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ABSTRACT

We present a phenomenological procedure of dealing with the COVID-19 (coronavirus disease 2019) data provided by government health
agencies of 11 different countries. Usually, the exact or approximate solutions of susceptible–infected–recovered (or other) model(s) are
obtained fitting the data by adjusting the time-independent parameters that are included in those models. Instead of that, in this work, we
introduce dynamical parameters whose time-dependence may be phenomenologically obtained by adequately extrapolating a chosen subset
of the daily provided data. This phenomenological approach works extremely well to properly adjust the number of infected (and removed)
individuals in time for the countries we consider. Besides, it can handle the sub-epidemic events that some countries may experience. In this
way, we obtain the evolution of the pandemic without using any a priori model based on differential equations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019742

Our understanding on the evolution of any pandemic is as good
as the model used to fit the data that we can recollect, as well as
the quality of the gathered data. The limitations of any model lie
in how we mathematically describe our lack of knowledge about
the propagation of the virus. The most widely used mathemati-
cal models describe such propagation through a set of differen-
tial equations with constant parameters. Those encompass the
unknown behavior of the propagation of the virus, which depends
on every specific society. In this work, rather than construct a
mathematical model based in differential equations, we propose
that the behavior of the virus in each population is coded in the
evolution of such “constant” parameters. It is shown that those
parameters evolve over time, and their evolution may be deduced.
These new meta-parameters allow us to extract the information
of the pandemic day-by-day, in a dynamical way, as the pandemic
evolves and the different government policies and society behav-
ior change in time. Thus, we describe the epidemic evolution
without solving differential equations.

I. INTRODUCTION

Pandemic propagation models are usually described by
systems of first-order ordinary non-linear coupled differential
equations such as is the case for the well-known suscepti-
ble–infected–susceptible (SIS) and susceptible–infected–recovered
(SIR) models. Numerous previous, as well as very recent, articles
have been written to deal with this problem.1–9 The dynamical vari-
ables in such models are usually denoted by S(t), I(t), and R(t),
which are functions of a single time variable t and denote the num-
ber of susceptible individuals (which may get infected), the number
of infected individuals, and the number of recovered or removed
individuals (which sometime after becoming infected are either
immune or die), respectively.

In addition to the dynamical variables, the models introduce
time-independent parameters (usually denoted by greek letters)
that describe the intensity of the coupling between the variables.
These parameters clearly depend on the behavior of quarantined
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people in different countries, which, in turn, depend on the contain-
ment policies implemented by different governments in different
countries.

It is not difficult to realize, when trying to fit the data informed
by health governmental institutions of different countries, that they
cannot be fitted by solutions of the model’s equations for time-
independent parameters since policies change over time and so does
the behavior of the societies. Strictly speaking, the so-called param-
eters are dynamical variables whose time evolution equations are
difficult to hypothesize or construct because their time evolution
depends on people’s idiosyncrasies and government policies, which
are almost impossible to foresee. To overcome this issue, some (or
all) of the parameters in those pandemic models can be promoted to
time-dependent variables (see, for example, Refs. 10–21). However,
the exact time dependence is still unknown in those new variables,
and the evolution of the pandemic is still very sensitive to the used
model. This has been explicitly shown, for example, in the study of
applications of travel restrictions during the spread of coronavirus
disease 2019 (COVID-19) pandemic,22 concluding that more real-
istic models must consider the time changing behavior of pattern
population to model a large-scale development of diseases.

Because of these difficulties, in this work, we propose an anal-
ysis on the study of the daily change of such parameters in order to
retrieve the dynamical information of a pandemic. The estimation
of the time-dependent behavior of the parameters of epidemiologi-
cal models has been an active research field in the past.10–21 However,
our procedure is different from previous ones, as it does not require
any set of differential equations as a model. Instead of studying the
total dataset that gives origin to the total structure of the pandemic,
we focus on the study of time evolution of the parameters that pro-
duce such a total structure; i.e., we do a meta-analysis of the dataset
system. Therefore, rather than solving a model described by a set of
differential equations with solutions that fit the data, a meta-analysis
proceeds in the opposite direction, finding the global evolution of
the parameters and thus obtaining a model. This procedure allows
us to find the global dynamical behavior of data by studying the
day-to-day evolution of the adjustment parameters. In this way, we
can extract the time-dependent information of the system without
solving any differential equation set. Hence, we are able to solve the
system in a phenomenological fashion. This proper meta-analysis of
the adjustment parameters can provide the kind of information that
is needed to have a better understanding of the evolution of the pan-
demic. The main goal of this work is to show that this procedure
gives us global information about the changes in the spread of the
disease.

The adjustment parameters in this meta-analysis, hereafter
called meta-parameters, are no longer considered as constants, and
they can be extracted directly from the data. It is the purpose
of this work to delineate a systematic procedure to estimate the
dynamics of meta-parameters. We show how these meta-parameters
substantially improve the understanding of the global evolution
of the pandemic. This is exemplified in the case of data from 11
countries. These are Italy, the United States, Canada, the United
Kingdom, Spain, Poland, Austria, Germany, Portugal, New Zealand,
and France.

In Sec. II, we briefly describe the SIR model in order to high-
light the differences with the current proposed model. Then, in

Sec. III, we introduce the phenomenological model for pandemic
dynamics and later, in Sec. IV, apply it to 11 countries. We end with
a discussion of our proposal.

II. SIR MODEL

To put our proposal in context, let us consider first the SIR
model as an example of pandemic evolution. This model consid-
ers three kind of populations, the susceptible S = S(t), the infected
I = I(t), and the recovered R = R(t) population, respectively, all of
them evolving in time. Besides, the total population N = S + I + R
is constant in time. The three variables are related by the differ-
ential system Ṡ = −αSI, İ = αSI − βI, and Ṙ = βI [where Ȧ(t) ≡

dA(t)/dt]. Here, α and β are constant parameters that contain the
relevant information for pandemic evolution. Our lack of knowl-
edge of how the pandemic evolves is hidden in such parameters.
Although no explicit exact solution for R = R(t) is known, it is
straightforward to show that at second order in an expansion around
αR/β , we can obtain the solution for the recovered population
as a function of time,3,23 given by R(t) ≈ r1 tanh(r2 t − r3) + r4.
Here, r1 = γβ2/(α2S0), r2 = βγ/2, r3 = tanh−1

(αS0/(βγ ) − 1/γ ),
and r4 = β/α − β2/(α2S0) are all constants in terms of

γ =
[

(αS0/β − 1)2 + 2S0I0α
2/β2

]1/2
, where S0 and I0 are the ini-

tial values of susceptible and infected populations at t = 0. It has
been assumed that the initial value of the recovered population
R0 = 0. It is important to realize that the system is now com-
pletely solved, as the infected population can be readily obtained by
I(t) = Ṙ/β ≈ (r1γ /2)sech2

(r2 t − r3), while the susceptible popu-
lation is S(t) = N − I(t) − R(t). Those solutions are often used to
study the pandemic evolution in an approximated manner. How-
ever, they fail to describe correctly its dynamics when social condi-
tions change or different governmental decisions are taken along the
progress of the pandemic.

In Secs. III–V, we show how better fitting results can be
achieved by the procedure of using a hyperbolic tangent function
to fit the data of the recovered population during the pandemic,
as a starting point for the procedure using meta-parameters. The
evolution of these meta-parameters is obtained by analyzing day-
by-day the same data that they adjust. This procedure gives a precise
figure of the increment of infected individuals. Therefore, the meta-
analysis produces a better fitting of the estimation of the temporal
behavior of the infected population, thus solving the pandemic
dynamics in a phenomenological way. The final solution obtained
from the data fitting procedure will not be a solution of the SIR
model, neither of any other simple model described by first-order
differential equations.

III. PHENOMENOLOGICAL TREATMENT FOR

PANDEMIC DYNAMICS

In this section, we describe the phenomenological procedure to
estimate the evolution of the infected population.

We start with the dataset Rj for the recovered population at day
j, with j = 1, . . . , N measuring elapsed days, with a final day N. The
information of this dataset is equivalent to the cumulative integral
or the sum of infected cases. The data are obtained from Ref. 24.
By using the information in Rj, we can infer the infected population
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data as

Ij = Rj − Rj−1, (1)

at day j. For this work, we have used data of Ref. 24 until June 19,
2020.

For such a given dataset for the recovered population, a global
dynamical behavior can be found by fitting the curve Rj → R(t),
where now the continuous recovered population function is given
by

R(t) = a
(

tanh
(

b t + c
)

− tanh c
)

+ R0, (2)

where a, b, and c are global constant adjustment parameters, and
we have assumed that the relevant data to perform any analysis start
with R0 6= 0 by properly setting the initial time t = 0 of our analysis.
By global, we mean that the adjustment is for the total lapsed time
N. Notice that the recovered population curve described by Eq. (2)
is not equal to the approximated solution emerging from the SIR
system. We show below that Eq. (2) is good global fitting for the
recovered population. On the other hand, the global infected popu-
lation dynamics is assumed to be found as Ij → I(t) = Ṙ(t), which
gives

I(t) = a b sech2
(

b t + c
)

. (3)

Now, let us perform the meta-analysis of fitting Eq. (2) for
the recovered population. We promote the three parameters used
in Eq. (2) to meta-parameters a → a1(t), b → a2(t), and c →

a3(t). These meta-parameters are no longer global constants. Their
dynamics must be obtained considering the new information that
brings any new day that is added to the dataset of the recovered pop-
ulation. For each time j (j = 1, . . . , N), the meta-parameters ai (i =

1, 2, 3) are found by fitting the curve (2) to the data by using them
as constant adjustment parameters for such time. As the amount
of data grows with time, the value of each meta-parameter varies,
taking into account the different behaviors that the governments
or the society may have at different times. After several iterations
are performed for different times and fitting curves described by
Eq. (2), a regular and dynamical behavior of each meta-parameter
starts to emerge. This regularity starts at some time τ for the three
meta-parameters, and it depends on each particular studied case.
All of this implies that meta-parameters are not globally constant in
time, and now their global time-dependence ai = ai(t) is apparent;
importantly, it can be deduced.

Once this stage is reached, the complete dynamical solution
for each meta-parameter is established, and solution (2) for the
recovered population can now be promoted to the function

RM(t) = a1(t)
[

tanh (a2(t) t − a3(t)) − tanh (a3(t))
]

− R0, (4)

which produces a dramatic departure from the solution of Eq. (2)
itself.

With all the above, the new meta-parameter fitting function (4)
contains more precise information on the daily changes of the recov-
ered population compared with the fitting function (2). In other
words, its derivative represents a more accurate description of the
infected population curve, which can be calculated as

IM(t) = ṘM(t), (5)

which anew turns out to be different from function (3).

It is shown below that when meta-parameters have achieved a
regular dynamics, they all can be described in the form (i = 1, 2, 3)

ai(t) ≈

Z
∑

k=0

akit
k, (6)

with constant coefficients aki and Z > 0. Several meta-analysis pro-
duces a very good agreement with the data for Z = 2. On the other
hand, and remarkably, to describe the sub-epidemic behavior of dif-
ferent countries, it is enough to consider Z = 4. This shows that any
change in the information of the data evolves in an ordered way and
it can be recovered through the study of the meta-parameters.

In order to quantify how both infected population fittings
differ from each other, we define the global adjustment function

ε = EM/EC, as the ratio between EM =
∑N

j=2

[

IM(j) − Ij

]2
, which

is the error function for the meta-analysis of the infected popula-

tion described by Eq. (5), and EC =
∑N

j=2

[

I(j) − Ij

]2
, which is the

error function for the fitting of the infected population described
by Eq. (3) with constant adjustment parameters. The case of ε < 1
implies a better fitting curve for the infected population dynamics
due to the meta-analysis.

IV. APPLICATIONS OF THE METHOD

In this section, we present examples for different countries that
explicitly show the strength of this phenomenological dynamical
analysis and its better fitting to the existent data. It is the goal of
this work to search for the explicit form of each meta-parameter for
the studied countries, finding in this way the underlying dynamical
structure of their pandemic scenarios, and thus determine RM and
IM. Thus, we show that this phenomenological model can also take
into consideration the sub-epidemics occurring during the whole
time lapsed for the pandemic in some countries. The sub-epidemic
behavior is coded in the time dependence of meta-parameters.

With all this in mind, let us discuss the pandemic data for
cumulative infectious cases as evolving over time for 11 differ-
ent countries, and how the phenomenological dynamical procedure
applies to each of them. We use the case of Italy to carefully explain
each step in the procedure, as it is straightforwardly replicated for
the other country cases. The data for every country are extracted
from Ref. 24 until June 19, 2020.

A. Italy

The data for the recovered population in Italy are shown by the
dotted line in Fig. 1(a), with N = 119. The red dashed line shows
the fitting of function (2), with parameters R0 = 17, a = 120 072,
b = 0.041 43, and c = −1.744 22.

Consider now the blue solid line in Fig. 1(a). It describes
the meta-analysis fitting of Eq. (4) for the recovered popula-
tion since the day τ = 43. This is the day in which the meta-
parameters start to behave regularly, as it can be seen in Fig. 2(a).
The meta-parameters are calculated for each day (from t = 0 for
R0), taking into account all previous days. Thus, each new cal-
culated meta-parameter contains the information of any previous
change. Before day τ , there is no regular pattern in the evolu-
tion of meta-parameters. However, after day τ , a very distinctive
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FIG. 1. Recovered and infected populations for Italy [Figs. 1(a) and 1(b), respectively], the United Sates [Figs. 1(c) and 1(d)], Canada [Figs. 1(e) and 1(f)], and the United
Kingdom [Figs. 1(g) and 1(h)]. Data are shown in dotted lines. Fittings (2) and (3) are shown in red dashed lines for recovered and infected populations, respectively.
Phenomenological fittings (4) and (5), with meta-parameters, are shown in blue solid lines for recovered and infected populations, respectively.
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FIG. 2. Meta-parameters for Italy [Fig. 2(a)], the United States [Fig. 2(b)], Canada [Fig. 2(c)], and the United Kingdom [Fig. 2(d)]. Data are shown in dotted lines. The regular
dynamical behavior of meta-parameters (starting in time τ ) is shown in red solid lines. They evolve following the quadratic form (6).
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regular dynamical behavior emerges. For the current case, after
day τ = 43, the meta-parameters’, a1(t), a2(t), and a3(t), time-
dependence behavior of Eq. (6) is obtained for Z = 4, shown by red
lines in Fig. 2(a). As an example for this case, we display the coef-
ficients of the form (6). These are a01 = 15 076, a11 = −21.2629,
a21 = 54.6027, a31 = 0.689 66, a41 = 0.002 48, a02 = 0.218 57, a12

= −0.004 26, a22 = 0.000 028, a32 = 2.975 37, a42 = −5.8174 ×

10−10, a03 = −4.259 59, a13 = 0.022 51, a23 = 0.000 63, a33

= −9.8595 × 10−6, and a43 = 3.7844 × 10−8. These meta-
parameters are used in Eq. (4) to obtain the solid blue fit in Fig. 1(a).

Notice that the fitting precision for the slope of the recovered
population becomes more accurate as it grows; i.e., a better fit for its
derivative is achieved compared to the fitting of Eq. (2). This implies
that it contains better information on the number of infected indi-
viduals. This is shown in Fig. 1(b), where the data represented by
dots are the infected population calculated according to Eq. (1). The
red dashed line is the infected population fit (3), with their respec-
tive parameters. Notice also that this fit is just proportional to the
approximated solution for the infected population in the SIR model.
On the other hand, the solid blue line in Fig. 1(b) corresponds to
the meta-analysis fitting of Eq. (5) for the infected population, with
meta-parameters described by the above coefficients. This fitting
reproduces better the global behavior of the evolution of the infected
population in Italy, just by considering the last part of the growing
on recovered cases (for times t > τ ).

The evaluation of the global adjustment function gives
ε = 0.390 21, allowing us to establish that the meta-parameter fitting
for the infected population is superior to fit (3).

B. United States

The recovered population for the United States is shown in
Fig. 1(c). The data with N = 120 are represented by a dotted line,
while the red dashed line shows the fitting (2), with parameters
R0 = 16, a = 243 386, b = 0.118 13, and c = −4.933 65. The blue
solid line is the fitting (4) since τ = 45, when the meta-parameters
start to have a regular evolution (6) with Z = 2, as it can be seen in
Fig. 2(b) in red lines.25

In this case, something similar to the previous case occurs. The
fitting of Eq. (4), with their respective meta-parameters, is not much
better than the fit of Eq. (2) for the recovered population. However,
its slope is in much better agreement with the growth rate for the
recovered data. This implies that our meta-analysis gives a better
fit for the infected population compared to the extracted data from
Eq. (1). This can be seen in Fig. 1(d). In this case, the red dashed line
represents the fitting (3) for the infected population, while the blue
solid line is our meta-analysis fitting (5) using meta-parameters (6).

The fit due to meta-parameters is so dramatic that when the
global solution (3) shows a decrease on the infected population,
the meta-analysis shows that the rate is not slowed down, but it
is increasing. For times t ' 80, our meta-analysis has been able
to extract the information of the sub-epidemics occurring during
the complete time scale of the pandemic. Sub-epidemics are usu-
ally modeled as overlapping of several epidemic episodes. These are
described as multimodal epidemic events satisfying coupled differ-
ential equation models.19 However, in our meta-analysis model, a
large sub-epidemic behavior emerges from the study of the evolution

of meta-parameters, without invoking any specific model designed
to describe these kinds of epidemics. This is a strength of our model,
as no a priori knowledge of the evolution of the pandemic is needed
in order to discover the sub-epidemic events in a society. In the case
of the United States, this sub-epidemic event is happening right now.

Furthermore, the meta-analysis fitting is better than model (3),
as the global adjustment function is ε = 0.278 88.

C. Canada

The recovered population data for Canada are shown with the
dotted line in Fig. 1(e). The red dashed line is the fit of Eq. (2) with
N = 114 and parameters R0 = 12, a = −50 965.9, b = 0.035 36, and
c = −2.207 83.

Anew, the blue solid line is our meta-analysis fitting of Eq. (4),
using the meta-parameters that are described by a regular dynamics
(6), with Z = 4 and starting in τ = 33, as red lines in Fig. 2(c). The
blue solid line for recovered cases indicates a better approximation
to the growing (slope) of such data.

The infected population is depicted in Fig. 1(f), where the data
are obtained from Eq. (1), while in the red dashed line is the fitting
(3), and in the blue solid line, we have the fitting of Eq. (5) with
the meta-parameters. Once again, the meta-analysis shows several
sub-epidemic events that cannot be obtained by fitting (3). This sub-
epidemics appears only when the time-dependent evolution of the
meta-parameter of Fig. 2(c) is found.

Finally, with ε = 0.812 82 for this case, the meta-analysis repre-
sents a better fit for the global evolution of the infected population.

D. United Kingdom

The recovered population data are shown in Fig. 1(g), while
the infected population data are shown in Fig. 1(h), both of them
in dotted lines. The recovered population data fit (2), in a red line
in Fig. 1(g), is achieved with N = 113 and parameters R0 = 16,
a = 149 676, b = 0.037 91, and c = −2.214 32.

The blue solid line in Fig. 1(g) represents the fit of meta-
analysis (4) for meta-parameters (6) that have achieved regular evo-
lution for τ = 35 and Z = 2 [see Fig. 2(d)]. The information in the
meta-analysis is used for the infected population in comparison with
data (1). In Fig. 1(h), the solid blue line for meta-parameter fitting
(5) shows a better correspondence than the fit given by Eq. (3) with
constant parameters. This is confirmed by evaluating ε = 0.840 56.

E. Spain

In Fig. 3(a), we show the recovered population data (in a
dotted line). The red dashed line is the fitting (2) for the recov-
ered population with N = 114 and parameters R0 = 9, a = 119 352,
b = 0.055 97, and c = −2.077 08. Similarly, the blue solid line is fit-
ting (4) with meta-parameters (6) with Z = 4 and starting in τ = 35.
We can see in Fig. 4(a) that the meta-parameters are described by
quartic functions.

Using this, we can calculate the behavior of the number of
infected individuals, shown in Fig. 3(b). The infected population
data (dotted line) are given by Eq. (1), while fit (3) is in a red dashed
line and meta-analysis fit (5) is in a solid blue line. We obtain that
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(c) Recovered population for Poland (d) Infected population for Poland

(e) Recovered population for Austria (f) Infected population for Austria

(g) Recovered population for Germany (h) Infected population for Germany

FIG. 3. Recovered and infected populations for Spain [Figs. 3(a) and 3(b), respectively], Poland [Figs. 3(c) and 3(d)], Austria [Figs. 3(e) and 3(f)], and Germany [Figs. 3(g)
and 3(h)]. Data are shown in dotted lines. Fittings (2) and (3) are shown in red dashed lines for recovered and infected populations, respectively. Phenomenological fittings
(4) and (5), with meta-parameters, are shown in blue solid lines for recovered and infected populations, respectively.
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(a) Meta–parameters a1, a2, and a3 for Spain
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(b) Meta–parameters a1, a2, and a3 for Poland
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(c) Meta–parameters a1, a2, and a3 for Austria
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(d) Meta–parameters a1, a2, and a3 for Germany

FIG. 4. Meta-parameters for Spain [Fig. 4(a)], Poland [Fig. 4(b)], Austria [Fig. 4(c)], and Germany [Fig. 4(d)]. Data are shown in dotted lines. The regular dynamical behavior
of each meta-parameter (starting in time τ ) is shown in red solid lines. They evolve following the quadratic form (6).
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ε = 0.492 92, showing that the fit based in meta-parameters is again
superior to the one based in time-independent parameters.

F. Poland

The data for the recovered population of Poland are plot-
ted in Fig. 3(c) in a dotted line. Also, the red dashed line fits
Eq. (2) for the recovered population with N = 105 and parameters
R0 = 5, a = 20 169.1, b = 0.020 11, and c = −1.395 25. The meta-
analysis fitting (4) is in a blue line with the meta-parameters (6) from
Fig. 4(b), starting in τ = 35, with Z = 2.

This case is interesting as the slope of meta-analysis fit (4)
clearly shows that the recovered population is increasing, as opposed
to what can be deduced from fit (2). Similarly, the infected popula-
tion data, in Fig. 3(d), show a better agreement with the fit (5) due to
meta-parameters. While the fit (3) indicates a strong decrease in the
infected population, the meta-analysis shows that the infected pop-
ulation is increasing due to sub-epidemic events. A better fit of the
meta-analysis is also corroborated by ε = 0.650 04.

G. Austria

Figure 3(e) shows the data for the recovered population in Aus-
tria. The fit (2) for N = 113 and parameters R0 = 5, a = 8152.2,
b = 0.075 69, and c = −2.336 93 is represented by a red line. Sim-
ilarly, the fit (4), represented by a blue solid line, requires the
meta-parameters (6) shown in Fig. 4(c), with coefficients starting
from τ = 50, with Z = 2.

The meta-analysis fit indicates a better adjustment for the
infected population, as it is seen in Fig. 3(f). In this figure, the red
dashed line is the fit (3), and the blue solid line is the fit (5). Notice
that there is a better adjustment of the meta-analysis for the tail
of the pandemic data for t > 60. The global dynamical behavior of
the infected population is better achieved by the meta-analysis, with
ε = 0.516 78.

H. Germany

The data for this country are shown in Figs. 3(g) and 3(h) for
the data (dotted lines) of recovered and infected populations, respec-
tively. Red dashed lines represent the fitting of (2) and (3) for both
cases, with N = 115 and R0 = 17, a = 90 954.5, b = 0.052 87, and
c = −2.129 98. Blue solid lines represent the meta-parameter fittings
of recovered (4) and infected (5) populations, with respect to the
data (1). The meta-parameters (6) start from ζ = 40, with Z = 4.

Once more, the fit (5) is better for the infected population, as
ε = 0.591 91.

I. Portugal

Figure 5(a) shows the recovered cases in dotted lines and the fit-
ting (2) in red dashed lines with N = 106 and R0 = 9, a = 19 109.7,
b = 0.030 79, and c = −1.254 53. A blue solid line is fit (4), with the
metaparameter shown in Fig. 6(a), with τ = 26 and Z = 4. Similarly,
we show the different fitting (3) and (5) for infected populations in
Fig. 5(b). The meta-analysis produces a better fit, as ε = 0.503 03.

Notice that, again, sub-epidemic events are present, and they
are apparent only through the known evolution of meta-parameters.

J. New Zealand

In Figs. 5(c) and 5(d), we show the recovered and infected pop-
ulation for New Zealand. The data are represented by dotted lines,
while fittings (2) and (3) are represented by red dashed lines with
N = 94 and R0 = 20, a = 606.56, b = 0.105 04, and c = −1.284 09.
The blue solid line is the meta-analysis fitting (4) and (5), for
meta-parameters of Fig. 6(b), with Z = 2 and τ = 30.

This case is very interesting as it is the only one in which
the meta-analysis and the fitting with constant parameters almost
coincide (although the meta-analysis is better with ε = 0.884 45).
This is an indication of the very good health policies adopted by
the government to deal with the pandemic and of the responsible
behavior of the society. In this (almost ideal) case, the evolution
of the infection variables behaves as a very precise mathematical
model.

K. France

The recovered and infected population data of the last country
we consider, France, are shown in Figs. 5(e) and 5(f). Fittings (2) and
(3) are in red dashed lines with N = 115 and R0 = 14, a = 75 771.6,
b = 0.049 66, and c = −2.090 13. The data are represented by dotted
lines.

Blue lines are fittings (4) and (5) with meta-parameters from
Fig. 6(c), with Z = 4 and τ = 39. Our meta-analysis adjustment
gives ε = 0.778 46, and it predicts a slight increase of the infected
population.

V. DISCUSSION

We have presented a new approach to deal with infection prop-
agation data by allowing the parameters to become time-dependent.
We are not able to produce a dynamical model for the time evo-
lution of parameters, mainly due to intrinsic difficulty associated
with unforeseeable government policies and population behavior.
Instead, we have been able to produce a method that may be suc-
cessfully applied to current data. These data have been informed by
11 different countries that have implemented different mitigation
policies to fight the COVID-19 infection with different population
reactions.

All of the cases of infected populations studied above exhibit
the same feature. The meta-analysis shows effectively the capture
of the daily variations of cases. In other words, we have shown
that using meta-parameters, we can integrate the recovered popu-
lation without using any pre-existing model. Our proposal produces
global results, as soon as the regular behavior of meta-parameters
is found. Thus, the meta-analysis works for all data and not only
for an arbitrary particular range in the evolution of recovered cases,
for example, when the growing of recovered cases behaves as a
power-law.26 This proposed model can also detect sub-epidemic
events occurring during the pandemic, which is done without the
assumption of any model based on differential equations.

Our model has two main key characteristics that need to be
considered to produce sensible results. The first one is the start-
ing model required to fit the data. In our case, we use a tanh fit
(2), but other more complex models, as modified logistic ones, can
be used as a starting point for the meta-analysis. This can improve
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(a) Recovered population for Portugal (b) Infected population for Portugal

(c) Recovered population for New Zealand (d) Infected population for New Zealand
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FIG. 5. Recovered and infected populations for Portugal [Figs. 5(a) and 5(b), respectively], New Zealand [Figs. 5(c) and 5(d)], and France [Figs. 5(e) and 5(f)]. Data are
shown in dotted lines. Fittings (2) and (3) are shown in red dashed lines for recovered and infected populations, respectively. Phenomenological fittings (4) and (5), with
meta-parameters, are shown in blue solid lines for recovered and infected populations, respectively.

the fitting done by the meta-parameters. The second one is the
high sensitivity of our model to well-established data for cases. The
infection data that are informed in countries where the govern-
ments have not been able to handle the pandemic or have intro-
duced sudden infection-related policy changes, or where the pop-
ulation has not abided by the government set containment rules, are

difficult to describe by the approach presented here (or almost any
other method). This is because no regularity can be found when the
meta-parameters are analyzed. This is the case of, for example, Chile,
where the health authority’s policies designed to address the pan-
demic and the response of the society have proved unsuccessful up
to now.
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(a) Meta–parameters a1, a2, and a3 for Portugal
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(b) Meta–parameters a1, a2, and a3 for New Zealand
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(c) Meta–parameters a1, a2, and a3 for France

FIG. 6. Meta-parameters for Portugal [Fig. 6(a)], New Zealand [Fig. 6(b)], and France [Fig. 6(c)]. Data are shown in dotted lines. The regular dynamical behavior of each
meta-parameter (starting in time τ ) is shown in red solid lines. They evolve following the quadratic form (6).
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