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Abstract

In this paper we give a unified treatment of two different definitions of complemen-
tarity partition of multifold conic programs introduced independently in [J. F. Bonnans
and H. Ramı́rez C., Math. Program. 104 (2005), no. 2-3, Ser. B, 205–227] for conic
optimization problems, and in [J. Peña and V. Roshchina, Math. Program. 142 (2013),
no 1-2, Ser. A, 579–589] for homogeneous feasibility problems. We show that both can
be treated within the same unified geometric framework, and extend the latter notion
to optimization problems. We also show that the two partitions do not coincide, and
their intersection gives a seven-set index partition. Finally, we demonstrate that the par-
titions are preserved under the application of nonsingular linear transformations, and in
particular that a standard conversion of a second-order cone program into a semidefinite
programming problem preserves the partitions.

1 Introduction

The complementarity partitions for linear programming and linear complementarity problems
are well understood and are utilized heavily in the analysis of optimization problems as well as
in numerical methods. In addition to strong duality (i.e., when both primal and dual problems
have optimal solutions, and the values of their objective functions coincide), linear programming
problems exhibit strict complementarity: in an appropriately formulated pair of primal and dual
problems each primal variable has a dual counterpart, and there exists an optimal solution that
is also a fully complementary pair, such that exactly one variable in each pair is positive and
the other one is zero. The situation is much more complex for general linear conic problems. In
a multifold system, where in place of the componentwise inequalities we have cone inclusions, it
may happen that the relevant components of the primal and dual variables lie on the boundary
of a corresponding cone. Moreover, there are several different definitions of complementarity
that do not coincide and lead to different characterizations.

In some special cases, specifically when a homogeneous feasibility problem is considered,
complementarity partition can be identified via an algorithm. The polyhedral (linear program-
ming) case was considered in [20, 23], and it was shown in [21] that it is possible to identify the
partition of [2] via a variant of an interior point method for second-order cone programming.
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The complementarity partition is related to generalized condition measures for multifold conic
systems, see [4]. Different approaches to complementarity partition for optimization problems
based on faces that contain primal and dual solutions can be found in [22, 25]. These studies
commonly treat the cone as a whole, treating partition as an intrinsic geometric notion. Our
take on the problem is entirely different, because we impose a multifold structure of the cone
explicitly and define the partition in terms of the block indices.

Recall that in the linear case complementarity partition has a simple and well-studied struc-
ture. Consider the primal-dual pair of linear programming problems

min
x∈Rn

c>x

s.t. Ax ≥ b,
(LP)

max
y∈Rm

b>y

s.t. A>y = c,

y ≥ 0.

(LD)

Here A ∈ Rm×n, b ∈ Rm, c ∈ Rn.The classical Goldman-Tucker theorem [8] (also see [1,
Proposition 17.16] for modern treatment) states that when either one of the problems has a
finite optimal value, there exists a unique partition (B,N) of the index set J = {1, . . . ,m}
that is of maximal complementarity. In other words, there is a pair (x̄, ȳ) of optimal solutions
to (LP) and (LD) such that for s̄ = Ax̄ − b and ȳ we have s̄B > 0, ȳN > 0, and moreover
for any primal-dual optimal solution (x, y), with s := Ax − b, it always holds that yB = 0,
sN = 0 (here we have used the notation standard in linear programming literature: by vI we
denote the vector of entries of v = (v1, . . . , vm) ∈ Rm with indices from a subset I ⊆ J of
J = {1, 2, . . . ,m}).

The structure of optimal partition of monotone linear complementarity problems is also
well-known. Indeed, let Q and R be n × n matrices, and h ∈ Rn. Recall that the linear
complementarity problem 

x>s = 0,

Qx+Rs = h,

x ≥ 0, s ≥ 0,

is called monotone if Qu + Rv = 0 yields u>v ≥ 0. For this type of problems the optimal
partition is of the form (B,N, T ), where T corresponds to the subset of indices for which both
s and x components are zero for every solution; see, e.g., [11, 12, 14].

This linear complementarity partition is reminiscent of the situation encountered in multi-
fold conic systems. When the system of linear inequalities is replaced by a product of general
closed convex cones (as in the case of second-order cone programming for instance), the par-
tition of indices becomes more complex since the component variables may end up on the
boundary of the cones.

In [2] a four-set partition was introduced for general multifold conic systems, based on
regularity conditions involving normal cones. In [16] a refined six-set partition was suggested
for homogeneous feasibility problems and a geometric characterization of such partition was
obtained. Our goal is to generalize the latter partition to multifold conic optimization problems
and compare the two partitions.

We focus on the case when strong duality holds for the primal-dual pair of conic optimization
problems. We note that this is a minimal assumption required for the notion of complementarity
to make sense: the optimal solutions must exist, and this in particular can be guaranteed by
the presence of Slater points in both primal and dual problems. In principle, the assumption
of strong duality can always be guaranteed by performing a facial reduction preprocessing step
if necessary; see [13, 15, 24]. Another possible approach is to use Ramana Duals [17, 18]. Both
approaches need to assume that the optimal value of the primal is attained. As pointed out
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by a reviewer, another way to remedy the failure of strong duality, and thus to ensure the
existence of the optimal partition, is to cast the primal problem into a self-dual embedding
format, for which the Slater condition always holds, see e.g., [6, 7]. Then, the optimal partition
of the original problem, if exists, can be recovered from the optimal partition of the embedding
problem.

We introduce the two types of partitions in Section 2, show the relations between them
in Theorem 2, treat the special case of second-order cones in Proposition 3 and provide an
illustrative example. In Section 3, we link the geometric relations of [16] to the four-set partition
of [2] in Theorem 6. We conclude the paper with a study of the relations between partitions of
reformulated (lifted) problems in Section 4, strengthening some results of [2].

Throughout the paper, we work in the finite-dimensional Euclidean setting of a real vector
space Rn endowed with the standard Euclidean norm ‖x‖ =

√
x>x.

2 Partitions for multifold conic optimization problems

Consider a general linear conic optimization problem with constraints in product form, i.e.,

min
x∈Rn

c>x

s.t. Ajx− bj ∈ Kj ∀j ∈ J, (P)

where Kj is a closed convex regular cone in Rqj , qj ∈ N for every j ∈ J , and J = {1, . . . , r} is a
finite index set (a regular cone has a nonempty interior and is pointed, i.e. it does not contain
lines). We set K := K1 × · · · ×Kr, and define A = (A1; · · · ;Ar) as the matrix whose rows are
those of A1 to Ar, and b := vec(b1, . . . , br) so that (P) is equivalent to

min
x∈Rn
{c>x; Ax− b ∈ K}.

The dual problem is

max
y1,...,yr

r∑
j=1

(bj)>yj

s.t.
r∑

j=1

(Aj)>yj = c, (D)

yj ∈ K+
j ∀j ∈ J,

where the (positive) polar of a set C ⊂ Rm is defined as C+ := {y ∈ Rm; y>z ≥ 0, ∀z ∈ C}.
Generally speaking, such primal-dual pairs of linear conic problems may have a nonzero duality
gap (see [9, Section 11.6] for a detailed discussion and [19, Section 3.2] for examples). The
Slater condition (i.e., the existence of x̂ such that Ajx̂ − bj ∈ intKj, ∀j ∈ J , for its primal
version, or an analogous condition for the dual) guarantees the absence of the duality gap.
Together with the bounded objective for either (P) or (D) this also yields the existence of the
optimal solution for the relevant primal or dual counterpart. Also note that zero duality gap
alone does not guarantee the existence of optimal solutions for both primal and dual problems
(see, e.g., [5]). So, we make the following standing assumption throughout the paper:

Standing assumption: strong duality holds for the pair (P)-(D), i.e, the optimal solution
sets of (P) and (D) are nonempty, and the duality gap is zero.
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A pair (x, y) of optimal solutions to primal and dual problems is characterized by the
complementarity system

Ajx− bj ∈ Kj,

yj ∈ K+
j ,

(yj)>(Ajx− bj) = 0 ∀j ∈ J, (C)

A>y = c.

We denote by S(C) the set of solutions for relations (C). Observe that S(C) is nonempty if and
only if strong duality holds (which is our standing assumption). We also denote by S(P) and
S(D) the set of solutions to the problems (P) and (D), respectively, and by F (P) and F (D) their
respective feasible sets. Notice that strong duality implies the equality S(C) = S(P)× S(D).

We say that strict primal (resp. dual) feasibility holds for j ∈ J if there exists x ∈ F (P)
such that Ajx− bj ∈ intKj (resp. y ∈ F (D) such that yj ∈ intK+

j ).
One says (e.g., [3, Def. 4.74]) that the strict complementarity condition holds for problem (P)

if there exists a pair (x, y) solution of the optimality system (C), such that −y ∈ riNK(Ax−b),
where NK is the standard normal cone of convex analysis (see [10, Section A.5.2]). Since K is
a closed convex cone, we have for s ∈ K that

NK(s) =


(−K+) ∩ s⊥, s ∈ ∂K,

∅, s /∈ K,
{0}, s ∈ intK,

(1)

where s⊥ denotes the orthogonal complement to the linear span of s.
For problems with constraints in the product form as in (P), we introduce the notion of

componentwise strict complementarity, which means that for each component j there exists a
pair (x, y) ∈ S(C), such that −yj ∈ riNKj

(Ajx− bj). As we will see later, the two notions are
equivalent.

In [2] the notion of optimal partition, well-known for linear programming and monotone
linear complementarity problems (see, e.g., [1, Section 18.2.4]), was extended to our abstract
framework. Let

B = {j | ∃(x, y) ∈ S(C) s.t. Ajx− bj ∈ intKj}
N = {j | ∃(x, y) ∈ S(C) s.t. yj ∈ intK+

j }
R0 = {j| ∃(x, y) ∈ S(C) s.t. − yj ∈ riNKj

(Ajx− bj)}.

Note that B ∪N ⊆ R0. Define R := R0 \ (B ∪N), T := J \R0. It was shown in [2, Lemma 3]
that if S(C) is not empty, the partition (B,N,R, T ) is a disjoint partition of the index set J .

Definition 1. Any pair (x, y) ∈ S(C) satisfying the relations below is said to be of maximal
complementarity: 

(i) Ajx− bj ∈ intKj, ∀j ∈ B,
(ii) yj ∈ intK+

j , ∀j ∈ N,
(iii) − yj ∈ riNKj

(Ajx− bj), ∀j ∈ R.
(2)

For each j ∈ B ∪N ∪R let (x(j), y(j)) ∈ S(C) be such that
Ajxj(j)− bj ∈ intKj if j ∈ B,
yj(j) ∈ intKj if j ∈ N,
−yj(j) ∈ riNKj

(Ajx(j)− bj) if j ∈ R,

4
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Figure 1: The four-partition (B,N,R, T ).

where xj(j) and yj(j) stand for the block j of vectors x(j) and y(j), respectively.
We define

x̂ := (|B|+ |R|)−1
∑

j∈B∪R

x(j); ŷ := (|N |+ |R|))−1
∑

j∈N∪R

y(j). (3)

It was shown in [2, Lemma 7] that the pair (x̂, ŷ) defined in (3) is of maximal complementar-
ity, and that any pair (x, y) ∈ riS(P)× riS(D) is of maximal complementarity. An immediate
consequence of this result is that componentwise strict complementarity yields strict comple-
mentarity (observing that riNK(Ax−b) = riNK1(A

1x−b1)×riNK2(A
2x−b2)×· · ·×riNKr(A

rx−
br)), therefore the two notions are equivalent.

In a separate development [16], a different idea was used to define a partition for a homo-
geneous feasibility problem. In the case when b = 0 and c = 0 the pair (P)-(D) is reduced to
a pair of homogeneous feasibility problems (FP)-(FD) below. In this case the primal problem
consists of finding an x such that

Ajx ∈ Kj ∀j ∈ J, (FP)

and the dual problem consists of finding y satisfying
r∑

j=1

(Aj)>yj = 0, yj ∈ K+
j ∀j ∈ J. (FD)

Either one of the problems has a strictly interior solution if and only if the other one only has
a zero solution; the most interesting situation in terms of the partition indices occurs when
both problems have boundary solutions. We can assign an index j ∈ J to the set B0 if all
solutions to the dual problem (FD) have zero j-th component, and to N0 if for every primal
solution to the problem (FP) the j-th component is zero. The remaining two partition sets are
the intersection O = B0∩N0 and the complement C = J \B0∪N0. In what follows we extend
this definition to optimization problems. Define the index subsets B0 and N0:

B0 = {j | ∀(x, y) ∈ S(C) yj = 0},
N0 = {j | ∀(x, y) ∈ S(C) Ajx− bj = 0},

and define the following four sets:

B′ = B0 \ (N0 ∪B), N ′ = N0 \ (B0 ∪N), O = B0 ∩N0, C = J \ (B0 ∪N0).

It follows immediately from the complementarity conditions of (C) that B ⊂ B0 and N ⊂ N0,
and that B′ ∩ N ′ = ∅. Therefore, it is not difficult to observe that the sets B,N,B′, N ′, O, C
form a disjoint partition of the index set J . To avoid confusion, we will refer to this partition
as the six-partition, whereas the four-set partition introduced before will be referred to as the
four-partition.
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Figure 2: The six-partition.

Theorem 2. The following relations between the four- and six-partitions hold.

T ⊃ B′ ∪N ′ ∪O = (N0 ∪B0) \ (N ∪B); R ⊂ C = J \ (B0 ∪N0); (4)

Proof. The first relation follows directly from the fact that the six-partition is indeed a partition
of set J and R ⊂ C. Thus, it only remains to show that R ⊂ C. We argue by contradiction
and suppose the existence of an index j∗ ∈ R \ C. Since C = J \ (B0 ∪N0), j∗ ∈ B0 ∪N0.

Since j∗ ∈ R, there exists a solution (x(j∗), y(j∗)) ∈ S(C) with

− yj∗(j∗) ∈ riNKj∗ (Aj∗x(j∗)− bj∗). (5)

First assume that j∗ ∈ B0 ∩R. This yields yj∗(j∗) = 0, and hence

0 ∈ riNKj∗ (Aj∗x(j∗)− bj∗).

This is only possible when either NKj∗ (Aj∗x(j∗)− bj∗) = {0} or NKj∗ (Aj∗x(j∗)− bj∗) contains

lines. In the first case Aj∗x(j∗)−bj∗ ∈ intKj∗ , and j∗ ∈ B, and that contradicts the definition of
R. The second case is impossible by our assumption that all cones Kj, j ∈ J have a nonempty
interior.

Now assume that j∗ ∈ N0 ∩R. We have Aj∗x(j∗)− bj∗ = 0, hence, (5) yields

−yj∗(j∗) ∈ riNKj∗ (Aj∗x(j∗)− bj∗) = riNKj∗ (0) = ri(−K+
j∗) = − intK+

j∗ ,

which yields j∗ ∈ N , and contradicts the fact that j∗ is in R. We therefore conclude that

R ⊂ C = J \ (B0 ∪N0). (6)

We demonstrate the relations of Theorem 2 using a Venn diagram in Fig. 3.
We next show that in the case of second-order cone programming the complementarity

partition has special properties. Recall that a second-order cone is a product of Lorentz cones
(closed convex cones Ln in Rn+1 for some n ≥ 1 defined as follows,

Ln = {x = (x0, x̄) ∈ R× Rn |x0 ≥ ‖x̄‖},

i.e., such cones are the epigraphs of the Euclidean norm). For consistency, we also let L0 :=
R+ = {x ∈ R |x ≥ 0}. Second-order cone programs are of type (P) and (D), where each cone
Kj, for j ∈ J , is a Lorentz cone. Notice that linear programming case can be cast as a special
case of second-order cone programming when Kj = L0 for all j ∈ J .
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Figure 3: The relations between index sets (see Theorem 2).

Proposition 3. If for every j ∈ J the cone Kj is a Lorentz cone, then

R = C = J \ (B0 ∪N0). (7)

Proof. Let j ∈ C. Then, there exists a solution (x(j), y(j)) ∈ S(C) with both yj(j) and
s = Ajx(j) − bj nonzero. Since yj(j) ⊥ s, we have yj(j) ∈ (K+

j ) ∩ s⊥ = −NKj
(s). Observe

that for a second-order cone the normal cone NKj
(s) is one-dimensional provided s 6= 0, hence,

riNKj
(s) = NKj

(s) \ {0} 3 yj(j), and therefore j ∈ R. We have then shown that C ⊂ R. The
reverse inclusion follows from Theorem 2.

We next show a simple example of mixed polyhedral and Lorentz cones in which it can
happen that R 6= C.

Example 4. We consider a feasibility problem given by b = 0, c = 0 and

A> =

 0 1 0 0 0 1 0 0
0 0 1 0 −1 1 1 1
1 0 0 1 0 0 0 1

 .
First, we consider

K = L3 × R1
+ × R1

+ × R1
+ × R1

+.

Solving the problem analytically, we obtain all possible solutions as the parametric family

x = (0, 0, α)>, Ax = (α, 0, 0, α, 0, 0, 0, α)>, y = (β, 0, 0,−β, γ, 0, γ, 0)>,

where α, β, γ ≥ 0. We thus obtain that 1 ∈ C, 2, 4 ∈ N , 3 ∈ O, 5 ∈ B, and R = {1}, since
the first cone is a Lorentz cone. Hence, as expected from Proposition 3, in this case R = C.
However, if we let K = L3 × R1

+ × R3
+, we directly deduce that 1, 3 ∈ C, 2 ∈ N . Now observe

that
NK3(A3x) = NR3

+
(0, 0, α) = −R2

+ × {0},

provided α > 0, and hence
riNK3(A3x) = − intR2

+ × {0}.

Hence, since the only possible solution is y3 = (0, γ, 0), with γ ≥ 0, it clearly follows that
−y3 /∈ riNK3(A3x). Hence, 3 /∈ R.
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3 Homogeneous feasibility problems

In this section we focus on homogeneous feasibility problems (P)–(D) introduced earlier in
Section 2. Observe that in this case the strong duality property coincides with solvability of
problems (FP) and (FD). The relevant complementarity conditions can be obtained from (C),

Ajx ∈ Kj,

yj ∈ K+
j ,

(yj)>Ajx = 0 ∀j ∈ J, (FC)

A>y = 0.

In [16] a dual characterization of the homogeneous six-partition was obtained.

Theorem 5 ([16, Theorem 1]). The sets B, N , B0 and N0 can be described as follows.

B = {j ∈ J |A>j (K+
j \ {0}) ∩ Lin (A>K+) = ∅},

N = {j ∈ J | riA>j K
+
j ∩ Lin (A>K+) 6= ∅},

B0 = {j ∈ J |A>j (K+
j \ {0}) ∩ Lin (A>K+) = ∅},

N0 = {j ∈ J | riA>j K
+
j ∩ Lin (A>K+) 6= ∅}.

Here by LinC we denote the lineality space of a convex set C.

It appears that in the case of feasibility problem the set R has a similar dual property. The
next result extends the relations of Theorem 5.

Theorem 6. In the case of a homogeneous feasibility problem

R0 ⊆ R̃ := {j ∈ J |A>j K+
j ∩ Lin (A>K+) = A>j K

+
j ∩ Lin (A>K+)}.

Proof. We argue by contradiction and assume that, for some pair of problems (FP)-(FD), there
exists j ∈ R0 \ R̃.

Consider the linear subspaces

L = {y |A>j y ∈ Lin (A>K+)}, L̄ = {y |A>j y ∈ Lin (A>K+)},

and let
F = L ∩K+

j , F̄ = L̄ ∩K+
j .

Here observe that F ( F̄ : indeed, since j /∈ R̃, the sets

A>j K
+
j ∩ Lin (A>K+) and A>j K

+
j ∩ Lin (A>K+)

are different, and hence there exists some p ∈ A>K+
j such that p ∈ Lin (A>K+) \ Lin (A>K+).

Subsequently there exists u ∈ K+
j such that A>u = p. For every such u we have u ∈ L̄ \ L,

yielding F 6= F̄ .
Pick an arbitrary solution x to (FP) and any v ∈ F̄ . Since v ∈ F̄ , we have A>j v ∈

Lin (A>K+), hence, −A>j v ∈ Lin (A>K+) ⊆ A>K+. Then there exist sequences {v+k }, {v
−
k }

such that v−k , v
+
k ∈ K+, A>v−k , A

>v+k ∈ A>K+, A>v±k → ±A>j v. Since A>v−k , A
>v+k ∈ A>K+,

and since x is a solution (i.e. Ax ∈ K), we have for some y ∈ K+, A>v−k = A>y

(Ax)>v−k = x>A>v−k = xA>y = (Ax)>y ≥ 0,

8



and analogously 0 ≤ (Ax)>v+k for all k. Hence, passing to the limit, we have (Ajx)>v = 0.
Therefore, F̄ ⊆ (Ajx)⊥. By definition, F̄ ⊆ K+

j , hence,

F̄ ⊆ K+
j ∩ (Ajx)⊥.

Since j ∈ R0, there exists a pair of feasible solutions (x, y) to (FP)-(FD) such that

yj ∈ − riNKj
(Ajx), where NKj

(Ajx) = −K+
j ∩ (Ajx)⊥. (8)

Let ȳ ∈ Rn be such that ȳi = 0 for all i 6= j, and ȳj = yj. Observe that ȳ ∈ K+, hence,
A>j yj = A>ȳ ∈ A>K+, and since A>y = 0, we have−A>j yj ∈ A>K+, hence, A>j yj ∈ Lin (AK+),
and therefore yj ∈ F .

Since yj ∈ F ( F̄ ⊆ K+
j ∩ (Ajx)⊥, F = F̄ ∩L, and all three sets F , F̄ and K+

j ∩ (Ajx)⊥ are
cones, their affine hulls are linear subspaces, moreover, we have the following representations

Aff F = L1, Aff F̄ = L2, Aff (K+
j ∩ (Ajx)⊥) = L3,

where L1, L2, L3 are linear subspaces, L1 ( L2 ⊆ L3. Observe that L1 ( L2 follows from the
fact that F = F̄ ∩L, where L is a linear subspace and F 6= F̄ . Also note that since F = L∩ F̄ ,
and F̄ = L̄ ∩ (K+ ∩ (Ajx)⊥), we have F = F̄ ∩ L1, F̄ = L2 ∩ (K+ ∩ (Ajx)⊥).

From (8) we deduce that there exists ε > 0 such that (yj +Bε)∩L3 ⊆ K+
j ∩(Ajx)⊥. Observe

that since Aff F̄ = L1 ⊕ (L2 ∩ L⊥1 ), there exists a unit vector u in L⊥1 ∩ L2 such that yj + εu ∈
F̄ ⊆ L2 ⊆ L3, therefore yj−εu ∈ L3, and since ±εu ∈ Bε, we have yj±εu ∈ L2∩(K+

j ∩(Ajx)⊥),

hence, yj ± εu ∈ F̄ , as F̄ = L̄2 ∩ (K+ ∩ (Ajx)⊥).
Therefore, A>j (yj± εu) ∈ A>K+. Since A>j yj ∈ Lin (A>K+), we have −A>j yj ∈ A>K+, and

therefore we deduce that −A>j (yj ± εu) ∈ A>K+, and hence A>j (yj ± u) ∈ Lin (A>K), which
means that yj ± εu ∈ F , which contradicts the construction of u. Therefore, our assumption
that there exists j ∈ R0 \ R̃ is wrong, and hence R0 ⊆ R̃.

In the following example we show that the reverse inclusion in R0 ⊆ R̃ does not always
hold.

Example 7. Consider a feasibility problem given by b = 0, c = 0,

A> =

 0 1 0 0 0 1 0 0
0 0 1 0 −1 0 1 0
1 0 0 1 0 0 0 1


and

K = L3 × R1
+ × R3

+.

Solving the problem analytically, we obtain all possible solutions as the parametric family

x = (0, 0, α)>, Ax = (α, 0, 0, α, 0, 0, 0, α)>, y = (β, 0, 0,−β, γ, 0, γ, 0)>,

where α, β, γ ≥ 0. We thus obtain that 1 ∈ R, 2 ∈ N , and 3 ∈ T . Consequently, R0 = {1, 2}.
However, for this concrete example it is possible to prove that A>K+ is closed. Then, from
the definition of R̃, it follows that R̃ = {1, 2, 3}, which thus turns to be strictly larger than R0.
Indeed, let us denote by u ∈ L3, w ∈ R1

+ and v ∈ R3
+ the components of y ∈ K. Hence,

A>K+ = {(u1 + v1, u2 + v2 − w, u0 + u3 + v3)
> : u ∈ L3, w ≥ 0, vi ≥ 0∀i = 1, 2, 3}

= {(x1, x2, x3)> : x2 ∈ R, x3 ≥ 0, x1 + x3 ≥ 0}.
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In the computation above we have used that: i) v2 − w can be any real number when v2 and w
are nonnegative; ii) the third component x3 = u0 + u3 + v3 is nonnegative because u ∈ L3 and
v3 ≥ 0, and iii) the first component x1 = u1 + v1 can be negative because of u1. However, since
u ∈ L3, u0 is always greater or equal than −u1. This necessarily implies that x1 + x3 ≥ 0. We
thus conclude that R̃ = {1, 2, 3}, and consequently R0 6= R̃.

4 Equivalent optimization problems

We now introduce another problem related to (P). Let K = K1 × · · · × Kr be another finite
family of regular closed convex cones in Rrj , j ∈ J , and M j be rj × qj matrices such that

sj ∈ Kj iff M jsj ∈ Kj, j = 1, . . . , J. (9)

The latter is inspired by the relation between second-order cones and the cone of the positive
semidefinite matrices (denoted by Sn+1

+ ). Indeed, consider, for some n ≥ 1, the cones Ln and
Sn+1
+ . For s = (s0, s̄) ∈ R× Rn it is easy to check that

s ∈ Ln iff Arw(s) :=

(
s0 s̄>

s̄ s0In

)
∈ Sn+1

+ . (10)

Linear function Arw(·) is the arrow function and it has several useful properties that will be
exploited in what follows.

Let M = (M1; · · · ;M r) be the matrix whose rows are those of M j. Then, (P) is equivalent
to the linear conic problem

min
x∈Rn

c>x s.t. M j(Ajx− bj) ∈ Kj, j ∈ J, (MP)

whose dual is

max
z∈K+

r∑
j=1

(bj)>(M j)>zj s.t.
r∑

j=1

(Aj)>(M j)>zj = c; zj ∈ K+
j , j ∈ J. (MD)

If the strong duality holds for this problem, an optimal pair (x, y) of the primal and dual
problems is characterized by the optimality system{

M j(Ajx− bj) ∈ Kj, zj ∈ K+
j , (zj)>M j(Ajx− bj) = 0, j ∈ J ;∑r

j=1(A
j)>(M j)>zj = c.

(MC)

In what follows, let (BP , NP , RP , TP ) denotes the optimal partition of (P), and adopt a similar
convention for (MP).

Our goal in this section is to extend the results of [2] to the six-partition. This permits to
end this section by showing that relevant pair of second-order and semidefinite programming
problems has the same partitions. Before proceeding in this direction we need to recall some
useful claims proved in Lemmas 8 and 9 of [2].

Lemma 8. The following relations hold:
(i) S(P) = S(MP), M>K+ ⊂ K+, and M>S(MD) ⊂ S(D).
(ii) If M>K+ is closed, then M>K+ = K+ and M>S(MD) = S(D).
(iii) Closedness of M>K+ holds if M> is coercive on K+, i.e., if there exists γ > 0 such

that ‖M>z‖ ≥ γ‖z‖ for all z ∈ K+. In that case, S(MD) is bounded iff S(D) is bounded.
(iv) Assume in addition that the linear mapping defined by the matrix M is one to one.

Then, M> intK+ = intK+ and
M> intS(MD) = intS(D). Moreover, for all s ∈ K, M> ri(K+ ∩ (Ms)⊥) ⊂ ri(K+ ∩ s⊥).
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The next proposition strengthens [2, Lemma 10] by replacing the inclusions NP ⊇ NMP

and TP ⊆ TMP with equalities, under the same assumptions. It states conditions for which the
four-partition of problems (P) and (MP) coincide.

Proposition 9. Assume that M>K+ is closed, that M is one to one, and that

For all sj ∈ Kj, M
jsj ∈ ∂Kj iff sj ∈ ∂Kj. (11)

Then, the four-partition of problems (P) and (MP) coincide, that is{
BP = BMP , NP = NMP ,
RP = RMP , TP = TMP .

(12)

In particular, the strict complementarity condition holds for (P) iff it holds for (MP).

Proof. As mentioned above, due to Lemma 10 of [2] it only remains to prove that RP ⊆ RMP .
Let j ∈ RP . This implies the existence of (x, y) ∈ S(C) such that sj := Ajxj − bj ∈ ∂Kj \ {0}
and yj(j) ∈ ∂K+

j \ {0}. It follows from Lemma 8, Parts (i) and (ii), that x ∈ S(MP) and that

there exists z ∈ S(MD) such that y = M>z, respectively. In particular, yj = (M j)>zj and

0 = (sj)>yj = (sj)>(M j)>zj = M j(sj)>zj. (13)

Moreover, from (11) and the fact that M is one to one, we deduce that M jsj is a nonzero
element of ∂Kj. This in particular implies that zj 6∈ int(K+

j ) (because otherwise (13) yields

M jsj = 0). Finally, since (M j)>zj = yj 6= 0 it directly follows that zj 6= 0. Summarizing,
we have proved that (x, z) ∈ S(MC), and M jsj and zj are nonzero elements of ∂Kj and ∂K+

j ,
respectively. This means that j ∈ RMP , which concludes our proof.

We now state the equivalence between six-partitions of problems (P) and (MP).

Theorem 10. Under the assumptions of Proposition 9,{
BP = BMP , NP = NMP ,
N0

P = N0
MP , B0

P ⊇ B0
MP .

(14)

Additionally, suppose that z = 0 is the only element in K+ such that M>z = 0. Then, B0
P =

B0
MP . The last relation in particular implies that the six-partition of problems (P) and (MP)

coincide.

Proof. RelationsBP = BMP andNP = NMP were established in Proposition 9. From Lemma 8 (i)
we have MS(P) = S(MP). Hence, the inclusion N0

P ⊂ N0
MP is obvious. Moreover, since M is

one to one, Mj(Ajx− bj) = 0 yields Ajx− bj = 0, and consequently, the equality N0
P = N0

MP .
On the other hand, relation B0

MP ⊆ B0
P follows directly from Lemma 8(ii). Indeed, if for

every (x, z) ∈ S(MC) we have zj = 0, then yj = M>
j (zj) = 0, obtaining that yj = 0 for

all y ∈ S(D). Now, for the opposite inclusion, assume that j ∈ B0
P . Then every solution

(x, z) ∈ S(MP) satisfies M>
j zj = 0. By assumption this yields zj = 0. We thus conclude that

B0
P ⊆ B0

MP . The result follows.

We show in the next example that the assumptions of Theorem 10 are crucial for the equality
between partitions.
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Example 11. Consider a pair of feasibility problems

Ax ∈ K, (P ) A>y = 0, y ∈ K+, (D)

where
K = K+ = L2 × R1

+,

and L2 is the three-dimensional Lorentz cone. Let

A> =

[
0 1 0 1
1 0 1 0

]
.

We can solve this feasibility problem directly and obtain the parametric family of solutions

x∗ = (0, α)>, α ≥ 0, with Ax∗ = (α, 0, α, 0)>; y∗ = (β, 0,−β, 0)>, β ≥ 0.

It is not difficult to see that for the first index the solutions lie on the boundary of the cones,
hence, 1 ∈ C = R. For the second index, both primal and dual components are zero, hence,
2 ∈ O.

Now we transform our problem into a higher-dimensional one. We let

M1 = I3 =

 1 0 0
0 1 0
0 0 1

 , M2 =

[
1
1

]
.

For the transformed problem, we let K1 = K1 = L2, K2 = L1. Observe that for every y ∈ R we
have

M2y = (y, y)>,

and hence M2y ∈ K2 = L1 iff y ∈ K2 = R1
+. Further,

A1 = M1A1 = A1 =

 0 1
1 0
0 1

 , A2 = M2A2 =

[
1
1

]
[1 0] =

[
1 0
1 0

]
.

Let A = [A1;A2], then we can write the transformed feasibility problem as

Au ∈ K, (P ′) A>v = 0, v ∈ K+. (D′)

Solving the problem directly, we obtain the family of optimal solutions

u = (λ, 0), λ ≥ 0 with Au = (λ, 0, λ, 0, 0); v = (µ, 0,−µ, γ,−γ), µ, γ ≥ 0.

Therefore, we conclude that 1M ∈ C, 2M ∈ N0 \ (B0 ∪ N) = N ′, and hence the partition has
changed.

The situation above occurs because M2 does not satisfy that M>
2 z = 0 yields z = 0 for all

z ∈ K+ = L1. Indeed, it is enough to take z = (1,−1)> to check this hypothesis fails.

The next corollary follows directly from Theorem 10 and definition of the index set C. This
result provides alternative hypotheses to those in Proposition 9 in order to ensure that the
four-partition of problems (P) and (MP) coincide.

Corollary 12. Suppose that the assumptions of Lemma 9 are fulfilled. Suppose also that for
all z ∈ K+ such that M>z = 0 yields z = 0, RP = CP and RMP = CMP . Then

RP = RMP , TP = TMP .
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We end this section by applying previous results to the case of a linear second-order cone
program and its semidefinite programming equivalent representation constructed via (10). In-
deed, those problems fits in the framework given by problems (P) and (MP) provided, for all

j ∈ J , we consider the following sets Kj := Lnj
, Kj := Snj+1

+ , and M jsj = Arwj sj. Here, the

arrow function Arwj : Rnj+1 → Snj+1 was defined in (10).
In what follows consider a generic nonnegative integer value n and omit index j from the

arrow function. Note that we can write

Arw(s) = (s0 − ‖s̄‖)In+1 +

(
‖s̄‖ s̄>

s̄ ‖s̄‖In

)
. (15)

This shows that for s ∈ Ln \ {0}, Arw(s) is of rank n iff s ∈ ∂Ln, and of rank n+ 1 otherwise.
In particular, Arw ∂Ln ⊂ ∂Sn+1

+ , and Arw intLn ⊂ intSn+1
+ . Therefore (11) holds. Also Arw is

clearly one to one.
Let us decompose any matrix Y ∈ Sn+1 as follows

Y =

(
Y00 Ȳ >0
Ȳ0 Ȳ

)
, (16)

where Y00 ∈ R, Ȳ0 ∈ Rn and Ȳ ∈ Sn. We note that for any s ∈ Rn+1 we get

Arw(s) · Y = s0 Tr(Y ) + 2s̄ · Ȳ0. (17)

It follows that Arw> : Sn+1 → Rn+1 is nothing but

Arw>Y :=

(
Tr(Y )

2Ȳ0

)
. (18)

Consequently

M>(Y 1, . . . , Y r) = vec

((
Tr(Y 1)

2Ȳ 1
0

)
, . . . ,

(
Tr(Y r)

2Ȳ r
0

))
. (19)

Then, M>K is clearly closed. Moreover, since Arw> Y = 0 implies Tr(Y ) = 0, when Y ∈ Sn+1
+

the latter yields Y = 0. Hence, all the assumptions of Proposition 9, and of Theorem 10,
are fulfilled. We thus conclude that a second-order program and its respective semidefinite
programming representation (given by (10)) have the same four- and six-partitions.

5 Conclusions

Our results demonstrate what one cannot expect to obtain simple geometric characterizations
of the kind that exist for the four-partition of Bonnans and Ramı́rez [2] for the practically useful
partition of Peña and Roshchina [16] in a general case of a multifold conic system. However, in
the case of second-order cone programs the complement T \C is empty (cf. Fig. 3), and R = C
(see Proposition 3). This is in contrast to Example 4 in which we lumped three copies of the
nonnegative orthant together, deliberately disrespecting the natural multifold structure of the
problem.

In the case of a homogeneous feasibility problem, we have obtained a geometric condition
satisfied by the set R0 that originates from the six-partition of Bonnans and Ramı́rez. It would
be valuable to generalize this result (stated in Theorem 6) as well as the original geometric
result (in Theorem 5) to optimization problems.
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Also, motivated by a question from one of the referees that we were not able to answer, we
would like to ask the reader if there is an example of a primal-dual pair of problems for which
B′ ∪N ′ 6= ∅, but C = ∅.

Finally, we have shown that the canonical transformation of second-order cone programs into
a positive semidefinite program preserves the complementarity partitions. It is an interesting
question to determine other specific classes of problems for which this is also the case.
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