizers for feature penalization.

Although embedded feature selection has not been discussed in
the context of time series analysis to the best of our knowledge,
some feature selection methods have been proposed using other
machine learning techniques. For example, Crone and Kourentzes
(2010) proposed an hybrid filter-wrapper for neural networks with
positive results.

3. Proposed SVR and forward feature selection method

In this section we present a novel strategy for automatic model
specification of high-frequency time series using SVR. The main
idea is to perform an embedded forward selection, adapting the
SVM-RFE algorithm proposed for backward feature elimination in
binary classification tasks. Starting with the first lagged variable,
which is usually the most important one in most application, the
goal is to include those lags and seasonal patterns that have a lar-
ger impact in the objective function of the SVR method in a for-
ward manner. The reasoning behind this strategy is that the time
series model can be specified automatically without performing
expensive search strategies that require training models with large
data matrices, which would be the case in exhaustive search (Auto-
ARIMA approach) or in backward feature elimination (SVM-RFE
algorithm).

The main advantages of our proposal are the following:

� It allows the use of kernel functions for capturing the inherent
nonlinear patterns that are usually present in high-frequency
time series, for example, in energy load forecasting.
� It can be extended naturally to multivariate time series analysis.
Exogenous variables can be considered as additional covariates,
and the model will identify which ones are relevant for predic-
tion using the same selection process.
� It has all the theoretical advantages of embedded feature selec-
tion: it takes both the correlations between covariates and the
interaction between the variables and the model into account.
The first point is of utmost importance in high-frequency time
series analysis since adjacent lags tend to be highly correlated,
and filter methods, such as using the partial autocorrelation
function (PACF), tend to be ineffective. In order to illustrate this
issue, the PACF plot for one of the high-frequency data sets used
in the experimental section (the GB data set) is presented in
Fig. 1, considering only the first 352 lags. It can be seen in this
plot that most partial autocorrelations are significantly different
from zero, and, therefore, few attributes could be discarded if
this measure were used as a filter strategy. Notice that the
thresholds for statistical significance are represented in the
PACF plot by blue dashed lines, and the lags that fall outside
the boundaries defined by these lines can be considered to be
statistically relevant.



Fig. 1. PACF plot for the first 352 lags.
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� The forward selection strategy has the advantage of being more
efficient than any other wrapper/embedded strategy. Starting
with a single covariate and including only relevant features iter-
atively avoid the construction of large SVR models with a high
level of redundancy. In agreement with the previous example,
a yearly seasonality can be identified in the lag
48 � 365 ¼ 17;520 (48 half hours = one day). A year of training
samples leads to a dense data matrix X of more than 17,000
rows and columns, which is large for an SVR problem. Further-
more, a wrapper method can evaluate only few subsets of these
17,000 features in a reasonable training time. In particular, a
backward approach such as SVM-RFE has to train first a model
with all variables, which is almost intractable computationally.

The proposed method is formalized next. First, it can be noticed
in Eq. (2) that the Euclidean norm of the weight vector that is min-
imized in Eq. (1) can be rewritten as follows, using the dual vari-
ables and the kernel functions:
W2ða;AÞ ¼ 1
2
kwk2 ¼ �1

2
ða� a�Þ>KðA;A>Þða� a�Þ: ð4Þ

The SVM-RFE method for binary classification (Guyon et al.,
2006) suggests that the variable in A that has less impact in
W2ða;AÞ should be removed. Then, for all the variables in A;A�p
is computed as the data matrix with the current variables but p.
The attribute to be discarded in the backward elimination strategy
is the one with lower value for the following measure:
kW2ða;AÞ �W2ða;A�pÞk ð5Þ

We propose a simplified contribution metric (CM) which is
equivalent to W2ða;AÞ for feature ranking:
CMða;AÞ ¼ ða� a�Þ>KðA;A>Þða� a�Þ ð6Þ

As a forward selection method, the proposed approach adds
those lags whose inclusion leads to a minimum value of this metric
to a subset of relevant covariates. Following the notation used by
Song et al. (2012), the full set of available lags is denoted by L,
while Ly represents an ordered subset of L with only the relevant
lags to be included in the SVR model. At each iteration, the subset
of lags to be included in Ly is represented by I .
The proposed algorithm computes CMða;AÞ using all lags in Ly,
plus an additional lag p from L n Ly. Formally, the contribution
metric CMpða;ApÞ has the following form:

CMpða;ApÞ ¼ ða� a�Þ>KðAp;A
>
p Þða� a�Þ; ð7Þ

where Ap ¼ ½xðpÞ1 xðpÞ2 . . .xðpÞm �
>
2 Rm�ðjLyjþ1Þ, while jLyj represents the

cardinality of Ly and xðpÞi the vector of covariates that includes the
lags in Ly plus the additional lag p.

Notice that a natural adaptation of SVM-RFE algorithm for for-
ward selection would be to compute the difference between
CMða;AÞ and CMpða;ApÞ and select the attribute p that the value of

kCMða;AÞ � CMða;ApÞk ð8Þ

is the largest. However, CMða;AÞ does not vary for all p in L n Ly.
Therefore, we can simply select the attribute with the minimum
value for CMpða;ApÞ.

We consider the following approximation proposed in Guyon
et al. (2006) for reducing the computational complexity of the
algorithm: instead of re-training the model for every Ap, we
assume that the solution obtained when using the already selected
lags Ly is close to the one that would be obtained with the inclu-
sion of p. Therefore, a single a solution is considered for the feature
evaluation process (the one obtained with the variables in Ly).

The proposed forward selection strategy for SVR and time series
analysis (SVR-FFS) is described in Algorithm 1.
Algorithm1 Forward feature selection for SVR and time
series analysis (SVR-FFS)
Input: The original set of lags L (excluding the first one)

Output: An ordered subset of relevant lags Ly
1: Ly  f1g.

2: repeat

3: a SVR Training onLyP

4: I  argminI p2ICMpða;ApÞ; I � L

5: L  L n I

6: Ly  ðLy; IÞ

7: until jLyj ¼ r.
The Ly set is initialized with one lag that is expected to be rel-
evant in the SVR training (see step 1 of Algorithm 1). The natural
choice would be to consider the first lagged variable.

At each iteration, the SVR-FFS approach trains an e-SVR model
with the lags in Ly (step 3), and evaluates all lags p 2 L using
CMpða;ApÞ (step 4). Then, the jI j lags that lead to the smallest val-
ues of CMp are included in Ly and excluded from L (step 5-6).

At each iteration, increasing the size of I is recommended in
order to speed up the learning process. Following the suggestion
made for the SVM-RFE strategy in Guyon et al. (2006), the cardinal-
ity of I is doubled at each iteration, starting with jI j ¼ 1. In this
way our approach should not require more than 10–15 iterations
to find an adequate model.

As stopping criterion we set a predefined number r of selected
lags, i.e. jLyj ¼ r (see step 7 of Algorithm 1).

As a machine learning method, SVR-FFS requires an appropriate
validation strategy for parameter tuning in order to avoid overfit-
ting. Apart from the traditional SVR hyperparameters fC;r; eg,
SVR-FFS parameters r (the final number of selected lags) and jI j
(the number of lags to be included in Ly at each iteration) can be
considered as additional tuning parameters.

We suggest applying the SVR-FFS algorithm on a training
set under different fC;r; e; jI jg configurations as empirical
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framework, and evaluating the performance in terms of a suitable
evaluation metric on the validation set. This process can be
repeated several times on different training/validation subsets, fol-
lowing the guidelines of the rolling forecast origin approach
(Hyndman & Athanasopoulos, 2013). For each training/validation
configuration, the average value of a suitable measure can be com-
puted and monitored at each iteration in order to determine the
value for r. Finally, the best fC;r; e; jI j; rg configuration, i.e. the
one with the lowest average error, is used for testing. Training
and validation sets are then combined to train a final SVR-FFS
model with the best parameter configuration, and applied to the
test set for comparison with alternative methods.
4. Experimental results on energy load forecasting datasets

The proposed SVR-FFS algorithm was applied to six energy load
forecasting data sets and the results were compared with well-
known alternative time series strategies. Among the six data sets,
five are high-frequency load forecasting tasks, while the remaining
data set considers daily electric load with additional exogenous
variables. On the one hand, experiments on high-frequency load
forecasting are very important since we evaluate more than
17,000 candidate lags in order to model all seasonal patterns ade-
quately, leading to high-dimensional problems. On the other hand,
although daily electric load forecasting is rather a low-dimensional
task with less than 400 candidate lags, the inclusion of exogenous
variables, such as the forecasted temperature for the given day, is
extremely valuable for assessing the model’s ability to capture
nonlinear patterns. According to Chikobvu and Sigauke (2013),
temperature and energy consumption have a nonlinear relation-
ship, which could be identified adequately via kernel methods.

First, the data sets are presented in Section 4.1. Next, the exper-
imental framework is discussed in Section 4.2. Finally, a summary
of the results obtained with all data sets is reported in Section 4.3.
1 https://www.coordinador.cl/sistema-informacion-publica/portal-de-opera-
ciones/operacion-real/demanda-real/.
4.1. Description of data sets

The following data sets were included in this study:

� GB: Great Britain half-hour electric load data set (Taylor, 2010).
� E&W: England and Wales half-hour electric load data set
(Anderson & Torriti, 2018).
� IO14_DEM: Great Britain half-hour electric load data set, which
excludes the net demand from imports/exports and pump stor-
age demand, and includes transmission losses and station trans-
former load (Hawkins, Eager, & Harrison, 2011).
� IO14_TGSD: Great Britain half-hour total gross system demand
(Bejan, Gibbens, & Kelly, 2012).
� France Import(+)/Export(�): Net half-hour exported load from
Great Britain towards France (Taylor, 2010). In order to avoid
negative values, we transformed this data set by adding the
minimum value of the series to each observation.
� Chile: Chilean hourly real systemic electric demand, managed
by the autonomous entity, Coordinador Eléctrico Nacional, in
charge of coordinating the operations for all the entities
involved in the national electric system.
� GB Daily: The Great Britain half-hour electric load data set
aggregated at a daily level. This aggregation is done by comput-
ing the sum of all half-hour load consumptions on a given day.
This data set also includes the forecast for the average temper-
ature of a given day, and a dummy variable that indicates
whether or not the given day is a holiday.

All data sets consider the period between April, 2001 and Octo-
ber, 2008, except for the Chile data set, which includes the period
from 5th of May, 2017 to the 24th of October, 2018.1 Table 1 pre-
sents the relevant meta-data for all the time series before pre-
processing, indicating the maximum, minimum, and average values
for the series, and their respective standard deviations.
4.2. Experimental framework

In time series analysis, an out-of-time validation strategy
should be used, such as the rolling forecast origin (Hong, 2013;
Hyndman & Athanasopoulos, 2013). Model validation includes
training, validation, and test stages as presented in Fig. 2.

First, the training (TR), validation (V), and test (T ) subsets are
defined for each data set. The number of periods considered for
each set and the number of candidate lags jLj are presented in
Table 2. Notice that the final sample size for the covariate matrix
corresponds to the number of periods included for each set minus
the largest lag in Ly.

The proposed SVR-FFS method is compared with the following
alternative forecasting methods:

1. The one-step non-seasonal and seasonal naïve forecast
approaches, in which the forecast is computed as the observed
value from the prior period and the observed value from the
previous seasonal pattern, respectively. In case of multiple sea-
sonality, only the daily seasonality is considered for the latter
model.
2. Traditional Box-Jenkins (ARIMA) models that take seasonal
factors into account, and double-seasonal Holt-Winters. These
strategies are well-established approaches for the load forecast-
ing task (Hong, 2013; Mbamalu & El-Hawary, 1993; Taylor,
2010). The performance of these approaches relies heavily on
an adequate model specification. For this task, we used the
automatic model specification process proposed by Hyndman
and Khandakar (2008), in which the relevant lags can be iden-
tified automatically by using the Akaike’s Information Criterion
(AIC). For the Box-Jenkins approach, we used the model called
Auto-ARIMA (Hyndman & Khandakar, 2008), and the TBATS
function is used for the Holt-Winters method (De Livera,
Hyndman, & Snyder, 2011).
3. Various SVR configurations are considered using naïve sub-
sets of lags based on the various seasonal patterns that are pre-
sent in these data sets. These models are presented in Table 3.
The various experiments are designed in an incremental fash-
ion, and Lags Exp. j denotes the set of lags included in Experi-
ment j.
The index related to d on Table 3 represents the lag that is being
considered. For example, d1 is the observation just before the
one that is being predicted. Index sk, with k ¼ f1;2;3g refers
to the seasonal pattern, which depends on the data set, as
described in Table 4.
Notice that the eighth SVR configuration in Table 3 is not avail-
able for the GB Daily data set since only two seasonal patterns
are present. For this data set, all experiments were performed
both with and without considering exogenous variables, and
the best performance is reported for all methods. For consis-
tency, s2 corresponds to weekly seasonality for all data sets
since experiments 5 to 7 consider seasonal autoregressive pro-
cesses of order 2 to 4 for the weekly seasonality.

As mentioned in the previous section, grid search on a valida-
tion set is suggested for parameter tuning for the SVR methods.
The hyper-parameters explored for our proposal and the various

https://www.coordinador.cl/sistema-informacion-publica/portal-de-operaciones/operacion-real/demanda-real/
https://www.coordinador.cl/sistema-informacion-publica/portal-de-operaciones/operacion-real/demanda-real/


Table 1
Descriptive information for each data set (MW).

Data Set Max Min Average Std. Dev.

GB 60;098 20;993 38;260 7;542:46
E&W 54;431 0 34;552 6;896:37

IO14_DEM 60;588 19;296 36;758 7;429:19
IO14_TGSD 60;672 20;427 37;376 7;207:98

France 1;999 �2;021 956:2 998:46
Chile 10;528:86 6:48 8;572:24 814:74

GB Daily 2;406;803 1;325;938 1;836;476 233;517:8

Fig. 2. Model validation strategy.

Table 2
Sample size for the training, validation, and test subsets, and number of candidate lags for each data set.

Data Set jTRj jVj jT j jLj

GB 18;972 1;440 1;440 17;532
E&W 18;972 1;440 1;440 17;532

IO14_DEM 18;972 1;440 1;440 17;532
IO14_TGSD 18;972 1;440 1;440 17;532

France 18;972 1;440 1;440 17;532
Chile 11;472 720 720 8;766

GB Daily 2;711 30 30 365

Table 3
Different naïve SVR configurations for benchmarking.

Experiment Lags

1 d1
2 Lags Exp. 1, d2 , d3
3 Lags Exp. 2, ds1 ;ds1þ1;ds1þ2; ds1þ3
4 Lags Exp. 3, ds2 ;ds2þ1;ds2þ2; ds2þ3
5 Lags Exp. 4, d2s2 ;d2s2þ1;d2s2þ2; d2s2þ3
6 Lags Exp. 5, d3s2 ;d3s2þ1;d3s2þ2; d3s2þ3
7 Lags Exp. 6, d4s2 ;d4s2þ1;d4s2þ2; d4s2þ3
8 Lags Exp. 7, ds3 ;ds3þ1;ds3þ2; ds3þ3

Table 4
Seasonal patterns present in the different data sets.

Data Set s1 s2 s3

GB 48 (Daily) 336 (Weekly) 17:532 (Yearly)
E&W 48 (Daily) 336 (Weekly) 17:532 (Yearly)

IO14_DEM 48 (Daily) 336 (Weekly) 17:532 (Yearly)
IO14_TGSD 48 (Daily) 336 (Weekly) 17:532 (Yearly)

France 48 (Daily) 336 (Weekly) 17:532 (Yearly)
Chile 24 (Daily) 168 (Weekly) 8:766 (Yearly)

GB Daily 365 (Yearly) 7 (Weekly) –
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naïve SVR configurations are presented in Table 5. Notice that
these values vary for all data sets because the grids were adapted
for each method and data set in order to maximize predictive
performance.

The size of I for the SVR-FFS algorithm was changed at each
iteration in order to achieve faster convergence. The cardinality
of I doubled at each iteration, starting with jI j ¼ 1, leading to a
maximum of twelve iterations for each high-frequency data set
and of eight iterations for the GB Daily data set. Twelve iterations
on a high-frequency data set lead to 2048 lags selected, while eight
iterations for the GB Daily data set lead to 128 lags selected.
Regarding performance measures, the mean absolute percent-
age error (MAPE), the root mean squared error (RMSE), and the
seasonal mean absolute scaled error (MASEs) were considered in
this study. Given a point t ¼ f1 . . . Tg from the validation or the test
set, where Ot is the observed value and Ft is the forecast value,
these metrics are computed as follows:

MAPE ¼ 1
T

XT
t¼1

Ot � Ft

Ot

����
���� ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1ðOt � FtÞ2

T

s
ð10Þ

MASEs ¼

PT

t¼1
jOt�Ft j
TPm

i¼sþ1 jYi�Yi�s j
m�s

ð11Þ

For the MASEs measure, the denominator represents the mean abso-
lute error (MAE) of the one-step seasonal naïve forecast approach.
This error is computed in the training set, with i ¼ 1; . . . ;m. The
observed value from the previous seasonal period is used for the
seasonal naïve strategy (Fi ¼ Yi�s). In our series with multiple sea-
sonal patterns, we consider the daily seasonality for the computa-
tion of the latter metric, which is the one with the biggest
influence in the predictive performance.

4.3. Result summary

Table 6 summarizes the results for all the methods in terms of
MAPE (%) on the test set. For all the SVR approaches, the best
hyper-parameter configuration using the RBF kernel is reported,
i.e. the one that achieves the lowest MAPE on the validation set.
For the proposed SVR-FFS method, results using the linear kernel
are also reported for illustrative purposes. The best performance
in terms of MAPE (%) is emphasized in bold type. The final row



Table 5
SVR hyper-parameters explored for each data set.

Data Set e C c

GB 0:1 f100;000;110;000; . . . ;150;000g f0:0001;0:3501; . . . ;1:7501g
E&W 0:1 f75;000;85;000; . . . ;125;000g f0:0001;0:3501; . . . ;1:7501g

IO14_DEM 0:1 f120;000;130;000; . . . ;170;000g f0:0001;0:3501; . . . ;1:7501g
IO14_TGSD 0:1 f85;000;95;000; . . . ;135;000g f0:0001;0:3501; . . . ;1:7501g

France 0:1 f6000;16;000; . . . ;56;000g f0:0001;0:3501; . . . ;1:7501g
Chile 0:1 f2500;4500; . . . ;10;500g f1x10�7;6x10�7; . . . ;9:96x10�5g

GB Daily 0:1 f1x107;1:5x107;2x107g f0:1;0:6; . . . ;5:1g

Table 6
Result summary for data sets. Average MAPE (%) in test set.

Experiment Data Set

GB E&W IO14_DEM IO14_TGSD France Chile GB Daily

Naïve 18.36 18.8 18.51 16.12 37.13 7.44 6.45
Naïve 11.44 11.7 11.5 11.44 37.04 4.63 5.18
ARIMA 11.51 11.47 10.99 11.41 37.13 4.40 6.13
ARIMA 5.40 5.52 5.67 5.87 37.45 5.68 4.37
ARIMA 16.78 17.20 16.92 14.88 37.12 7.30 -
TBATS 15.63 8.47 8.28 7.70 42.94 5.65 2.75

SVR Exp. 1 16.04 30.26 27.36 19.60 37.41 7.52 98.00
SVR Exp. 2g 19.96 16.95 17.13 16.09 106.36 7.38 67.97
SVR Exp. 3g 17.96 965.31 22.11 480.14 20.93 6.64 3.82
SVR Exp. 4g 12.17 12.70 16.97 40.18 23.49 4.13 2.81
SVR Exp. 5g 34.83 21.01 9.70 187.67 30.80 3.77 2.25
SVR Exp. 6g 11.29 10.50 10.67 10.39 25.91 3.48 2.65
SVR Exp. 7g 14.54 9.83 11.24 7.12 30.20 3.10 2.56
SVR Exp. 8g 8.83 15.61 15.17 14.35 23.09 3.70 -
SVR-FFS 6.58 6.39 6.32 6.41 35.97 5.21 5.14
SVR-FFS 4.88 5.44 5.20 5.57 20.12 2.44 1.82

SVR-FFS (FS ratio) 11.68 11.68 11.68 11.68 0.02 1.46 4.38

a Non-seasonal naïve approach.
b Seasonal naïve approach using seasonal pattern s1 (Table 4).
c Auto-ARIMA function using seasonal pattern s1 (Table 4).
d Auto-ARIMA function using seasonal pattern s2 (Table 4).
e Auto-ARIMA function using seasonal pattern s3 (Table 4).
f Holt-Winter’s TBATS function using seasonal patterns s1 and s2.
g Naïve SVR configurations using the lags reported in Table 3.
h Best iteration based on test performance, Linear kernel.
i Best iteration based on test performance, RBF kernel.
j Dimensionality reduction ratio (%). RBF kernel.

2 https://www.coordinador.cl/sistema-informacion-publica/portal-de-opera-
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in Table 6 presents the dimensionality reduction ratio for the best
configuration of the proposed SVR-FFS method. This ratio is com-
puted as the number of selected attributes by the method divided
by the total number of attributes in the search space jLj (see
Table 2).

The GB Daily data set leads to a special set of experiments since
it includes two exogenous variables: a dummy variable related to
the nature of the day (normal or holiday), and the forecast of the
average temperature for a given day. Since only two seasonal pat-
terns are present in this data set, the experiments SVR Exp. 8 and
Auto-ARIMA using seasonal pattern s3 are not included.

It can be observed in Table 6 that our SVR-FFS method outper-
forms all the other approaches, achieving the best MAPE on all the
data sets. Additionally, it can be observed that results using the RBF
kernel are always better than those with the linear kernel, demon-
strating the importance of nonlinear regression for high-frequency
time series. Notice that no experiments were reported using alter-
native feature selection approaches for SVR since such techniques
have not been formalized for time series analysis, to the best of our
knowledge.

Regarding the dimensionality reduction ratio presented in the
last row of Table 6, we can conclude that our approach is very
effective at performing feature elimination, selecting approxi-
mately 10% of the variables or less.
The entity in charge of the Chile data set publishes a forecast for
its hourly scheduled demand.2 Based on this forecast, we estimate
its performance in our test set, which leads to a MAPE of 2:46%.
Our proposal, therefore, achieves slightly better results when com-
pared with the strategy considered by the national coordinator.
Notice that forecast includes exogenous variables, such as weather
conditions, which are not considered in our approach for this data
set.

For completeness, Tables 7 and 8 presents the results using
RMSE and MASEs as performance metrics, respectively. Although
our approach is not able to outperform all other methods, these
results confirm the good performance achieved by our proposal,
achieving the best performance in average. Table 8 also illustrate
the ability of nonlinear approach such as our proposal to perform
better than a naïve seasonal method.

It is noteworthy the relatively large MAPE values for the France
dataset (see Table 6) while the errors are rather low for the remain-
ing metrics in Tables 7 and 8. This can be partially explained by the
fact that the output variable is smaller in average for this dataset,
leading to low RMSE values. For this reason, the denominator is
smaller for the MAPE metric when compared to the other datasets.
ciones/operacion-programada/demanda-programada/.

https://www.coordinador.cl/sistema-informacion-publica/portal-de-operaciones/operacion-programada/demanda-programada/
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Table 7
Result summary for data sets. Average RMSE in test set.

Experiment Data Set

GB E&W IO14_DEM IO14_TGSD France Chile GB Daily

Naïve 8211 7626 7622 6721 1144 732 133,179
Naïve 4868 4519 4529 4532 1142 536 112,514
ARIMA 4871 4458 4388 4508 1144 466 126,429
ARIMA 2823 2496 2539 2579 1148 705 102,300
ARIMA 7114 6631 6613 5737 1143 701 -
TBATS 5737 3182 3186 3022 1264 570 51,981

SVR Exp. 1 6396 11,432 8724 6299 1145 984 292,758
SVR Exp. 2g 6879 5601 5637 5341 3051 979 3,961,496
SVR Exp. 3g 6317 427,501 7630 264,308 664 883 287,896
SVR Exp. 4g 4851 4414 5818 12,213 732 457 88,790
SVR Exp. 5g 11,846 6483 3703 107,675 945 371 80,913
SVR Exp. 6g 4333 3630 3714 3641 795 338 66,582
SVR Exp. 7g 5107 3543 3900 2929 930 328 107,170
SVR Exp. 8g 4051 5490 5451 5186 709 387 -
SVR-FFS 2966 2799 2814 2830 1235 534 122,196
SVR-FFS 2813 2425 2700 2818 967 274 43257

a Non-seasonal naïve approach.
b Seasonal naïve approach using seasonal pattern s1 (Table 4).
c Auto-ARIMA function using seasonal pattern s1 (Table 4).
d Auto-ARIMA function using seasonal pattern s2 (Table 4).
e Auto-ARIMA function using seasonal pattern s3 (Table 4).
f Holt-Winter’s TBATS function using seasonal patterns s1 and s2.
g Naïve SVR configurations using the lags reported in Table 3.
h Best iteration based on test performance, Linear kernel.
i Best iteration based on test performance, RBF kernel.

Table 8
Result summary for data sets. Average MASEs (%) in test set.

Experiment Data Set

GB E&W IO14_DEM IO14_TGSD France Chile GB Daily

Naïve 3.1 3.07 3.06 2.66 1.89 1.68 2.2
Naïve 1.61 1.58 1.58 1.58 1.88 1.05 1.81
ARIMA 1.62 1.54 1.50 1.57 1.89 1.04 2.07
ARIMA 0.76 0.79 0.78 0.81 1.91 1.38 1.56
ARIMA 2.74 2.72 2.71 2.35 1.89 1.68 -
TBATS 6.27 3.34 3.32 3.30 26.45 2.21 0.52

SVR Exp. 1 2.51 4.87 3.52 2.66 1.91 2.19 15.38
SVR Exp. 2g 2.72 2.41 2.44 2.32 6.07 2.18 228.49
SVR Exp. 3g 2.51 143.86 3.03 71.24 1.17 1.91 10.73
SVR Exp. 4g 1.67 1.67 2.31 5.71 1.23 0.84 4.49
SVR Exp. 5g 4.96 2.91 1.34 27.36 1.57 0.69 3.44
SVR Exp. 6g 1.58 1.46 1.45 1.47 1.34 0.60 2.74
SVR Exp. 7g 2.05 1.35 1.54 0.99 1.53 0.58 4.91
SVR Exp. 8g 1.36 1.98 1.96 1.91 1.26 0.73 -
SVR-FFS 0.94 0.87 0.88 0.90 2.03 1.22 1.80
SVR-FFS 0.72 0.77 0.74 0.79 1.23 0.58 0.63

a Non-seasonal naïve approach.
b Seasonal naïve approach using seasonal pattern s1 (Table 4).
c Auto-ARIMA function using seasonal pattern s1 (Table 4).
d Auto-ARIMA function using seasonal pattern s2 (Table 4).
e Auto-ARIMA function using seasonal pattern s3 (Table 4).
f Holt-Winter’s TBATS function using seasonal patterns s1 and s2.
g Naïve SVR configurations using the lags reported in Table 3.
h Best iteration based on test performance, Linear kernel.
i Best iteration based on test performance, RBF kernel.
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The France dataset is probably more difficult to forecast accurately,
leading to larger errors in percentage.

A large value for the metric may be a sign of overfitting for the
machine learning methods (see Table 8). However, simple methods
such as the naïve approaches may also incur a large error because
the denominator of this metric is computed on the training set. In
this case, the issue is not overfitting but a probable case of data
fracture in which the training and test set distributions mismatch.
For the France dataset, for example, the MASE values are relatively
small, discarding a problem of dataset shift.
For the next set of experiments, the GB data set is used for illus-
trating some relevant aspects of our proposal. The first analysis
illustrates the quality of the forecast provided by our proposal,
comparing the output of the model (blue lines) with the actual
time series for the month used for testing. This figure is divided
in two parts: Fig. 3(a) presents the first two weeks of the month,
while Fig. 3(b) reports the second half of the month.

From Fig. 3 we can conclude that our approach provides a very
accurate forecast in relation with the real values. The forecast is
sometimes over- or underpredicting the real outcome for some



Fig. 3. Comparison between SVR-FFS and the real time series for the month used for testing. GB data set.
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periods, but this is somewhat expected in some real-world applica-
tions. In energy load forecasting, for example, the weather can be
abnormally cold or hot in some days, causing this problem.

The time series literature acknowledges several issues that can
affect predictive performance negatively. One of these issues is
serial correlation (Hyndman & Khandakar, 2008). A regular regres-
sion approach assumes that the residuals are independent from
one observation to the next. However, this assumption is not valid
Fig. 4. Comparison between SVR-FFS and the best benchmark algorithms for an
increasing number of selected lags. GB data set.

Fig. 5. Comparison between SVR-FFS and the best benchmark algorithms for an
average day. GB data set.
in auto-regressive processes, such as high-frequency data. Conse-
quences of this issue include an inefficient estimation of the coef-
ficients, under-estimation of the mean-squared error loss used as
objective function, inaccurate estimation of the confidence inter-
vals, and ultimately the inability to provide an accurate forecast
(Hyndman & Khandakar, 2008).

Serial correlation is addressed via the inclusion of autoregres-
sive processes in all our methods. The proposed and alternative



Fig. 6. Comparison between SVR-FFS and the best benchmark algorithms for an
average week. GB data set.
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methods include all the lags that are relevant for both predicting
well and alleviating the issue of serial correlation. We support
our analysis in the literature of energy load forecasting and
high-frequency data in general. Our method is designed precisely
for alleviating the serial correlation issue by incorporating the
lags that are relevant for the problem with introducing addi-
tional noise, which is the case in most machine learning
approaches for forecasting. The inclusion of an excessive number
of lags leads to overfitting. Furthermore, the first lag AR(1) is
included as covariate in our method and all the benchmark
approaches.

Although the use of the MAPE metric may introduce some bias
in the model selection process, the proposed method performed
best in terms of predictive performance for the three metrics con-
sidered in this study. The three-stage model validation procedure
reduces the risk of selecting a biased model or one affected nega-
tively by serial correlation since it would have a poor out-of-
sample performance in the validation set and therefore would
not be selected.

The following experiment presents the performance of the SVR-
FFS method for an increasing number of selected lags. For the fol-
lowing values of jLyj : jLyj ¼ f1;2;4;8;16;32;64;128;256;512;
1024;2048g, the MAPE is reported for each iteration of the algo-
rithm. The result of this experiment is presented in Fig. 4. This fig-
ure also includes the performance of the best configurations for the
ARIMA, Holt-Winter (TBATS), and SVR approaches, represented by
lines of horizontal dashes.

It can be observed in Fig. 4 that our method is able to perform
better than Holt-Winter, Naïve SVR, and ARIMA on the iteration
4, iteration 10, and iteration 12, respectively. A high variance in
terms of performance can be observed for the different iterations
of our proposal and, therefore, performing a similar strategy for
determining the final set of lags is recommended.

Fig. 5 illustrates the daily performance in terms of average
MAPE (in percentage, the Y-axis) for the best model configurations
on the GB data set. The X-axis presents every half-hour of the day,
from 1 (00 : 00) to 48 (23 : 30). Similarly, Fig. 6 shows the same
metric aggregated by the day of the week.
It can be seen in Fig. 5 that the proposed SVR-FFS (blue line)
clearly achieves the best performance during the first 14 half hours
of the day, which are the times that exhibit the largest errors in
terms of MAPE. The performance is rather similar when compared
with the best alternative approach (SARIMA with weekly seasonal-
ity). The remaining methods are outperformed by these two
approaches for this data set. A similar analysis can be done for
the weekly aggregation (Fig. 6), in which SVR-FFS also has the best
performances in general, followed by SARIMA. For all the methods,
better performance is achieved from Wednesday to Saturday,
decreasing from Sunday to Tuesday.

Our final set of experiments consists in the residual plots, which
provides a visual inspection method for assessing the underlying
assumptions of statistical methods. It must be noticed that SVR
and SVR-FFS do not make any assumption on the distribution of
the residuals. Fig. 7 presents the residual plots for the four methods
discussed in the GB dataset analysis.

It can be concluded from this figure that no clear pattern is
observed that could invalidate the results obtained with the vari-
ous methods. The only interesting pattern that can be noticed is
that the residuals seem bounded for the SVR-FFS approach (Fig. 7
(d)). This is due to the shape of the e-tube constructed by the
SVM classifier and the large value of parameter C obtained for
the best hyperparameter configuration. A large value of C tend to
force all predicted samples to lay within the tube.
5. Conclusions

A novel approach for automatic lag selection using SVR is pre-
sented in this paper. A forward feature selection algorithm was
designed in order to identify which lags are relevant by using the
decision function. The proposed SVR-FFS corresponds to an embed-
ded method since it determines the optimal set of lags simultane-
ously with the regression model. The main methodological
advantages of SVR-FFS are its ability to construct nonlinear deci-
sion functions thanks to the use of kernel functions, the capacity
of taking the interaction between covariates and the model into
account, a faster training thanks to the use of forward variable
selection, and the natural inclusion of exogenous variables.

The proposed method was applied to several short-term energy
load forecasting data sets, which is a very challenging in forecast-
ing given its high-frequency nature. In such data sets, more than
20,000 lags are required for identifying yearly seasonality, leading
to dense, high-dimensional matrices. Our experiments demon-
strated the virtues of our approach, which performed best on all
the data sets in comparison with fourteen other forecasting strate-
gies. Our experiments also confirm the importance of using nonlin-
ear regression approaches, such as kernel methods, in time series
analysis with high-frequency data.

Regarding the experiments on the Chile data set, the proposed
SVR-FFS method has slightly better performance than the approach
reported by the national electric coordinator (Coordinador Eléctrico
Nacional) in decision-making, as can be seen on Table 6, even with-
out including the exogenous variables that this forecast considers.
This result shows the potential contribution of applying our pro-
posal for improving short-term load decisions.

As for future developments, there are multiple research
opportunities that could stem from this work. First, since the
traditional e-SVR implementation used in this study (LIBSVM)
could be very time-consuming in high-dimensional problems,
using more efficient base regression models can be considered
to reduce training times. For example, linear approaches using
highly-optimized learning strategies have been developed for
classification (see e.g. Djuric, Lan, Vucetic, & Wang, 2013), and
they can be adapted to SVR and time series analysis. Secondly,



Fig. 7. Residual plots for SVR-FFS and the best benchmark algorithms. GB data set.
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the forward process is bottlenecked by the computation of ker-
nel matrices using all training samples, which is a time consum-
ing process that is avoided by SVR via incremental optimization
methods, such as the sequential minimization optimization
(SMO) (Hornik, Meyer, & Karatzoglou, 2006). Sampling strategies
could be useful for speeding up our algorithm when each attri-
bute is assessed in terms of its contribution. Thirdly, the issue
of serial correlation in machine learning can be studied further
in future studies. Although this issue is of utmost importance
for the proper estimation of linear methods due to its parametric
nature, we believe it can also be a relevant topic in the machine
learning. This issue has not been discussed in the machine learn-
ing literature, to the best of our knowledge. Finally, cost-
sensitive strategies could be considered instead of using sym-
metric error measures, such as MAPE, in the sense that underes-
timating the demand is equivalent to overestimating it.
Symmetric error metrics may not be the right approach in appli-
cations such as energy load forecasting.
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