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Abstract
In many orchards, irrigation scheduling is designed based on data from meteorological networks and considering homogene-
ous soil properties. Such assumptions may result in inefficient irrigation, which is difficult to constrain without expensive or 
invasive techniques. Here we have evaluated the ability of the electrical resistivity tomography (ERT) for detecting meter-
scale irrigation uniformity and deep percolation during irrigation. The spatiotemporal variability of soil volumetric water 
content (VWC) in a vineyard located near Santiago (Chile) was inferred using ERT monitoring of two irrigation cycles. 
The electrical resistivity structure up to 4 m depth was estimated using two-dimensional inversion of ERT data. ERT results 
were verified by comparing resistivity models with VWC measured with soil moisture sensors, soil properties mapped in a 
2 m-depth soil pit, and the spatiotemporal evolution of VWC obtained by solving numerically Richards equation. Largest 
temporal variations of resistivity were observed within the root depth (1 m) and are consistent with expected relative changes 
in VWC during irrigation. ERT images exhibit lateral changes in resistivity at these depths, likely indicating non-uniform 
infiltration of water controlled by observed soil texture variations. Resistivity changes were also observed below the root 
zone, suggesting that a fraction of the irrigation water percolates downward. These findings can be explained by an excess 
of irrigation water applied during the monitoring, which was planned considering regional evapotranspiration (ET) data that 
overestimated the actual ET measured at the vineyard. Altogether, our results suggest that ERT monitoring during irrigation 
is a cost-effective tool to constrain the performance of irrigation systems.

Introduction

For more than a decade, Central Chile is experiencing 
a severe meteorological drought with important conse-
quences on water availability (e.g. Garreaud et al. 2017, 
2019). This drought is consistent with climate change 

projections. Global Circulation Models results indicate a 
strong signal of reduction in precipitation for this region 
that severely challenges water security goals (Meza et al. 
2014). Irrigated agriculture in Central Chile is one of 
the sectors that has the highest rates of fresh water con-
sumption estimated roughly around 70–80% of water 
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withdrawals (DGA 2012; Valdés-Pineda et al. 2014). In 
this context, increasing water use efficiency and improv-
ing irrigation management is critical for agriculture and to 
ensure a sustainable development of the region. Although 
it is usually assumed that drip irrigation systems have 
a relatively high efficiency (e.g. 90%, see Brower et al. 
1989), such efficiency can be significantly lowered by 
some conditions, such as soil properties, and inadequate 
irrigation scheduling. Consequently, achieving high levels 
of irrigation efficiency is of utmost importance consider-
ing the global-warming and temporally-extensive droughts 
recorded since 1950 worldwide (Dai 2013).

Correct measurement of irrigation efficiency (defined 
here as the amount of water retained by soils after an irriga-
tion event over the amount of water applied; Israelsen 1950) 
is critical because crop productivity is highly dependent on 
water transpiration. A deficiency on soil water availability 
may result in crop water stress and experience yield reduc-
tion; on the contrary, an excess of soil water availability 
reduces oxygen diffusion to roots and creates root hypoxia 
with detrimental results. In addition, the excess of water 
applied usually percolates and moves nutrient away from the 
root zone contaminating water bodies and reducing nutrient 
uptake. Traditional methods to measure or monitor irriga-
tion efficiency are mostly based in direct soil water content 
measurements and soil moisture estimations. The only direct 
water content measurement (the gravimetric method; Reyn-
olds 1970) is slow, impossible to obtain in real time scale 
and requires intensive sampling to obtain a realistic repre-
sentation of spatial variability. Methods commonly used to 
estimate soil moisture at orchard scale are based in dielectric 
constant measurements of the soil and employ technologies 
based on Time Domain Reflectometry (TDR) or Frequency 
Domain Reflectometry (FDR) (Evett and Parkin 2005; Rob-
inson et al. 2008). These methods perform relatively well 
in mineral soils, are friendly to be used at orchard scale, 
and allow users to make quick decisions regarding irrigation 
management. However, dielectric constant measurements 
are point based and cannot capture the spatial heterogeneity 
of the system or do require a set of measurements and equip-
ment that increases operational cost and adds complexity 
to irrigation scheduling and management. Also, these sys-
tems use probes with only 15–20 cm as radium of influence, 
which implies the need to install many sensors in order to 
obtain a depth moisture profile, and several monitoring sta-
tions in the orchards, to have a representative measurement 
of soil moisture in the field. Even in pressurized systems, 
soil heterogeneity may cause big differences in terms of 
water movement or water retention capacity reducing their 
efficiency of application. The lack of resources and time 
lead managers to base irrigation decisions on point measure-
ments and general soil studies with suboptimal results. This 
problem motivates having a quantitative knowledge of the 

spatial distribution of soil moisture, which could be solved 
with technologies such as geophysical methods.

Geophysical methods have the ability to map compara-
tively larger volumes of soil with the advantage of minor 
perturbation of the soil structure (e.g. Allred et al. 2008). 
The electrical resistivity tomography (ERT) is one of the 
most common geophysical techniques used in agricul-
tural applications (e.g. Samouëlian et al. 2005). The ERT 
method estimates the distribution of electrical resistivity in 
the subsurface from measurements of electrical potentials 
which result from injection of electrical currents to the soil. 
Although the bulk electrical resistivity of a soil volume 
depends on a myriad of factors, it is usually strongly depend-
ent on the electrical resistivity and amount of interstitial 
fluids (e.g. Friedman 2005). For the latter reason, ERT has 
been widely employed to characterize the soil water content 
in a variety of agricultural contexts, from the field scale (e.g. 
Brunet et al. 2010; Calamita et al. 2012; Moreno et al. 2015; 
Alamry et al. 2017) to the scale of plant roots (e.g. Garré 
et al. 2011; Cassiani et al. 2015). The ground penetrating 
radar (GPR) has been used to image soil structure and to 
estimate soil water content (Huisman et al. 2003; Klotzsche 
et al. 2018). GPR is a geophysical method that uses high-
frequency electromagnetic (EM) waves that are transmitted 
and reflected within the subsurface. Since the propagation 
of EM waves depends on the electrical permittivity and elec-
trical resistivity of the subsurface, information such as the 
travel time of the EM ground wave or the amplitude of the 
reflected waves can be used to estimate the water content 
(e.g. Hubbard et al. 2002; Huisman et al. 2003) and salinity 
in soils (Hagrey and Müller 2000).

A number of studies have used ERT to monitor soil hydrau-
lic dynamics during irrigation, usually in combination with 
other geophysical techniques (e.g. GPR) and using micromete-
orological constraints (e.g. evapotranspiration fluxes measured 
with eddy covariance sensors). At the plant scale, ERT moni-
toring have obtained high-resolution images revealing complex 
patterns in the soil hydraulic dynamics around plant roots (e.g. 
Cassiani et al. 2016; Mary et al. 2018, 2019). Such knowledge 
has provided insights into the efficiency of irrigation fronts 
to satisfy plant needs (e.g. Cassiani et al. 2015). Yet, it is still 
poorly understood how the characterization of soil parameters 
at a single plant can be upscaled in order to make irrigation 
decisions for a plot or orchard. Although some authors have 
reported that mapping meter-scale variability of soil electrical 
resistivity provides a useful proxy for changes in soil mois-
ture and composition at the orchard scale (e.g. Michot et al. 
2003; André et al. 2012; Vanella et al. 2018), there are studies 
showing that temporal changes in electrical resistivity can-
not be unambiguously related to soil moisture variability (e.g. 
Moreno et al. 2015; Hardie et al. 2018). The validity of electri-
cal resistivity as a proxy for soil moisture is strongly sensitive 
to local soil conditions (e.g. Brillante et al. 2014). Electrical 



125Irrigation Science (2021) 39:123–143	

1 3

resistivity is a good proxy for soil moisture variability only if 
there is a significant contrast between the resistivity of inter-
stitial fluids and the resistivity of matrix components. Oth-
erwise, misleading estimates of soil moisture can be derived 
from resistivity images in soils where fluids and matrix have 
similar resistivity (see e.g. Waxman and Smits 1968), or where 
fluids with significantly different resistivities are mixed (Boaga 
et al. 2013; Moreno et al. 2015; Cassiani et al. 2016; Har-
die et al. 2018). To establish a relationship between electrical 
resistivity and soil moisture, ERT results are usually calibrated 
with measurements using soil moisture sensors such as TDR 
(see e.g. Calamita et al. 2012). Most of ERT studies monitor-
ing irrigation dynamics have been focused in characterizing 
the distribution of soil moisture from the surface until the root 
zone depth, revealing that irrigation water can follow complex 
paths during infiltration, resulting sometimes in low degree 
of irrigation uniformity (e.g. Moreno et al. 2015; Hardie et al. 
2018). However, the applicability of ERT to detect infiltration 
of irrigation water below the root zone (i.e. deep percolation) 
has not been completely addressed.

In this study, we aimed to determine whether ERT provides 
useful and practical insights to constrain meter-scale irriga-
tion uniformity and deep percolation, two parameters that are 
important for assessing the efficiency of irrigation systems at 
the orchard scale. Our hypothesis was that meter-scale tempo-
ral variations in the electrical resistivity structure are sensitive 
enough to detect relative changes in soil moisture triggered 
by infiltration of irrigation water. To test our hypothesis, we 
monitored with time-lapse ERT the spatiotemporal distribu-
tion of soil moisture along a vine row at different stages of the 
irrigation cycle. To characterize shallow irrigation uniform-
ity and deep percolation at the orchard scale demands a com-
promise between resolution and depth of exploration of ERT 
surveys which is not trivial to address with timely-efficient 
measurements. To tackle this issue, we measured ERT data 
using two modes of acquisition. ERT results were verified by 
comparing electrical resistivity models with GPR data, soil 
properties mapped in a soil pit dug next to the studied vine 
row, soil moisture measured with TDR and FDR sensors, and a 
numerical model of the soil hydraulic dynamics constrained by 
time series of evapotranspiration (ET) and soil moisture data. 
Based on this analysis, we evaluate the efficacy and limitations 
of ERT to characterize meter-scale soil moisture heterogene-
ity, and discuss some potential practical applications of ERT 
monitoring results for making irrigation decisions.

Materials and methods

Study site

The study was conducted in a Cabernet Sauvignon (Vitis 
vinifera) vineyard (33.7048° S, 70.5758° W, 706 m average 

altitude) located in the area of Pirque, distant 30 km south 
of the city of Santiago de Chile (Fig. 1a, b). This region is 
characterized by a Mediterranean climate, with precipitation 
concentrated mostly in winter (i.e. from June to August with 
annual total precipitation in the order of 300 mm; Marchant 
et al. 2007). Mean annual temperature is about 14.5 °C with 
60% relative humidity. In the studied vineyard, the vine rows 
are North–South oriented in a vertically trilled system with 
1.94 m height. The space between rows is 2.45 m, while 
vines are planted at 1.20 m spacing. The vineyard was irri-
gated using a drip system with lines along the vine rows, a 
spacing of 0.6 m between drip emitters and a total discharge 
of 4 L per hour. During the study, irrigation events took 
place every 6 days for an interval of 10 h and using a flow 
rate of 2.7 mm per hour. The amount of water applied in 
the irrigation events was planned based on reference evapo-
transpiration, which is estimated from data collected by a 
nearby weather station. Using this information, the applied 
water is decided to supply a fraction of cumulative reference 
evapotranspiration which is slightly above the crop coef-
ficient (Kc = 0.65).

Geophysical experiments were focused on a segment of a 
vine row which was permanently monitored by a TDR and 
an eddy covariance system (Fig. 1c). The volumetric water 
content (VWC) in one of the adjacent vine rows was meas-
ured using a Campbell Scientific Inc CS616 TDR sensor. 
This TDR was installed vertically at 0.1 m depth below a 
dripper. Measurements of the VWC were taken every 30 min 
by TDR. An eddy covariance system was mounted in a tower 
located approximately 10 m from the studied vine row (see 
description in “Eddy covariance”). Soil temperature was 
measured by Campbell Scientific Inc TCAV thermocouples 
installed at 0.02 m and 0.04 m depth, obtaining an aver-
age value every 30 min. A soil pit was dug in the inter row 
next to the studied vine row on 4 September 2019, approxi-
mately one and a half months after the last rain and 4 months 
after the irrigation season. The soil pit extended parallel to 
the ERT profile from X = 3.3 m to X = 12.8 m (Fig. 2), and 
reached a maximum depth of 1.8 m. The soil profile was 
described in four columns inside the soil pit at X = 4, 5, 7 and 
9 m (see Table 1 and Fig. 2a). At each column, we character-
ized the soil texture, roots density and bulk apparent den-
sity. In addition, we measure VWC along each column with 
30 cm sample interval using a FDR Decagon GS1 Volumet-
ric Water Content sensor (see Table 1). Both TDR and FDR 
instruments were calibrated using the calibration curves 
provided by the manufacturer for loamy soils. A total of 
0.5–1 kg of disturbed soil samples were taken from each rep-
resentative soil horizon for obtaining bulk apparent density 
and soil granulometry. Bulk apparent density was measured 
using the clod method (Cunningham and Matelski 1968). 
Soil granulometry was obtained by using the hydrometer 
method (Bouyoucos 1962). From granulometry results, we 
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classified the soils using the USDA textural classes (USDA 
1977). Soil samples are predominantly loams, sandy loams 
and loamy sands. It was not possible to obtain undisturbed 
soil core samples to measure gravimetric water content and 
hydraulic conductivity. Root size was classified into thick 
(> 2 mm diameter) and thin (< 2 mm diameter) using the 
criterion employed by Morlat and Jacquet (1993).

ERT

ERT surveys were carried out along a 13.5 m-long profile 
during six alternate days of January 2019 (see Table 2), in 
the middle of the period in which the vineyard was under 

irrigation (summertime). An additional ERT survey was 
made on September 23 (early springtime) of the same year 
to compare ERT results with soil pit observations made 
in September 4. However, irrigation started during ERT 
acquisition on September 23, and therefore soil moisture 
conditions at shallow levels (0–0.5 m depth) were not fully 
comparable with those observed in the soil pit. All ERT 
measurements were made using a TIGRE Resistivity Imag-
ing System and 32 stainless-steel electrodes. Electrodes had 
a length of 40 cm and a diameter of 2 cm, and were bur-
ied 15 cm into the soil. Electrodes position and depth did 
not change during the whole sequence of measurements of 
January 2019. A dipole–dipole array was employed, using 

Fig. 1   a, b Location of the 
study area. c Experiment layout. 
Red and blue lines show the 
location of the ERT and GPR 
profiles, respectively. The 
yellow rectangle indicates the 
location of the soil pit. TDR 
permanent TDR sensor, EC 
eddy covariance tower. Photo 
courtesy of Francisco Suárez. 
d Photo depicting the ERT 
profile (yellow cable below the 
grapevines) along the vine row. 
The GPR profile was measure 
along the interrow behind the 
grapevines. e Map showing 
the average evapotranspiration 
footprint interpreted from 8th 
to 18th January 2019. Contours 
lines are shown with 10% inter-
val, from 10 to 90% source area
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Fig. 2   Soil pit. a Soil pit scheme summarizing measured parameters 
along the four vertical columns studied: blue numbers are average 
total water content obtained by FDR measurements, labels indicate 
soil texture according to USDA classification obtained from the 
granulometric analysis of samples. Gray dotted lines indicate the 
interpolation of soil horizons between columns. b Photo (looking to 

the south) showing the soil pit. Brownish soil horizons correspond to 
loam (L), sandy loam (SL) and silt loam (SiL) units. Gray soil hori-
zon constrained by white lines is the loamy sand (LS) unit which 
includes a lens of sandy clay loam (SCL). The lowest soil horizon is 
the unit of gravels (G). White dotted lines outline the depths where 
roots are concentrated

Table 1   Soil characteristics at the soil pit

ERT profile 
position X 
(cm)

Depth range 
(cm)

Bulk 
density (g/
cm3)

Thick roots 
(> 2 mm diam-
eter) density 
(roots per cm2)

Thin roots 
(< 2 mm diam-
eter) density 
(roots per cm2)

VWC (m3/m3) Clay (%) Silt (%) Sand (%) Soil texture

400 0–20 1.43 0.0023 0.0037 0.2 18 40 42 Loam
400 20–65 1.38 0.00175 0.003 0.22 18 34 48 Loam
400 65–100 1.48 0.001 0.004 0.14 10 36 54 Sandy loam
400 100–120 – 0.0005 0.004 – – – – Gravels
400 120–140 1.44 0 0 0.03 4 16 80 Loamy sand
400 140–155 – 0 0 0.13 – – – Gravels with 

clay lenses
400 155–180 – 0 0 – – – – Gravels
500 0–40 1.41 0.0025 0.0001 0.16 18 36 46 Loam
500 40–75 1.41 0.002 0.003 0.17 16 32 52 Loam
500 75–106 1.43 0 0 0.11 8 24 68 Sandy loam
500 106–130 1.44 0 0 0.06 4 10 86 Loamy sand
500 130–150 – 0 0 0.24 – – – Sandy clay
500 150–180 – 0 0 0.01 – – – Gravels
700 0–47 1.43 0.0016 0.001 0.18 4 56 40 Silt loam
700 47–110 1.37 0.0022 0.001 0.15 4 26 70 Sandy loam
700 110–145 1.34 0.00075 0.00025 0.03 4 8 88 Loamy sand
700 145–180 – 0 0 0.13 – – – Coarse sand
900 0–25 1.48 0.00125 0.00125 0.19 4 50 46 Silt loam
900 25–110 1.4 0.000857 0.00142 0.19 4 30 66 Sandy loam
900 110–160 1.4 0 0 0.04 4 8 88 Loamy sand
900 160–175 – 0 0 0.06 – – – Gravels
900 175–190 – 0 0 0.01 – – – Gravels
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an electrode spacing of 0.5 m. Each point of measurement 
is defined by a pair of current and potential dipoles, which 
is called a quadripole as a whole. For each quadripole, the 
TIGRE system calculates a resistance value and its associ-
ated root mean square (RMS) error by stacking three to four 
measurements.

Two ERT acquisitions were carried out every day over the 
entire profile using N factors of N = 1 and N = 4 (except on 
January 8 when only N = 4 was used). The N factor describes 
the distance between current and potential dipoles which are 
selected for measuring each quadripole. While the distance 
between current and potential dipoles for N = 1 is equal to 
the electrode spacing (i.e. 1 × 0.5 m = 0.5 m), for N = 4 cur-
rent and potential dipoles are separated by 4 times the elec-
trode spacing (i.e. 4 × 0.5 m = 2 m). The purpose of using 
these different acquisition modes was to resolve two different 
targets. Measurements with N = 1 aimed to obtain a high-
resolution image of the electrical resistivity structure until 
a depth of 1 m, to characterize how uniformly distributed 
was the soil moisture after irrigation. Measurements with 
N = 4 yield a coarser resistivity image but a deeper depth of 
investigation (until a depth of 3–4 m), to detect resistivity 
changes potentially related to deep percolation.

The ERT survey was conducted to detect temporal 
changes in the electrical resistivity of the subsurface. How-
ever, variability between ERT results obtained at different 
days may arise, at least in part, from measuring conditions. 
To minimize the influence of random and measuring errors, 
quadripole measurements were discarded from the analysis if 
at any day: (1) they were associated with observations (elec-
trical resistance value) that exhibit instrumental errors > 2%, 
or (2) they were related to clear artifacts observed in resis-
tivity pseudosections (i.e. outlier points compared to the 
neighbor resistivity field). Using these criteria, the analyzed 

dataset for each day comprises 66 quadripoles selected out 
of 159 for N = 1, and 158 out of 266 for N = 4. For meas-
urements with N = 1, most of the discarded quadripoles are 
located between horizontal distances of X = 10 and X = 15 m. 
Therefore, the following analysis on the temporal variation 
of the resistivity structure will be focused between X = 0 and 
X = 10 m, which represents the segment of the ERT section 
with more reliable data over time and space.

The data were inverted using the Zondres2D software 
(http://zond-geo.com/engli​sh/). To obtain a model of the 
electrical resistivity structure that explains the observed 
data (i.e. the resistance calculated from measured current 
and potential at each quadripole), Zondres2D can solve the 
inversion problem using different methods. We chose the 
Occam algorithm (Constable et al. 1987), which uses the 
least-square method to minimize an objective function that 
depends on: (1) the misfit between observations and the 
model response, and (2) a regularization term that privi-
leges smooth models and stabilizes the mathematical solu-
tion (Zond geophysical software 2016). To calculate model 
responses, Zondres2D uses the finite-element method to 
solve numerically the Poisson equation which relates elec-
trical potential and currents with the resistivity of a medium. 
The regularization term depends on a smoothing factor 
parameter, which controls the desired smoothness of the 
model. After performing inversion tests for each day using 
smoothing factors of 0.005, 0.3 and 1, we concluded that a 
smoothing factor of 0.3 resulted in smooth models that fit 
satisfactorily the data. The inversion tests converged after 
2 or 3 iterations (see Tables 4 and 5 in the “Appendix A”).

The model space comprised an array of rectangular cells 
with 0.25 m wide that is half of the electrodes spacing. The 
thickness of the cells at the top of the model was 0.03 m. 
Then, the thickness of cells increases with depth with an 

Table 2   Dates of geophysical surveys, soil pit characterization and irrigation events

All dates correspond to year 2019

Date Average soil temperature during 
survey (°C)

January 3 Irrigation
January 8, 12:00–13:00 23.0 ERT (5 days after irrigation, only using N = 4)
January 9 Irrigation
January 10, 13:37–15:35 20.2 ERT (1 day after irrigation)
January 11, 10:44–12:30 19.9 ERT (2 days after irrigation)
January 14, 09:59–11:35 19.1 ERT (5 days after irrigation)
January 15 Irrigation
January 16, 10:53–12:20 21.5 ERT (1 day after irrigation)
January 18, 10:03–11:37 19.4 ERT (3 days after irrigation)
September 4 Soil pit characterization (4 months after irrigation season and 

1.5 month after last precipitation)
September 23, 13:00–14:50 ERT and GPR surveys (irrigation started during measurements)

http://zond-geo.com/english/
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incremental factor of 1.1, to account for the decrease in reso-
lution with depth which is inherent to the ERT technique. 
Data from each day were inverted independently using the 
parameters described before. In all inversions we used as 
starting model a homogenous half space of 70 Ωm. The 
overall fit between observations and model response is good 
for all the obtained preferred resistivity models (see data 
misfit obtained for all models in Tables 4 and 5). Models’ 
responses reproduce most patterns observed in apparent 
resistivity pseudosections (compare observed and calculated 
pseudosections shown in Figs. 10 and 11).

The electrical resistivity of materials depends on temper-
ature, and therefore we corrected the effect of temperature 
by calculating the electrical resistivity at 25 °C of all models 
using the equation of Keller and Frischknecht (1966). Resis-
tivities of each ERT acquisition were corrected considering 
the average soil temperature recorded by the thermocouple 
at the same time and date. We applied this correction only to 
cells of the model located from 0 to 0.4 m depth, because the 
daily variation of temperature does not significantly affect 
the subsurface below 0.3 m depth (see e.g. Lowrie 2007). 
Electrical resistivity values, however, do not change sig-
nificantly after applying the temperature correction. During 
ERT measurements temperature fluctuated between 19.1 and 
23 °C, resulting in corrected resistivity values that vary from 
0.86 to 0.95 of their corresponding uncorrected resistivities.

GPR

GPR measurements were carried out on September 23, 2019, 
along the two interrows adjacent to the studied vine row. All 
GPR measurements were made using a MALÅ Easy Locator 
Pro Wide Range HDR, with a dual wide bandwidth antenna 
with central nominal frequencies of 160 and 670 MHz. For 
this work, we only used the high-frequency set of data to 
map the soil up to 1.8 m below the surface. The low fre-
quency data proved not to be useful, as the pulse emitted by 
the low frequency antenna does not have the resolution to 
image the soil immediately below surface nor it was able to 
penetrate below 2 m. The device has fixed antenna separa-
tion, i.e. does not allow multi-offset data acquisition that is 
better suited for GPR techniques for estimating water content 
such as ground wave analysis (Huisman et al. 2003) and nor-
mal‐moveout velocity analysis (Greaves et al. 1996).

GPR data were processed using the software REFLEXW 
(Sandmeier 2019). We applied a standard processing 
sequence consisting into the application of an exponen-
tial gain function to compensate for the attenuation of the 
reflected signal, band-pass filter, background removal to 
remove typical horizontal noise from GPR data, and Kirch-
hoff migration. We used a constant average velocity of 
0.12 m/ns to migrate and convert the two-way-traveltime 
axis into depth. This velocity was estimated by fitting the 

strong diffraction hyperbolas visible in the 0.2–1 m depth 
range.

Eddy covariance

Eddy covariance (EC) carbon and water flux measurements 
were made by an IRGASON Campbell Scientific Inc that 
was installed in a tower 4 m above the soil surface. This 
system comprises a sonic anemometer and an open-path 
infrared gas analyzer. Measured energy fluxes were recorded 
with 10 Hz sample frequency by a CR3000 Campbell Scien-
tific Inc datalogger. We analyzed 30-min average net fluxes 
time series collected from 8 to 18 January. Eddy fluxes 
were corrected for density perturbations (Webb et al. 1980) 
and coordinate rotation (Kowalski et al. 1997), and qual-
ity–controlled following Reverter et al. (2010). Data quality 
was assessed looking at Energy Balance Closure based on 
30 min average, which had a linear regression slope of 0.82, 
intercept of 12.7 (W/m2) and coefficient of regression (R2) 
of 0.97 for the period under study. These data represent the 
ET flux over an area of influence called the footprint. The 
footprint depends on wind characteristics and some mete-
orological parameters (Kljun et al. 2004), and therefore it 
varies dynamically over hours and days. We estimate the 
footprint in a daily basis and for the entire interval of meas-
urements using the Flux Footprint Prediction (FFP) model 
(Kljun et al. 2015). The studied vine row is contained in the 
area of the EC footprint estimated for all ERT acquisition 
days. This is illustrated in Fig. 1e, which shows the average 
footprint estimated from 8 to 18 of January.

Numerical model of spatiotemporal distribution 
of soil moisture

We solved numerically a simplified version of the Richards 
equation (Richards, 1931) in one dimension. This equation 
describes the variation of VWC (θ) with depth and time as 
function of hydraulic diffusivity of the soil (D), its hydraulic 
conductivity (K) and the amount of moisture that leaves the 
soil (a sink function S):

We solved numerically Eq. (1) using the software Flex-
PDE©. The model space comprises a medium of 5 m depth 
(Fig. 3a). Table 3 shows the values of the hydraulic param-
eters K and D that we used in our numerical models. These 
parameters vary with depth according to the major soil units 
characterized in the soil pit. We modeled two scenarios simu-
lating the soil columns observed at X = 4 m and X = 9 m in 
the soil pit (models A and B in Fig. 3b). For each soil unit, 
we used the hydraulic conductivity values reported in Schaap 
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(2002). The hydraulic diffusivity D of a soil depends on θ and 
on its hydraulic conductivity. For each soil, we estimated a 
constant value of D (Table 3) using the analytical function of 
Van Genuchten (1980) that relates D and θ. To obtain a con-
stant value of D for each soil, we evaluated the Van Genuchten 
(1980) function assuming θ = 0.39, which represents a high 
value that allows stability of the numerical simulation tests. To 
simulate the hydraulic properties of the gravels observed at the 
bottom of the soil pit, we modeled this unit as sand.

The sink function S (see Eq. 1) was parameterized as the 
amount of water loss per time due to ET (see Fig. 3a). As a 
proxy of ET values, we used the ET flux measured by the EC 
tower, which yields the volume of water (m3) per square meter 
per time released to the atmosphere by ET. In order to obtain 
the volumetric water content (m3/m3) which leaves the soil due 
to ET in a time unit, we multiplied the ET flux by the vine row 
surface (m2), and then divided by the volume of the soil which 
is occupied by roots. We estimated the total volume of roots as:

where Nroots is the number of roots present below a square 
meter, and Vroot is the average volume of a single root. Nroots 
was estimated as the average root density over all columns 

Total volume of roots = Nroots ⋅ Vroot = 0.001885
[

m3
]

mapped in the soil pit (0.015 [roots/cm2]) multiplied by the 
area of the vine row depth section (100 × 100 [cm2]). Vroot 
was estimated by assuming that each root can be modeled as 
a cylinder with a radius of 0.2 (cm) and a length of 100 (cm), 
equivalent to the width of the studied volume. These 
assumptions yield Vroot = π·(0.2)2·100 = 12.56 (cm3) and a 
total root volume of 1.885 (lt) or 0.001885 (m3). Follow-
ing the aforementioned procedure, we obtained an estimate 
of soil moisture lost by ET (grey dots in Fig. 3c). The ET 
moisture shows a complex shape (see gray dots in Fig. 3c), 
in which we identify two patterns: a long-term and low-
amplitude decaying trend likely related to the decreasing of 

Fig. 3   Parameters of the numer-
ical model of soil moisture. a 
Schematic visualization of the 
numerical model and its com-
ponents. b Distribution of soil 
units used in the two modeled 
scenarios. Hydraulic param-
eters for each unit are shown in 
Table 3. L loam, LS loamy sand, 
S sand, SCL sandy clay loam, 
SiL silty loam, SL sandy loam. 
c, d proxies used for amount of 
water loss due to evapotranspi-
ration (ET) and irrigation water 
input, respectively. c Gray dots 
are ET values measured by eddy 
covariance system expressed 
as soil moisture (see “Numeri-
cal model of spatiotemporal 
distribution of soil moisture”). 
The gray line is the 24 h moving 
average of the ET data, which 
we interpret as the long-term 
trend of ET. The red-dashed 
line is a model that fits the gray 
line (Eq. 2). d Gray dots are 
soil moisture recorded by TDR 
sensor installed at 0.1 m depth 
below a dripper in the adjacent 
vine row. The red-dashed line is 
a model of the long-term trend 
observed in the data (Eq. 3)

Table 3   Hydraulic parameters used in the numerical solution of 
Eq. (1)

Soil unit K (m/s) D (m2/s)

Loam (L) 1.25 × 10−7 0.0417
Loamy sand (LS) 2.34 × 10−7 0.0795
Sand (S) 3.25 × 10−7 2.5488
Sandy Clay Loam (SCL) 3.25 × 10−7 0.0201
Sandy Loam (SL) 1.83 × 10−7 0.0361
Silty loam (SiL) 1.46 × 10−7 0.0316
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soil moisture with time since irrigation, and high-amplitude 
daily variations likely related to plants’ photosynthesis cycle. 
Daily variations were not considered in our model because 
the frequency of ERT measurements (one measurement per 
day) cannot account for such fluctuations. Therefore, we 
modeled the sink function S using a mathematical expression 
(Eq. 2 and red-dashed line in Fig. 3c) that fits the long-term 
pattern of ET measurements (gray line in Fig. 3c).

We assumed that S = SET (Eq. 2), and set that S extracts 
water from 0.2 to 1.2 m depth, which is the depth with the 
maximum concentration of thin roots (Fig. 4, right panel). 
Our model has two boundary conditions: the amount of input 
water that is irrigated (θinput in Fig. 3a) and the water per-
colated below roots (θpercolation in Fig. 3a). As proxy for the 
irrigation water input, we use the variation of soil moisture 
over time measured by the fixed TDR sensor installed below 
a dripper since the irrigation event on January 9 (Fig. 3d). 
The soil moisture variation measured by the TDR shows also 
a complex shape (see gray dots in Fig. 3d), in which we iden-
tify again a long-term decaying trend and a daily variation 
pattern. We modeled the water input using a mathematical 

(2)SET = 0.006 ⋅ (3 + 5 ⋅ exp (−0.5 ⋅ t))

function (Eq. 3, red-dashed line in Fig. 3d) which estimates 
only the long-term drying trend of TDR measurements. 
Daily variations were not considered because the frequency 
of ERT measurements cannot account for such fluctuations.

A constant moisture of θpercolation = 0.15 was employed as 
the lower boundary condition, which roughly coincides with 
the average value of VWC measured in situ in the soil pit. 
Such measurements were done in springtime, approximately 
3 months after irrigation and 1.5 months after the last rain. 
We assumed, therefore, that θ = 0.15 represents the back-
ground VWC, when neither irrigation water nor root water 
uptake is disturbing the soil water content.

Results

Soil structure

To characterize the soil structure and for calibrating geo-
physical results, we compared ERT and GPR conducted on 
23 September 2019 with soil characterization obtained in the 

(3)�input = 0.3 + 0.2 ⋅ exp(−t)

Fig. 4   Comparison between ERT, GPR and soil pit results. The hori-
zons interpreted in the soil pit overly the geophysical sections. Graphs 
to the right of sections show variation of average density of roots with 
depth mapped from the four columns at the soil pit. a GPR (Septem-
ber 23rd) migrated section measured with a 670 MHz antenna (nomi-
nal central frequency). Pink labels indicate major features described 
in “Soil structure”. b Extract of electrical resistivity section derived 

from ERT acquired with N = 1 on September 23rd. “V” and “O” on 
top of the electrical resistivity section indicate position of grapevines 
and drippers, respectively. L loam, LS loamy sand, S sand, SCL sandy 
clay loam, SiL silty loam, SL sandy loam. C1 indicates the layer from 
0 to 0.5 m depth, which exhibits resistivities < 50 Ωm over all days. 
R1 refer to bodies with resistivity > 100  Ωm which are observed 
mostly from 0.5 to 1 m depth
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soil pit (see Fig. 4). In September 2019 (i.e. 8 months after 
the ERT monitoring experiment), soil moisture content was 
not disturbed neither by irrigation water, rain or root water 
uptake at least for 2 months, except from 0 to 0.5 m of the 
geophysical sections that seem to be affected by the irriga-
tion event that started that day. The clearest pattern observed 
in GPR section is a semi continuous reflector at an approxi-
mate depth of 1.5 m (see Fig. 4a), which roughly coincides 
with the top of the gravels (the brownish strata below the 
gray colored layer observed in Fig. 2b). Diffraction hyper-
bolas, which after the migration process almost completely 
collapse into the points labeled with H (Fig. 4a, from 0.2 to 
1 m depth), may represent thick roots or small stones.

Figure 4b shows a zoom of the electrical resistivity sec-
tion obtained from inversion of ERT measurements using 
N = 1. The shallow levels are characterized by resistivi-
ties < 40 Ωm (bluish colors from 0 to 0.5 m in Fig. 4b), 
which likely represents soil partially wetted by the irriga-
tion event that started when geophysical acquisition took 
place. However, ERT results observed approximately 
below 0.5 m should represent the electrical resistivity struc-
ture of a soil which has not been watered for more than 
2 months. The more remarkable feature of this section is 
the spatial correlation between the top of the sandy loam 
unit (labelled SL in Fig. 4b) and the top of the domain of 
resistivities > 150 Ωm (red tones in Fig. 4b). This correla-
tion suggests that the sandy loam horizon is characterized 
by resistivities > 150 Ωm under dry conditions.

Temporal variability in the electrical resistivity 
structure

To estimate the spatiotemporal distribution of soil mois-
ture during irrigation, we analyzed the evolution over 
time of the electrical resistivity structure. Figures 5 and 6 
show the preferred electrical resistivity sections obtained 
for all ERT measurement of January 2019 using N = 4 and 
N = 1, respectively. To put ERT results in the context of the 
irrigation cycle, Fig. 5 also displays the amount of VWC 
registered by the permanent TDR sensor located in the 
next vine row below a dripper. As a reference, we indicate 
the location of vines and drippers on top of each resistiv-
ity section. On the whole, ERT results suggest a layered 
structure which is consistent with soil units observed in 
the ~ 2 m-depth soil pit and on the GPR section. In fact, all 
resistivity models show an electrical resistivity structure 
roughly characterized by three major domains from top 
to bottom (see Figs. 5 and 6): a shallow domain from 0 
to 0.5 m depth with resistivities < 50 Ωm (bluish color, 
labelled C1), a middle domain from 0.5 to 2 m depth in a 
range of 20–150 Ωm (“middle domain” in Fig. 5b), and a 

deep domain below 2 m depth with resistivities > 150 Ωm 
(reddish colors, “deep domain” in Fig. 5b). 

Largest temporal variations in resistivity are observed 
from 0 to 0.5 m depth (labelled C1 in Figs. 5 and 6), a 
domain which partially coincides with the shallow soil 
units (L and SiL in Figs. 3b and 4). The resistivity of layer 
C1 decreases in those days following irrigation events 
(< 30 Ωm in January 10 and 16, blue tones in Figs. 5b, e 
and 6a, d), and increases during the driest days (> 50 Ωm 
in January 8 and 14, green tones in Figs. 5a, d and 6c). The 
increment of resistivity with time from irrigation events 
suggest that resistivity changes in C1 are controlled by 
irrigation water. Below layer C1, a group of bodies with 
resistivity > 100 Ωm is observed mostly from 0.5 to 1 m 
depth (features labelled R1 in Figs. 5 and 6). We interpret 
that R1 represent relatively drier zones due to root water 
uptake activity, because the average density of fine roots 
observed in the soil pit increases between 0.5 and 1 m 
depth (see right panel of Fig. 4b). The temporal variability 
of resistivity at R1 follows the opposite trend observed in 
C1. While the resistivity of R1 increases in days follow-
ing irrigation (more segments with > 100 Ωm are observed 
in Figs. 5c, e and 6b, d), it tends to decrease during the 
driest days (predominantly between 50 and 70 Ωm, see 
greenish colors in Figs. 5a, d and 6c). We suggest that 
bulk resistivity at R1 is also controlled by soil moisture. 
In such a case, a relative increase of soil water content and 
its associated relative decrease in resistivity take place at 
late stages of each irrigation cycle, when the infiltrated 
irrigation water reaches the root zone. We test the feasibil-
ity of this hypothesis in the numerical simulations which 
are discussed later in “Spatiotemporal evolution of soil 
moisture”.

Although all ERT models show a predominantly layered 
resistivity structure, significant variations of resistivity 
along the profile direction are observed at some depths. 
The largest lateral contrast in resistivity is observed below 
1 m depth between X = 2 and X = 6 m (circular-shaped blu-
ish zone labelled C2 in Fig. 5). We tested the sensitivity 
of the data to the presence of C2, by replacing the zone 
roughly occupied by C2 with a rectangular body with the 
average background resistivity at those depths (100 Ωm). 
The responses of these models do not reproduce well the 
data in the southern segment of the sections (approxi-
mately 40% of the data, see Fig. 12), obtaining a datafit 
which is significantly worse than the datafit obtained with 
the preferred models (compare Figs. 10 with 12 in the 
“Appendix”). From these tests we interpret that C2 is well 
supported by the data and required to explain the observa-
tions. The origin of C2 is not clear, but we suggest that can 
be related to the lens of sandy clay loam observed in the 
soil pit at 1.5 m depth from X = 4 to X = 5 m.
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Discussion

Reliability of ERT monitoring results

The robustness of electrical resistivity models relies on mul-
tiple factors, but primarily on how well model responses fit 
measured ERT data, which in turns depend on the quality of 
ERT measurements. Both measuring errors and data misfit 
are comparable and quite small: while the analyzed data have 
measuring errors (repeatability) < 2% (see “ERT”), the misfit 
between model responses and observations for all ERT sur-
veys mostly do not exceed 5% (see Tables 4 and 5). Although 
inversion of ERT data is characterized by non-unique solu-
tions, all electrical resistivity models converge to a common 
electrical resistivity structure roughly characterized by three 
major and distinctive domains in terms of electrical resistivity 
range (see Figs. 5 and 6). The time-lapse exercise that implies 
geo-electrical measurements during different days within the 
irrigation cycle provides a mechanism to test the robustness 
of the applied geophysical methodology. Resistivity models 

derived from observations at different days show a first-order 
similarity between them, suggesting that the overall resistiv-
ity structure is well resolved and consistent.

Major lateral resistivity contrasts are observed at 0–2 m 
depth, a zone where changing physical conditions due to 
irrigation water are expected to alter the resistivity struc-
ture. However, shallow levels (< 1 m) of the resistivity 
model are also more prone to exhibit artefacts caused by 
errors in measurements of temperature and electrodes spac-
ing. Therefore, the presence of resistivity artefacts must be 
addressed before interpreting lateral contrasts of resistiv-
ity at shallow levels as evidence of soil regions with poor 
irrigation uniformity. Although we corrected the effect of 
temperature on resistivity by calculating the resistivity value 
at 25 °C, some bias can be introduced in cells of the mod-
els located from 0 to 0.4 m depth due to the uncertainty of 
measured soil temperature. Yet, such errors are small for 
reasonable uncertainties in the measurement of temperature 
(e.g. a bias of 10% in temperature will not exceed an error 
of 5% in resistivity, see Brunet et al. 2010). Errors in the 

Fig. 5   Electrical resistivity 
tomography results (N = 4). Left 
panel shows temporal variations 
of soil water content measured 
by TDR sensor installed in the 
vine row next to the studied 
row (see location in Fig. 1). The 
time when ERT measurements 
and irrigation took place are 
indicated. Right panel shows 
sections with preferred models 
of electrical resistivity obtained 
for each day using N = 4. The 
pale box masks the segment of 
the sections with less reliable 
results. “V” and “O” on top 
of resistivity sections indicate 
position of grapevines and 
drippers, respectively. C1 indi-
cates the layer from 0 to 0.5 m 
depth, which exhibits resistivi-
ties < 50 Ωm over all days. C2 
is a circular-shaped zone with 
resistivities < 40 Ωm, which 
partially coincides with a lens 
of sandy clay loam observed in 
the soil pit. R1 refer to bodies 
with resistivity > 100 Ωm which 
are observed mostly from 0.5 to 
1 m depth. See details in “Tem-
poral variability in the electrical 
resistivity structure”
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estimation of electrode spacing can introduce bias on resist-
ance measurements (Zhou and Dahlin 2003; Oldenborger 
et al. 2005). In our study, electrodes where installed every 
0.5 m using a measuring tape as reference. We estimate that 
our error in each electrode’s position does not exceed 2 cm, 
which implies an error of 8% in the estimation of dipoles 
length. For dipole–dipole arrays and a simple resistivity 
structure (e.g. a homogenous half-space or a two-layered 
model), Zhou and Dahlin (2003) show that errors of 10% 
in electrodes’ spacing can produce error up to 20% in the 
measured resistance at shallow quadripoles located below 
mislocated electrodes. Consequently, we cannot exclude that 
some lateral variations in resistivity observed at C1 could be 
attributed to artefacts caused by some of the aforementioned 
factors. Therefore, it is difficult to draw conclusions about 
irrigation uniformity from 0 to 0.5 m depth. Nevertheless, 
lateral resistivity contrasts observed below 0.5 m are likely 
robust (e.g. around R1 bodies and C2, Figs. 5 and 6), espe-
cially considering their size (≥ 2 m length along the profile) 
and their distance from electrodes. These deeper resistivity 
contrasts suggest that the amount of infiltrated water is not 
uniformly distributed, at least, below 0.5 m depth.

Relationship between electrical resistivity and soil 
moisture

Observed resistivity changes can be attributed to changes 
in water content and/or soil properties (e.g. salinity) as a 

consequence of irrigation. We suggest that changes in soil 
moisture are the most likely candidate to explain variations 
in resistivity, mainly based on two reasons. First, the resis-
tivity of the shallow layer (C1) decreases following irriga-
tion events. Second, a resistivity of 5.9 Ωm was measured 
in the water used for irrigation, a value that is significantly 
lower than the average background resistivity observed in 
ERT sections of Figs. 4b, 5 and 6. If soil salinity were the 
most important factor controlling bulk soil resistivity in 
this area, we would expect to see an increase of resistiv-
ity following irrigation events in C1, as irrigation water 
may contribute to move away salts, and salts are usually 
characterized by very low resistivities. However, resistivity 
in C1 increases with days from the irrigation events (see 
“Temporal variability in the electrical resistivity structure” 
and Fig. 5 and 6).

To estimate quantitatively the spatiotemporal evolu-
tion of the soil moisture from ERT results, we analyzed 
the relationship between electrical resistivity and VWC 
values measured in situ (Fig. 7). In Fig. 7, triangles com-
pare the average VWC values measured with FDR at each 
soil layer in the soil pit, with the average value of resistiv-
ity from model’s cells at the same position obtained from 
resistivity model of ERT collected in September 23. Cir-
cles compare the average VWC values registered by fixed 
TDR sensor during each ERT measurement in January, and 
the average value of shallow cells from the corresponding 
ERT resistivity model. As the fixed TDR sensor is installed 

Fig. 6   Electrical Resistivity 
Tomography results (N = 1). 
Sections with preferred models 
of electrical resistivity obtained 
for each day using N = 1. Note 
that measurements with N = 1 
were not available for January 8. 
The pale box masks the segment 
of the sections with less reliable 
results. “V” and “O” on top 
of resistivity sections indicate 
position of grapevines and drip-
pers, respectively. C1, C2 and 
R1 refer to resistivity features 
described in caption of Fig. 5 
and “Temporal variability in the 
electrical resistivity structure”
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below a dripper at 0.1 m depth, the corresponding resis-
tivity value was calculated from all of those cells which 
were located from 0 to 0.3 m depth below drippers. As 
it is usually expected, electrical conductivity (reciprocal 
of resistivity) exhibits a direct proportionality with VWC. 
For sake of simplicity, a linear relation was fitted to the 
observed relationship, resulting in a large correlation coef-
ficient (R2 = 0.93).

A number of linear, polynomic, power-law, exponential 
and even more complex mathematical models have been 
proposed to relate soil moisture and electrical resistivity 
(see e.g. Michot et al. 2003; Brunet et al. 2010; Calamita 
et al. 2012; Brillante et al. 2014). Although we acknowl-
edge that the available in situ VWC measurements are 
scarce, the linear relation shown in Fig. 7 fits reasonably 
well the relationship observed between both parameters. 
This simple relation suggests that the resistivity of the 
interstitial fluids is the main factor controlling the bulk 
resistivity of the soil. This interpretation would be also 
supported by the significant contrast observed between 
the resistivity measured in the irrigation water (5.9 Ωm) 
and the average resistivity of the soil imaged by the ERT 
survey acquired in September (> 100 Ωm, Fig. 4b). How-
ever, the electrical resistivity of a volume of soil depends 
on a number of factors, being usually the most important 
the electrical resistivity and amount of interstitial fluids, 
but also the resistivity of mineral grains, the interconnec-
tivity between voids containing fluids, and temperature, 
among others (e.g. Friedman 2005). We predict that our 
simple linear relationship may not describe well the rela-
tionship between resistivity and soil moisture in clay-rich 
soils or in areas where irrigation water and soils show low 
resistivity contrasts. In such environments, the bulk soil 
resistivity can be highly sensitive to the resistivity and 
amount of mineral grains (see e.g. Waxman and Smits 
1968), making difficult to use electrical resistivity as a 
proxy for the soil moisture distribution. This fact points 
out that the relationship between electrical resistivity and 
soil moisture must be estimated locally at each field, as it 
has been widely discussed in the literature (Boaga et al. 
2013; Moreno et al. 2015; Cassiani et al. 2016; Hardie 
et al. 2018). In particular, the resistivity of the irrigation 
water must be known in order to assess the applicability 
of the ERT as monitoring tool to estimate soil moisture 
distribution.

Spatiotemporal evolution of soil moisture

Figure 8 shows the temporal evolution of soil moisture 
derived from resistivity models of ERT surveys using 
N = 4. Estimated VWC values (θERT) were obtained from 
resistivity using the mathematical relationship shown in 
Fig. 7. Figure 8a displays the soil moisture as the absolute 

value of θERT derived from resistivity model of January 8. 
To analyze the relative variation of soil moisture over days, 
Fig. 8b–f display the difference of VWC between each day 
and the VWC of January 8, that is: ∆θERT = θERT(day) – θERT 
(January 8). The aim of analyzing differences of estimated 
VWC is to detect significant relative changes in soil mois-
ture during the irrigation cycle, regardless of the absolute 
value of VWC at any reference day, which is difficult to 
estimate accurately with indirect methods. Figure 8 shows a 
clear contrast in the soil moisture content variations (∆θERT) 
between layers C1 and R1 over both irrigation cycles. C1 
exhibits a relative surplus in soil moisture (blue tones in 
Fig. 8b–f), likely indicating that some water remains stored 
at this layer. Conversely, R1 is characterized by a moisture 
deficit relative to January 8 (red tones in Fig. 8b–f), condi-
tion that we interpret as evidence of lower VWC maintained 
by the continuous root water uptake. A structure of rela-
tively high soil moisture seems to connect C1 and C2 during 
January 14, 16 and 18 (see arrows in Fig. 8d–f). We suggest 
that this structure represents a soil heterogeneity with high 
hydraulic conductivity, which could channel irrigation water 
into C2 and therefore explains the anomalously high θERT at 
C2 during all days (e.g. θERT > 0.4 in Fig. 8a). We speculate 
that deeper zones that exhibit relatively higher soil moisture 
can also represent some zones where irrigation water may 
accumulate as in C2 (see bluish colors below 2 m depth 
between X = 4 and X = 10 m in Fig. 8b–f).

The spatiotemporal evolution of VWC derived from ERT 
monitoring (Fig. 8) suggests a nonuniform distribution of 
irrigation water, especially below 0.5 m depth. However, 

Fig. 7   Relationship between volumetric water content (VWC) and 
electrical conductivity (derived from electrical resistivity models) 
obtained at equivalent positions (see detailed description in “Rela-
tionship between electrical resistivity and soil moisture”). White tri-
angles compare VWC measured in the soil pit with FDR and resistiv-
ity values obtained from ERT survey conducted in September 2019. 
Black circles compare VWC measured by TDR sensor in next grape 
row and resistivity values obtained from ERT measurements made in 
January. The dotted line is a linear model that fits the data
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we do not have independent information to check how well 
the ERT models estimate VWC aside at the soil pit or closer 
to the TDR sensor. Moreover, this estimate does not pro-
vide information about the overall amount of water that is 
leaking below the root zones in the studied vine row. To 
address these questions, we performed numerical modeling 
to simulate the spatiotemporal distribution of soil moisture 
under conditions similar to the studied vine row (see model 
details in “Numerical model of spatiotemporal distribution 
of soil moisture”). Figure 9 compares the distribution of soil 
moisture with depth obtained from our numerical modeling 
analysis and from electrical resistivity sections. Soil mois-
ture is displayed as the difference (∆θ) between the VWC 
obtained at each day with respect to the VWC obtained at 
the fifth (last) day of the irrigation cycle. The soil moisture 
estimated from electrical resistivity sections measured with 
N = 4 was taken as the VWC stored in the soil for different 

days and depths. Figure 9a and b show the results of the 
numerical models A and B (respectively) evaluated at the 
equivalent times (days) from irrigation events at which ERT 
surveys took place. Each line in Fig. 9c represents the vari-
ation of θERT with depth at ERT acquisition dates, obtained 
after averaging all VWC values derived from resistivity 
model’ cells located at the same depth.

The variability of ∆θ with depth and time derived 
from numerical models and ERT estimates show a similar 
shape, but differences in the absolute value of ∆θ. All esti-
mates exhibit the same general pattern (see Fig. 9): from 0 
to ~ 0.5 m depth ∆θ is larger in days closer to the irrigation 
event (e.g. blue lines, which indicate January 10 and/or 1 day 
after irrigation), at ~ 0.5 m depth ∆θ is closer to zero for all 
days, and from ~ 0.5 to ~ 1.5 m depth ∆θ is larger at later 
days of the irrigation cycle (e.g. red lines, which indicate 
January 14 = 4 days after irrigation). Overall, this pattern 
suggests that soil moisture decreases with time from the irri-
gation event from 0 to ~ 0.5 m depth. However, from ~ 0.5 
to ~ 1.5 m depth the opposite trend is observed, suggesting 
that soil moisture tend to increase with time from the irriga-
tion event. In the numerical model, this trend is strongly con-
trolled by the sink function that simulates the effect of root 
water uptake (see “Numerical model of spatiotemporal dis-
tribution of soil moisture” and Eq. 2), which was prescribed 
to the depth range where roots are concentrated (gray area 
in Fig. 9). While ∆θ approaches to zero almost immediately 
below the gray area (= root zone) in the numerical simula-
tions (Fig. 9a, b), ∆θ converges to zero for depths below 2 m 
in the soil moisture estimate derived from ERT (Fig. 9c). 
We interpret that non-zero ∆θ values obtained from ERT at 
1.5–2 m depth indicates that some soil moisture variability, 
triggered by irrigation events, is lost below the root zone, 
suggesting deep percolation of irrigation water.

The relative variability of soil moisture with depth and 
time derived from ERT surveys is consistent with results 
obtained from our numerical modeling of Richards equation 
(Fig. 9). This correlation proofs that relative variations of 
VWC estimated from ERT are physically meaningful, that is, 
that they roughly reproduce the spatiotemporal distribution 
expected for water moving in a partially saturated porous 
medium. In particular, this correlation validates ERT results 
suggesting that some irrigation water percolates below the 
root zone. For detecting deep percolation, therefore, the 
application of the ERT seems to be a good cost-effective 
mean. However, the absolute values of soil moisture derived 
from ERT do not necessarily fit our numerical modeling 
results (only ∆θ absolute values of blue, green and red lines 
partially coincides in Fig. 9b, c). There are several factors 
that may influence the accuracy of ERT estimates of soil 
moisture, including ERT data quality, resistivity contrast 
between irrigation water and soil components, fractionation 
of irrigation water components, and soil properties (see e.g. 

Fig. 8   Distribution of soil moisture interpreted from ERT monitoring 
in January 2019. a Estimated volumetric water content from resistiv-
ity sections (θERT) obtained for January 8th. b–f Difference of esti-
mated volumetric water content between each day and January 8th, 
that is: ∆θERT = θERT (day) – θERT (January 8th). C1, C2 and R1 refer 
to resistivity features described in caption of Fig. 5 and “Relationship 
between electrical resistivity and soil moisture”. The pale box masks 
the segment of the sections with less reliable results
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Boaga et al. 2013; Moreno et al. 2015; Hardie et al. 2018). 
For this reason, it is important to remark that ERT can be 
used as a tool for detecting significant relative changes in 
soil moisture, but it does not provide accurate enough esti-
mates of VWC’s absolute values in order to quantify the 
amount of water loss.

Implications for irrigation management

When there are significant differences between average soil 
resistivity and the resistivity of irrigation water (see previ-
ous discussion), our results suggest that ERT monitoring 
can detect relative changes in soil moisture distribution dur-
ing irrigation. If such condition is verified, estimates of soil 
moisture derived from ERT studies can provide valuable 
information to assess the efficiency of irrigation systems. 
In practice, irrigation plans are usually decided using, at 
best, information collected at point measurements of evapo-
transpiration and soil moisture. However, practical problems 
can arise by assuming homogenous characteristics in soil 
hydraulic properties. For instance, in the studied vineyard, 
irrigation is managed based on information provided by a 
nearby automatic weather station. With this information, 
reference evapotranspiration (ETo) is calculated and irri-
gation system is set up to supply a fraction of cumulative 
ETo which is slightly above the crop coefficient (Kc = 0.65). 
During the ERT monitoring experiment, the estimated crop 
evapotranspiration (ETc) reached 22.9 and 19.8 mm before 
the irrigation events occurring on January 9 and January 
15, respectively. Therefore, in order to ensure crop water 
demands, the amount of water applied in these irrigation 
events was equivalent to 27 mm (1 mm = 1 kg/m2), a value 
which exceeds the maximum ETc. However, the applied 
water largely exceeded the cumulative actual evapotranspi-
ration measured locally at the studied vineyard by the EC 

tower before these irrigation events (13.9 and 13.1 mm). We 
interpret that this excess of applied water may flew through 
soil domains with relatively large hydraulic conductivity, 
explaining the deep percolation suggested by ERT results 
(e.g. the temporal evolution of resistivity feature C2 shown 
in Fig. 8).

The previous analysis highlights that monitoring meter-
scale changes in soil electrical resistivity during an irrigation 
cycle can provide useful information for assessing the local 
efficiency of an irrigation system. To apply ERT for evalu-
ating the performance of irrigation at the orchard-scale, we 
propose a three-stage acquisition strategy. In the first stage, 
to conduct massive GPR measurements in order to identify 
domains with distinctive soil stratigraphy within the studied 
orchard. The acquisition of GPR under flat terrain condition 
is relatively fast, and consequently can cover a plot in a cou-
ple of days. In the second stage, to conduct ERT monitoring 
in selected rows of soil domains interpreted from GPR. The 
aim of the second stage is to infer the spatiotemporal dis-
tribution of soil moisture at some representative zones, in 
order to estimate irrigation uniformity and to detect possible 
deep percolation. ERT monitoring at each zone must take 
place at least over one complete irrigation cycle, ideally in a 
daily basis, to maximize the number of observations that are 
necessary for evaluating the relationship between resistivity 
variations and expected changes in soil moisture. We recom-
mend to follow the parameters described in this work for 
conducting the ERT monitoring experiments. Finally, ERT 
and GPR results can be verified with soil moisture measure-
ments and soil stratigraphy characterization made at some 
soil pits. The joint interpretation of GPR, ERT monitoring 
and soil pit characterization can be used, therefore, to esti-
mate the spatiotemporal distribution of applied water during 
irrigation and to identify areas with distinctive soil hydraulic 
properties within an orchard.

Fig. 9   Comparison of spatiotemporal variation of soil moisture 
obtained from numerical models a A and b B, and c estimate derived 
from resistivity models obtained from ERT measured using N = 4. 

The gray area indicates the depth where the sink function extracts 
water in our numerical model, which is the depth with the maximum 
concentration of thin roots observed at the soil pit
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Conclusions

We evaluated the reliability of ERT to constrain irrigation 
uniformity and deep percolation at the scale of meters. Our 
findings show that relative changes of soil moisture with 
depth and time estimated from ERT images are consistent 
with the spatiotemporal evolution of VWC expected for a 
partially saturated porous medium under irrigation. This cor-
relation suggests that ERT provides physically meaningful 
results that can be used to monitor the relative variability 
of soil moisture over time, if two conditions are verified 
in the field. First, ERT measurements must take place at 
different stages of a couple of irrigation cycles, to identify 
spatiotemporal variations in soil electrical resistivity which 
are coherent with expected relative changes in VWC trig-
gered by the infiltration of applied water. Second, the elec-
trical resistivity of irrigation water should be significantly 
lower than the average soil electrical resistivity. In the stud-
ied vineyard, the electrical resistivity of irrigation water is 
20 times lower than the average bulk resistivity of the soil 
under dry conditions.

Largest temporal variations of electrical resistivity were 
observed at depths < 0.5 m, indicating that soil moisture 
in the studied vine row mostly changes within the root 
depth (1 m depth). However, electrical resistivity varia-
tions were also observed from 1 to 2 m depth, suggest-
ing that some water percolated below the root zone. This 
interpretation is consistent with the fact that the amount of 
water applied during the experiment largely exceeded the 
actual evapotranspiration measured at the vineyard. ERT 
images exhibit lateral variations in electrical resistivity 
that indicate the presence of preferential pathways in the 
distribution of moisture with depth. Altogether, our study 
indicates that time-lapse ERT provides useful information 
to constrain irrigation uniformity and to detect deep per-
colation at orchard scale during an irrigation season. ERT 
monitoring can be used, therefore, to identify zones with 
distinctive soil hydraulic properties within an orchard. 
ERT results, in combination with co-located GPR profiles 
and calibration at some soil pits, can be used to interpret 
the nature of soil properties changes and to assess their 

role in irrigation efficiency. With this information, irriga-
tion plans can be specifically tailored to local hydraulic 
conditions in order to meet, with more precision, crop 
water demand.
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Appendix: ERT data fit

Tables 4 and 5 show the misfit between observations and 
preferred inversion models’ responses for all ERT surveys 
made with N = 4 and N = 1, respectively. Initial RMS error is 
the average misfit between observations and the response of 
the starting model (a 70 Ωm homogenous half space). The 
data misfit range indicates the differences between meas-
ured data and model responses observed overall quadrip-
oles, expressed as percentage of the measured data value 
(Figs. 10, 11, 12).  

Table 4   Misfit for preferred 
models of ERT surveys made 
with N = 4

ERT survey Initial 
RMS error

Final RMS error Data misfit range (%) Number of 
Iterations

RMS error model 
shown in Fig. 12

January 8 14.8 0.92 − 3.9 to 3.3 2 7.1
January 10 16.4 1.37 − 4.2 to 5.3 2 4.5
January 11 15.6 1.07 − 4.5 to 4 2 5.3
January 14 15.3 0.96 − 2.6 to 1.9 2 6.6
January 16 16.5 1.29 − 4.7 to 5.1 2 4.6
January 18 15.7 1.18 − 4.2 to 5.6 2 5.7

http://zond-geo.com/english/


139Irrigation Science (2021) 39:123–143	

1 3

Table 5   Misfit for preferred 
models of ERT surveys made 
with N = 1

ERT survey Initial RMS 
error

Final RMS error Data misfit range (%) Number of 
iterations

January 10 9.3 1.19 − 5.8 to 5.4 3
January 11 8.2 1.17 − 1.5 to 1.4 2
January 14 5.9 0.91 − 4.3 to 3.9 2
January 16 10.2 1.18 − 2.1 to 2.0 2
January 18 7.0 0.98 − 2.2 to 1.6 2

Fig. 10   Comparison between observations and preferred model 
responses for ERT surveys made with N = 4. For each day, upper 
panel shows the pseudosection calculated from observed data, middle 
panel shows the pseudosection calculated from the inversion resis-

tivity model, and lower panel shows the inversion resistivity model. 
Black dots in pseudosections indicate the estimated location of appar-
ent resistivity points measured with each quadripole
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Fig. 11   Comparison between observations and preferred model 
responses for ERT surveys made with N = 1. For each day, upper 
panel shows the pseudosection calculated from observed data, middle 
panel shows the pseudosection calculated from the inversion resis-

tivity model, and lower panel shows the inversion resistivity model. 
Black dots in pseudosections indicate the estimated location of appar-
ent resistivity points measured with each quadripole
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