THE ROOMMATE PROBLEM WITH EXTERNALITIES
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ABsTRACT. This paper extends the roommate problem to include externalities, allowing preferences
for a partner to depend on the situation of the others. Assuming that everyone has prudent expecta-
tions about other agents’ reactions to deviations, stability concepts for matchings and partitions of the
set of agents are proposed and characterized. We prove that any roommate problem with externalities
has a stable partition and that a stable matching exists if there is a stable partition without odd rings.
These results allow us to find restrictions on the space of preferences ensuring the existence of a stable
matching. We also show that some classical properties are lost in the presence of externalities: the
existence of paths to stability from any unstable matching, the coincidence of the core with the set of

stable matchings, and the invariance of the set of agents that are alone in a stable matching.

KEYywoRrDs. Roommate problems - Externalities - Stable matching - Stable partition
JEL CurassiricaTioN. D62, CT78.

1. INTRODUCTION

The roommate problem, introduced by Gale and Shapley (1962), is a one-to-one matching problem
where agents may form pairs among them. It extends the classical marriage market framework allowing
individuals to form couples without dividing the population into two disjoint sets. Hence, several
situations with economic and social interest are captured: marriage markets with same-sex unions,
vertical /horizontal integration of firms, the formation of pairs of students/workers to carry out an
assignment, or the bilateral trading of commodities, to mention some examples.

As shown by Gale and Shapley (1962), the absence of a two-sided demographic structure compromises
the existence of a stable matching in the roommate problem, i.e., an individually rational distribution
of agents in couples that is stable with respect to bilateral deviations. This negative result motivates
the search for alternative solution concepts. In this direction, Tan (1991) and Tan and Hsueh (1995)
show that any roommate problem has a stable partition. That is, a partition of the set of agents into
ordered groups that associates to each individual an acceptable potential partner within her group
in such form that the following stability property holds: there are no blocking pairs of a matching
among the agents paired with individuals as preferred as their potential partners." Tan (1991) and Tan

and Hsueh (1995) also find a necessary and sufficient condition for the existence of a stable matching:
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each i € {1,...,k} (subscripts modulo k). Also, when k > 3, each a; prefers to be matched with a;+1 than with a;—1.
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the absence of stable partitions with odd rings, i.e., non-trivial groups of agents with an odd number
of members. Departing from this characterization, it is possible to find restrictions on the space of
preferences ensuring the existence of a stable matching. For instance, the no-odd-rings condition of
Chung (2000) or the symmetric utilities hypothesis of Rodrigues-Neto (2007).

Although not all roommate problems have a stable matching, it is worth noting that some interesting
properties are satisfied when this happens. First, the set of stable matchings coincides with the core,
which is the set of individually rational matchings that are stable with respect to group deviations (cf.,
Alcalde (1994)). Second, there always exist paths to stability, as for any unstable matching we can
reach a stable outcome through a finite sequence of blocking pairs (cf., Chung (2000), Diamantoudi,
Miyagawa, and Xue (2004)). Third, the Lone Wolf Theorem holds, because an agent that is alone in a
stable matching will remain alone in any other stable matching (cf., Gusfield and Irving (1989), Klaus
and Klijn (2010)).

However, classical roommate problems ignore situations where individuals recognize that their wellbe-
ing is affected by the other couples formed. For instance, in oligopolistic markets, firms decide between
vertical or horizontal integration considering the organizational structure of the economy. In labor mar-
kets, to choose a partner to work with, the relative importance of factors as personality or technical
skills depends on the characteristics of the teams that are competing. In marriage markets, class/caste
systems make preferences for a couple dependent on other couples’ attributes.

Motivated by these possibilities, we extend the classical roommate problem to include externalities,
addressing the validity of the results described above when preferences for a partner may depend on
the situation of others. Externalities are arbitrary and are incorporated assuming that everyone has
preferences over the set of matchings, instead of over the set of agents. Inspired by Sasaki and Toda
(1996), we concentrate our analysis on environments where agents do not have any information about
other agents’ preferences and, therefore, they are prudent about other agents’ reactions to deviations.?
That is, two agents block a matching only if their situation improves in any scenario where they form
a pair (i.e., independently of later deviations from others). Using this blocking concept, we introduce
and characterize stability concepts for both matchings and partitions of the set of agents.

Although it may seem difficult that prudent agents form a blocking pair, roommate problems with
externalities may not have a stable matching. However, a stable partition always exists (see Theorem
1). Even more, any stable partition without odd rings induces a stable matching and, therefore, we can
find sufficient conditions on the space of preferences to guarantee that each roommate problem has an
efficient and stable outcome (see Theorems 2 and 3).

As we show in several examples, unlike what happens in classical roommate problems, the inclusion
of externalities compromises the existence of paths to stability, the core may be an empty-set even
when there are stable matchings, and the Lone Wolf Theorem does not necessarily hold. Furthermore,
the necessary and sufficient condition for the existence of a stable matching is lost in the presence

of externalities: stable partitions with odd rings and stable matchings may coexist. Hence, even in an

°In our framework, the prudence of agents is a necessary and sufficient condition to guarantee solvability in the entire

subclass of marriage problems with externalities (see Sasaki and Toda (1996, Proposition 3.1 and Theorem 4.1)).
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environment where individuals are conservative when evaluating a deviation, the presence of externalities
can have a profound effect on the characteristics of stable matchings.

In our model, a stable partition exists even without prudence. That is, we may allow agents to
have information about other agents’ preferences and to form heterogeneous and sophisticated beliefs
about their reactions to deviations (see the remark after Theorem 1). However, as stable matchings
are required to be compatible with individual beliefs, the relationship between stable partitions without
odd rings and stable matchings—a key property to determine sufficient conditions for solvability of the
roommate problem—crucially depends on the prudence of agents (see the remark after Theorem 2).

This paper is organized as follows. In the next section we describe the roommate problem with
externalities and characterize the existence of stable partitions and stable matchings. In Section 3 we
analyze the effects of externalities on the structure of the roommate problem. In Section 4 we recover,
as byproducts of our main results, well-known characterizations of stability for marriage markets and

for roommate problems without externalities. Section 5 is devoted to some concluding remarks.

2. ROOMMATE PROBLEMS WITH EXTERNALITIES

A roommate problem with externalities (NN, (>,)qen) is characterized by a finite set of agents N and
a preference profile (>,)q4en over the set of matchings M = {u: N — N : u(u(a)) = a, Ya € N}, where
each preference >, is strict, complete, and transitive. In this context, an agent can form a pair with
any other individual or may remain alone. However, in contrast to the classical roommate problem, her
preferences for a partner may depend on the situation of the others.

We assume that everyone has prudent expectations about other agents’ reactions to deviations and,
therefore, a pair of agents will block a matching only if their situation improves in any scenario where

they are coupled, i.e., they improve independent of later deviations by other people.

DEFINITION 1. A matching pu € M is blocked by a pair (a,b) € N x N when p >, p and p = p for all
p € M such that p(a) = b.> A matching p is stable if it does not have any blocking pair.

The following example shows that the set of stable matchings may be empty.

EXAMPLE 1. Let (N, (>4)aen) be a roommate problem characterized by N = {1,2,3} and

w3 =1 p2 >1 H1 =1 Mo, H1 2 3 >2 H2 =2 Mo, M2 =3 1 =3 3 =3 o,

where p is the matching where all agents are single and p; is the matching where 4 is the only agent
alone, with ¢ € {1,2,3}. In this context, a stable matching does not exist. Indeed, po is blocked by
(2,3), p1 is blocked by (1,3), po is blocked by (1,2), and ps is blocked by (2, 3). O

Since roommate problems with externalities may not have stable matchings, we will focus first on
stability properties of ordered partitions of the set of agents, i.e., collections of pairwise disjoint, ordered,

and nonempty subsets of N covering .

3The case where a blocks 1 to become alone is captured by taking b = a.
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We need some definitions. Let M(a,b) = {u € M : p(a) = b} be the set of matchings where a and b
form a couple. Agent a considers b acceptable when she cannot block a matching in M(a, b) becoming
alone. Also, a considers that b is more interesting than ¢, with b # ¢, when she cannot block a matching
in M(a,b) by forming a pair with ¢. Given k > 3, an ordered set {aj,...,ar} C N is a ring when, for
every i € {1,...,k}, a; considers that a;;1 is more interesting than a;_;, although both are acceptable
to her, where subscripts are modulo k.* An odd ring is a ring with an odd number of elements.

A matching p is induced by a partition P, denoted by u € M(P), when the following properties hold:
- If {a1,...,a2r} € P, then u(a,) € {ar_1,a,41} for all r € {1,...,2k}, where k& > 1.

- If {a1,...,a95+1} € P, then there is an agent a; which is alone under p and p(a,) € {ar—1,ar41}
for all r € {1,...,2k + 1}, r # 4, where k > 0.

DEFINITION 2. Given a roommate problem with externalities (N, (-4)qaen), a partition P of the set of

agents is stable when the following properties hold:

(i) Each element of P is a ring, a pair of mutually acceptable agents, or a singleton.
(ii) If u € M(P) is an unstable matching, then its blocking pairs always include an agent that is

alone under p and belongs to a ring of P.

To give a more intuitive description of the stability of partitions, suppose that when P is formed
agents develop expectations about the partner they will have. Hence, if {a; ...,ar} € P, a; expects
that a matching in M (a;, a;41) being realized, although she does not discard the realization of a match-
ing in M(a;,a;—1). With this interpretation, the stability of P can be understood as a requirement
aligning expectations with preferences. In particular, any pair of agents that block a matching induced
by P includes an individual a; whose expectations were frustrated, as she was not matched with a;11

or a;_1. That is, a; is alone and belongs to a ring of P.°

THEOREM 1. Any roommate problem with externalities (N, (>4)acn) has a stable partition.

Proof. Given a,b € N, let p,p be the least preferred matching on M(a,b) by a. Define a preference
relationship >~} over N by the rule b >} c if and only if 144 >4 fa,.. Notice that =% is a complete,

transitive, and strict relation of preferences.

4A11 through the text, properties in which subscripts are in a set {1,...,m} hold modulo m.

5For classical roommate problems, Peski (2017) describes stable partitions through bijective mappings f : N — N, that
he refers as improper matchings when f(f(a)) # a for some a € N. Underlying his approach is the following one-to-one
correspondence between ordered partitions P and bijections f : N — N: {a1,...,ar} € P if and only if f(a;) = a;—1 for
all i € {1,...,k} and k > 1. Since this relationship does not depend of the presence of externalities, we can also describe
stable partitions in term of self-bijections of the set of agents. Indeed, a partition P is stable, in the sense of Definition 2,
if and only if the bijection f: N — N induced by P satisfies the following properties:
(i) f associates to each a a potential mate f(a) that is acceptable to her.
(ii) If f(a) # f~'(a), then a considers that f~!(a) is more interesting than f(a).
(iii) If a forms a pair with f(a) or f~!(a) in a matching u € M(P), then a cannot block i deviating with an agent b that
forms a pair with f(b) or f~1(b) in p.
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Given m € N, let I,,, = {1,...,m}. Since (N, (>=*)qsen) is a roommate problem without externalities,
it follows from Tan and Hsueh (1995, Corollary 3.8) that there is a partition P such that:
(1) If {a1,...,ax} € P and k > 3, then a;41 =}, a;—1 =, a; for each i € Iy;
(2) If {a1,a2} € P, then a;_1 >} a; for each i € Io;
(3) Given {aq,...,ar} and {by,...,b;} in P, not necessarily different, the following condition holds
for each (i, j) € Iy x I; such that b; # a;11: if b; =} a;_1 then b; 4 >Zj a;;
where all subscripts are modulo k or [, when it is appropriate.

The transitivity of preferences implies that b =% ¢ if and only if there is u € M(a,c) such that
p =q p for all p € M(a,b). Thus, (1) and (2) imply that each element of P is a ring, a pair of mutually
acceptable agents, or a singleton. Furthermore, for any pair of sets {ai,...,a;} and {b1,...,b;} in P,
not necessarily different, and for each (i, j) € I x I; such that b; # a;4+1, we have that:

Jp; € M(ag, aip1) UM(a;, ai-1), Y € M(az,bj) : p=a, fi

= 3 € M(ai,a;-1),Yu € M(ai,b;) [t >a, i
= by =5 a1 = bj >zj a; <= 3p; € M(as,b;),Yp € M(bj,bj—1): p b, pj
= dp; € M(a;,b;),Yp € M(bj,bj_1) UM(bj,bj41) 5 p>=b; pj-

Let 4 € M(P) and (a;, b;) a pair of agents that block it. If {a;} € P or {a;,a;+1} € P, thenb; # a;41.
Hence, the property above implies that, if b; belongs to a singleton or is paired under p, then he does
not want to form a pair with a; to block u. That is, b; is alone under u and belongs to a ring of P.

Alternatively, suppose that a; belongs to a ring of P and is paired under pu. If b; # a@;4+1, then the
property above implies that b; does not want to block i unless he is alone under ;1 and belongs to a
ring of P. If b; = a;41, then b; is alone under p, as otherwise he could block a matching in M (b;,b;41)
by deviating with b;_1, a contradiction with the fact that b; considers b;;; more interesting than b;_;.

Therefore, if (a;,b;) is a blocking pair of u € M(P) and either a; is paired under p or belongs to a

singleton of P, then b; is alone under y and belongs to a ring of P. a

We implicitly assume that agents do not have sophisticated conjectures about other players’ reac-
tions to deviations. However, to some extent, the existence of a stable partition does not depend on
this assumption. Indeed, let M, (b) C M(a,b) be the set of matchings representing agent a’s beliefs
about the scenarios that may arise when she decides to form a pair with b. Redefine the set of matchings
induced by P to include compatibility with individual beliefs: © € M(P) if and only if both p is induced
by P and p € Mgy(p(a)) for all @ € N. Also, extend the definitions of acceptable agent and ring by
assuming that to block a matching p a pair (a,b) € N x N requires that both p >, u, Vp € M, (b)
and p >y w1, Vp € My(a). Then, the same arguments made in the proof of Theorem 1 ensure that any

roommate problem with externalities has a stable partition.®

A matching p is complete when there are no agents alone, i.e., u(a) # a for all @ € N, and it is
efficient when there does not exist n € M such that n >, u for all « € N. Notice that, a complete
matching exists if and only if #N is even, while an efficient outcome always exists because M is finite

and individual preferences are transitive.

61n the adapted proof, fi,, must be defined as the least preferred matching on M, (b).
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The following result relates the existence of stable partitions with the stability of matchings, showing
properties that have analogous counterparts in the literature without externalities (cf. Tan (1991), Tan
and Hsueh (1995), Sasaki and Toda (1996)).

THEOREM 2. In any roommate problem with externalities (N, (>4)qen) we have that:
(i) Any stable partition without odd rings induces a stable matching.
(i) Any stable partition without odd rings or singletons induces a complete stable matching.

(iii) If there exists a stable matching, then there exists a stable matching that is efficient.

Proof. If P is a stable partition without odd rings, then it follows from Definition 2(ii) that a matching
induced by P is stable. Moreover, in the absence of singletons, the partition P only induces complete
matchings. These arguments guarantees the validity of properties (i) and (ii).

Item (iii) follows from Theorem 4.3 in Sasaki and Toda (1996). These authors work in a marriage
market with externalities in which agents never become unpaired. However, their proof of the existence
of an efficient and stable matching does not depend on either the two-sided structure or the impossibility

of agents to become unpaired. |

When individuals have sophisticated beliefs {M(b)}(a,p)enxn (see the remark after Theorem 1) the
results of Theorem 2(i)-(ii) do not hold anymore: there are roommate problems without stable matchings
that have stable partitions without odd rings and singletons. Intuitively, since a matching p induced by
a partition is required to be compatible with individuals’ beliefs (i.e., u € My (u(a)) for all a € N), it is
possible that M(P) = (). Formally, the property follows from Sasaki and Toda (1996, Proposition 3.1),

as the marriage market with externalities is a particular case of our model (see Section 4).

The next result determines conditions on preferences ensuring the existence of an efficient and stable
matching. Notice that, as N x M is a finite set, a preference profile (>=,)qcn always has a functional

representation. That is, there is ® : N x M — R such that p >, n if and only if ®(a,u) > ®(a,n).

THEOREM 3. A roommate problem with externalities (N, (>4)aen) has an efficient and stable matching
when any of the following conditions hold:

(i) The preference profile (>4)acn has no odd rings.

(11) (=a)acn has a representation satisfying ®(a, p) = ®(u(a), p),v(a,n) € N x M.

Proof. Tt follows from Theorem 1 that (N, (>4)aecn) has a stable partition P. If (i) holds, then P does not
have odd rings, and the result follows from Theorem 2. If (ii) holds, then the result follows from the pre-
vious case as (>4)qecn has no rings. Indeed, by contradiction, suppose that {ai,...,ax} is a ring. Since
for every i € I) the agent a; considers a; 1 more interesting than a;_1, there is u; € M(a;,a;—1) such
that ®(a;, 1;) < ®(a;, p) for all p € M(aiy1,a;). Hence, as pir1(air1) = ai, Plag, ps) < ®(a;, piv1) =
D(ajt1, ttit1). It follows that ®(ay, 1) < P(ag, k) < Plag,pu) = ®(ar, p), Vi € M(ay,ar), which
contradicts the fact that uy € M(ay,ar). O
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Theorem 3(i) extends Chung (2000, Corollary 2) to an environment with externalities. Theorem 3(ii)
guarantees that a stable matching exists when two agents matched under some p € M give the same
utility to it. This hypothesis can be viewed as an extension to the framework with externalities of the

symmetric utilities hypothesis introduced by Rodrigues-Neto (2007).

3. THE EFFECTS OF EXTERNALITIES ON ROOMMATE PROBLEMS

In this section, we show through several examples that a variety of properties of the classical roommate
problem are lost when externalities are included, even when individuals have prudent expectations about
the reactions of other agents to deviations.

For instance, without external effects, the existence of a stable matching is incompatible with the
existence of a stable partition with odd rings (see Tan and Hsueh (1995, Theorem 3.10 + Corollary 3.8)
and Tan (1991, Theorem 3.3)). However, as the following example points out, stable matchings and

stable partitions with odd rings may coexist in our framework.

ExAMPLE 2. Following the notation of Example 1, let (N, (>4)scn) be a roommate problem with three
agents, N = {1, 2,3}, with preferences characterized by

M3 =1 p2 =1 Ho =1 M1, M1 =2 fo =2 p3 =2 U2, Mo =3 f2 =3 [1 »3 3.

In this context, ug is the only stable matching, because (1, 3) blocks p1, (1,2) blocks po, and (2, 3)
blocks ps. Also, Definition 2 guarantees that {{1}, {2}, {3}} and {{1,2,3}} are stable partitions. = O

In the proof of Theorem 1 we have shown that (N, (>,)s.cn) has a stable partition by considering a
roommate problem without externalities (N, (=*),en) that has a partition satisfying the properties of
stability required by Tan (1991) and Tan and Hsueh (1995). The Example 2 proves that neither the sets
of stable partitions nor the sets of stable matchings of these problems coincide. Indeed, {{1}, {2}, {3}}
is unstable in the roommate problem without externalities induced by the problem of Example 2, which
in turn does not have stable matchings.”

Example 2 also shows that the assumptions on preference profiles stated in Theorem 3 are not
necessary to guarantee the existence of an efficient and stable matching. On the one hand, the preference
profile described in Example 2 has odd rings. On the other hand, if ® is a representation of (>4)sen
satisfying the condition (ii) of Theorem 3, then ®(2,u1) = ®(3, 1) < (3, p2) = P(1, u2) < B(1, pg) =
D(2, u3) < ®(2, 1), which is a contradiction.

"On stable algorithms. It is not difficult to verify that a stable matching of the problem without externalities (N, (>*
)aenN) is also stable in (N, (>q)aen). Hence, when (N, (>=*),cn) is solvable, the classical algorithm proposed by Irving
(1985) can be applied to it in order to find a stable matching for (N, (>4)qen). Alternatively, if (IV, (>=*)sen) has no
stable matching, we can apply any of the algorithms proposed by Tan (1991) and Tan and Hsueh (1995) in order to
find a stable partition, which is also stable for (N, (>)sen) (see the proof of Theorem 1). However, the stable partitions
of (N, (>*)aen) do not necessarily induce stable matchings of (N, (>=),en). For instance, in Example 2 the matchings

induced by the stable partitions of (N, (=*)gsen) are {p1, u2, p3}, while pg is the only stable matching of (N, (>=)qenN)-
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REMARK 1 (THE EXISTENCE OF PATHS TO STABILITY)

In the class of roommate problems with a non-empty set of stable matchings it is natural to analyze
the existence of paths to stability. Thta is, to determine if a stable outcome can be reached from any
unstable matching through a finite sequence of blockings. This issue was extensively discussed in the
previous literature without externalities and positive results were shown (see, Roth and Vande Vate
(1990), Chung (2000), and Diamantoudi, Miyagawa, and Xue (2004)). Unfortunately, the Example 2
shows that the presence of externalities compromises the existence of paths to stability. Indeed, in
the roommate problem described in that example any unstable matching has only one pair of agents
that wants to block it: (1,3) wants to block pq, (1,2) wants to block us, and (2,3) wants to block
3. Therefore, from any unstable matching, a sequence of blocking pairs always enters into the cycle

1 — pg — pg — 1 — - - -, which never leads to the unique stable matching py. a
Given a matching p, P is a partition induced by p if P = {{a,b} : p(a) = b} U {{c} : ulc) = c}.
The following example shows that in the presence of externalities a stable matching does not necessarily

induce a stable partition (see Theorem 2(i)-(ii)).

EXAMPLE 3. Let (N, (>4)aen) be a roommate problem in which N = {1,2,3,4} and

((1,2),(3,4)) =1 ((1,2),3,4) =1 ((1,3),2,4) =1 ((1,3),(2,4)) =1 -+ =1 po,

((1,2),(3,4)) =2 ((2,3),1,4) =2 ((1,4),(2,3)) =2 ((1,2),3,4) =2 - 2 pio,

((1,2),(3,4)) =3 ((1,3),2,4) =35 ((1,3),(2,4)) =3 ((2,3),1,4) =5 ((1,4),(2,3)) =3 -+ =3 po,
((1,2),(3,4)) =4 -+ =4 (1,2,(3,4))

We affirm that ((1,2),(3,4)) is the only stable matching and, in spite of what happens for classical
roommate problems, the partition {{1,2},{3,4}} is unstable. Indeed, ((1,2), (3,4)) is stable since it is
top ranked for all agents, while the other matchings are unstable because the following properties hold:
o is blocked by (1,2), ((1,4),2,3) and ((1,4), (2, 3)) are blocked by (1,3), ((2,4),1,3) and ((2,4), (1, 3))
are blocked by (1,2), ((3,4),1,2) is blocked by (1,2), ((2,3),1,4) is blocked by (1,3), ((1,3),2,4) is
blocked by (1,2), and ((1,2), 3,4) is blocked by (2, 3). The partition {{1,2}, {3,4}} is unstable because
{3,4} are not mutually acceptable agents.

Furthermore, it is not difficult to verify that {{1,2,3},{4}} is a stable partition. Thus, when exter-

nalities are allowed, complete stable matchings and stable partitions with odd rings may coexist. |

The next example shows another interesting effect of the presence of externalities in models with an

even number of agents: complete and incomplete stable matchings may coexist.

EXAMPLE 4. Let (N, (>4)aen) be a roommate problem in which N = {1,2,3,4} and

((1,2),(3,4)) =1 -+ =1 (1,2,3,4) =1 ((1,2),3,4) =1 ((1,4),2,3),
((1,2),(3,4)) =g -+ =2 (1,2,3,4) =2 ((2,3),1,4),
((1,2), (3,4)) =g -+~ 3 (1,2,3,4) =5 ((1,3),2,4) =3 (1,2, (3,4)),
((1,2), (3,4)) 4 -+ -+ =4 (1,2,3,4) =4 ((2,4),1,3).
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It follows that ((1,2),(3,4)) is stable, although {{1,2},{3,4}} is not a stable partition because 2 is
not acceptable to 1. Notice that agents 1 and 3 have only one acceptable partner and, therefore, (>4)qen
has no odd rings. Moreover, since there are no pairs of mutually acceptable agents, {{1}, {2}, {3}, {4}}
is the only stable partition and Theorem 2(i) guarantees that (1,2, 3,4) is a stable matching.

If we modify the example exchanging the position of matchings ((1,2),(3,4)) and (1,2, (3,4)) in the
preference profile above, we guarantee that (1,2, (3,4)) is an incomplete stable matching that cannot be

induced by a stable partition. |

REMARK 2 (THE LONE WOLF THEOREM)

In the absence of externalities, the so-called Lone Wolf Theorem holds: an agent that is alone in a
stable matching will remain alone in any other stable matching (see Gusfield and Irving (1989), Klaus
and Klijn (2010)). This property does not hold in the presence of externalities, as in Example 4 we have
that (1,2,3,4) and ((1,2), (3,4)) are stable matchings. Furthermore, Tan and Hsueh (1995) showed that
without externalities all stable partitions have the same odd rings and singletons. This property is not
fulfilled in our framework, as {{1},{2},{3}} and {{1,2,3}} are stable partitions in Example 2. O

The next example shows that there are solvable roommate problems with externalities that do not

have a complete stable matching although the number of agents is even.

EXAMPLE 5. Let (N, (>4)aen) such that N = {1,2,3,4} and

((172)?374) b TR ~1 ((172)7 (3’4)) ~1 ((1’4)7273)3
((2,3),1,4) =g+~ =2 ((2,3),(1,4)) =2 ((2,4),1,3),
((133)7274) I =3 ((173)a (2’4)) =3 ((334)71’2)

Since (>4)aen has no odd rings and there are no pairs of agents mutually acceptable, it follows
from Theorem 1 that, independently of 4’s preferences, {{1}, {2}, {3}, {4}} is the only stable partition.

Hence, (1,2,3,4) is a stable matching. Also, all complete matchings are unstable. |

In previous examples all stable partitions have either a ring or a singleton. The next one shows that

the set of roommate problems that have a stable partition without odd rings or singletons is non-empty.

EXAMPLE 6. Let (N, (>4)aen) be a roommate problem in which N = {1,2,3,4} and

((1,4),(2,3)) =1 ((1,3),2,4) =1 ((1,3),(2,4)) =1 ((1,2),(3,4)) =1 -+ - =1 ((1,4),2,3) =1 po,
((1,2),(3,4)) =2 ((2,4),1,3) =2 ((2,4), (1,3)) =2 ((1,4),(2,3)) =2 -+ - =2 ((1,2),3,4) =2 po,
((1,4),(2,3)) =3 ((1,3),2,4) =5 ((1,3),(2,4)) =3 ((1,2),(3,4)) =3 -~~~ =3 ((2,3),1,4) >3 po,
((1,2),(3,4)) =4 ((2,4),1,3) =4 ((2,4),(1,3)) =4 ((1,4),(2,3)) =4 -+ =4 ((3,4),1,2) =4 po

Since ((1,3),(2,4)) is a stable matching, it follows from Definition 2 that {{1,3},{2,4}} is a stable
partition. Notice that, (IV, (>4)een) does not have odd rings and there are no stable matching with

two or more agents alone. Hence, (N, (>,)q.en) has no stable partitions with odd rings or singletons. O
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The following Venn diagrams summarize some of our results:

S P=R

[E4]

[E1] [E2]
S R

[E4]

N

R : Roommate problems with externalities (N, (>a)acn)-

P : Problems in R with a stable partition.

S : Problems in R with a stable matching.

Se : Problems in R with a complete stable matching.

Pr : Problems in R where stable partitions do not have odd rings.

Po : Problems in R with a stable partition without odd rings or singletons.

Sp : Problems in & where all stable matchings are induced by stable partitions.

[En] : Example n.

Note that, abusing the notation slightly, in models without externalities we have that:
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REMARK 3 (THE CORE WITH EXTERNALITIES)

Given a roommate problem with externalities (N, (>4 )qen), a matching o can be blocked by a coalition
S C N if there exists f : S — S such that f(f(S)) =5 and p =, p for all @ € S and p € M such that
p(b) = f(b), Vb € S. The core of (N, (>4)aen) is the set of matchings that cannot be blocked by any
coalition. Notice that, the core is contained in the set of efficient and stable matchings.

In spite of what happens in roommate problems without externalities (cf. Alcalde (1994)), in our
framework the core may be an empty set even when there are efficient and stable matchings. For
instance, following the notation of Example 1, consider a problem where agents are characterized by
preferences o =1 po =1 41 =1 M43, Mo 2 1 o o o M3, and u1 >3 u2 3 po >3 p3. In this context,
1 is the unique (efficient) stable matching.® However, it is blocked by the coalition {1,2} through
f:4{1,2} = {1,2} such that (f(1), f(2)) = (1,2). Thus, the core is empty. O

4. INSERTION IN THE LITERATURE

We will show that well-known characterizations of stability for marriage markets with externalities
and for classical roommate problems can be recovered as particular cases of our previous results.

Given non-empty, finite, and disjoint sets M; and Ms, the roommate problem with externalities
(M1 UMa, (a)aem,uns, ) is an instance of the marriage market when it is a two-sided problem in which
agents in one side are only interested in forming pairs with agents on the other side. That is, for each
i €{1,2} and a,b € M;, with a # b, we have that u =, n for all (u,n) € M(a,a) x M(a,b). A problem
satisfying the conditions above is an instance of the strict marriage market when #M; = # M5 and all
agents prefer to form a pair than being alone. Hence, for each i € {1,2} and (a,b) € M; x M;, with
i # j, we have that p =, n for all (u,n) € M(a,b) x M(a,a).

COROLLARY (SASAKI AND ToDA (1996), MUMCU AND SAGLAM (2010))
Any problem (M1 UMa, (>a)achuMs,) that is an instance of the (strict) marriage market has an efficient

and (complete) stable matching.

Proof. Let (M1 U Ma, (>a)acmun,) be an instance of the marriage market. It follows from Theorem 3
that it is sufficient to prove that (>4)aen, U, has no odd rings. Let {aq,...,asx+1} be an odd ring and
assume, without loss of generality, that a; € M. Since for every i € Isgy1, a;4+1 and a;_1 are acceptable
to a;, we conclude that {as, a4, ..., as;, a1} C My, which is a contradiction.

Suppose that (M;UMa, (>4 )aer,un,) is an instance of the strict marriage market and let p be a sta-
ble matching, which exists as a consequence of the previous case. If under u € M there is an agent alone,

then there is an even number of agents alone and, therefore, any pair of them can block the matching. O
Externalities are neutral in (N, (>4)qen) when, for each a,b,¢c € N and (f1,7) € M(a,b) x M(a,c),

we have that i =, 7 = p =4 0, V(1,) € M(a,b) x M(a,c). That is, if externalities are neutral, an

agent never considers beliefs about other individuals’ decisions to form a pair.

S8Indeed, jup is blocked by (2,3), while u3 and ug are blocked by (1, 3).
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COROLLARY (TAN (1991), TAN AND HSUEH (1995))

For any roommate problem in which externalities are neutral we have that:

(i) There is a stable partition.

(ii) There is a stable matching if and only if there is a stable partition without odd rings.

(iii) There is a complete stable matching iff there is a stable partition without odd rings or singletons.

Proor. Item (i) follows from Theorem 1. Properties (ii) and (iii) are a consequence of Theorem 2
and the fact that, when externalities are neutral, any stable matching (respectively, any complete stable
matching) induces a stable partition without odd rings (respectively, without odd rings or singletons).
Indeed, the neutrality of externalities guarantees that two agents forming a pair in a stable matching

are mutually acceptable and, therefore, the requirements of Definition 2 hold. O

5. CONCLUDING REMARKS

In this work, we extended the classical roommate problem to include externalities in such form that
individuals have strict preferences over the set of matchings. Assuming that agents have prudent expec-
tations about other agents’ reactions to their deviations, we proposed stability concepts for partitions
of the set of agents and for matchings. Since previous results of the literature without externalities were
obtained as particular cases of our main findings, our concepts of stability can be viewed as natural
extensions of those that were studied in models without external effects.

We have shown that in the presence of externalities a stable partition always exists and a stable
matching can be induced by a stable partition without odd rings. We also provided extensions to a
framework with externalities of the no-odd-rings condition of Chung (2000) and the symmetric utilities
hypothesis of Rodrigues-Neto (2007).

However, as the following table summarizes, some properties were lost by including externalities:

Externalities Classical
A stable partition always exists v v
A stable partition without odd rings induces a stable matching
Stable matchings and stable partitions with odd rings never coexist
All stable partitions have the same (number of) odd rings and singletons
There is a path to stability from any matching
The core coincides with the set of stable matchings
The Lone Wolf Theorem holds

X X X X X N
NN NS NRN

Therefore, as a matter of future research, it is interesting to discuss if the inclusion of restrictions
on the space of individuals’ preferences, or the sophistication of individuals’ expectations about other
agents deviations, or the focus on particular types of externalities, allow us to recover some of the
properties described above (cf., Bando (2012), Hafalir (2008), Fisher and Hafalir (2016)).

It is important to remark that there are solution concepts that make all classical roommate problems
solvable and guarantee that any stable matching, when it exists, belongs to the solution set. For instance,

the P-stable matchings defined by Inarra, Larrea, and Molis (2008), the absorbing sets proposed by
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Inarra, Larrea, and Molis (2013), and the Q-stable matchings introduced by Bir6, Inarra, and Molis
(2016). Unfortunately, if stable matchings are still required to be part of the outcomes determined by a
solution concept, then these previous approaches of the literature cannot be adapted to our framework.
Indeed, our Examples 2 and 3 show that the natural extensions to the framework with externalities of
the definitions of P-stable matchings, absorbing sets, and Q-stable matchings are not compatible with

the inclusion of stable outcomes.’
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