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Para mi familia.



“ All human cognition begins with intuitions, proceeds from
there to concepts, and ends with ideas.”
I. Kant, Kritik der reinen Vernunft (Critique of Pure Reason),
1781.
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cado al noroeste de Perú. Mi acercamiento hacia las
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Resumen

Sea k un cuerpo de números de grado n = r1 + 2r2 teniendo r1 incrustaciones
reales y r2 pares de incrustaciones complejas. Sea G ⊆ E+ cualquier subgrupo de
ı́ndice finito del grupo E+ de las unidades totalmente positivas de k, aśı G actúa
en Rr1

+ × (C∗)r2 , donde R+ denote los números reales positivos y C∗ los números
complejos no nulos. Diaz y Diaz, Espinoza y Friedman introdujeron la noción
de dominio fundamental con signo y han dado un algoritmo para determinarlo
expĺıcitamente desde un conjunto de generadores de G si k no es totalmente
complejo (es decir, r1 > 0). Su dominio fundamental con signo consiste de a lo
más (n − 1)!3r2 conos poliédricos k-racionales. Aqúı damos un algoritmo para
extraer un dominio fundamental F desde un dominio fundamental con signo. Tal
F es de nuevo una unión finita de conos poliédricos k-racionales. Excepto para
cuerpos cuadráticos y cúbicos ambos totalmente reales, un tal algoritmo no era
conocido previamente. Aunque nuestro algoritmo es teóricamente bastante lento
debido a la gran cantidad de conos involucrados, en la práctica funciona bien si el
grado del cuerpo es menor que seis. También, para cuerpos séxticos totalmente
reales nuestro algoritmo es a veces exitoso.
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Abstract

Let k be a number field of degree n = r1 + 2r2 having r1 real embeddings and
r2 pairs of complex conjugate embeddings. Let G ⊆ E+ be any subgroup of
finite index of the group E+ of totally positive units of k, so that G acts on
Rr1

+ × (C∗)r2 , where R+ denotes the positive real numbers and C∗ the non-zero
complex numbers. Diaz y Diaz, Espinoza and Friedman introduced the notion of
signed fundamental domain and gave an algorithm to determine these explicitly
from a given set of generators of G if k is not totally complex (i.e., r1 > 0). Their
signed fundamental domain consists of at most (n− 1)!3r2 k-rational polyhedral
cones. Here we give an algorithm to extract a true fundamental domain F from
such a signed fundamental domain. Here again, F is a finite union of k-rational
polyhedral cones. Except for totally real quadratic and cubic fields, no such
algorithm was previously known. Although our algorithm is theoretically rather
slow due to the great number of cones involved, in practice it works well if the
degree of the number field is at most five. Also, for totally real sextic fields our
algorithm is sometimes successful.
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Introduction

0.1 Shintani Domains

Let k be a number field of degree n = r1 + 2r2, with r1 real embeddings and r2
pairs of complex conjugate embeddings. Arbitrarily choosing one from each pair
of complex conjugate embeddings, we obtain the standard mapping of k into the
real vector space V := Rr1 × Cr2 . This induces an action by component-wise
multiplication of the group of totally positive units E+ of k on the open subset
V+ := Rr1

+ × (C∗)r2 . Shintani [S76] [S79] [N99] proved that there is a fundamental
domain F =

⋃
j∈J Cj for V+/E+ which is a disjoint finite union of (open) k-

rational simplicial cones Cj, where by definition Cj := Cj
(
vj1, . . . , vjr(j)

)
⊆ V+

consists of all positive linear combinations of the linearly independent vectors
vj1, . . . , vjr(j) ∈ k+ := V+ ∩ k.1 Such an F is now known as a Shintani domain.
Thus,

V+ := Rr1
+ × (C∗)r2 =

⋃
j∈J

⋃
µ∈E+

µCj (disjoint union).

This allowed Shintani to study Hecke L-functions attached to abelian extensions
of k. In particular he showed that the values of certain zeta functions at non-
positive integers are rational [S76, Theorem 1]. This result was shown by Siegel
[S69] whose proof (different from Shintani’s) was based on the theory of elliptic
modular forms. Shintani also used his domain to give an affirmative answer to the
Hecke conjecture that the relative class number of a totally complex quadratic ex-
tension of a totally real number field admits an elementary arithmetic expression
[S76, Theorem 2].

Shintani’s proof does not give a practical procedure to construct the cones
that determine his fundamental domain. Soon after Shintani’s proof this issue
was addressed by Nakamula [N77] for Galois cubic fields, and then by Thomas
and Vasquez [TV80] for any totally real cubic field. An efficient algorithm for
totally real cubics was found by Diaz y Diaz and Friedman [DF12]. The general
case was addressed by Okazaki [O93] and Halbritter and Pohst [HP00], but they
only arrived at conjectural algorithms. Aside from its interest in number theory,
Shintani domains are important in the explicit resolution of singularities of certain
moduli spaces [E75] [TV80] [S86] [G99].

A first advance toward explicit cones in the case of a general totally real
number field was provided by Colmez [C88] [C89]. He proved the existence of
units having special geometric properties, which generate a finite-index subgroup

1 For notational simplicity, throughout this thesis we regard k as a subset of V .

1
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G ⊆ E+ for which he gave an explicit construction of a Shintani domain for
V+/G consisting of (n− 1)! k-rational cones {Cσ}σ∈Sn−1 . Colmez’s cones require
the prior construction of his special units. Unfortunately, there is no known
practical procedure to find them, except in the quadratic and cubic cases [DF12].

In 2014 Diaz y Diaz and Friedman [DF14] got rid of the need for Colmez’s
special units at the cost of allowing signed fundamental domains. Their idea was
to regard a fundamental domain as a list of cones Cj satisfying∑

j∈J
#(Cj ∩G · x) = 1 (∀x ∈ V+),

and to generalize this by permitting the subtraction of cones.2

Definition 1. A signed fundamental domain (N ;P) for the action of a countable
group G acting freely3 on a set X is by definition a pair of lists N = (N1, . . . , Nm)
and P = (Π1, . . . ,Π`) of subsets of X such that

∑̀
i=1

#
(
Πi ∩ (G · x)

)
−

m∑
j=1

#
(
Nj ∩ (G · x)

)
= 1 (∀x ∈ X), (1)

where we also require that #(Πi ∩G ·x) and #(Nj ∩G ·x) are finite and bounded
independently of x ∈ X. We shall call the Nj the “negative subsets” and the Πi

the “positive subsets.”

Diaz y Diaz and Friedman showed that for the purpose of calculating Hecke L-
functions, signed fundamental domains are just as convenient as true fundamental
domains. The former have the advantage that they are easily constructed given
any set of independent generators of a subgroup G ⊆ E+ of finite index [DF14]
[EF20], and this for any number field that is not totally complex. Thus, there
is no longer any need for Colmez’s special units as long as we calculate with
L-functions (except in the totally complex case). Nonetheless, aside from their
intrinsic interest, Shintani domains are still useful to resolve singularities.

Leaving aside the trivial case where E+ is finite, algorithms producing Shintani
domains are known only for the case of totally real cubic and quadratic fields.
Our goal in this thesis is to give and implement an algorithm for producing a
true fundamental domain from a signed one.

0.2 From signed to true fundamental domains:

An algorithm

We assume given a signed fundamental domain (N ;P) for X/G, as defined above,
and wish to modify it to produce a true fundamental domain. The idea for such
an algorithm becomes clear after the following observations.

2 Here and below # denotes cardinality.
3 i.e. the stabilizer of any x ∈ X is assumed trivial. This essential condition was mistakenly

omitted in [DF14, Definition 4], but it holds for their application to units of number fields.
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Observation 1. If all the “negative subsets” Nj in the list N are empty, then

F :=
⋃`
i=1 Πi is a true fundamental domain for the action of G on X, and the Πi

are disjoint.

Observation 1 follows immediately from (1). Thus, our goal will be to remove
the Nj so as to eventually arrive at an empty list of negative subsets. We will do
this bit by bit.

Observation 2. If for some i and j we have Nj ∩Πi 6= ∅, then on replacing Nj by
Nj \ (Nj ∩Πi) and Πi by Πi \ (Nj ∩Πi), the new (N ;P) is a signed fundamental
domain for X/G.

This is because the contributions of (G · x) ∩ (Nj ∩ Πi) just cancel out in (1).

However, the Nj’s will not in general be contained in
⋃`
i=1 Πi, as the following

shows.

Observation 3. If for any g ∈ G and any Nj ∈ N we replace Nj by g · Nj, then
the new (N ;P) is a signed fundamental domain for X/G.

The reason is that #
(
Nj ∩ (G · x)

)
= #

(
(g ·Nj) ∩ (G · x)

)
in (1).

Observation 4. If L := (g ·Nj) ∩ Πi 6= ∅, then on replacing Nj by Nj \ (g−1 · L)
and Πi by Πi \ L, the new (N ;P) is a signed fundamental domain for X/G.

This follows on combining Observations 2 and 3.
Thus, to remove pieces of the Nj’s it suffices to find a g ∈ G and a Πi ∈ P

such that (g · Nj) ∩ Πi 6= ∅. It is an essential feature of signed fundamental
domain that this is always possible.

Observation 5. Given any (non-empty!) Nj, there is a g ∈ G and some i such
that (g ·Nj) ∩ Πi 6= ∅.

The reason is that an even stronger property holds. Since for any x ∈ Nj we have∑m
h=1 #

(
Nh ∩ (G · x)

)
≥ 1, it follows from (1) that

∑`
i=1 #

(
Πi ∩ (G · x)

)
≥ 2.

Thus there is some g and Πi such that (g ·Nj) ∩ Πi 6= ∅.
Combining the above observations we see that we need to successively crop

off pieces of the signed fundamental domain (N ;P) for X/G so as to eventually
arrive at a new signed fundamental domain (N ′,P ′), where N ′ is a list of empty
sets. Then a true fundamental domain is simply the union of the subsets in the
list P ′.

This leads to the following idea for an algorithm producing a true fundamental
domain F from a signed one (N ;P), where N = (N1, . . . , Nm), P = (Π1, . . . ,Π`).

Step 1 (done?). Read (N ;P). If N is a list of empty sets, then RETURN
F :=

⋃`
i=1 Πi. Otherwise, go to Step 2.

Step 2 (crop). Find some Nj ∈ N , Nj 6= ∅, g ∈ G and Πi ∈ P such that
L := (g ·Nj) ∩ Πi 6= ∅. Replace Nj in N by Nj \ g−1 · L and Πi in P by Πi \ L.
Go to Step 1 with the new (N ;P).

It is not hard to show (see Chapter 3) that the algorithm terminates provided we
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are able to discard g from future use. This avoids the trap of having to try the
same g indefinitely at later steps of the algorithm. When g is used for the first
time, we will discard g after using it to crop all remaining Nj′ in N .4

Although Steps 1 and 2 will be our basic strategy, in our case there are several
obstacles. Firstly, we are not interested in just any fundamental domain. We want
a fundamental domain which is a finite disjoint union of k-rational polyhedral
cones. Unfortunately, the difference of two such cones is no longer polyhedral, so
we will have to write the set-theoretical differences Nj \ (g−1 · L) and Πi \ L in
Step 2 as a (possibly empty) finite union of k-rational polyhedral cones.

The boundary of the cones in the signed fundamental domains deserves men-
tion. When we crop off pieces of cones and rewrite the result as a union of
cones, we would normally have to keep track of which common boundary piece
is assigned to which cone. Fortunately, we are able to avoid all consideration
of boundary contributions until there are no more negative cones left. For this
we use Colmez’s (unpublished) trick of choosing a special vantage point to se-
lect which boundary pieces to include in the fundamental domain (see [EF20, §
4.3] and Chapters 3 and 4 of this thesis). As happened already to Espinoza and
Friedman, only here do we need the hypothesis that k is not totally complex, as
in general no vantage point exists in this case.

As is usual in algorithmic number theory, some steps that seem trivial in
theory can take some effort to carry out. An example of this is determining if
(g · Nj) ∩ Πi 6= ∅. A more important problem is that picking an Nj and then
finding g and Πi as in Step 2 is slow. In practice, we list the g in the (countable)
group G = {g1, g2, . . .} ⊆ E+ (see Chapter 4), and for each gh (beginning with
h = 1), we apply the cropping process (Step 2) to all Nj and Πi such that
(gh ·Nj) ∩ Πi 6= ∅. We then move to gh+1 if any negative cones remain.

0.3 On the running time

For convenience, we work in somewhat more generality than we need for our
application. We take as given a signed fundamental domain, consisting of pointed
rational polyhedral cones,5 for the free linear action of a countable group G on a
subset O ⊆ V of an n-dimensional real vector space V endowed with a rational
structure (see Definition 34 for details).

In Chapter 3 we describe an algorithm that finds a true fundamental domain
for O/G consisting of a finite number of pointed rational polyhedral cones. We
implemented our algorithm to find a Shintani domain (see §0.1) for number fields
that are not totally complex. Here we relied on the Espinoza-Friedman algorithm
[EF20] for producing a signed fundamental domain.

Our algorithm starts by computing an Espinoza-Friedman signed fundamental
domain, which has (n − 1)!3r2 cones.6 If n > 15, the (n − 1)! > 1.3 · 1012 cones

4 The algorithm terminates essentially because #(Πi ∩ G · x) and #(Nj ∩ G · x) are finite
and bounded independently of x ∈ X (see Definition 1).

5 A cone is pointed if it contains no 1-dimensional vector subspace. A rational cone is one
generated by elements in a fixed Q-vector space VQ ⊆ V , the rational structure.

6 In practice it can have fewer cones since cones of dimension less than n are discarded.
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are just too many to do anything with. Thus, since most computations in our
algorithm involve operating with n × n rational matrices and n is quite small,
say n ≤ 15, the running time for a given field depends mainly on the number of
cones and units involved.7

The main step of our algorithm is to crop cones using a unit g. Taking a neg-
ative cone Nj and a positive cone Πi, cropping with g replaces them respectively
by N ′j := Nj \ (Nj ∩ g−1 · Πi) and Π′i := Πi \ (g · Nj ∩ Πi). Unfortunately, in
general N ′j and Π′i are not polyhedral cones, so we have to write them as a union
of cones, disjoint except along common boundary faces. This could replace each
Nj and Πi by as many as h(Nj) + h(Πi) cones, where h(N) ≥ n is the minimal
number of inequalities determining the polyhedral cone N . If we had ` negative
cones before cropping with g, the number of positive cones could increase by a
factor of n`, or more, after g is processed.

Hence we would expect running time to worsen as the number of cones rises,
and as the number of units needed in the cropping process increases. Of course,
as the finite set of units g involved is used up, the number of negative cones must
decrease and eventually reach 0, but we may run out of time or memory before
this happens.

The above analysis could be turned into an upper bound on the time and
space required by our algorithm. The bound would naturally be in terms of
the discriminant or regulator of the number field k. However, our empirical
runs showed in practice no connection between running time and discriminant or
regulator (see the Appendix for graphs of our results against the discriminant),
so we have dispensed with producing these (very bad) bound. Rather, it seems to
depend in some complicated way on how the orbits of the positive and negative
cones intersect.

0.4 Experimental Results

Here we present some data from our implementation in Pari/GP of Algorithm 45,
which produces a true fundamental domain from a signed one. We tested lists of
number fields obtained from the database in https://www.lmfdb.org/ using a
LINUX computer with an Intel Core i7-8700 CPU 3.20GHz x 6 processor. The
degrees that we have considered are n = r1 + 2r2 = 3, 4 and 5, for any signature
(r1, r2) with r1 > 0. We also tested our algorithm for some totally real sextic
number fields.

In practice, no implementation of the Espinoza-Friedman algorithm [EF20, §2]
was available, so our first task was to write the corresponding program. Starting
from an irreducible polynomial f ∈ Q[x], we use the PARI function bnfinit to
obtain the standard invariants of the abstract number field k := Q[x]/

(
f(x)

)
.

This includes a integral basis and a set of fundamental units.8 We then computed

7 Of course, if the fundamental units are huge and therefore not computable, our algorithm
cannot even get started since we cannot compute the signed fundamental domain. In assuming
that we are given a signed fundamental domain, we are tacitly supposing that fundamental
units can be computed.

8 Or an error message if it fails to find the ring of integers or fundamental units, but this

https://www.lmfdb.org/
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free generators for the totally positive units E+ of k using tpu, a short program
given in the PARI user’s manual. Twisters were computed as suggested in [EF20,
p. 487, footnote 2].

We implemented the Espinoza-Friedman algorithm, producing a signed fun-
damental (N ;P) for the action of E+ on Rr1

+ × (C∗)r2 , up to the E+-orbit of
the boundaries of the cones.9 This consists of at most 3r2(n − 1)! rational n-
dimensional polyhedral cones divided into two lists, the positive cones P and
negative cones N .

When the Espinoza-Friedman algorithm outputs no negative cones, we shall
say that we are in the Colmez case. Then the signed fundamental domain is
already a true one, so Algorithm 45 is not needed except for applying the Colmez
trick to determine the boundary pieces.

Table 1 gives an overview of the time it took to obtain fundamental domains
for roughly 750000 fields of degree up to 5, about 90% of which were Colmez
cases owing to the many fields of small degree considered. The first column of

Table 1: Time spent on true and signed fundamental domains for degree ≤ 5.
Fields |Discrim.| ≤ (r1, r2) Colmez cases Non Colmez True domain Signed domain

112444 2× 106 (3,0) 111376 (99%) 1068 3m 9m

370444 2× 106 (1,1) 370443 (99.99%) 1 47m 5h 26m

169371 107 (4,0) 147548 (87%) 21823 1h 36m 33m

90671 106 (2,1) 49929 (55%) 40742 1h 17m 4h 3m

4863 6× 106 (5,0) 1735 (36%) 3128 31h 50m 4m 50s

2197 3× 105 (3,1) 1474 (67%) 723 29h 18m 48m

4142 2× 105 (1,2) 4001 (96.6%) 141 145h 47m 3h 44m

Table 1 shows the number of fields tested for the signature (r1, r2) in column 3.
Fundamental domains for all number fields of that signature with discriminant up
to the value in the second column were obtained using Algorithm 45. The fourth
column gives the number and percentage of Colmez cases.10 The fifth column
gives the number of non Colmez cases (where our algorithm is fully applied). The
sixth column gives the total time taken to find a true fundamental domain (cones
and boundary) from a signed one for all the fields considered for this signature.
Even in the Colmez cases, some time was taken finding the boundary pieces. The
seventh column gives the total time taken by the Espinoza-Friedman algorithm
to find a signed fundamental domain, without determining the boundary pieces.

On examining the results of Algorithm 45 for the (non Colmez) fields in Ta-
ble 1, we found large variations from field to field. Most fields were quickly
dispatched, but a few took extraordinarily much longer than the average. For
example, although totally real (non Colmez) quintics took an average of about
half a minute to process, at least one quintic took 57 minutes. This was not an
isolated exception, for the standard deviation of the time taken in this signature

never happened for the fields we considered.
9 After producing the generators for the positive and negative cones in the signed funda-

mental domain, we did not waste time determining the correct boundary pieces. The reason is
that this information, i.e. an explicit description of H in (3.6), is not needed for Algorithm 45.

10 Surprisingly enough, for complex cubic fields only one non Colmez case appeared, and it
was for discriminant −23, the first field in that signature.
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was more than six times the average value. Moreover, as the initial number of
cones increases, this effect became more pronounced. For the 141 non Colmez
quintics with two complex places that we ran, over 98% of the time was spent on
14 fields.

As the graphs in the Appendix show, the running time of Algorithm 45 for a
field does not seem related to its discriminant.11 This is not altogether unexpected
as the algorithm spends most of its time removing cones of the type Π ∩ g · N ,
where Π is a positive cone, g is a unit and N is a negative cone. Each time such
a cone is removed, the remaining pieces of N and Π, i.e. N \ (N ∩

(
g−1 ·Π)

)
and

Π\
(
g · (N ∩Π)

)
, are not in general cones, and so must be replaced (if not empty)

by a union of cones. This causes the number of cones to multiply, slowing down
the algorithm. Moreover, this is done until there are no more negative cones left.

One is therefore let to expect that the number of cones in the fundamental
domain output, as well as the number of units g used in the process, should be
strongly correlated with running time. This is borne out by the data on sextic
fields in Table 2. Our algorithm often fails in practice (i.e. does not terminate
within a week) for sextic fields. We therefore studied 1860 totally real sextic fields

Table 2: Totally real sextics with at most five negative cones.

Discriminant ≤ 3× 107, Fields: 1860, Colmez cases: 50, Non Colmez: 1810
Negative cones: 1 2 3 4 5
Fields 47 54 78 95 87
Done in less than 15 minutes: 45 48 62 68 41
Average number of cones in F : 274.42 495.47 780.37 1018.97 1152.78
Maximum number of cones: 1642 1698 2457 2472 2352
Average number of units: 2.04 2.66 3.43 3.80 3.97
Maximum number of units: 6 6 7 8 9
Average time for success: 25s 1m 5s 2m 40s 3m 25s 4m 21s

as the number of negative cones in the Espinoza-Friedman signed fundamental
domain increased. Of course, for the 50 Colmez cases (i.e. no negative cones,
and so in general about 120 = 5! positive cones) the algorithm terminated imme-
diately. Of the 47 fields having only one negative cone, 45 terminated in less that
15 minutes (each of the remaining 2 fields was skipped after 15 minutes), and
the average running time for these 45 fields is about 25 seconds, as shown in the
first column in Table 2. The number of cones grew on the average to nearly 275,
although the worst case was 1642 cones. On the average 2.04 units were used (so
1 or 2 units frequently sufficed), but up to 6 units were processed. As Table 2
shows, there is a clear pattern as the number of negative cones increases: The
proportion of fields terminating in less than 15 minutes drops while the average
and maximal number of cones (or units processed) increase.

Although it is hard to make (let alone prove) a precise statement, the running
time should depend on how the E+-orbits of negative and positive cones intersect.

11 Nor to its regulator. We omitted regulator data from the Appendix after deciding that
one appendix with negative results was enough.
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The number of negative cones in the signed fundamental domain should be an
important factor, as well as the number of units taking negative cones to positive
ones. The following tables tabulate these matters for all signatures with r1 > 0
up to degree 5.

In Table 3 we show the maximal and average time for each signature (for all
non Colmez cases), as well as the standard deviation of the time taken to find a
fundamental domain. Since our algorithm does nothing new in the Colmez cases,
in all of the following tables and graphs we only consider non Colmez cases.

Table 3: Time taken to obtain fundamental domain.
Signature (r1, r2): (3,0) (1,1) (4,0) (2,1) (5,0) (3,1) (1,2)
Fields: 1068 1 21823 40742 3128 723 141
Total time: 3s 0.039s 18m 51m 31h 48m 29h 8m 144h 54m
Average time: 0.002s 0.039s 0.048s 0.075s 37s 2m 49s 1h 2m
Maximum time: 0.004s 0.039s 3s 1.79s 57m 2h 1m 46h 39m
Standard deviation (σ) : 0.0005s 0s 0.065s 0.062s 2m 54s 9m 45s 5h 35m

In Table 4 we give statistics on the number of cones in the fundamental domain
produced by Algorithm 45.

Table 4: Number of cones in fundamental domain.
Signature (r1, r2): (3,0) (1,1) (4,0) (2,1) (5,0) (3,1) (1,2)
Fields: 1068 1 21823 40742 3128 723 141
Average number of cones: 2 5 11.414 23.878 242.46 676.240 4216.44
Maximum number of cones: 2 5 80 85 4652 9175 79845
Standard deviation (σ): 0 0 3.992 5.296 413.526 1027.973 12570.12

Recall that the initial number of cones in the signed fundamental domain
is at most (and often equals) 3r2(n − 1)!. From the table we deduce that for
quartic fields the final number of cones is only about twice the initial number
on the average, whereas for quintics it is from 10 to 20 times the initial number
(depending on the signature). Presumably this proliferation of cones, rather
than the increase in the original numbers, accounts for the increasing difficulty
of applying the algorithm as the degree of the number field rises. In §4.4 and in
the Appendix we give some more tables and graphs for quartic and quintic fields.

Table 5 shows some statistics on the number of negative cones in the signed
fundamental domain initially provided by the Espinoza-Friedman algorithm. Ta-
ble 6 does the same for the number of units needed.

Table 5: Number of negative cones in the initial signed fundamental domain.

Signature (r1, r2): (3,0) (1,1) (4,0) (2,1) (5,0) (3,1) (1,2)

Fields: 1068 1 21823 40742 3128 723 141

Average number of negative
cones:

1 1 1.261 1.691 2.651 8.359 16.06

Maximum number of nega-
tive cones:

1 1 4 9 13 36 90

Standard deviation (σ): 0 0 0.541 1.190 2.028 7.443 17.82

In conclusion, empirically the algorithm runs well and quickly for degree up
to 4, as it usually also does for quintics. Some quintics, however, take very long
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Table 6: Number of units processed to obtain a fundamental domain.

Signature (r1, r2): (3,0) (1,1) (4,0) (2,1) (5,0) (3,1) (1,2)

Fields: 1068 1 21823 40742 3128 723 141

Average number of units: 1 2 1.706 1.075 3.368 1.669 1.858

Maximum number of units: 1 2 10 2 18 7 8

Standard deviation (σ): 0 0 0.952 0.264 2.491 0.952 1.686

and result in a huge number of cones in the fundamental domain. For sextics the
algorithm runs only sometimes, with the probability of success being high if the
number of negative cones is very small.

Many open questions remain on how to improve our algorithm. The algorithm
makes several choices rather blindly. Experiments show that modifying them
can lead to large changes in running time and in the number of cones in the
fundamental domain produced. These choices involve mainly the order in which
units are used to crop the cones, and the order of the cones themselves. The
challenge is to find heuristics leading to fewer cones and so a faster algorithm.
Using a measure, such as spherical volume, of the section cropped would probably
be a good way to order the operations. Unfortunately, calculating volumes can
itself be a difficult task, so we have not yet implemented this strategy.

Lastly, we describe the structure of this thesis. In Chapters 1 and 2 of this
thesis we review in detail various algorithms for working with polyhedral cones,
mostly following Fukuda and Prodon [FP96]. We give full proofs both for the
reader’s convenience and to make sure that rationality is preserved. In Chapter
3 we give a general algorithm for passing from a signed fundamental domain
consisting of rational cones in a real vector space (with some rational structure)
to a true fundamental domain. In Chapter 4 we first show that the main algorithm
in Chapter 3 applies to number fields having at least one real place. Then we give
a few tables describing our experimental results for quartic and quintic fields. The
Appendix features a number of graphs designed to visualize some features of our
runs, and to show that the running time of the algorithm does not correlate well
with the discriminant, the traditional parameter associated to a number field.



Chapter 1

Review of rational cones

As explained in Step 2 in §0.2, we need an algorithm for subtracting one k-
rational cone from another. Moreover, we will need to express this as a finite
union of k-rational cones. For this we need to review how to pass from the
representation of rational polyhedral cones by generators to its representation by
inequalities and vice-versa. This is treated in §1.1 and §1.2. In §1.4 we shall give
a method to remove the intersection of two cones, obtaining the desired union
of k-rational cones. These procedures are well-known in the theory of polyhedra
[L13] [Z95] [Sc86], but they are rarely mentioned in number-theoretical contexts,
so we give detailed proofs following [FP96], paying careful attention to rationality.
For convenience, we work in a slightly more general context of Q-subspaces of
real vector spaces rather than dealing directly with the number fields.

In our case, we are lucky to be able to use the Colmez trick mentioned in the
Introduction (see §3.1 below) to ignore lower-dimensional cones. In this chapter
we will therefore only need to work with n-dimensional polyhedral cones P ⊆ V
contained in an n-dimensional real vector space, and we will assume that the
cone is pointed (i.e. P contains no line). For the same reason, when we deal with
intersections, we will only consider subtracting pointed cones whose intersection
is n-dimensional.

1.1 Rational cones and duality

Throughout this chapter, we assume that V is an n-dimensional R-vector space
endowed with a fixed Q-structure VQ and a fixed bilinear form 〈 , 〉 : V ×V → R,
which we assume is non-degenerate, symmetric and rational. That is, we fix an
n-dimensional Q-vector subspace VQ ⊆ V containing a Q-basis which is also an
R-basis for V , and assume that 〈 , 〉 restricted to VQ × VQ takes values in Q and
is non-degenerate.1 To avoid trivialities, we always assume (tacitly) that n ≥ 1.

In our application, we will start with a number field k of degree n having r1
real and r2 complex embeddings (n = r1 + 2r2), and let V := Rr1 × Cr2 . We
let VQ ⊆ V be the image of k in V , which we identify with k for convenience.

1 Note that it follows that any Q-basis of VQ is an R-basis of V . Hence we do not need to
distinguish Q-linear independence from R-linear independence.

10
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For α, β ∈ k, we let 〈α, β〉 := Tracek/Q(αβ) ∈ Q, which extends of course to an
R-valued form on V .

A (closed) half-space in V is a subset H ⊆ V of the form

H := {x ∈ V : L(x) ≥ 0},

where L is a non-zero linear form on V . A (closed) polyhedral cone P is the
intersection of a finite number of such half-spaces. That is,

P := {x ∈ V : Li(x) ≥ 0, 1 ≤ i ≤ `},

where the Li are non-zero linear forms on V . We shall often abbreviate this as
P = H(T ), where T = {L1, ..., L`} or simply as P = H(L1, . . . , L`), and call it an
H-representation of P . We shall say that H(T ) is a rational H-representation of
P if every Li assumes rational values on VQ.

We shall often need to pass to a description of cones by generators. A finite
subset B := {r1, ..., rt} ⊆ Q of a cone Q in V is said to be a ray representation of
Q if every element x ∈ Q can be written as x =

∑t
j=1 λjrj with λj ≥ 0, 1 ≤ j ≤ t.

We shall abbreviate this as Q := C[B] or Q := C[r1, ..., rt] and say that C[B]
is an R-representation of Q. If B ⊆ VQ we shall say that C[B] is a rational
R-representation of Q.

Our first task will be to give an algorithm to produce a rational R-representat-
ion from a rational H-representation of a cone. More precisely, given a rational
H-representation P = H(T ), where T = {L1, . . . , Lm} and Lj(x) := 〈vj, x〉 for
some vj ∈ VQ, we want to find r1, . . . , rt in VQ, such that P = C[r1, . . . , rt]. We
shall later see that duality allows us to use essentially the same algorithm to
produce an H-representation from an R-representation.

We use the well-known double description method [MRTT53] [Z95], which is
a dual version of the classical Fourier-Motzkin elimination algorithm [F26] [M36],
but we give all the details for the reader’s convenience. In fact, most of the time
we just take Fukuda and Prodon’s improved version of the double description
method [FP96], replacing the real vector space V by VQ and the dot product by
a bilinear form.

First we consider the simplest case, i.e. when P has exactly n independent
generators.

Lemma 2. If P = H(L1, . . . , Ln) ⊆ V , with Lj(x) := 〈vj, x〉 and {v1, . . . , vn}
a basis of VQ, then P = C[r1, . . . , rn], where {r1, . . . , rn} is the basis dual to
{v1, . . . , vn} with respect to the bilinear form 〈 , 〉.

Conversely, if P = C[r1, . . . , rn] and {ri} is a basis of VQ, let {vj} be the basis
dual to {ri} and let Lj(x) := 〈vj, x〉. Then P = H(L1, . . . , Ln).

Finding the dual basis is easily implemented in exact (i.e. rational) arithmetic.
Indeed, we shall prove that

ri =
n∑
h=1

Λihvh, Λ = (Λih)1≤i,h≤n =: Γ−1, Γ := (〈vi, vj〉)1≤i,j≤n . (1.1)
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Proof. Let r1, ..., rn ∈ V be the basis dual to v1, ..., vn, i.e. 〈vj, rj〉 = 1 and
〈vj, ri〉 = 0 if i 6= j. We claim that P = C[r1, . . . , rn]. Indeed, C[r1, . . . , rn] ⊆ P as
Lj(ri) ≥ 0. On the other hand, since V is generated over R by {r1, . . . , rn} ⊆ VQ,
for y ∈ V there exist λ1, . . . , λn in R such that y =

∑n
i=1 λiri. If y ∈ P , we have

0 ≤ 〈vj, y〉 =
∑n

i=1 λi〈vj, ri〉 = λj. Hence P ⊆ C[r1, . . . , rn], as claimed.
We now show that ri ∈ VQ. The (rational) matrix Γ in (1.1) is invertible since

the inner product is non-degenerate and {vj} is assumed to be a basis of VQ. Let
Λ := Γ−1, a rational matrix. Then〈 n∑

h=1

Λihvh, vj

〉
=

n∑
h=1

Λih〈vh, vj〉 = [ΛΓ]ij = Idij.

Thus the ri in (1.1) do indeed give the dual basis.

If P = C[B] ⊆ V is an R-representation, we say that b ∈ B is redundant
if C[B \ {b}] = C[B]. We say that B is redundant if B contains a redundant
element. By successively removing redundant elements, we can always write
P = C[B] with B irredundant. We shall see below in Lemma 15 d) that such B
is unique (up to multiplying by positive scalars and permutations of its elements)
if P is pointed, i.e. if P does not contain a non-trivial vector subspace of V .

Likewise, if P = H(T ) is an H-representation, we say that Lj ∈ T is redundant
if H(T \Lj) = H(T ). We say that T is redundant if it contains a redundant linear
form. We can always write P = H(T ) with T irredundant. If P is pointed and n-
dimensional the irredundant B and T are unique (up to multiplication by positive
scalars). We aim to prove this and to find an algorithm to compute B from T
and vice-versa.

The following lemma gives a well-known characterization of a pointed poly-
hedral cone by the rank of a linear transformation [L13, Prop. 3.9].

Lemma 3. Let V be an n-dimensional real vector space and let T = {L1, . . . , Lm}
be linear forms on V . The polyhedral cone P := H(T ) is pointed if and only
if rank(L) = n, where L : V → Rm is the linear transformation L(x) :=(
L1(x), . . . , Lm(x)

)
.

More concretely, writing Lj(x) = 〈vj, x〉 for some vj ∈ V , P is pointed if and
only if there are n linearly independent elements vi1 , . . . , vin.

Proof. Suppose rank(L) < n. Then dim
(
ker(L)

)
> 0, so there exists x0 ∈

ker(L), x0 6= 0. But Lj(λx0) = 0 for all λ ∈ R, so P is not pointed. Con-
versely, if there exists a non-trivial subspace S ⊆ P , there exists x0 ∈ S, x0 6= 0.
But then −x0 ∈ S, so x0 and −x0 are in P . Then Lj(x0) ≥ 0 and Lj(−x0) ≥ 0
for all j. Therefore Lj(x0) = 0 for all j, so L(x0) = 0. That is, dim

(
ker(L)

)
> 0,

which implies that rank(L) < n.
We now prove the last claim in the Lemma. Let W be the subspace generated

by {v1, . . . , vm}. If W is a proper subspace of V , then there exists a non-zero
element w0 in V such that 〈vj, w0〉 = 0 for j = 1, . . . ,m. So w0 ∈ ker(L).
As w0 6= 0 we have that P = H(T ) is not pointed. Conversely, if vi1 , . . . , vin are
linearly independent, let y be any element in V and write y =

∑n
j=1 λjvij , λj ∈ R.

If x ∈ ker(L), we have 〈x, y〉 =
∑

j λj〈x, vij〉 =
∑

j λj〈vij , x〉 = 0. Thus 〈x, y〉 = 0
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for any y ∈ V . This implies that x = 0 as 〈 , 〉 is assumed non-degenerate. Hence
ker(L) = {0}, and so P = H(T ) is pointed.

For a cone S ⊆ V , its dual cone S∗ ⊆ V is defined as

S∗ := {x ∈ V : 〈x, y〉 ≥ 0 ∀y ∈ S}.

Note that if S1 ⊆ S2, then S∗2 ⊆ S∗1 . We now show that taking the dual switches
the H- and R- representations of a cone.

Lemma 4. Let P = C[r1, . . . , r`] be an R-representation of the cone P and
let Lj(x) := 〈rj, x〉 (1 ≤ j ≤ `). Then its dual P ∗ has an H-representation
P ∗ = H(L1, . . . , L`).

Proof. If x ∈ P ∗, then 〈x, y〉 ≥ 0 for all y in P . In particular, Lj(x) = 〈rj, x〉 =
〈x, rj〉 ≥ 0. Thus P ∗ ⊆ H(L1, . . . , L`). Now suppose x ∈ H(L1, . . . , L`), so
〈x, rj〉 ≥ 0. If y =

∑
j λjrj ∈ P (i.e. λj ≥ 0), then 〈x, y〉 =

∑
j λj〈x, rj〉 ≥ 0.

Thus x ∈ P ∗.

Lemma 5. Let P = H(L1, . . . , Lm) be an H-representation of the cone P , where
Lj(x) := 〈vj, x〉 (1 ≤ j ≤ m). Then its dual P ∗ has an R-representation P ∗ =
C[v1, . . . , vm].

Proof. C[v1, . . . , vm] ⊆ P ∗ is clear since vj ∈ P ∗. Suppose there is an x0 ∈
P ∗, x0 6∈ C[v1, . . . , vm]. By Minkowski’s separation theorem [L13, p. 134], there
exists c ∈ V such that 〈c, x0〉 < 0 but 〈c, x〉 > 0 for all x ∈ C[v1, . . . , vm]. Since
vj ∈ C[v1, . . . , vm], we have 〈c, vj〉 > 0, and so c ∈ P = H(L1, . . . , Lm). Thus,
〈x0, c〉 ≥ 0 as x0 ∈ P ∗, contradicting 〈c, x0〉 < 0.

The next lemma assumes that a (a priori not necessarily polyhedral) cone
P has an R-representation. Later we shall see that such a cone is necessarily
polyhedral and that any polyhedral cone P = H(T ) has an R-representation.

Lemma 6. Let P := C[r1, . . . , r`], where ri ∈ V , and let n := dim(V ). Then the
following hold.

(i) (P ∗)∗ = P .

(ii) P is an n-dimensional cone if and only if P ∗ is a pointed cone.

(iii) P is a pointed if and only if P ∗ is an n-dimensional cone.

Proof. Claim (i) follows directly from Lemmas 4 and 5. To prove (ii), note that
by Lemma 4, P ∗ = H(L1, . . . , L`) where Lj(x) = 〈rj, x〉. By Lemma 3, we
need to show that x →

(
L1(x), . . . , L`(x)

)
has rank n. Since P is assumed

n-dimensional, there is an R-basis of V of the form {ri1 , . . . , rin}. By duality,
x→

(
Li1(x), . . . , Lin(x)

)
has rank n. The converse is obtained by again applying

Lemma 3 and duality.
To prove (iii), we may assume P 6= {0} (for otherwise P ∗ = V , an n-

dimensional cone). As above, P ∗ = {x ∈ V : 〈rj, x〉 ≥ 0}. Hence if P ∗ has
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no interior, P ∗ ⊆ H := {x ∈ V : 〈rj, x〉 = 0} for some j with rj 6= 0. Taking
duals,

H∗ ⊆ (P ∗)∗ = P.

As the subspace H 6= V , H∗ contains a line (in fact, H∗ = {λrj : λ ∈ R} 6= {0}
by Lemma 5), contradicting the assumption that P does not. Conversely, we
assume that P ∗ is an n-dimensional cone. Hence if P is not pointed, then there
exists a line L = {λv : λ ∈ R} contained in P with v ∈ V , v 6= 0, so taking
duality we have P ∗ ⊆ L∗. As L 6= {0}, we have that L∗ = {x ∈ V : 〈v, x〉 = 0}
has dimension n− 1, and so P ∗ is not n-dimensional.

Note that Lemmas 3, 5 and 6 imply that a cone P ⊆ V given by either an H-
or R-representation, is pointed if and only if its dual P ∗ is n-dimensional (where
n = dimV ). Similarly, Lemmas 4, 5 and 6 show that P = C[r1, . . . , r`] is an
irredundant R-representation if and only if P ∗ = H(L1, . . . , L`) is an irredundant
H-representation, where Li(x) := 〈ri, x〉.

1.2 From H- to R-representations and vice-versa

In this Section we give a rational version of Fukuda and Prodon’s account of
the Fourier-Motzkin double description method [FP96] for passing from an H-
to an R-representation of a pointed cone. Using Lemmas 4 and 5 we imme-
diately deduce a method for passing from an R- to an H-representation. In-
deed, if P = C[r1, . . . , rm] spans V (i.e. P is n-dimensional), then the dual
P ∗ = H(Lr1 , . . . , Lrm) is a pointed cone, where Lr(x) = 〈r, x〉. Applying the dou-
ble description method we can find an R-representation P ∗ = C[v1, . . . , v`] for
its dual, a pointed cone. Duality then gives the H-representation P = (P ∗)∗ =
H(Lv1 , . . . , Lv`).

In Lemma 2 we showed how to pass from rational H- to rational R- representa-
tions (and vice-versa) when the cone P ⊆ V is given by n = dim(V ) independent
linear inequalities, or equivalently, is generated by n linearly independent ele-
ments. In this Section we consider the general case, assuming only that P is
a pointed rational cone. As above, we assume that V is an n-dimensional real
vector space equipped with a fixed Q-structure VQ ⊆ V and a non-degenerate
symmetric rational bilinear form 〈 , 〉 on V .

We assume P = H(L1, . . . , Ln+m) is a rational H-representation of a pointed
cone P . As P is pointed, we may assume that L1, . . . , Ln are independent linear
forms. Our final aim is to find a rational R-representation P = C[r1, . . . , r`], but
we find the ri inductively. By the dual basis construction of Lemma 2, there is a
rational R-representation of the cone P0 := H(L1, . . . , Ln) = C[B0] where B0 :=
{b1, . . . , bn} ⊆ VQ. Inductively we assume that Pi := H(L1, . . . , Ln+i) = C[Bi],
where Bi := {s1, . . . , sji} ⊆ VQ.

Lemma 7 (Double Description Method). Given a rational R-representation of a
pointed rational cone P = C[B] and a non-trivial rational linear form L : V → R
given by L(x) := 〈v, x〉, where v ∈ VQ, define the (possibly empty) subsets of B

B+ := {b : L(b) > 0}, B− := {b : L(b) < 0}, B0 := {b : L(b) = 0}. (1.2)
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For each pair (b, b′) ∈ B+×B−, define vbb′ := L(b)b′−L(b′)b ∈ VQ. Then we have
the rational R-representation

P ′ := P ∩ {x ∈ V : L(x) ≥ 0} = C[B′],

where
B′ := B+ ∪B0 ∪ {vbb′ : (b, b′) ∈ B+ ×B−} ⊆ VQ. (1.3)

Proof. We follow the proof in [FP96, Lemma 3], taking care that all constructions
are rational. Since vbb′ is a positive combination of b ∈ B+ ⊆ P and b′ ∈ B− ⊆ P ,
we have vbb′ ∈ P . Also, L(vbb′) = 0, so vbb′ ∈ P ′. Thus C[B′] ⊆ P ′.

To show the reverse inclusion, let x ∈ P ′. Thus x ∈ P = C[B] and L(x) ≥ 0.
Normalizing the elements of B we can suppose that

L(b) =


+1 if b ∈ B+,
0 if b ∈ B0,
−1 if b ∈ B−.

As x ∈ C[B] we can write

x =
∑
b∈J+

λbb+
∑
b∈J0

λbb+
∑
b∈J−

λbb, (1.4)

where λb > 0, J+ ⊆ B+, J− ⊆ B−, J0 ⊆ B0

(
see (1.2)

)
. Since L(x) ≥ 0, we have

0 ≤ L(x) =
∑
b∈J+

λbL(b) +
∑
b∈J−

λbL(b) =
∑
b∈J+

λb −
∑
b∈J−

λb. (1.5)

If J− is empty, then x ∈ C[B+ ∪B0] ⊆ C[B′] by (1.3). If J− is not empty, choose
any b′ ∈ J−. For each b ∈ J+ ⊆ B+,

vbb′ := (L(b))b′ − (L(b′))b = b+ b′.

By (1.5), ∑
b∈J+

λb ≥
∑
b∈J−

λb ≥ λb′ > 0.

Thus, there are positive numbers {tbb′}b∈J+ such that λb ≥ tbb′ for all b ∈ J+ and∑
b∈J+ tbb′ = λb′ . Now we can write x in (1.4) as

x =
∑
b∈J+

(λb − tbb′)b+
∑
b∈J0

λbb+
∑
b∈J−

λbb+
∑
b∈J+

tbb′(b+ b′)−
(∑
b∈J+

tbb′
)
b′

=
∑
b∈J̃+

λ′bb′b+
∑
b∈J0

λbb+
∑

b∈J−\{b′}
λbb+

∑
b∈J+

tbb′vbb′ ,

where λ′bb′ := λb − tbb′ ≥ 0 and J̃+ :=
{
b ∈ J+ : λ′bb′ > 0}. Comparing with (1.4),

we see that we have succeeded in removing one element of J−, namely b′, by
adding generators of the form vbb′ and as L(vbb′) = 0, we can repeat the process
until all elements of J− have been removed.
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1.3 Deleting redundancies in an R-representation

An R-representation P = C[B] produced by Lemma 7 from an H-representat-
ion could have many redundant generators, even if the H-representation has no
redundancies. In this Subsection we give an account of Fukuda and Prodon’s
method for finding an irredundant R-representation [FP96, Lemma 8] if P is
pointed.

Let P = H(L1, . . . , Lm) be an H-representation of a polyhedral cone, with
Lj(x) := 〈vj, x〉. For any subset S ⊆ P , we define

ZP (S) :=
{
j ∈ {1, . . . ,m} : Lj(r) = 0 ∀r ∈ S

}
. (1.6)

Note that ZP (S) =
⋂
r∈S ZP (r), where ZP (r) := ZP ({r}), and that ZP (r) 6=

{1, . . . ,m} if P is pointed and r 6= 0.
Recall that a subset F ⊆ P is a face of P if either F = ∅ or F = P , or

if there exists a linear form L : V → R such that F = {x ∈ P : L(x) = 0}
and P ⊆ {x ∈ V : L(x) ≥ 0}. A facet of P is a maximal proper face of P .
The intersection of a finite number of faces of P is still a face of P [G03, §2.4,
Theorem 10]. Therefore for any subset J ⊆ {1, . . . ,m} of cardinality `,

FJ := ker(LJ) ∩ P, LJ : V → R`, LJ(x) :=
(
Lj(x)

)
j∈J , (1.7)

is a face of P . Note that a face of a pointed polyhedral cone is again a pointed
polyhedral cone. If J is empty, we regard LJ as the zero map and so F∅ = P .

For Q ⊆ V a convex set, by the relative interior relint(Q) of Q we mean its
interior within the smallest affine subspace containing Q, and we shall also denote
by Q◦ the interior of Q with respect to the vector space V .

Proposition 8. Let Q1, . . . , Q` be a finite list of convex subsets of V . Suppose
that the relative interiors relint(Qi) have at least one point in common. Then
relint

(⋂`
i=1Qi

)
=
⋂`
i=1 relint(Qi).

Proof. See [R70, Theorem 6.5].

The next proposition shows that any face of P is of the form (1.7) for a certain
subset J ⊆ {1, . . . ,m}.

Proposition 9. Let P = H(L1, . . . , Lm) ⊆ V be an H-representation of a poly-
hedral cone. Then the following hold.

(i) Either P contains an interior point or P lies in a proper subspace of V .

(ii) If F ⊆ P is a non-empty face of P then F = FZP (v) for any v in the relative
interior of F , with notation as in (1.6) and (1.7).

Proof. This is a particular case of Theorem 4.15 in [B08].

We shall call FJ a t-dimensional face, or simply a t-face of P , if the R-span
of FJ has dimension t. Note that if I and J are subsets of {1, . . . ,m}, then
FI ∩ FJ = FI∪J . Thus, for any subset S ⊆ P there is a minimal face of P
containing it.
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Lemma 10. Let P = H(L1, . . . , Lm) ⊆ V be an H-representation of a polyhedral
cone, and let S ⊆ P be any subset of P . Then the minimal face of P containing
S is FZP (S), with notation as in (1.6) and (1.7).

Proof. If r ∈ S, it is clear that r ∈ FZP (S), so S ⊆ FZP (S). Let FJ be any face of
P such that S ⊆ FJ = ker(LJ) ∩ P . Thus Lj(r) = 0 for all j ∈ J and r ∈ S. So
J ⊆ ZP (S), and thus FZP (S) ⊆ FJ .

Note that by Proposition 9 (i), any polyhedral cone P = H(T ) where T :=
{L1, . . . , Lm} can be written as P = H(T1, . . . , T`,±M1, . . . ,±Mt) and there exists
x0 ∈ V with Tj(x0) > 0 (1 ≤ j ≤ `) and Ms(x0) = 0 (1 ≤ s ≤ t). If P = {0} is
trivial, we regard ` = 0 and conditions involving Tj become vacuously valid, of
course. We record this as follows (see [Sc86, Section 8.2] for a complete proof).

Lemma 11. Let P = H(T1, . . . , T`,±M1, . . . ,±Mt) be a polyhedral cone and
suppose there is some x0 ∈ V with Tj(x0) > 0 (1 ≤ j ≤ `), Ms(x0) = 0 (1 ≤ s ≤
t). Then the linear span of P is

span(P ) = {x ∈ V : Ms(x) = 0, 1 ≤ s ≤ t} =: S

In particular dim(P ) = dim(S) = dim
(⋂t

s=1 ker(Ms)
)
.

Let T and M be non-zero linear forms on V . Then relint(H(T )) = {x ∈ V :
T (x) > 0} and relint(H(±M)) = H(±M) [R70, Theorem 6.7].

Corollary 12. Let P and x0 be as in Lemma 11. Then the following hold.

(i) relint(P ) = {x ∈ V : Tj(x) > 0} ∩ span(P ).

(ii) For 1 ≤ i ≤ `, define Pi := H(T1, . . . , Ti−1, Ti+1, . . . , T`,±M1, . . . ,±Mt).
Then relint(Pi) ∩

{
x ∈ V : Ti(x) = 0

}
6= ∅ if and only if P 6= Pi.

Proof. As in the remark just before this Corollary, (i) is consequence of Propo-
sition 8 and Lemma 11. To prove the if part in (ii), assume that P 6= Pi, i.e.
P ( Pi. Then there exists xi ∈ V such that Tj(xi) ≥ 0 (1 ≤ j 6= i ≤ `),
Ms(xi) = 0 (1 ≤ s ≤ t) and Ti(xi) < 0. Let z := Ti(x0)xi − Ti(xi)x0, so
Ti(z) = 0. Moreover, Tj(z) = Tj(xi)Ti(x0) − Tj(x0)Ti(xi) > 0 for 1 ≤ j 6= i ≤ `
and Ms(z) = 0 for 1 ≤ s ≤ t. Hence z ∈ relint(Pi) ∩ {x ∈ V : Ti(x) = 0}.

Conversely, if relint(Pi) ∩ {Ti(x) = 0} 6= ∅, then by (i) there is z ∈ V with
Tj(z) > 0 (1 ≤ j 6= i ≤ `) and Ms(z) = 0 = Ti(z) (1 ≤ s ≤ t). Consider
pλ(x0) := x0 + λ(z− x0). We claim that there is λ > 1 such that pλ(x0) ∈ Pi \P .
Indeed, Tj(pλ(x0)) = Tj(x0)+λ

(
Tj(z)−Tj(x0)

)
for 1 ≤ j ≤ `. Thus, Ti(pλ(x0)) =

(1 − λ)Ti(x0) < 0 for λ > 1. If Tj(z) ≥ Tj(x0) for all j ∈ {1, . . . , `} with j 6= i
then Tj(pλ(x0)) > 0. Otherwise, if Tj0(z) < Tj0(x0) for some j0 ∈ {1, . . . , `} with
j0 6= i, we consider

λ := min

{
Tj(x0)

Tj(x0)− Tj(z)
: 0 < Tj(z) < Tj(x0)

}
> 1.

Then Tj(pλ(x0)) > 0 for all j ∈ {1, . . . , `} with j 6= i. Finally, it is clear that
Ms(pλ(x0)) = 0 for 1 ≤ s ≤ t. Hence P 6= Pi.
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The following Proposition gives a characterization of the facets of a polyhedral
cone in terms of its irredundant H-representation [Sc86, Theorem 8.1].

Proposition 13. Let P = H(T1, . . . , T`,±M1, . . . ,±Mt) 6= {0} be an irredundant
H-representation of a non-trivial polyhedral cone and suppose there is some x0 ∈
V with Tj(x0) > 0 (1 ≤ j ≤ `), Ms(x0) = 0 (1 ≤ s ≤ t). Then F is a facet of P
if and only if F =

{
x ∈ P : Ti(x) = 0

}
for some 1 ≤ i ≤ `.

Proof. Let F be a facet of P , then by Proposition 9 (ii) F = FZP (v) for any
v in the relative interior of F , using notation as in (1.6) and (1.7). As the
representation is irredundant, if the cardinality #Zp(v) > 1, then F is a proper
face of the face {x ∈ P : Tj(x) = 0} 6= P for any j ∈ Zp(v). But a facet is a
maximal proper face, so #Zp(v) = 1 and thus F = {x ∈ P : Ti(x) = 0} for some
1 ≤ i ≤ `. Conversely, suppose that F := {x ∈ P : Ti(x) = 0} for 1 ≤ i ≤ `. It
is sufficient to prove that dim (F) = dim(P ) − 1, so F is a facet of P . Indeed,
let Pi be as in Corollary 12. Since the H-representation of P is irredundant,
P 6= Pi, and hence by Corollary 12 (ii), relint(Pi) ∩ {x ∈ V : Ti(x) = 0} 6= ∅.
Thus there is a point z ∈ V such that Ti(z) = 0 = Ms(z) for 1 ≤ s ≤ t and
Tj(z) > 0 for 1 ≤ j 6= i ≤ `. Therefore by Lemma 11, dim (F) = dim(P ) − 1 as
F =

{
x ∈ P : Ti(x) = 0

}
= Pi ∩

{
x ∈ V : Ti(x) = 0

}
.

We will be specially interested in one- and two-dimensional faces of pointed
cones. Write r ∼ r′, and call r and r′ equivalent (r, r′ ∈ V ), if r = λr′ for some
λ > 0. An element r of a cone P is called extreme (for P ) if r 6= 0 and[

r = λ1r1 + λ2r2, λi ≥ 0, ri ∈ P, r1 6∼ r2
]

=⇒
[
λ1 = 0 or λ2 = 0

]
.

We shall call two inequivalent extreme elements r, r′ ∈ P adjacent (for P ) if the
minimal face of P containing r and r′ has no extreme elements (for P ) other than
those equivalent to r or r′.

Proposition 14 (Fukuda-Prodon [FP96, Prop. 4]). Let P = H(L1, . . . , Lm) ⊆ V
be an H-representation of a pointed cone P . For r ∈ P, r 6= 0, let A := ZP (r)
and let LA be as in (1.6) and (1.7). Then the following hold.

(i) rank(LA∪{j}) = rank(LA) + 1 for all j 6∈ A.

(ii) The face FA := ker(LA) ∩ P of P contains a basis of ker(LA).

(iii) If dim
(
ker(LA)

)
≥ 2, then r is a positive combination of two inequivalent,

non-zero w1, w2 ∈ P , with rank(LZP (wi)) > rank(LA) (i = 1, 2).

Proof. To prove (i), note that Lj is not a linear combination of {Li}i∈A, for
otherwise Lj =

∑
i∈A λiLi for some λi ∈ R. Hence, Lj(r) = 0, contradicting

j /∈ A := ZP (r). Hence rank(LA∪{j}) = rank(LA) + 1.
To prove (ii), note that since LA(r) = 0, the subspace ker(LA) contains a basis

r, v2, v3, . . . , vt of ker(LA). For αi 6= 0, αi ∈ R (2 ≤ i ≤ t), let wi := r + αivi.
Then r, w2, . . . , wt is also a basis of ker(LA). If vi ∈ P , take αi := 1. If vi 6∈ P ,
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there exists some j with Lj(vi) < 0. As vj ∈ ker(LA) , we have j /∈ A. Hence we
can take αi such that

0 < αi ≤ min{−Lj(r)/Lj(vi) : for j with Lj(vi) < 0}.

Thus, there is a basis r, w2, . . . , wt of ker(LA) consisting of elements of FA.
To prove (iii), let F := ker(LA). We first prove that there exists v ∈ F with

v 6∈ P and −v 6∈ P . Indeed, as dim(F ) ≥ 2 we have rank(LA) ≤ n − 2, where
n := dim(V ). Since P is pointed, Lemma 3 yields n = rank(L{1,...,m}). Thus
2+rank(LA) ≤ rank(L{1,...,m}). Therefore there exist ` /∈ A and j /∈ (A∪{`}) such
that rank(LA∪{`,j}) = rank(LA)+2, which implies that dim(F ) = dim

(
ker(LA)

)
=

dim
(
ker(LA∪{`,j})

)
+ 2. Hence there exists b1, b2 ∈ F with L`(b1) = 0, Lj(b1) > 0,

Lj(b2) = 0, L`(b2) < 0. Thus, v := b1 + b2 ∈ F satisfies v 6∈ P and −v 6∈ P .
Returning to the proof of (iii), note that r and v are linearly independent,

since v = λr for some λ ∈ R implies that v ∈ P (if λ ≥ 0) or −v ∈ P . We can
therefore choose α1 and α2 small enough positive real numbers so that, as in the
proof of (ii), w1 := r + α1v ∈ FA and w2 := r − α2v ∈ FA. As

r =
α2

α1 + α2

w1 +
α1

α1 + α2

w2, v =
1

α1 + α2

w1 −
1

α1 + α2

w2,

the wi are linearly independent. Since wi ∈ FA, we have A ⊆ ZP (wi). Moreover,
from the proof above of the claim, ` ∈ ZP (w1) \ A and j ∈ ZP (w2) \ A. Hence,
(i) implies that rank(LZP (wi)) > rank(LA) (i = 1, 2).

The following Lemma appears in [FP96], although our proof is a bit different.

Lemma 15 (Fukuda-Prodon [FP96, p. 99]). Let P = H(L1, . . . , Lm) ⊆ V be an
H-representation of a pointed cone P . Then the following hold.

a) If b ∈ P, b 6= 0, then rank(LZP (b)) ≤ n − 1, where n := dim(V ). Moreover, b
is extreme for P if and only if rank(LZP (b)) = n− 1, and this happens if and only
if the minimal face of P containing b is one-dimensional.

b) Any non-zero b ∈ P is a positive combination of extreme elements for P .

c) If b and b′ are two inequivalent extreme elements for P , then rank
(
LZP ({b,b′})

)
≤

n−2. Moreover, b and b′ are adjacent for P if and only if rank
(
LZP ({b,b′})

)
= n−2,

and this happens if and only if the minimal face of P containing b and b′ is two-
dimensional.

d) P = C[B] and B is irredundant if and only if every element of B is extreme
for P and every extreme element for P is equivalent to exactly one element of B.

Proof. By Lemma 10, rank(LZP (b)) = n−1 (resp., rank
(
LZP ({b,b′})

)
= n−2) if and

only if the minimal face containing b (resp., b and b′) is one-dimensional (resp.,
two-dimensional). Hence the final claims in a) and c) follow from the second
claims. To prove the first claim in a), note that as P is pointed and b ∈ P, b 6= 0,
we have rank(LZP (b)) ≤ n− 1 by Lemma 3 and Proposition 14(i).

To prove the second claim in a), suppose b is extreme. If rank(LZP (b)) <
n− 1, then dim

(
ker(LZP (b))

)
≥ 2, so by (iii) in Proposition 14, b is not extreme.

Conversely, if rank(LZP (b)) = n − 1, then dim
(
ker(LZP (b))

)
= 1, and b 6= 0 as P
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is pointed. Therefore ker(LZP (b)) = {λb : λ ∈ R}. Thus, FZP (b) := ker(LZP (b)) ∩
P = {λb : λ ≥ 0}, since b ∈ FZP (b) and P is pointed. Suppose b = λ1w1 + λ2w2

with wi ∈ P and λi > 0. For j ∈ ZP (b) we have 0 = Lj(b) = λ1Lj(w1)+λ2Lj(w2)
and Lj(wi) ≥ 0 as wi ∈ P . Hence Lj(wi) = 0 and so wi ∈ FZP (b). Hence
w1 ∼ b ∼ w2, and so b is extreme.

Next we prove b). Let D be the set of non-zero elements of P which cannot be
written as a positive combination of extreme elements for P . If D 6= ∅, let b ∈ D
be such that rank(LZP (b)) ≥ rank(LZP (d)) for all d ∈ D. If rank(LZP (b)) = n− 1,
then b is extreme by a), contradicting b ∈ D. If rank(LZP (b)) < n−1, then by (iii)
in Proposition 14, b = α1w1+α2w2 with αi > 0 and wi ∈ P inequivalent and non-
zero. Moreover rank(LZP (wi)) > rank(LZP (b)). By the maximality of rank(LZP (b)),
each wi can be written as a positive combination of extreme elements for P ,
contradicting b ∈ D. Hence D = ∅, as claimed.

We now prove c). Note that if b is extreme, then a) implies that b generates
ker(LZP (b)). As P is pointed, this shows that ZP (b) 6= ZP (b′) if b and b′ are
inequivalent extreme elements for P . Hence the first claim in c) from a repeated
application of Proposition 14(i). To prove the second claim in c), let b and b′

be adjacent. By Lemma 10, F := ker(LZP ({b,b′})) ∩ P is the minimal face of P
containing b and b′. If we have rank(LZP ({b,b′})) < n− 2, then k := dim(F) ≥ 3.
By b), applied to the polyhedral cone F , at least k ≥ 3 extreme inequivalent
elements are necessary to generate F . Thus b and b′ are not adjacent for P .

Conversely, if rank(LZP ({b,b′})) = n − 2, then dim
(
ker(LZP ({b,b′}))

)
= 2. Since

P is pointed and b, b′ are inequivalent extreme elements for P which generate
ker(LZP ({b,b′})), any γ ∈ F can be written γ = α1b + α2b

′ with α1, α2 ∈ R. Since
ZP (b) 6= ZP (b′), let i ∈ ZP (b) \ ZP (b′) and j ∈ ZP (b′) \ Zp(b). Thus, Li(b) =
0 = Lj(b

′), Li(b′) > 0, Lj(b) > 0. Moreover, 0 ≤ Li(γ) = α1Li(b) + α2Li(b
′) =

α2Li(b
′), so α2 ≥ 0, similarly 0 ≤ Lj(γ) = α1Lj(b) + α2Lj(b

′) = α1Lj(b), so
α1 ≥ 0. Hence γ ∈ F is a non-negative combination of b and b′ and there are no
other extreme elements in F . Thus b and b′ are adjacent for P .

To prove d), assume first that P = C[B] and B is irredundant. To begin
with, we show that every extreme element r ∈ P is equivalent to an element of
B. Indeed, write r =

∑
b∈B λbb with λb ≥ 0. As r 6= 0, we can write

r = λb0b0 +
∑
b∈B
b 6=b0

λbb =: w1 + w2,

where λb0 > 0. We cannot have w1 = 0 since b0 = 0 cannot belong to any
irredundant set. If w1 ∼ w2, then C[B] = C[B \ {b0}], contradicting the non-
redundancy of B. Since r = w1 + w2 is assumed extreme, we must have w2 = 0,
and so r = w1 = λb0b0 is equivalent to b0, an element of B as claimed. Let
B′ ⊆ B consist of the extreme elements for P that belong B, so any extreme
element for P is equivalent to some element of B′. Then by b), P = C[B′]. As B
is irredundant, B′ = B, i.e. all elements of B are extreme. No two of them can
be equivalent, as B is irredundant.

To prove the converse, note that b) implies P = C[B] since B is assumed
to contain a positive multiple of every extreme element. Let us show that B
is irredundant. Let c ∈ B be a redundant element of B. Thus we can write
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c =
∑`

i=1 λibi with bi ∈ B \ {c} and λi > 0. Pick c such that ` is minimal. Since
B consists by assumption only of extreme elements, c 6= 0, so ` > 0. If ` = 1, then
c would be an extreme element equivalent to two distinct elements of B (namely
c and b1), contradicting our uniqueness hypothesis. As ` ≥ 2 we can write

c = λ`b` +
`−1∑
i=1

λibi =: w1 + w2.

We cannot have w2 = 0, for then 0 =
∑`−1

i=1 λiLj(bi), which implies Lj(bi) = 0 for
all linear forms Lj and all i ≤ ` − 1. As ` > 1, this contradicts the assumption

that P is pointed. Furthermore, w1 6∼ w2 :=
∑`−1

i=1 λibi by the minimality of `.
Hence c = w1 + w2 is not extreme, contradicting our hypothesis on B. Thus, B
is irredundant.

Remark 16. Let L : V → Rm be the linear transformation x 7→ L(x) :=
(L1(x), . . . , Lm(x)), Lj(x) := 〈vj, x〉, vj ∈ VQ. Recall that we assumed that V
has a fixed Q-structure VQ, that is, V has a Q-vector subspace VQ ⊆ V such that
any Q-basis for VQ is an R-basis for V . Thus if we consider the restriction of
L to VQ, LQ := L|VQ : VQ → Qm, we have that dimR(ker(L)) = dimQ(ker(LQ)),
and so rankR(L) = rankQ(LQ). So given a rational H-representation of a cone
P , to determine when a generator b ∈ VQ is extreme for P , it is sufficient to
apply Lemma 15 a). Similarly, given two extreme elements b, b′ ∈ P ∩ VQ both
inequivalent, to determine when b and b′ are adjacent for P , it is sufficient apply
Lemma 15 c).

Let P = C[B] be an irredundant R-representation of a pointed rational cone
P ⊆ V . By Lemma 15, any element of B is extreme for P . Also we assume
P has H-representation P = H(L1, . . . , Lm) not necessarily irredundant. Let
H(L) := {x ∈ V : L(x) := 〈v, x〉 ≥ 0} be a rational half-space in V for some
v ∈ VQ. The following Lemma is a strengthening of Lemma 7, which determine
an irredundant rational R-representation of P ′ = P ∩H(L) from the irredundant
rational R-representation of P = C[B].

Lemma 17 (Fukuda-Prodon [FP96, Lemma 8]). Given an irredundant rational
R-representation of a pointed rational cone P = C[B] and a non-trivial rational
linear form L : V → R given by L(x) := 〈v, x〉, where v ∈ VQ, define the subsets
of B,

B+ := {b : L(b) > 0}, B− := {b : L(b) < 0}, B0 := {b : L(b) = 0}.

Define vbb′ := L(b)b′ − L(b′)b ∈ VQ, for each pair (b, b′) ∈ Λ, where

Λ := {(b, b′) ∈ B+ ×B− : b and b′ are adjacent for P}. (1.8)

Then P ′ := P ∩ H(L) = C[B̃], where

B̃ := B+ ∪B0 ∪
{
vbb′ : (b, b′) ∈ Λ

}
⊆ VQ, (1.9)

is an irredundant rational R-representation of the cone P ′.
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Proof. By Lemma 15 d), it is sufficient to prove that every element in B̃ is
extreme for P ′, and that every extreme element for P ′ is equivalent to exactly
one element of B̃. Firstly, we will prove that every element of {vbb′ : (b, b′) ∈ Λ} is
extreme for P ′. Indeed, P ′ = H(L1, . . . , Lm, Lm+1) is a rational H-representation
of P ′ = P ∩ H(L), where P = H(L1, . . . , Lm) and Lm+1 := L. As Lm+1(vbb′) :=
L(vbb′) = L(b)L(b′)−L(b′)L(b) = 0, by definition of ZP ′(vbb′)

(
see (1.6)

)
, we have

ZP ′(vbb′) =
{
j ∈ {1, . . . ,m} : Lj(vbb′) = 0

}
∪
{
m+ 1

}
.

Moreover for each j ∈ {1, . . . ,m}, Lj(vbb′) = 0 if and only if Lj(b) = 0 =
Lj(b

′). Therefore ZP ′(vbb′) =
(
ZP (b) ∩ ZP (b′)

)
∪ {m + 1}. Also note that Lm+1

is not a linear combination of {Lj}j∈S, for any subset S ⊆ ZP (b) ∩ ZP (b′). So
rank

(
LZP ′ (vbb′ )

)
= rank

(
LZP (b)∩ZP (b′)

)
+ 1. By Lemma 15, rank

(
LZP (b)∩ZP (b′)

)
=

n− 2 for each (b, b′) ∈ Λ, so

rank
(
LZP ′ (vbb′ )

)
= rank

(
LZP (b)∩ZP (b′)

)
+ 1 = (n− 2) + 1 = n− 1.

Therefore for any (b, b′) ∈ Λ, vbb′ is extreme for P ′.
Now let b ∈ B+ ∪ B0. If b is not extreme for P ′, then by definition b =

λ1b1 + λ2b2 where λi > 0, bi ∈ P ′, with b1 and b2 both inequivalent. Since
bi ∈ P ′ = P ∩ H(L), we have bi ∈ P = C[B]. Therefore b is not extreme for P ,
contradicting Lemma 15 d). Thus, every element of B+ ∪ B0 is extreme for P ′.
Hence every element of B′ = B+ ∪B0 ∪

{
vbb′ : (b, b′) ∈ Λ

}
is extreme for P ′.

Finally we want to prove that every extreme element for P ′ is equivalent to
exactly one element of B̃. By Lemma 7, we know that P ′ = C[B′] where B′ :=
B+∪B0∪

{
vbb′ : (b, b′) ∈ B+×B−

}
. So by Lemma 15 b), any extreme element x for

P ′ = C[B′] is equivalent to exactly one element of B′. Thus if x is not equivalent

to one element in B̃, then x = λvbb′ for some λ > 0, such that (b, b′) ∈ B+ × B−
with b and b′ not adjacent for P . Lemma 15 implies rank(LZP (b)∩ZP (b′)) < n− 2.
As ZP ′(x) = ZP ′(vbb′) = (ZP (b)∩ZP (b′))∪{m+1}, and Lm+1 := L is not a linear
combination of {Li}i∈S for any S subset in ZP (b) ∩ ZP (b′), we have

rank(LZP ′ (x)) = rank(LZP ′ (vbb′)) = rank(LZP (b)∩ZP (b′)) + 1 < n− 2 + 1 = n− 1.

So x is not extreme for P ′, contradicting our assumption.

Using Lemma 17 repeatedly, we can obtain an irredundant rational R-represen-
tation of any pointed rational cone P in V from its rational H-representation.

Proposition 18. Let P = H(L1, . . . , Ln+m) ⊆ V be an H-representation of a
pointed rational cone P , n = dim(V ). Then there exists an irredundant rational
R-representation P = C[B], B ⊆ VQ.

Proof. Since P is pointed, by Lemma 3 we can assume that L1, . . . , Ln are linearly
independent rational linear forms. Lemma 2, applied to P0 := H(L1, . . . , Ln),
shows that there exists an irredundant rational R-representation P0 = C[B0],
B0 ⊆ VQ. For j ≥ 1, let Pj := Pj−1 ∩ H(Ln+j), where H(Ln+j) := {x ∈ V :
Ln+j(x) ≥ 0}. Induction on m and Lemma 17 conclude the proof.

In §2 we re-state the above proof as an algorithm, and show that duality
allows us to apply it to obtain an H-representation from an R-representation.
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1.4 Difference of two rational cones

Suppose we are given irredundant rational R- and H- representations of two
pointed (closed) n-dimensional rational cones P, P ′ ⊆ V , with n = dim(V ), such
that P ∩ P ′ is n-dimensional. In our algorithm to determine a true fundamen-
tal domain from a signed one, we will need to express the closure P \ (P ∩ P ′)
(which is not necessarily a polyhedral cone) as a finite union of (possibly empty)
pointed n-dimensional rational cones. The following Lemma gives this closure as
a finite union of explicit polyhedral cones. In §2 we will re-express the lemma as
an algorithm.

Lemma 19. Let P = H(L1, . . . , Lm) and P ′ = H(T1, . . . , T`) be rational polyhe-
dral cones in V such that P is pointed. Then the following hold.

(i) P ∩ P ′ is n-dimensional if and only if for each j = 1, . . . , `, the cone

P (j) := P ∩ H(T1, . . . , Tj) = H(L1, . . . , Lm, T1, . . . , Tj) (1.10)

is n-dimensional.

(ii) For each j = 1, . . . , `, define the cones

Qj := P (j−1) ∩
{
x ∈ V : Tj(x) < 0

}
, (1.11)

where P (0) := P . Then P \ (P ∩ P ′) =
⋃`
j=1Qj (disjoint union).

(iii) Assume P (j−1) is n-dimensional and Qj 6= ∅. Then the closure Qj =
P (j−1) ∩

{
x ∈ V : Tj(x) ≤ 0

}
is pointed and n-dimensional. Moreover,

Qi ∩Qj has no interior for 1 ≤ i ≤ `, i 6= j.

(iv) Suppose P ∩ P ′ is n-dimensional and P 6⊆ P ∩ P ′. Then

P \ (P ∩ P ′) =
⋃

j,Qj 6=∅

Qj

is a finite union of pointed n-dimensional rational polyhedral cones Qj ⊆ P
with disjoint interiors.

Proof. We first prove (i). By definition of P (j) in (1.10), it is clear that

P ∩ P ′ = P (`) ⊆ P (`−1) ⊆ . . . ⊆ P (2) ⊆ P (1) ⊆ P (0) := P.

Thus P ∩ P ′ = P (`) is n-dimensional if and only if P (j) is so for j = 1, . . . , `.
To prove (ii), note that x ∈ P \ (P ∩ P ′) iff x ∈ P and Tj(x) < 0 for

some j ∈ {1, . . . , `}. Define j0(x) := min{j : Tj(x) < 0} if some Tj(x) < 0
and j0(x) := ∞ otherwise. Then by definition of Qj in (1.11), we have that
Qj = {x ∈ P : j0(x) = j}. Then

P \ (P ∩ P ′) =
⋃̀
j=1

{x ∈ P : j0(x) = j} =
⋃̀
j=1

Qj. (1.12)
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Moreover, it is clear that Qi ∩Qj = ∅ for i 6= j.
We now prove (iii). By definition of the closure of a set,

Qj ⊆ A := P (j−1) ∩
{
x ∈ V : Tj(x) ≤ 0

}
.

To prove the reverse inclusion, let x ∈ A. Since Qj 6= ∅, by (1.11) there exists
y ∈ P (j−1) such that Tj(y) < 0. We consider Px(t) := ty + (1− t)x, for t ∈ (0, 1).
It is clear that Px(t) ∈ Qj. Moreover, if t→ 0 then Px(t)→ x. Thus x ∈ Qj, so
Qj = A.

Next we shall prove that Qj is n-dimensional. Suppose the interior (Qj)
◦ = ∅.

Recall that in any topological space we have the identity (A ∩ B)◦ = A◦ ∩ B◦.
Since ({x ∈ V : Tj(x) ≤ 0})◦ = {x ∈ V : Tj(x) < 0} [R70, Thm. 6.7], we have

∅ = (Qj)
◦ = (P (j−1))◦ ∩

{
x ∈ V : Tj(x) < 0

}
. (1.13)

Since P (j−1) = (P (j−1))◦ ∪ ∂(P (j−1)), the disjoint union of its interior with its
boundary, by (1.11) and (1.13) we have that

Qj = P (j−1) ∩
{
x ∈ V : Tj(x) < 0

}
,

= (Qj)
◦ ∪
(
∂(P (j−1)) ∩

{
x ∈ V : Tj(x) < 0

})
= ∂(P (j−1)) ∩

{
x ∈ V : Tj(x) < 0

}
. (1.14)

Since Qj 6= ∅, by (1.14) there is y0 ∈ ∂(P (j−1)) such that Tj(y0) < 0. Moreover by
assumption P (j−1) is n-dimensional, so there exists x0 ∈ (P (j−1))◦. But as we as-
sumed in (1.13) that (Qj)

◦ = ∅, we have Tj(x0) ≥ 0. Let Py0(t) := tx0+(1−t)y0 ∈
(P (j−1))◦, t ∈ (0, 1). For some sufficiently small positive number t, Tj(Py0(t)) < 0.
So Py0(t) ∈ (Qj)

◦ contradicting (1.13). Hence Qj is n-dimensional. Also, Qj is
pointed as P is pointed and Qj ⊆ P .

If i < j, we have (with no assumption on Qj or Qi)

Qi = H(T1, . . . , Ti−1) ∩ {x ∈ P : Ti(x) ≤ 0},
Qj = H(T1, . . . , Ti, . . . , Tj−1) ∩ {x ∈ P : Tj(x) ≤ 0}.

Hence Qi ∩ Qj ⊆ {x ∈ V : Ti(x) = 0}, and so Qi ∩ Qj has no interior, and this
also holds if i > j. Finally, (iv) follows directly from (1.12) and (i)-(iii).

Remark 20. By Lemma 19 (iv), the closure P \ P ∩ P ′ has a decomposition as
a union of at most ` pointed n-dimensional rational cones, where ` is the number
of facets of P ′ = H(T1, . . . , T`) (irredundant H-representation).



Chapter 2

Algorithms for rational cones

In this chapter describe the algorithms needed in the next chapter to determine
a true fundamental domain from a signed one, working always in the setting
VQ ⊆ V described at the beginning of §1.1. All of the algorithms in this chapter
work with exact arithmetic, as calculations are reduced to elementary operations
with rational matrices. Thus we assume that any element of VQ is coded as an n-
tuple of rational numbers (the coordinates with respect to a fixed basis), and that
the bilinear form 〈 , 〉 is given by a fixed (invertible, symmetric) n × n rational
matrix.

Algorithm 21 (H-to-R). Obtains an irredundant rational R-representation of a
pointed cone from a rational H-representation.

Input: A finite set {v1, . . . , vn+m} ⊆ VQ defining a pointed rational polyhedral
cone Q := H(L1, . . . , Ln+m) ⊆ V , where Li(x) = 〈vi, x〉.
Output: An irredundant set B ⊆ VQ such that Q = C[B].

Step 1. Since Q is pointed, by Lemma 3 we can reorder the Li if necessary
so that L1, . . . , Ln are linearly independent. Concretely, we compute linearly
independent v1, . . . , vn.

Step 2. Using Lemma 2, we obtain an irredundant rational R-representation
of the cone P0 := H(L1, . . . , Ln) = C[B0], B0 ⊆ VQ. Concretely, we compute
B0 = {r1, . . . , rn} by inverting a matrix as in (1.1).

Step 3. For each j = 1, . . . ,m, define Pj := C[Bj−1] ∩ H(Ln+j) and use (1.9) in
Lemma 17 to compute Bj ⊆ VQ so that Pj = C[Bj] is an irredundant rational
R-representation.

Step 4. RETURN B := Bm.

Proof. This is just an algorithmic form of Proposition 18.

Algorithm 22 (R-to-H). Obtains an irredundant rational H-representation of
an n-dimensional cone from a rational R-representation.

Input: A finite set B = {v1, . . . , v`} ⊆ VQ determining P = C[B] an n-
dimensional rational cone.

25
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Output: A rational H-representation P = H(L1, . . . , Lm), Lj(x) = 〈rj, x〉 where
rj ∈ VQ.

Step 1. Apply the H-to-R algorithm 21 to the pointed cone Q := H(Lv1 , . . . , Lv`),
where Lv(x) := 〈v, x〉 to obtain the irredundant R-representationQ = C[r1, ..., rm]
with ri ∈ VQ.

Step 2. RETURN P = H(Lr1 , . . . , Lrm).

Proof. By Lemma 4, the dual cone P ∗ = H(Lv1 , . . . , Lv`) =: Q. By Lemma 6 (ii),
Q is pointed. By Lemmas 6 (i) and 5,

P = (P ∗)∗ = Q∗ = (C[r1, ..., rm])∗ = H(Lr1 , . . . , Lrm)

is a rational H-representation for P . It is irredundant by the remark immediately
following the proof of Lemma 6.

Next we give algorithm for making an H- or R-representation irredundant H-
or R-representation.

Algorithm 23 (R-irredundant). Obtains an irredundant rational R-representa-
tion of a pointed n-cone from a rational R-representation.

Input: A rational R-representation P = C[B] of a pointed n-dimensional rational
cone.
Output: An irredundant rational R-representation P = C[B′].

Step 1. Apply the R-to-H algorithm 22 to P = C[B], obtaining an (irredundant)
H-representation P = H(L1, . . . , Lm) .

Step 2. Apply the H-to-R algorithm 21 to P = H(L1, . . . , Lm), yielding the
output P = C[B′].

Proof. Algorithms 21 and 22 reverse H- and R-representations, yielding irredun-
dant ones. Hence, appplying them in succession returns the original type of
representation, but made irredundant.

The next algorithm has the same proof.

Algorithm 24 (H-irredundant). Obtains an irredundant rational H-representa-
tion of a pointed n-cone from a a rational H-representation.

Input: A rational H-representation P = H(L1, ..., Lm) of a pointed n-dimensional
rational cone.
Output: An irredundant rational H-representation P = H(L′1, ..., L

′
m′).

Step 1. Apply the H-to-R algorithm 21 to P = H(L1, . . . , Lm), obtaining an
(irredundant) R-representation P = C[B].

Step 2. Apply the R-to-H algorithm 22 to P = C[B], yielding the output
P = H(L′1, ..., L

′
m′).
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Algorithm 25 (Cone Dimension). Checks if a pointed rational cone given by an
H-representation has maximal dimension.

Input: A finite subset {v1, . . . , vm} of VQ determining a pointed rational cone
P = H(L1, . . . , Lm) ⊆ V , where Li(x) = 〈vi, x〉.
Output: 1 if P has dimension n, 0 otherwise.

Step 1. Apply the H-to-R algorithm 21 to P = H(L1, . . . , Lm) to obtain an
irredundant R-representation P = C[r1, . . . , r`] where ri ∈ VQ.

Step 2. To express each rj ∈ VQ as an n-tuple of rational numbers (with a fixed
basis for VQ). So this return a n × ` rational matrix. RETURN 1 if the rank of
such matrix is n, 0 otherwise.

Algorithm 26 (Cone Containment). Checks if a pointed rational cone given by
an H-representation is contained in another.

Input: Two pointed rational polyhedral cones P = H(L1, . . . , Lm) and P ′ =
H(T1, . . . , T`), where Li(x) = 〈vi, x〉 and Tj(x) = 〈wj, x〉.
Output: 1 if P ⊆ P ′, 0 otherwise.

Step 1. In each cone P (j−1) := H(L1, . . . , Lm, T1, . . . , Tj−1), P (0) := P apply the
H-to-R algorithm 21 to obtain an irredundant R-representation P (j−1) = C[Bj−1]
with Bj−1 ⊆ VQ finite.

Step 2. If Tj(b) ≥ 0 for all b ∈ Bj−1, return Qj := P (j−1)∩{x ∈ Tj(x) < 0} = ∅,
otherwise Qj 6= ∅.

Step 3. If Qj = ∅ for all j = 1, . . . , `, then P ⊆ P ′ and RETURN 1, 0 otherwise.

Proof. By Lemma 19 (ii) we known that
⋃`
j=1Qj = P \ P ∩ P ′, so the Step 3 is

justified.

An alternative to Algorithm 26 is to apply the H-to-R algorithm to obtain P =
C[b1, . . . , bs] and then verify if Tj(bi) ≥ 0 for all j and i.

Algorithm 27 (Fat Intersection). Checks if the intersection of two pointed n-
dimensional rational cones, both given in their H-representations, has dimension
n.

Input: Two finite subsets {v1, . . . , vm} and {w1, . . . , w`} of VQ determining
pointed n-dimensional rational cones P = H(L1, . . . , Lm) and P ′ = H(T1, . . . , T`),
where Li(x) = 〈vi, x〉 and Tj(x) = 〈wj, x〉.
Output: 1 if P ∩ P ′ has dimension n, 0 otherwise.

Step 1. Apply Cone Dimension algorithm 25 to P (j) := H(L1, . . . , Lm, T1, . . . , Tj)
to determine if P (j) is n-dimensional or not.

Step 2. If P (j) is n-dimensional for all j, then P ∩P ′ is n-dimensional RETURN
1, 0 otherwise.

Proof. The Step 2 is justified by Lemma 19 (i).
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As explained in the Introduction, in producing a true fundamental domain F
from a given signed one (N ;P), the main step is to remove all the “negative”
polyhedral cones, i.e. those in the list N = (N1, . . . , Nm). The main difficulty
that arises in using our main tool, is that the difference of two cones is in general
no longer a polyhedral cone. Rather, it is a finite union of cones with disjoint
interiors. Thus, when replacing a given cone Nj in the list N by Nj \ (Nj ∩ Πi),
or a cone Πi in the list P by Πi \ (Nj ∩ Πi), we obtain a (possible empty) finite
union of cones with disjoint interiors instead of single cones. To express this it
will prove useful to make the following two ad hoc definitions.

Definition 28. A list (P1, . . . , Pm) of cones Pi ⊆ V is clean if the interiors
(Pi ∩ Pj)◦ = ∅ for all i 6= j.

In particular, an empty list is clean, as is a list consisting of cones with empty
interiors.

Definition 29. A (possibly empty) subset D ⊆ V of an n-dimensional real vector
space V is called a rational polyhedral semi-complex if D =

⋃t
j=1Cj, where the

Cj are pointed n-dimensional rational polyhedral cones and the (possibly empty)
list (C1, . . . , Ct) is clean.

A semi-complex is for computational purposes the list (C1, . . . , Ct), but we use
the same term for the subset D =

⋃
j Cj ⊆ V .

Algorithm 30 (Fat Difference). Expresses the closure D := P \ (P ∩ P ′) of the
difference of two pointed n-dimensional rational cones as a rational polyhedral
semi-complex D =

⋃
j Cj if D has a non-empty interior. Otherwise outputs the

empty set, meaning that D = ∅ is the empty semi-complex.

Input: Same Input as in the Fat Intersection algorithm 27.
Output: If D has a non-empty interior, a finite list (C1, . . . , Cr) of H-represen-
tations of pointed n-dimensional rational cones Ci ⊆ V such that (Ci ∩Cj)◦ = ∅
for i 6= j and D =

⋃r
i=1Ci. Otherwise, the empty set.

Step 1. Apply the Cone Containment algorithm 26 to determine if P 6⊆ P ′. If
so, go to step 2. Otherwise RETURN the empty set.

Step 2. Apply the Fat Intersection algorithm 27 to see if P ∩P ′ is n-dimensional.
If so, go to Step 3. Otherwise RETURN the cone P = H(L1, . . . , Lm).

Step 3. As P ∩ P ′ is n-dimensional and P 6⊆ P ∩ P ′, we have D =
⋃
j, Qj 6=∅Qj

(union of n-dimensional cones). RETURN the non-empty list (Q1, . . . , Qr) (r ≤
`) in Lemma 19 (iv) of pointed n-dimensional rational cones.

Proof. Lemma 19.

Since algorithms 21 and 22 allow us to pass from an H- to an R- representation
and vice-versa, for the remainder of this thesis when we assume that a pointed
rational cone is given, we will always assume that either of these is given, and
that the other one is computed whenever necessary. Using algorithms 23 and 24,
we can assume the representations to be irredundant,
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Algorithm 31 (Removing One Cone). Expresses the closure D \ C of the dif-
ference of a rational polyhedral semi-complex D and a a pointed n-dimensional
rational polyhedral cone C as a rational polyhedral semi-complex D′.

Input: A rational polyhedral semi-complex D ⊆ V and C ⊆ V a pointed n-
dimensional rational polyhedral cone.
Output: A (possibly empty) rational polyhedral semi-complex D′ = D \ C.

Step 1. Given D =
⋃t
j=1Cj, where (C1, . . . , Ct) is a clean list of pointed n-

dimensional rational polyhedral cones, apply the Fat Difference algorithm 30
to each pair (Cj, C) to obtain t rational polyhedral semi-complexes S(Cj) =

Cj \ (Cj ∩ C).

Step 2. RETURN the rational polyhedral semi-complexD′ :=
(
S(C1), . . . ,S(Ct)

)
.

Proof. Note that

D \ C =

( t⋃
j=1

Cj

)
\ C =

t⋃
j=1

(Cj \ C) =
t⋃

j=1

Cj \ (Cj ∩ C) =
t⋃

j=1

S(Cj) =: D′.

Also as the list (C1, . . . , Ct) is clean, i.e. the interior (Ci ∩ Cj)◦ = ∅ for i 6= j,
the interiors of the cones in S(Cj) are disjoint from those of S(Ci). Thus D′ is
a rational polyhedral semi-complex.

The next algorithm generalizes the previous one.

Algorithm 32 (Removing Intersections). Expresses the closure D \ C of the dif-
ference of two rational polyhedral semi-complexes as a rational polyhedral semi-
complex D′.

Input: Two rational polyhedral semi-complexes D = (D1, ..., Dr) and C =
(C1, ..., Cs).
Output: A rational polyhedral semi-complex D′ = D \ C.

Step 1. D =
⋃r
j=1Dj and C =

⋃s
i=1Ci, where (D1, . . . , Dr) and (C1, . . . , Cs)

are clean lists of pointed n-dimensional rational polyhedral cones. Use the Fat
Intersection algorithm 27 to compute for 1 ≤ j ≤ r the subsets of {1, 2, . . . , s}

Ij :=
{
` ∈ {1, . . . , s} : (Dj ∩ C`)◦ 6= ∅

}
. (2.1)

Step 2. If Ij = ∅, set S(Dj) := (Dj), a polyhedral semi-complex consisting of
one cone. Otherwise, pick an h1 ∈ Ij = {h1, . . . , hej} and apply the Fat Difference
algorithm 30 to the pair (Dj, Ch1) to obtain a rational polyhedral semi-complex

S1 = Dj \ (Dj ∩ Ch1). Next, apply the Removing One Cone algorithm 31 to the
rational polyhedral semi-complex S1, removing the cone Ch2 to obtain a rational
polyhedral semi-complex S2 = S1 \ Ch2 . Continue using algorithm 31 to construct
S` by removing Ch` from S`−1 until ` = ej. Set S(Dj) := Sej .
Step 3. RETURN the rational polyhedral semi-complex D′ := S(D1) ∪ · · · ∪
S(Dr).
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Proof. The semi-complexes S(Dj) computed in Step 2 satisfy for 1 ≤ j ≤ r,

S(Dj) = Dj \
⋃
h∈Ij

(Dj ∩ Ch) = Dj \ C.

Hence,

D \ C =
r⋃
j=1

(Dj \ C) =
r⋃
j=1

Dj \ C =
r⋃
j=1

S(Dj) := D′,

which is easily checked to be a semi-complex.

Remark 33. Remark 20 shows that the length of the list in the output of Algo-
rithm 32, i.e. the number of polyhedral cones obtained by concatenating the lists
S(Dj), is at most

r

s∏
i=1

#{F(Ci)}, (2.2)

where #{F(Ci)} denotes the number of facets of the cone Ci.



Chapter 3

From signed to true fundamental
domains

In this chapter we give an algorithm whose input is a signed fundamental domain
(see Definition 1 in the Introduction) consisting of finitely many rational poly-
hedral cones, and whose output is a true fundamental domain of the same kind.
Thus, we assume that we are given a countable group G acting freely on a subset
O ⊆ V , and lists N = (N1, . . . , Nm) and P = (Π1, . . . ,Π`) of rational polyhedral
cones in V giving a signed fundamental domain for O/G.1 We will make some
additional assumptions on the action of G, making it a Colmez action.” In chap-
ter 4 we show how to associate Colmez actions to any number field that is not
totally complex.

Definition 34 (Colmez action). Let G be a group and let ρ : G → GL(V ) be a
linear representation of G on an n-dimensional R-vector space V endowed with
a fixed Q-structure VQ and a fixed non-degenerate, symmetric, rational bilinear
form 〈 , 〉 : V × V → R (see §1.1). Let O ⊆ V be a non-empty open cone in V
(i.e. t ∈ R+, w ∈ O imply tw ∈ O) and let v0 ∈ V, v0 /∈ O. For simplicity, we
shall write ρ(g)(v) as g · v and call v0 the vantage point.

The 4-tuple (G, V,O, v0) is a Colmez action if the following hold.

(i) G is countable, infinite and acts freely on O, i.e. if g ·x = x for some x ∈ O
and some g ∈ G, then g = eG, the identity element of G.

(ii) g · VQ ⊆ VQ, g ·O ⊆ O and 〈g · v, w〉 = 〈v, g · w〉 ∀v, w ∈ V, ∀g ∈ G.

(iii) For any compact subset K ⊆ O and any pointed rational polyhedral cone
P ⊆ O ∪ {0V }, there are at most finitely many g ∈ G such that (g ·K) ∩ P 6= ∅.

(iv) For each g ∈ G, there exists λ = λ(g) > 0 such that g · v0 = λv0.

(v) v0 is not contained in the real span of any proper Q-subspace of VQ.

For the remainder of this chapter, we will assume (not always explic-
itly) that we have fixed a Colmez action (G, V,O, v0).

1 It will prove convenient to simplify boundary issues by removing from consideration a lower
dimensional G-stable subset H ⊆ O which includes the G-orbits of all facets of the cones Nj or
Πi involved. The Colmez Trick, Lemma 39 below, will allow us to restore boundary pieces in
the end.
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In §3.1 we explain Colmez’s vantage point trick for dealing with boundary
issues. In §3.2 we show how the algorithms of Chapter 2 allow us to crop a piece
of any negative cone Ni (always cropping a corresponding piece of some positive
cone Pj) and still have a signed fundamental domain. In §3.3 we show how a
finite number of croppings result in a true fundamental domain.

3.1 Piercing and the Colmez Trick

In this section we start from a G-action on a set O ⊆ V and a finite set of cones
{Qλ} in V whose union is nearly a fundamental domain for O/G, i.e. there is
a lower-dimensional set of G-orbits where this may fail. Following Colmez’s idea
(unpublished, but see [DF14] [EF20], or this section), we show that the vantage
point v0 allows us to select certain boundary points of the cones to obtain a true
fundamental domain for the whole of O. Briefly put, Colmezs idea was to add to
the interior of each cone all boundary points which are reached via the inside of
the cone when coming straight from v0.

For later reference we note the following result, omitting its obvious proof.

Lemma 35. Let g ∈ G and let P be a pointed n-dimensional rational cone in V ,
with R- and H-representations P = C[B] = H(T1, . . . , T`), where Tj(x) = 〈vj, x〉,
vj ∈ VQ, and B ⊆ VQ. Then g ·P is a pointed n-dimensional rational cone with R-
and H-representations g·P = C[g·B] = H(T ′1, . . . , T

′
`), where T ′j(x) := 〈g−1 · vj, x〉.

As in [EF20], for any subset P ⊆ V, x, y ∈ V we shall say that −→x, y pierces
P if y ∈ P and if the closed line segment −→x, y connecting x and y intersects the
interior of P . The following lemma gives a characterization of piercing of an n-
dimensional polyhedral cone P = H(L1, . . . , Lm) in terms of the linear forms Li.
It is similar to Lemma 14 in [DF14] and to Lemma 4.13 in [EF20], except that
they only dealt with simplicial2 n-cones and so could use barycentric coordinates.
These coordinates are not available when the cone is not simplicial.

Lemma 36. Let P = H(L1, . . . , Lm) be an H-representation of an n-dimension-
al polyhedral cone P in V , where n := dim(V ), and let x, y ∈ V . Then, −→x, y
pierces P if and only if Lj(y) ≥ 0 for 1 ≤ j ≤ m and for 1 ≤ i ≤ m we have[
Li(y) = 0 ⇒ Li(x) > 0

]
.

Moreover, if −→x, y pierces P and s ∈ −→x, y is an interior point of P , then every
point of −→s, y is an interior point of P , except possibly for y.

Proof. Suppose that −→x, y pierces P . Then y ∈ P , so Lj(y) ≥ 0 for 1 ≤ j ≤ m.
Moreover, −→x, y intersects the interior of P , so there exists t ∈ (0, 1) such that
Lj((1− t)x + ty) > 0 for all j. So if Li(y) = 0, we have (1− t)Li(x) > 0. Thus,
Li(x) > 0. Conversely, suppose Lj(y) ≥ 0 for all j (so y ∈ P ) and that Li(y) = 0
implies Li(x) > 0. We need to prove that the line segment −→x, y intersects the
interior of P . For this, we note that for some δ sufficiently near 1, and for any
t ∈ (δ, 1) the point pt := (1 − t)x + ty lies in the interior of P . Indeed, if

2 A cone P ⊆ V contained in an n-dimensional real vector space is simplicial if it is generated
by ` elements which are linearly independent, with ` ≤ n.
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Lj(y) = 0 then Lj(pt) > 0 for any t ∈ (0, 1), while if Lj(y) > 0, it suffices to
take t sufficiently close to 1. To prove the last claim let t ∈ (0, 1). Since s is an
interior point of P , we have Lj(s) > 0 for all j. But Lj(y) ≥ 0, so for 0 ≤ t < 1
we have Lj((1− t)s+ ty) = (1− t)Lj(s) + tLj(y) ≥ (1− t)Lj(s) > 0.

The following lemma establishes a piercing invariance of the vantage point v0.

Lemma 37. Suppose (G, V,O, v0) is a Colmez action, let P = H(L1, . . . , Lm) be
an n-dimensional polyhedral cone in V , suppose y ∈ P and g ∈ G. Then −−→v0, y
pierces P if and only if −−−−→g · v0, y pierces P .

Proof. By (iv) in Definition 34, we have g · v0 = λv0 for some λ > 0. Lemma 36
concludes the proof.

Lemma 38. Suppose (G, V,O, v0) is a Colmez action, y ∈ O, and P ⊆ O∪{0V }
is an n-dimensional pointed rational polyhedral cone. Define

AP (y) :=
{
g ∈ G : −−−−→v0, g · y pierces P

}
, `(t) := (1− t)v0 + ty (0 ≤ t ≤ 1).

Then AP
(
`(t)
)

stabilizes for t near 1. More precisely, there exists T0 ∈ (0, 1) such
that for all t ∈ [T0, 1] we have AP (y) = AP

(
`(t)
)

and `(t) ∈ O.
Moreover, if we are given a finite number of pointed dj-dimensional rational

polyhedral cones Fj ⊆ O∪{0V } with dj < n, and let H :=
⋃
j(G ·Fj) be the union

of their G-orbits, we can choose T0 < 1 so that `(t) /∈ H for all t ∈ [T0, 1).

Proof. The proof is essentially that of [EF20, Lemma 4.14], but we give all the
details for the reader’s convenience. As O ⊆ V is open and `(1) = y ∈ O, it
is clear that `(t) ∈ O for all t sufficiently near 1. Note that by property (iii) of
Definition 34 applied to K := {y}, AP (y) ⊆ G is finite.

Since v0 /∈ O by definition of a Colmez action, `(t) is not constant. Suppose
g ∈ AP (y), so −−−−→v0, g · y pierces P . By Lemma 37, −−−−−−→g · v0, g · y pierces P . By the
last part of Lemma 36, there exists s = s(g) ∈ (0, 1) such that for all t ∈ [s, 1)
the point g · `(t) = (1 − t)(g · v0) + t(g · y) is an interior point of P . Thus,
g ∈ AP

(
`(t)
)
, for all t ∈ [s, 1]. Thus, taking T0 := sup

{
s(g) : g ∈ AP (y)

}
, we

have AP (y) ⊆ AP (`(t)) for all t ∈ [T0, 1]. After possibly increasing T0 < 1, we
have `(t) ∈ O for all t ∈ [T0, 1] .

Now we prove the reverse inclusion, i.e. AP (`(t)) ⊆ AP (y) for all t ∈ [1− ε, 1]
for some ε > 0. If this is false there is a sequence tj ∈ (0, 1) converging to
1, and gj ∈ AP (`(tj)) but gj 6∈ AP (y). By (iii) in Definition 34, if Θ ⊆ O is
a neighbourhood of y whose closure is compact and contained in O, there are
finitely many g ∈ G such that (g ·Θ)∩ (P \{0V }) 6= ∅. Hence the set of such gj’s
is finite. Passing to a subsequence, we may assume gj = g is fixed, g ∈ AP

(
`(tj)

)
,

g 6∈ AP (y). Thus
−−−−−−−→
v0, g · `(tj) pierces P . In particular g · `(tj) ∈ P for all tj. As

`(tj) converges to y (as tj → 1) and as P is closed in V , so g · y ∈ P . Also, as−−−−−−−→
v0, g · `(tj) pierces P , Lemma 37 implies

−−−−−−−−−→
g · v0, g · `(tj) pierces P . But

−−−−−−−−−→
g · v0, g · `(tj) = g · (−−−−→v0, `(tj)) ⊆ g · (−−−−→v0, `(1)) = g · (−−→v0, y) = −−−−−−→g · v0, g · y,
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implies that −−−−−−→g · v0, g · y contains an interior point of P . As g · y ∈ P , we have
proved that −−−−−−→g · v0, g · y pierces P . Again by Lemma 37, −−−−→v0, g · y pierces P , i.e.
g ∈ AP (y), contradicting our choice of g.

To prove the last claim in the Lemma, suppose there is a sequence ti ∈ (0, 1)
converging to 1 such that `(ti) ∈

⋃
j(G · Fj). So for each ti, there exist gi ∈ G

and Fji such that `(ti) ∈ gi ·Fji . Thus, g−1i `(ti) ∈ Fji . Again by (iii) in Definition
34, the gi belong to a finite set. Passing to a subsequence, we may assume that
gi = g and Fji = F are fixed. Therefore, for some g ∈ G and some pointed
rational polyhedral cone F with dim(F ) < n, we have that `(ti) ∈ g · F . Since
F is rational and dim(F ) < n, F is contained in the real span W of some proper
Q-subspace of VQ. Thus, `(ti) ∈ W . Any two distinct points `(ti), `(ti′) ∈ W , so
the entire line passing through `(ti) and `(ti′) lies on W . As `(ti) ∈ −−→v0, y, this line
includes v0. But then v0 ∈ W , contradicting (v) in Definition 34.

We can now describe the Colmez Trick. Let Q = H(L1, . . . , Lm) be an ir-
redundant H-representation of a pointed n-dimensional rational polyhedral cone
Q ⊆ O∪{0V }. Since ker(Lj) is the real span of a rational proper subspace of VQ,
we have Lj(v0) 6= 0 for 1 ≤ j ≤ m. Define subsets I+, I− ⊆ {1, . . . ,m} by

I± :=
{
j ∈ {1, . . . ,m} : ±Lj(v0) > 0

}
. (3.1)

They are non-empty since v0 /∈ Q and −v0 /∈ Q. Indeed, since G takes the 1-cone
generated by v0 (and the 1-cone generated by −v0) to itself, assumption (iii) of
Definition 34 rules out that either cone could be in Q ⊆ O. Define the semi-closed
cone

Q̃ :=
{
y ∈ V : Lj(y) ≥ 0 for j ∈ I+ and Li(y) > 0 for i ∈ I−

}
⊆ Q. (3.2)

Thus, Q̃ is the interior of Q together with part of its boundary. By Lemma 36,

Q̃ =
{
y ∈ Q : −−→v0, y pierces Q

}
. (3.3)

Lemma 39 (Colmez Trick). Suppose (G, V,O, v0) is a Colmez action, n :=
dim(V ), and we are given a finite list of n-dimensional pointed rational poly-
hedral cones Qλ ⊆ O ∪ {0V } such that∑

λ

#
(
Qλ ∩ (G · y)

)
= 1 (∀y ∈ O \ H), (3.4)

where H :=
⋃
j G · Fj ⊆ V is as in Lemma 38 and contains all facets of all cones

Qλ. Then
⋃
λ Q̃λ is a fundamental domain for the action of G on O, with Q̃λ as

in (3.2).

Proof. For all y ∈ O we must show∑
λ

#
(
Q̃λ ∩ (G · y)

)
= 1, (3.5)
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given that it holds for all y ∈ O \ H (since Qλ \ H = Q̃λ \ H as we assumed that
all facets of Qλ are contained in H). From the definition of AP (y) in Lemma 38
and (3.3), we have for all y ∈ O

AQλ(y) := {g ∈ G : −−−−→v0, g · y pierces Qλ} = {g ∈ G : g · y ∈ Q̃λ}.
As the action of G is free (see (i) in Definition 34), #

(
AQλ(y)

)
= #

(
Q̃λ∩ (G ·y)

)
.

Since the set of λ’s is finite, Lemma 38 shows the existence of some x = `(t) ∈
O \ H such that AQλ(y) = AQλ

(
x
)

for all λ. Hence,

1 =
∑
λ

#
(
Q̃λ∩(G·x)

)
=
∑
λ

#
(
AQλ(x)

)
=
∑
λ

#
(
AQλ(y)

)
=
∑
λ

#
(
Q̃λ∩(G·y)

)
,

proving (3.5).

3.2 Cropping a signed fundamental domain

Given a signed fundamental domain (N ;P) for O/G, where N := (N1, . . . , Nm)
and P := (Π1, . . . ,Π`) are lists of n-dimensional rational polyhedral cones, Obser-
vation 4 in the Introduction suggests finding g ∈ G such that (g ·Nj)∩Πi 6= ∅ for
some i and j, and replacingNj byNj\g−1

(
(g·Nj)∩Πi

)
and Πi by Πi\

(
(g·Nj)∩Πi

)
.

The motivation is that this results in a smaller signed fundamental domain for
O/G, and so is closer to a true fundamental domain. In the next subsection we
shall prove that repeating this cropping process eventually removes all negative
cones. In this subsection we concentrate on a single cropping.

The difference of two polyhedral cones is not in general a polyhedral cone,
but rather a finite union of such cones intersecting along pieces of facets. This
makes it cumbersome to keep track of boundary points in the decomposition
Nj \ g−1

(
(g ·Nj)∩Πi

)
=
⋃
uNju. It is easier to remove from O the G-orbits of all

facets and use the Colmez Trick (Lemma 39) at the end to attach certain faces
to obtain a true fundamental domain for O/G.

We will also need to keep track of the fact that the cones Nju ⊆ Nj share
the property that (g · Nju) ∩ Πi = ∅. If we lost this information and listed the
cones Nju with the Nj′ , the algorithm might wastefully try to re-use the same
g to remove a piece mapped by g to (g · Nju) ∩ Πi. Hence we group the Nju

into a semi-complex Nj = {Nju}. Recall that a semi-complex is either empty or
is a finite list of pointed n-dimensional rational cones meeting only along their
boundaries. Thus, instead of working with lists (N ;P) of negative and positive
cones, we will work with lists of negative and positive semi-complexes (N;P).

The following Lemma shows that for any negative n-cone N there is some
g ∈ G so that g ·N intersects the interior of some positive cone Π. As explained
above, it is useful to phrase this in terms of semi-complexes instead of cones.

Lemma 40. Suppose (G, V,O, v0) is a Colmez action and we are given two fi-
nite lists N := (N1, . . . ,Nm) and P := (P1, . . . ,P`) of rational polyhedral semi-
complexes contained in O ∪ {0V } satisfying∑̀

i=1

#
(
Pi ∩ (G · x)

)
−

m∑
j=1

#
(
Nj ∩ (G · x)

)
= 1 (∀x ∈ O \ H), (3.6)
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where H :=
⋃
h(G · Fh), the Fh are a finite number of pointed dh-dimensional

rational polyhedral cones Fh ⊆ O ∪ {0V } with dh < n, and H contains all facets
of the Nju and of the Πit in Nj :=

⋃αj
u=1Nju and Pi :=

⋃βi
t=1 Πit for all i, j.

Then, if Nj is non-empty, for each Nju there exists g ∈ G and some Πit such
that (g ·Nju) ∩ Πit is an n-dimensional pointed rational polyhedral cone.

Proof. The only non-obvious claim is that (g ·Nju) ∩Πit has dimension n. Since
H includes all facets of the Nju and of the Πit, we have Nju ∩Nju′ ⊆ H for u 6= u′

and Πit ∩ Πit′ ⊆ H for t 6= t′. Hence, for x ∈ O \ H,

#
(
Nj ∩ (G · x)

)
=

αj∑
u=1

#
(
Nju ∩ (G · x)

)
, #
(
Pi ∩ (G · x)

)
=

βi∑
t=1

#
(
Πit ∩ (G · x)

)
.

Since Nju 6= ∅ and n-dimensional, choose some x in the interior of Nju, x /∈ H.
By (3.6) there exist at least two cones Πit such that (G · x) ∩ Πit 6= ∅. Pick one
of them. Then there is some g ∈ G such that g · x ∈ Πit. But as x 6∈ H, we have
g · x 6∈ H, and so g · x in the interior of Πit. Thus, by Lemma 35, (g ·Nju) ∩ Πit

is a pointed n-dimensional rational polyhedral cone.

Fixing g ∈ G, the following algorithm allows us to remove all Nju and Πit for
which (g ·Nju)∩Πit has a non-empty interior, with the new lists of semi-complexes
still satisfying (3.6).

Algorithm 41 (Removing pieces related by g). Given g ∈ G and two lists (N;P)
of semi-complexes satisfying (3.6) for x /∈ H, produces new lists (N′;P′) with
N′ ⊆ N, P′ ⊆ P, satisfying (3.6) for x /∈ H′, and such that (g · N′) ∩ P′

has empty interior. Moreover, H′ contains the G-orbits of all facets of all cones
appearing in the lists of semi-complexes N′ or P′.

Input: Some g ∈ G and lists of rational polyhedral semi-complexes N = (N1, . . . ,
Nm) and P := (P1, . . . ,P`) satisfying (3.6) for some H as in Lemma 40.
Output: Lists of rational polyhedral semi-complexes N′ = (N ′1, . . . ,N ′m) and
P′ := (P ′1, . . . ,P ′`) for which N ′j ⊆ Nj, P ′i ⊆ Pi, (g · N ′j) ∩ P ′i has empty interior
for all i and j, and

∑̀
i=1

#
(
P ′i ∩ (G · x)

)
−

m∑
j=1

#
(
N ′j ∩ (G · x)

)
= 1 (∀x ∈ O \ H′), (3.7)

where H′ is the union of H and the G-orbits of all facets of all cones in the lists
N ′j and P ′i.

Step 1. Let Ñ := g · N = (Ñ1, . . . , Ñm) where Ñj := g · Nj. Apply the

Removing Intersections algorithm 32 to Ñ1 and P1 to obtain rational polyhedral
semi-complexes N̂1 := Ñ1\P1 and P̂1 := P1\Ñ1. In Ñ replace Ñ1 by N̂1 and in P

replace P1 by P̂1 (and still denote by P and Ñ the new lists of semi-complexes).

Thus, with the new values, Ñ1 ∩ P1 consists of cones of dimension strictly lower
than n. Repeat this with P2,P3, ...,P` so that in the new lists Ñ1 ∩ Pi consists



CHAPTER 3. FROM SIGNED TO TRUE FUNDAMENTAL DOMAINS 37

of cones of dimension strictly lower than n for all i. Now repeat this for Ñ2 and
P1, ...,P`. Continue doing this for all the Ñj.
Step 2. RETURN (N′;P′) := (g−1 · Ñ;P).

Proof. The Removing Intersections algorithm 32 ensures that (g · N′) ∩ P′ has
empty interior, N ′j ⊆ Nj, P ′i ⊆ Pi, and that the facets of the cones in N′ and P′

are as claimed. Observation 4 in the Introduction ensures that (N′;P′) satisfies
(3.7).

Remark 42 (Upper Bound on the Number of Polyhedral Cones). Given the
lists N := (N1, . . . ,Nm) and P := (P1, . . . ,P`) of rational polyhedral semi-
complexes contained in O∪ {0V } satisfying (3.6) for all x ∈ O \H, denote by αj
and βi the number of polyhedral cones that define each rational polyhedral semi-
complex Nj and Pi respectively. Thus the number of polyhedral cones in (N;P)

is
∑m

j=1 αj +
∑`

i=1 βi. By (2.2), after applying the Removing Rational Polyhe-
dral semi-complexes algorithm 41 to (N;P), the number of polyhedral cones in
(N′;P′) is at most

∑̀
i=1

m∑
j=1

(
αj

βi∏
t=1

#F(Πit) + βi

αi∏
u=1

#F(Nju)
)
,

where #F(C) denotes the number of facets in a polyhedral cone C and Pi :=⋃βi
t=1 Πit, Nj =

⋃αj
u=1Nju. So we expect that the number of polyhedral cones to

grow in passing from (N;P) to (N′;P′).

3.3 A true fundamental domain from a signed

one

Recall that in the previous section we fixed a Colmez action (G, V,O, v0) (see
Definition 34) and showed how, given a g ∈ G and a pair (N;P), we could crop
the pair to obtain (N′;P′) so that (g ·N′) ∩P′ has no interior. Our first aim is
to show that cropping is needed only for finitely many g.

Lemma 43. Let N and Π be two pointed n-dimensional rational polyhedral cones
in O ∪ {0V }. Then the set {g ∈ G : g ·N ∩ (Π \ {0V }) 6= ∅} is finite.

Proof. Since N is pointed and N 6= {0},3 there exists a polytope4 K ⊆ N \ {0V }
so that N = {tx : t ≥ 0, x ∈ K} is the conic hull of K [B08, proof of Theorem
4.11]. Since K ⊆ O is compact, the set {g ∈ G : (g · K) ∩ Π 6= ∅} is finite
by (iii) in Definition 34. If g0 · x ∈ (Π \ {0V }) for some g0 ∈ G and x ∈ N ,
then x = ty for some y ∈ K and t > 0. Thus t−1x = y ∈ K, and as Π is a
cone, t−1(g0 · x) ∈ t−1(Π) = Π . So g0 · y = g0 · (t−1x) = t−1(g0 · x) ∈ Π. Thus
g0 ∈ {g ∈ G : (g ·K) ∩ Π 6= ∅}, a finite set.

3 N is n-dimensional and n ≥ 1 since G acts freely on O 6= ∅.
4 By definition, a polytope K is compact and K = {x ∈ V : Lj(x) ≥ bj , 1 ≤ j ≤ m} for

some linear forms L1, , ..., Lm and real numbers b1, ..., bm.
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Corollary 44. Let N = (N1, . . . ,Nm) and P = (P1, . . . ,P`) be finite lists of
rational polyhedral semi-complexes contained in O ∪ {0V }. Then the set

S(N;P) :=
{
g ∈ G : ∃ j, ∃ i, ((g · Nj) ∩ Pi)◦ 6= ∅

}
(3.8)

is finite.

We can now give the abstract form of the algorithm which is the aim of this
thesis. In the next chapter we will apply it to number fields and give experimental
results.

Algorithm 45 (From signed to true fundamental domain). Given a Colmez
action (G, V,O, v0), two lists (N;P) of rational semi-complexes satisfying (3.6),
and an algorithm for listing the elements of S(N;P) in (3.8), produces a finite
list of rational n-dimensional semi-closed cones whose union is a fundamental
domain for the action of G on O.

Input:
• A Colmez action (G, V,O, v0).
• Lists of rational polyhedral semi-complexes N := (N1, . . . ,Nm) and P :=
(P1, . . . ,P`) contained in O ∪ {0V }, where the semi-complexes Nj :=

⋃αj
u=1Nju

and Pi :=
⋃βi
t=1 Πit satisfy

∑̀
i=1

#
(
Pi ∩ (G · x)

)
−

m∑
j=1

#
(
Nj ∩ (G · x)

)
= 1 (∀x ∈ O \ H). (3.9)

Here H :=
⋃
h(G · Fh) (as in Lemma 40) contains the G-orbits of all facets of the

polyhedral cones that define Nj and Pi for all i and j.
• A list of the elements of S(N;P).5

Output: A finite list {Q̃λ}λ of semi-closed pointed n-dimensional rational poly-

hedral cones, such that their union F =
⋃
λ Q̃λ is a fundamental domain for the

action of G on O.6

Step 0. Set s := 0 and go to Step 1.

Step 1. If Nj = ∅ for 1 ≤ j ≤ m, RETURN the list {Π̃it} 1≤i≤`
1≤t≤βi

, where the

semi-closed cone Q̃ attached to the closed cone Q was defined in (3.2). Otherwise
go to Step 2.

Step 2. Increment s by 1 and set g := gs. Apply the Removing Rational
Polyhedral Semi-complexes algorithm 41 to (N;P) and g to obtain (N′;P′). Re-
define N := N′, P := P′ and go to Step 1.

5 More precisely, an algorithm with input s ∈ N and output gs ∈ G so that S(N;P) ⊆⋃M
s=1 gs for some M ∈ N. This M need not be computed by the algorithm, but its existence

ensures that the present algorithm stops.
6 An output of a semi-closed cone Q̃ consists of its closure Q = H(L1, . . . , Lm), and the

vector
(
sign(L1(v0)), sign(L2(v0), . . . , sign(Lm(v0)

)
needed in (3.1) and (3.2).
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Proof. If Nj = ∅ for 1 ≤ j ≤ m, then the Colmez Trick (Lemma 39) applies,

showing that
⋃

1≤i≤`
1≤t≤βi

Π̃it is a fundamental domain for O/G. Thus the algorithm

stops after Step 1, with the correct output, if Nj = ∅ for 1 ≤ j ≤ m.
We now show that after a finite number of steps, the algorithm reaches Step

1 with Nj = ∅ for 1 ≤ j ≤ m. By assumption, there exists M ∈ N large enough
that S(N;P) ⊆ {g1, . . . , gM}. Suppose that after M applications of Step 2 we
still had some Nj 6= ∅. Then Nju is n-dimensional and, by Lemma 40, there
exists some g ∈ G and some i and t so that (g · Nju) ∩ Πit has a non-empty
interior. Thus (g · N) ∩ P has non-empty interior, and so g ∈ S(N;P). But
this means that Step 2 has been applied to g and some pair (N′′;P′′), with the
current N ⊆ N′′, P ⊆ P′′. This contradicts the fact that algorithm 41 results in
(g ·N′′) ∩P′′ having empty interior.



Chapter 4

Application to number fields

In this chapter we show how the algorithm of the previous chapter applies to
number fields having at least one real place. After a general introduction, we
specialize to totally real fields as signed fundamental domains for these fields are
easily described. After recalling Espinoza and Friedman’s work [EF20] for general
number fields, we describe and tabulate the results of our algorithm for a large
sample of number fields of degree up to 5. Then we briefly discuss a sample of
sextic fields.

4.1 The Colmez action for number fields

Let k be an algebraic number field of degree n = r1 + 2r2, with r1 real and 2r2
complex embeddings. We assume r1 > 0 and r1 +r2 > 1, so the group Ek of units
of k is infinite. Arbitrarily selecting one embedding from each complex conjugate
pair, we map k to the n-dimensional R-vector space V := Rr1 × Cr2 .

For convenience, we identify k with its image in V . We fix a Q-structure on
V by setting VQ := k ⊆ V . Let O := Rr1

+ × (C∗)r2 ⊆ V , k+ := k ∩O, and E+ :=
Ek ∩ k+, the totally positive units of k. Let G ⊆ E+ be a torsion-free subgroup
of finite index in E+. Then G acts freely by component-wise multiplication on
V , on VQ = k and on the cone O := Rr1

+ × (C∗)r2 .
We let 〈 , 〉 be the symmetric R-bilinear form on V

〈v, w〉 :=

r1∑
j=1

v(j)w(j) + 2

r1+r2∑
j=r1+1

Re(v(j)w(j)), (4.1)

where v :=
(
v(1), . . . , v(r1), v(r1+1), . . . , v(r1+r2)

)
∈ V = Rr1 ×Cr2 (similarly for w).

Note that 〈v, w〉 = Tracek/Q(vw) for v, w ∈ k, so the form is Q-valued on VQ and
non-degenerate. Moreover, the action is self-adjoint, i.e. 〈g · v, w〉 = 〈v, g · w〉.
Thus, properties (i) and (ii) of Definition 34 of a Colmez action hold. Property
(iii) was proved in [EF20, Lemma 4.10].

We define our vantage point v0 := (1, 0, 0, . . . , 0) ∈ V = Rr1 × Cr2 . Note that
v0 /∈ O as k 6= Q. Also, for g ∈ G we have g · v0 = g(1)v0 and g(1) > 0, as g is
a totally positive unit and r1 > 0. Hence property (iv) in Definition 34 holds.
Property (v) was proved in [EF20, Lemma 4.12].

40
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Henceforth, we fix a non totally complex number field k and the
above Colmez action.

4.2 Totally real number fields

In the case of totally real number fields of degree n = r1, Colmez [C88][C89]
proved that there exist special subgroups of E+ for which he could give an ex-
plicit Shintani fundamental domain {P̃σ}σ∈Sn−1 .

1 However, as mentioned in the
Introduction, no practical algorithm for finding such special Colmez subgroups
is known if n > 3. In 2014 [DF14] Diaz y Diaz and Friedman proved, for any

finite-index subgroup of E+, that the Colmez cones {P̃σ}σ determine a signed
fundamental domain for O/G = Rn

+/G. Special Colmez subgroups are exactly
those for which the signed domain is a true one.

More precisely, let ε1, . . . , εn−1 be free generators of a subgroup G ⊆ E+, let
Sn−1 denote the group of permutations of {1, 2, . . . , n− 1}, and for σ ∈ Sn−1 let

fi,σ :=
i−1∏
j=1

εσ(j) (2 ≤ i ≤ n), f1,σ := 1 = (1, 1, . . . , 1) ∈ Rn
+,

ωσ :=
(−1)n−1 · sign(σ) · sign(det(f1,σ, . . . , fn,σ))

sign(det(Log ε1,Log ε2, . . . ,Log εn−1))
∈ {−1, 0,+1},

with Log εi ∈ Rn−1, (Log εi)
(j) := log ε

(j)
i (1 ≤ j ≤ n − 1). Recall that we have

embedded k in Rn, so we regard (f1,σ, . . . , fn,σ) as an n × n real matrix. Thus,
wσ = 0 if and only if the fi,σ fail to be linearly independent. The determinant in
the denominator of ωσ is a non-zero integral multiple of the regulator of k, so it
does not vanish. The Colmez cones are defined as

P̃σ :=
{ n∑

i=1

λifi,σ : λi ∈ Ri,σ

}
⊆ O := Rn

+ (σ ∈ Sn−1, wσ 6= 0),

where

Ri,σ :=

{
[0,+∞) if v0 ∈ H+

i,σ,
(0,+∞) if v0 ∈ H−i,σ,

(1 ≤ i ≤ n, v0 := (1, 0, . . . , 0) ∈ Rn).

Here Rn = H+
i,σ∪Hi,σ∪H−i,σ is a disjoint union of the rational (n−1)-dimensional

hyperplane Hi,σ :=
∑

1≤j≤n
j 6=i

R · fj,σ and the two open half-spaces H±i,σ, labeled so

that fi,σ ∈ H+
i,σ. Diaz y Diaz and Friedman proved [DF14]∑

σ∈Sn−1
wσ=+1

#
(
P̃σ ∩ (G · x)

)
−
∑

σ∈Sn−1
wσ=−1

#
(
P̃σ ∩ (G · x)

)
= 1 (∀x ∈ Rn

+). (4.2)

1 His original articles were not explicit as to the boundary of his cones, but he later fixed
this in unpublished lectures.
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If wσ 6= 0, let Pσ = C[f1,σ, . . . , fn,σ] ⊆ Rn
+ ∪ {0V } be the rational, pointed

polyhedral n-cone with generators f1,σ, . . . , fn,σ. Note that P̃σ ⊆ Pσ and that

Pσ \ P̃σ is contained in the boundary of Pσ.
To each cone Pσ with wσ = −1 we attach a semi-complex Nj which consists

of the single polyhedral cone Pσ (1 ≤ j ≤ m := #{σ ∈ Sn−1 : wσ = −1}).
Similarly, to each Pσ with wσ = +1 we attach a semi-complex Pi (1 ≤ i ≤ ` :=
#{σ ∈ Sn−1 : wσ = +1}). Let (N0;P0) be the corresponding pair of lists of
semi-complexes N0 := (N1, . . . ,Nm), P0 := (P1, . . . ,P`). Thus (N0;P0) satisfies
(4.2), except for x in the G-orbits of the facets of the Pσ. Hence we can use
(N0;P0) as input in Algorithm 45 to obtain a true fundamental domain for the
case of totally real number fields, provided we specify a listing algorithm for the
elements of S(N0;P0) in (3.8). We will do this in the next subsection.

4.3 General non-totally complex number fields

Espinoza [E14] was able to generalize the signed fundamental domain in §4.2
from the totally real case to number fields with exactly one complex place (i.e.
r2 = 1). More recently, Espinoza and Friedman [EF20] extended this work to all
number fields that have at least one real embedding (i.e. r1 > 0). Except in the
totally real case, there is no easy description of the Espinoza-Friedman signed
fundamental domain. Instead, there is an inductive construction which depends
rather subtly on the arguments of certain units at each of the complex places.2

As in [DF14] and [E14], from an input of free generators ε1, . . . , εr (with
r := r1 + r2 − 1) of a subgroup G ⊆ E+, Espinoza and Friedman gave an al-
gorithm that constructs a signed fundamental domain (N ;P) for O/G, where

N := (Ñ1, . . . , Ñm) is a list of negative” semi-closed n-dimensional pointed ratio-

nal polyhedral cones and P := (Π̃1, . . . , Π̃`) is a list of positive” ones. The total
number of cones (i.e. m+ `) is at most 3r2(n− 1)!.3

Regarding the closure Nj ⊆ V := Rr1 × Cr2 of the negative semi-closed cone

Ñj as a semi-complex Nj (a list consisting of the single cone Nj), and similarly for
the positive semi-closed cones Πi, the output of the Espinoza-Friedman algorithm
[EF20, §2] is a pair (N0;P0), where N0 := (N1, . . . ,Nm) and P0 := (P1, . . . ,P`)
are lists of semi-complexes satisfying∑̀

i=1

#
(
(G · x) ∩ Pi

)
−

m∑
j=1

#
(
(G · x) ∩Nj

)
= 1, (∀x ∈ O \ H), (4.3)

2 For totally real fields the Espinoza-Friedman algorithm reduces to applying the formulas
in §4.2, so is much faster than the general case (for fields of the same degree).

3 Since the output of the Espinoza-Friedman algorithm is the input for the main algorithm
of this thesis, we implemented it in PARI/GP. The construction of the fundamental domain
in [EF20] is more complex than in the totally real case, mainly due to the non-convexity of
O := Rr1

+ × (C∗)r2 and the lack of sufficient units to generate an n-cone (if r2 > 0). Espinoza
and Friedman introduced “twisters” as substitutes for the missing units needed to generate the
cones. Twisters are sets of 3r2 totally positive elements of k whose arguments at complex places
are sufficiently well distributed to force the generators of the cones into convex subregions of
O. To our knowledge, ours was the first implementation of the Espinoza-Friedman algorithm
when r2 > 1.



CHAPTER 4. APPLICATION TO NUMBER FIELDS 43

where H ⊆ O consists of the G-orbits of the facets of all cones involved. Hence
again we can use (N0;P0) as input in Algorithm 45 to obtain a true fundamental
domain for any non-totally complex number field, provided we implement some
way to list the elements of S(N0;P0) in (3.8).

Our listing algorithm depends mainly on the weight

W (g) :=
r∑
s=1

|bs|
(
g =

r∏
s=1

εbss , b = b(g) := (b1, . . . , br) ∈ Zr
)
. (4.4)

We begin with weight 0 (the identity element), then weight 1 (generators and their
inverses), and so on until the algorithm terminates because there are no more
negative cones. After discarding elements g /∈ S(N0;P0), we arranged elements
g of equal weight simply in increasing lexicographic order of b(g) = (b1, . . . , br).
Thus, the elements were listed

1, ε−11 , ε−12 , . . . , ε−1r , ε1r, ε
1
r−1, . . . , ε

1
1, ε
−2
1 , ε−11 ε−12 , . . . .

We tried replacing lexicographic order by a seemingly more clever one, but
the results were worse on the average. Namely, we tried to order the units g
by the number of pairs i and j such that (g · Nj) ∩ Pi has non-empty interior.
Improving on the lexicographic order might greatly improve the effectiveness of
our algorithm.

4.4 Tables for quartics and quintics

The next few tables provide more detailed information on the distribution of
the number of units processed to obtain a fundamental domain F , and on the
distribution of the number of cones in F for the different signatures in degree 4
and 5. For example, Table 4.5 shows that for signature (r1, r2) = (1, 2), for 127
fields F consisted of at most 6554 cones, but for 14 fields there were between
8840 and 79845 cones in F .
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Table 4.1: Cones in F and units processed for totally real quartics.

Units used: - 1 2 3 4 5 6 7 8 9 10
Fields: - 11885 6263 2087 1438 96 44 3 4 1 2

Range of cones in F :
Min. 6 13 21 28 36 43 50 58 73
Max. 12 20 27 35 42 49 57 64 80

Fields: - 17221 3826 637 88 32 5 4 8 2

Table 4.2: Cones in F and units processed for quartics with one complex place.

Units used: - 1 2
Fields: - 37661 3081

Range of cones in F :
Min. 20 27 33 40 46 53 59 66 72 79
Max. 26 32 39 45 52 58 65 71 78 85

Fields: - 33609 4217 1726 658 425 54 30 13 8 2

Table 4.3: Cones in F and units processed for totally real quintics.

Units used: - 1 2 3 4 5 6 7 8 9
Fields: - 882 606 299 617 196 181 129 85 44
Units used: - 10 11 12 13 14 15 16 17 18
Fields: - 34 19 15 9 2 4 4 1 1

Range of cones in F :
Min. 26 489 951 1414 1876 2339 2802 3264 4189
Max. 488 950 1413 1875 2338 2801 3263 3726 4652

Fields: - 2721 233 87 44 19 11 7 4 2

Table 4.4: Cones in F and units processed for quintics with one complex place.

Units used: - 1 2 3 4 5 6 7
Fields: - 414 193 67 42 5 1 1

Range of cones in F :
Min. 77 987 1897 2806 3716 4626 5536 6446
Max. 986 1896 2805 3715 4625 5535 6445 9175

Fields: - 613 59 17 15 6 4 5 4

Table 4.5: Cones in F and units processed for quintics with two complex places.
Units used: - 1 2 4 5 6 8
Fields: - 104 9 15 4 6 3

Range of cones in F : Min. 236 8840 29992 46364 46960 53751 60421 72497 79845
Max. 6554 16157 29992 46364 46960 53751 60421 72497 79845

Fields: - 127 7 1 1 1 1 1 1 1



Chapter 5

Appendix

The figures in this appendix are meant to give a graphical overview of the output
of our algorithm for quartic and quintic fields, and to show that, empirically at
least, the discriminant of a field tells us nothing about how the algorithm will
perform for that field.

We begin with the running time of the algorithm for the 21823 non Colmez
totally real quartics summarized on line 4 of Table 1. The discriminant Dk ranges
from about 103 to 107, so it is wise to plot running time against logDk. On doing
this, the results were so wild that most of the points on the graph were blurred
together at the bottom with a few stray ones far up. Indeed, as Table 3 shows,
although the average running time was about 1

20
of a second, the worst case took

about 60 times longer. This could be solved by a log-log graph. The problems
was that the graph still looked very wild because fields with nearly the same
discriminant had very different running times.

We decided to tame the data by dividing up the fields into packets of 10
consecutive discriminants. Thus, in Figure 5.1 there is one point for every 10
fields, plotting average log discriminant against average running time for each
packet of ten fields. This averaging process reduces the range of the running time
so that we did not have to use a log-log plot. It still showed very clearly that
knowledge of the discriminant gives no information on running time, even on the
average. Figures 5.2-5.4 show the same phenomenon for other signatures.1

Next we replaced running time by the number of cones in the fundamental
domain produced by our algorithm. Since the results are almost as wild as the
running time, we used the above plotting procedure. Lastly, we plotted log dis-
criminant against the number of units processed. Since the number of units is
relatively small, these graphs are less wild, but still show no relation between
discriminant and the number of units.

1 For quintics with 2 complex places we ran only 141 non Colmez cases, so for this one
signature we did not group fields in packages of 10. Each dot represents one field, rather than
10 as is the case for other signatures.
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Figure 5.1: Log discriminant against running time for totally real quartics.
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Figure 5.2: Log discr. against running time for quartics with one complex place.
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Figure 5.3: Log discr. against running time for totally real quintics.
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Figure 5.4: Log discr. against running time for quintics with r2 = 1.
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Figure 5.5: Log discr. against running time for quintics with r2 = 2.
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Figure 5.6: Log discr. against number of cones for totally real quartics.
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Figure 5.7: Log discr. against number of units processed for totally real quartics.
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Figure 5.8: Log discr. against number of cones for quartics with r2 = 1.
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Figure 5.9: Log discr. against number of units processed for quartics with r2 = 1.
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Figure 5.10: Log discr. against number of cones for totally real quintics.
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Figure 5.11: Log discr. against number of units processed for totally real quintics.
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Figure 5.12: Log discr. against number of cones for quintics with r2 = 1.

9 10 11 12 13
200

400

600

800

1000

1200

1400

1600

Av
er

ag
en

um
be

ro
fc

on
es

in
fu

nd
am

en
ta

ld
om

ain

log(|Dk|) (average for ten fields with consecutive discriminants)

249 −

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 5.13: Log discr. against number of units processed for quintics with r2 = 1.
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Figure 5.14: Log discr. against log(number of cones) for quintics with r2 = 2.
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Figure 5.15: Log discr. against number of units processed for quintics with r2 = 2.
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