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A B S T R A C T   

Origin-Destination matrices obtained from smartcard data are very valuable because they contain 
vast amounts of information and can be obtained at a very low cost. However, they can only 
account for trips paid by smartcard. Trips paid by other means, as well as non-paid trips, must be 
incorporated using additional information. This paper discusses the biases that are introduced due 
to fare evasion and presents a sequential method to estimate correction factors due to partial 
evasion in some trip stages, as well as total fare evasion in all trip stages, using external infor
mation regarding trips not registered in the smartcard database. We apply this method to the case 
of Santiago, Chile, where partial evasion (during a bus trip stage prior to a Metro trip stage) and 
total evasion (during all bus-only trip stages) are relevant fare evasion situations. Information 
from the Santiago Metro Origin-Destination survey and from external fare evasion measurements 
is used. The results indicate a 5% partial evasion rate for bus trip stages prior to Metro trip stages, 
and a 37% total fare evasion rate for bus-only trips. This paper is a contribution towards estab
lishing new methods to feasibly obtain OD matrices through the adequate merging of 
automatically-collected data with complementary traditional measurements and survey 
instruments.   

1. Introduction 

Automatically-collected passive data have emerged as a very important source of useful low-cost information, but the method
ologies developed for this purpose must address inherent data limitations. These passive data limitations include partial trips regis
tered (in the case of coexistence of smartcard and paper tickets), the absence of socioeconomic information (when smartcards are not 
personalized, or when personal information is confidential), and difficulties when deducing the transportation mode used (in the case 
of smartphone data). New procedures must be developed to address these issues and extract “the best of both worlds”, i.e., cheap and 
massive databases alongside specific (and expensive) traditional measurements and surveys to provide complementary missing in
formation. Within this context, in this paper we present a method to improve the estimation of public transport OD matrices from 
passive data, using complimentary measurements and very specific surveys to take fare evasion into account. 

Fare evasion is a common problem in public transport systems. Defined as not paying for a ride or paying too little, fare evasion can 
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be an attractive form of fraud for passengers (Smith and Clarke, 2000). Some of the factors that contribute to crime in public transport 
in general and to fare evasion in particular are overcrowding, lack of supervision, and anonymity. Due to its impact on the revenue 
stream and the overall financial sustainability of public transport systems, fare evasion has been a concern for many years (see, for 
example, Boyd et al. 1989; Dauby and Kovacs, 2007; Lee, 2011). Aside from the impacts on system finances and moral questions 
regarding users and operators, there is a consequence of missing data. The payment system is one of the most important sources of 
demand information. In systems with automatic fare collection (AFC), paid trips are recorded in databases that are then used to 
perform different types of demand analysis. Non-paid trips are not included in these databases. 

Different cities have undertaken analyses on fare evasion, including Melbourne (Delbosc and Currie, 2016), New York (Reddy et al. 
2011), and Cagliari (Barabino et al., 2015). The focus of these studies is usually on understanding fare evasion behaviour to enlighten 
fare evasion reduction policies. Some authors have developed sophisticated methods to observe and understand the behaviour of fare 
evaders. Dai et al. (2017) conduct a field experiment to explore the relation between fare evasion and attitudes towards dishonesty, 
finding a correlation between dishonesty observed in lab experiments and fare evasion. Delbosc and Currie (2016) make a distinction 
between accidental, unintentional, and deliberate evaders, depending on whether they intended to pay but could not, or whether they 
decided not to pay. Using a cluster analysis method, they identify three groups: deliberate evaders, unintentional evaders, and never 
evaders. The behaviour of these three groups is very different; the authors also note some socioeconomic differences. These findings 
have relevant policy implications, as different enforcement strategies should be used for each of these groups. Delbosc and Currie 
(2019) perform a deep review of literature on fare evasion, classifying the literature in three broad groups based on the perspective of 
the work: a conventional transit system perspective, a profiling perspective (examining ethical issues), and a customer motivation 
perspective. 

As part of the conventional transit system perspective, research has been conducted on fare evasion control and fare inspection 
optimization. For example, Yin et al. (2012) propose a method for scheduling patrols for fare inspection considering the potential 
massive scale of fare evasion behaviour. Barabino et al. (2014) propose an economic framework to establish the optimum number of 
inspectors, and providing a case study from Italy. Correa et al. (2017) propose a bilevel programming model, where the network 
operator determines probabilities for inspecting passengers at different locations, and the fare-evading passengers respond by opti
mizing their routes given the inspection probabilities and travel times. 

The public transport system in Santiago, Chile, known as Transantiago, has a dramatic fare evasion problem, reaching levels close 
to 30% in buses (DTPM, 2016). This behaviour is so concerning to the authorities that the Chilean Ministry of Transport has made 
combatting fare evasion a priority. Factor Estratégico (2010) analyses the fare evasion behaviour of Transantiago users from the 
customer motivation perspective and identifies different types of fare evaders, similar to those identified by Delbosc and Currie (2016). 
The intentional (or deliberate) evader is a traveller who has decided to use the system without paying for it. This user will try to evade 
payment during all trip stages, or will prefer to make one-stage trips, not paying for that stage. This behaviour is observed mainly in bus 
users. The circumstantial (or unintentional) evader is a user who regularly pays for his or her trips, but is occasionally not able to. 
According to this study, the main reasons for circumstantial evasion are the lack of charging points in residential areas, which is a 
shortcoming of the system, and carelessness of passengers who fail to charge their cards prior to travelling. This circumstantial evasion 
may be total (in the case of one-stage trips), but will, in many cases, be partial. A case observed with some frequency during field 
observations is that of users who board a feeder bus with insufficient funds on their card. They usually tell the driver that they do not 
have enough funds and that they will recharge at the metro station - and they usually do so. Delbosc and Currie (2019) provide figures 
showing that over 80% of fare evaders in Santiago did not pay because they could not find a fare loading point prior to beginning their 
first trip stage. This observation is consistent with the results of surveys such as the Metro ODS (Ipsos, 2013) and the Santiago ODS 
(Muñoz et al., 2016), which show a lower proportion of Metro-only trips and a higher proportion of bus-Metro trips than what is 
observed in the matrices obtained from the fare payment system. As every Metro station has fare loading points, this type of evasion 

Table 1 
Average monthly household income per municipality.  

Municipality Average household income [USD/month] Municipality Average household income [USD/month] 

Vitacura 6111 Lo Espejo 1498 
Las Condes 5150 Estación Central 1497 
La Reina 4448 Renca 1483 
Providencia 4437 El Bosque 1454 
Ñuñoa 4414 Lo Prado 1411 
Lo Barnechea 3713 Puente Alto 1397 
Santiago 2693 San Ramón 1379 
San Miguel 2337 Pedro Aguirre Cerda 1339 
Macul 2195 Pudahuel 1313 
Quilicura 2145 San Bernardo 1298 
La Cisterna 2103 Conchalí 1279 
La Florida 1949 La Pintana 1262 
Maipú 1938 La Granja 1206 
San Joaquín 1833 Independencia 1201 
Cerrillos 1663 Cerro Navia 1195 
Quinta Normal 1603 Recoleta 1133 

Source: CASEN (2013). 
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will be associated with either first-stage or total trip bus fare evasion. 
Models have been developed to identify factors that explain the high levels of fare evasion at the trip stage level in Transantiago. 

Guarda et al. (2016) found that boarding conditions (crowding, boarding through the back door), high bus occupancy rates, and long 
headways are variables that contribute to fare evasion; they also found that fare evasion is greater during the afternoon and the 
evening, as well as in lower income areas. Troncoso and De Grange (2017) undertook a more aggregate analysis; using time series data 
over eight years, they found a positive effect of fare raises, a negative effect of the number of inspections (dissuasive pressure), and a 
negative effect of unemployment rates. 

The Santiago metropolitan area is administratively divided into 34 municipalities. It is considered a spatially-segregated city with 
an uneven income distribution (Amaya et al. 2018). Table 1 shows average income per municipality. The average income in the richest 
municipality (Vitacura) is five times the average income in the poorest municipality (Recoleta). 

At the time that this research was completed, Transantiago was a bus-Metro integrated system with a trip-based fare structure and 
smartcard payment system. One fare payment covers trips of up to three trip stages within a two-hour time window. Users are 
requested to validate their smartcard each time they initiate a trip stage, and the system deducts the corresponding amount depending 
on the time of day and the mode used to complete the trip stage (bus or Metro). Passengers take 4.5 million daily trips in this public 
transport system. The distribution of passengers between modes is 22% Metro, 52% bus, and 25% bus-Metro combinations (Muñoz 
et al., 2016). 

Relevant AFC information, used in combination with GPS data obtained from devices installed on buses, is used for OD matrix 
estimation. AFC data usually contains the card ID, validation timestamp, and validator ID (which, in the case of bus rides, is associated 
with the vehicle). GPS data contains a sequence of location-time points for the vehicle. Both databases can be linked using the 
timestamp and vehicle ID to estimate the position of the boarding transaction. Methods have been proposed for estimating trips and 
building OD matrices using this information. They are based on a destination inference algorithm (required in the case of tap-in 
validation only), and a method to link trip stages and identify OD movements. Simpler cases are based on single mode systems, 
such as Farzin (2008) for buses in Sao Paulo and Rahbee (2008) for rail in Chicago. Other cases consider multi-stage trips in integrated 
systems. Examples are Zhao et al. (2007) in Chicago, Reddy et al (2009) in New York, Nassir et al (2011) in Minneapolis, and Gordon 
(2012) in London, as well as Munizaga and Palma (2012) for the bus-Metro system in Santiago. These matrices contain paid trips and 
trip stages only. 

Due to fare evasion, some trips or trip stages are not registered in the fare collection system database. The correction and expansion 
of the OD matrix is not trivial when non-observed trips are unevenly distributed in time and/or space. For example, in Santiago, fare 
evasion in Metro, which has turnstiles and guards in all stations, is uncommon. Fare evasion rates in buses are higher in certain areas 
and during certain time periods. The methods developed to obtain public transport OD matrices from smartcard payment data do not 
take this into consideration, and usually assume that all trips, and all trip stages, are registered. If some are not registered (for any 
reason) the matrices will be incomplete and may be biased. For example, a non-paid bus trip will not be observed, and a bus-Metro trip 
where the Metro trip stage is paid, but the bus trip stage is not paid, will only be partially observed. 

If a proportion of the trips were missing, and that proportion were homogeneously distributed across all services, then the con
struction of correction factors would be easy. One would determine the number of trips that were missing and apply a homogeneous 
expansion factor to the estimated OD matrix. However, as this is a non-homogeneous phenomenon that affects some areas more than 
others, as well as some trip stages more than others, developing correction factors is a much more complex problem. Particularly 
complex is the case of multi-stage trips where some stages are not registered, as this has an impact on the estimation of the origin or 
destination of the trip, and the correction needs to change the structure of those trips. This paper addresses this challenge. 

The objective of this work is to develop and apply a method to incorporate fare evasion correction factors to public transport OD 
matrices obtained from AFC and GPS data. To the best of our knowledge, this is the first work that proposes correction factors for fare 
evasion. The method is applied to public transport OD matrices obtained from passive data in Santiago through cooperation between 
academia and the public transport authority (Gschwender et al, 2016). This work is a contribution towards establishing new methods 
to feasibly obtain OD matrices through the adequate merging of automatically-collected data with complementary traditional mea
surements and survey instruments. 

The initial passive data OD matrices have been built using the methodology proposed by Munizaga and Palma (2012), Devillaine 
et al. (2012), and Munizaga et al. (2014). The effect of fare evasion on the estimated OD matrices depends on whether the evasion is 
total (during all trip stages) or partial (during some of the trip stages). Fig. 1 illustrates these two cases, considering a user who makes a 
trip from a to c, with a transfer at b. The left side of Fig. 1 corresponds to a case of total evasion, where none of the trip stages are 
validated; therefore, the whole trip is absent from the matrix, and a correction factor that adds this trip can be used to correct for it. The 
right side of Fig. 1 corresponds to a case of partial evasion, where the first trip stage is not paid, but the second trip stage is paid. This 

Complete trip fare evasion, all trip stages  Partial fare evasion, one trip stage only 

Fig. 1. Types of fare evasion.  
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case is completely different from the OD matrix perspective, because the trip is accounted for in the matrix, but its origin is incorrectly 
estimated. Therefore, to correct for this case, we need a procedure or factor that modifies the trip structure, keeping the total number of 
trips constant. 

Transantiago has a flat fare structure (independent of the distance travelled) and, as mentioned before, one fare payment covers up 
to three trip stages within a two-hour time window. Given this fare structure, the left-side case represents a financial benefit for the 
evader, because he or she is able to travel without paying. On the contrary, in the right-side case, there is no savings or financial benefit 
for the traveller. This case occurs when the passenger is not able to pay at the first stage; for example, when the smartcard does not have 
enough credit to pay for the trip and there is no fare loading point available at the trip origin, or when the bus is so crowded that the 
passenger enters the bus through one of the back doors (validation is only possible at the front door in Santiago), or the passenger 
forgot to bring their card. If the next trip stage is made on Metro, the user must solve the problem, either by charging their card or 
buying a new one, in order to access the Metro network, where fare evasion is almost inexistent. Fare evasion due to crowding 
conditions while boarding can also occur in the bus stage of a bus-Metro trip, but it is less common (Delbosc and Currie, 2019). As in the 
previous case, it does not represent a financial benefit for the passenger (the trip has already been paid). 

2. Data 

Fare evasion is regularly measured in Santiago on a sample of services, from which global estimations of fare evasion are obtained. 
These measurements are made by incognito observers located at each door of the sampled bus, who observe and count at each bus stop: 
(i) passengers who board and pay, (ii) passengers who board and do not pay (evaders), and (iii) passengers who alight. This infor
mation is used to estimate the load profile of the observed buses and the fare evasion rate at the observed bus stops. We used the 2012 
sample (DICTUC, 2012) which contains 509,974 bus stop observations made during 10,155 bus expeditions. The spatial distribution of 
fare evasion is shown in Fig. 2, which shows the percentage of evaded trip stages over total trip stages for bus-stop observations in each 
zone, using an 800-zone zonification of Santiago. This spatial distribution is clearly non-homogenous. 

We also use the paid trip and trip stage matrices obtained from smartcard data for a week in April 2013, and the results of the Metro 
Origin-Destination survey (Metro ODS) conducted in 2013. The matrix obtained from smartcard data is known as the “bip! Matrix”, as 
bip! is the onomatopoeic name of the smartcard. The bip! Matrix from April 2013 is built with observations of 20 million trips made 
during the five workdays of a chosen week. These trips correspond to 29 million trip stages. The information that can be extracted from 
the data includes the service (or sequence of services) taken, boarding and alighting stops and timestamps for each trip stage, travel 
time and distance, and fare paid. GPS data is used to estimate the boarding and alighting point: using the location-at-time GPS in
formation of every bus, which is measured and stored every 30 s, we estimate the time-at-location of bus stops for the route the bus is 
serving. The spatiotemporal information is very disaggregated, as we know the exact location of the bus stops and Metro stations, and 
from the smartcard transactions, we know the exact time of boarding. The boarding and alighting stops are estimated using a pro
cedure described in Munizaga and Palma (2012); in the cases reported in that work, the proposed method is able to estimate the 
boarding and alighting stops in approximately 99% and over 80% of the cases, respectively. The validation of these estimations 

Fig. 2. Spatial distribution of measured fare evasion rate.  
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reported in Munizaga et al. (2014), shows that the boarding location is correctly estimated in 99%, and the alighting stop in 84% of the 
cases. 

AFC data, which is the basis for the OD matrix, is subject to possible errors in reliability, but the impact of these errors is minimized 
due to several factors. First, the information provided by the on-board smartcard validation machines (“validators”) is used to define 
the amount paid to the network operators; therefore, it is in their best interest to maintain them. Second, there are at least two val
idators available at any boarding point, including buses. Third, there is no alternative payment method (no cash, passes, etc.). Fourth, 
because of the fare structure that allows up to three trip stages with one fare payment, errors with the validators could result in 
additional fare deductions, and users will complain. 

GPS data is subject to more sources of error, such as GPS failure (there is only one GPS device per bus), signal interference, and 
inherent equipment errors. However, methods have been developed to detect and rectify errors. As described in Cortés et al. (2011), 
GPS pulses are projected to the route path, and observations that fall outside of a given distance buffer along the route path are omitted. 
These corrections are applied prior to the OD matrix estimation. 

The Santiago Metro regularly carries out an ODS to evaluate system demand. The survey is undertaken at Metro stations, where 
passengers are asked about their mode of access to that station (walking or a specific bus route) and their intended destination and 
mode of egress (walking or a specific bus route), along with sociodemographic characteristics. The sample size for the 2013 Metro ODS 
is 156,350 observations (IPSOS, 2013). These observations are expanded, taking the sampling strategy into consideration to avoid 
potential bias. 

Fig. 3. Stepwise methodology for smartcard-estimated OD matrix.  
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3. Method 

To correct the estimated smartcard OD matrices for fare evasion bias, we propose a method that sequentially addresses the two 
cases of fare evasion described above: partial fare evasion and complete trip fare evasion (whether intended or unintended). The 
general method is illustrated in Fig. 3. In the first stage, partial fare evasion is corrected using information about non-evaded Metro 
trips, obtained from the Metro Origin-Destination survey (Metro ODS). To extract these non-evaded trips from the Metro ODS, external 
information regarding fare evasion in Metro-only, bus-Metro, and Metro-bus trips is needed. With this information, cases of partial fare 
evasion in bus trip stages before and after a corresponding Metro trip stage are corrected. The second stage corrects the OD matrix to 
include bus-only trips that are completely evaded and, as they do not include a Metro trip stage, do not appear in the Metro ODS. To 
correct for complete bus trip fare evasion, external data about bus-only trip fare evasion is needed. Finally, a third stage corrects the OD 
matrix to include Metro, bus-Metro, and Metro-bus trips which are completely evaded. This correction considers information regarding 
evaded trips obtained from the Metro ODS and external Metro-involved trip fare evasion. 

In Sections 3.1 and 3.2, we apply this general methodology to the case of Santiago. This case study has some particularities that 
simplify the procedure. First, fare evasion in the Metro system is negligible, making the third correction stage, regarding Metro-only 
trip fare evasion, unnecessary; furthermore, this means that we can directly obtain the Metro OD matrix from the Metro ODS without 
removing evaded trips. Second, partial fare evasion in post-Metro bus trip stages is much lower than partial fare evasion in bus trip 
stages prior to a Metro trip stage, as explained in the Introduction. Therefore, only the first-stage partial fare evasion case, where an 
initial bus stage is not paid but a subsequent Metro stage is paid, along with cases of complete trip fare evasion, need to be corrected. 
First-stage fare evasion bias is corrected using information from the Metro ODS. We assume that at Metro stations where the proportion 
of trips with bus access to Metro is greater in the Metro ODS than in the bip! OD matrix, fare evasion is causing a bias in the bip! OD 
matrix. This bias implies an overestimation of trips where the first trip stage is a Metro trip. Therefore, a correction factor is applied at 
the Metro station level to those stations where the assumed overestimation is observed. These factors reduce the number of trips with 
an initial Metro trip stage (Metro-only, Metro-bus) and increase the number of trips with an initial bus trip stage (bus-Metro, bus- 
Metro-bus) so that the trip structure observed in the Metro ODS is reproduced. Afterwards, the next module incorporates complete 
trip fare evasion, usually associated with intended evasion. This process uses fare evasion data at the bus stop level, applying factors for 
bus-only trips, so that the remaining fare evasion (that which is not explained by first-stage evasion) is explained. Given that the fare 
evasion measurements are taken at the trip stage level only, an iterative method is required to find those factors. The details and 
assumptions of the procedure to calculate both types of correction factors are provided in the next two sections. 

In Section 3.3 we explain how the other modules of the methodology would operate if needed in other cases. 

3.1. Partial fare evasion 

In this section, we propose correction factors to adjust the smartcard-estimated OD matrices to the trip structure observed in the 
Metro ODS. The smartcard matrix is used as an a priori matrix, and correction factors are applied for each Metro station separately. We 
assume that the survey respondents declared all of their trip stages, regardless of whether they were paid or not, and that partial fare 
evasion is present only in trips that have at least one bus stage followed by a Metro stage. 

As each trip reported in the Metro ODS provides information about the mode of access used to reach the Metro station, the surveyed 
trips can be classified into two types:  

• Direct access to Metro: trips where the user walked to the Metro or accessed the Metro station using a non-integrated mode (taxi, 
bicycle, or car); i.e., a trip stage that is not registered in the smartcard database. In this case, the relevant geographic information for 
our method is the metro station accessed.  

• Bus access to Metro: trips began with an initial bus trip stage prior to the Metro trip stage, according to the survey. In this case, we 
must identify the zone of origin, which is geocoded in the database, and the Metro station accessed. 

For each Metro station where the smartcard matrix presents an overestimation of the number of trips initiated there (that is to say, it 
is considered feasible to correct for partial fare evasion), a proportional iteration factor procedure is applied. For those cases where no 
overestimation is observed, partial fare evasion correction is not necessary (or feasible). The sub-matrix of trips that originate or 
transfer in Metro stations according to the estimation from fare transactions is used to build the a priori matrix by extracting the pre- 
Metro and Metro trip stages only. Any trip stage that happens after the Metro trip stage is ignored. The a priori matrix is then iteratively 
adjusted to reproduce the trip distribution structure obtained from the Metro ODS. The model can be written as a doubly constrained 

growth factor model, as shown in Eq. (1), where 
{

t̂M
ij

}
is the corrected element of the matrix, αi is an expansion factor based on the trip 

origin, βj is an expansion factor based on the trip destination, and 
{

t0
ij

}
is the a priori matrix (estimated from fare transactions) 

considering pre-Metro and Metro boardings only.2 

t̂M
ij = αi∙βj∙t0

ij (1) 

2 A complete list of variables is presented in Appendix A. 

M.A. Munizaga et al.                                                                                                                                                                                                 



Transportation Research Part A 141 (2020) 307–322

313

The constraints of the problem are that the summation of each column in the adjusted matrix must be equal to the total number of 
trips entering the subway system at Metro station M with destination j, DM

j , and the summation of each row must be equal to the total 
number of trips produced by each zone i entering the subway system at station M 

(
OM

i
)

according to the expanded Metro ODS. 
∑

i
t̂M
ij = DM

j (2)  

∑

j
t̂M
ij = OM

i (3) 

To illustrate the method, we present a simple example in Fig. 4. To correct the smartcard matrices for the fact that some users may 
not validate onboard some feeder services (ab, cb, hd, kd), we build the a priori matrix as the sub-matrix of trips that go from the feeder 
areas to any station in the Metro network (b, d, e, f, g), along with those trips that initiate in a Metro station. In both cases, this is 
regardless of the final trip destination. This sub-matrix can be compared against a matrix obtained from a Metro OD survey, which only 
considers trips that include a Metro trip stage. If the Metro survey sample is sufficiently large, one would expect that it accurately 
reflects the real access structure, and the proposed method allows for its reproduction. 

Additionally, we impose the constraint that corrected trip stages (Si) as a proportion of total trip stages (SiODS) must be less than or 
equal to the proportion of fare evasion evi measured for zone i. evi is obtained as the number of evaded trip stages divided by the total 
number of observed trip stages (DICTUC, 2012), i.e.: 

Si − SiODS

SiODS
≤ evi (4) 

Afterwards, the iterative proportional fitting method described in de Ortúzar and Willumsen (2011) is applied to calculate the 
expansion factors αi and βj. As each trip in the original matrix is subject to a unique set of correction factors, the updated matrix can be 
built by applying the factors, estimated using the sub-matrices, directly to the general matrix. 

Using the test network described above, we simulated several scenarios of demand and fare evasion, and evaluated the performance 
of the proposed method. The method worked well in all scenarios, with a final χ2 below 0.03.3 To further illustrate the method, a 
numerical example is provided in Appendix B. 

3.2. Complete trip fare evasion 

The method to correct for complete trip fare evasion uses trip stage evasion measurements (DICTUC, 2012) and the a priori matrix 
obtained from passive data sources (Munizaga and Palma, 2012) after correcting for partial fare evasion as described in Section 3.1. 
The trip stage evasion measurements are used to account for the total number of trip stages evaded, and the a priori matrix is used to 
represent the trip structure. We assume that it is not possible to observe the actual trip structure of fare evaders, as this would require 
following people during their complete trip. As this information is not available in Santiago, it is not possible to assess the difference in 
travel patterns between fare evaders and payers. 

Therefore, to build correction factors for complete trip fare evasion, we make the conservative assumption that in the aggregate, 
fare evaders and paying bus users who board within the same zone have the same trip structure. This assumption holds at the trip stage 
level for bus trips only. We assume that complete trip fare evaders do not use Metro. 

Considering that, at the zone level, the number of non-paid trips is a proportion of the total trips evi, as measured by DICTUC (2012), 
the number of observed trip stages associated with complete trip fare evasion SCTE_i is calculated for zone i after discounting the partial 
evasion estimation SPE_i from the total number of evaded trip stages, as shown in Eq. (5), where the first term on the left side if the 

Fig. 4. Example of the sub-network used to test the method.  

3 χ2 =
∑

ij
( t̂ij − tij)2

tij , where t̂ij is the estimated matrix and tij is the observed matrix. This index, originally proposed for this kind of use by Gunn and 
Bates (1982), is used to evaluate prediction error. 
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equation corresponds to the number of evaded trip stages in zone i. This method is applied to an aggregated zonification that divides 
the Santiago metropolitan area into 803 zones. 

SCTE i = SPaid i∙
evi

1 − evi
− SPE i (5) 

To build the complete trip fare evasion correction factors, we use the trip distribution structure of trips made from zone i to any 
destination using bus only. We group them in the a priori matrix depending on their sequence, defined as the sequence of trip stages h 
as defined in Eq. (6). 

h =
(
b1 , b2 , b3 , b4

)
(6) 

We consider that trips may be comprised of up to four trip stages, which we denote b1, b2, b3 and b4. Most trips consist of up to three 
trip stages; four-stage trips are very uncommon. The total number of paid trips associated with sequence h is the summation of all trips 
whose sequence is h. The number of evaded trips that follow sequence h ( t̂h ) can be expressed as a proportion γh of the paid trips that 
follow the same sequence h, as shown in Eq. (7). 

t̂h = γh∙th (7) 

In each iteration, the number of estimated trip stages associated with complete trip fare evasion in zone i is calculated as: 

Ŝ
n
CTE i =

∑

h
γn

h∙th∙δh
i (8)  

where δh
i is equal to 1 if stop i belongs to sequence h; otherwise, it is equal to 0. The γn

h parameters are calculated with the proportional 
fitting method, and iteratively updated until the number of corrected trip stages is equal to the number of trip stages associated with 
complete trip fare evasion. 

γ0
h = 1∀h (9)  

Rn
i =

SCTEi∑
hγn

h∙th∙δh
i

(10)  

γn+1
h = γn

h∙
∑

hRn
i ∙δ

h
i∑

h1∙δh
i

(11) 

Notice that Ri is the ratio between corrected and evaded stages associated with complete trip fare evasion at stop i. If it is greater 
than 1, the total expanded stages are overcorrected, and vice-versa. The correction factors are updated using these ratios, as expressed 
in Eq. (11), until the distance norm constraint (12) is satisfied. The objective of this step is to balance between zones where the different 
trip stages initiate. 

|εn| =
∑

i

⃒
⃒
⃒
⃒
⃒
SCTE i −

∑

h
γn

h∙th∙δi
h

⃒
⃒
⃒
⃒
⃒

(12)  

3.3. Other modules of the general methodology 

In other cases, some (or all) of the other modules of the general methodology may be needed. If partial fare evasion in buses after a 
Metro trip stage is a concern, the partial fare evasion correction consists of two stages. In the first stage, the partial bus fare evasion 
occurring prior to a Metro trip stage is corrected according to the procedure detailed in Section 3.1. In the second stage, an analogous 
procedure is performed considering those trips where the bus partial evasion occurred immediately after a Metro trip stage. As both 
stages are independent and do not interact with each other, there is no problem in developing them in sequence. Special care would be 
needed while developing the Metro ODS to collect reliable information regarding bus trip stages made after the Metro trip stage. This is 
important because, as the survey is generally carried out at Metro stations, questions about post-Metro bus trip stages would be 
answered before the fact. This may cause a loss of quality of the answers and, subsequently, the data. This is not the case for questions 
regarding bus trip stages prior to the Metro trip stage, which are already complete when passenger is surveyed at the Metro station. 

If fare evasion in the Metro system is relevant, the researcher must complete two additional steps. First, at the beginning of the 
general methodology, two matrices with Metro-involved trips are constructed; namely, a non-evaded Metro, Metro-bus, and bus-Metro 
OD matrix, and an evaded Metro, Metro-bus, and bus-Metro OD matrix. To do this, additional information regarding Metro-involved 
trips is needed. Only the non-evaded Metro OD matrix is used as an input for the partial fare evasion correction procedure. Second, the 
evaded trips that form the Metro OD matrix must be added at the end of the general methodology to complete the correction process 
and build the final corrected matrix. 

4. Analysis of the results 

To implement the proposed method in the case of Santiago, only the modules detailed in Sections 3.1 and 3.2 are needed. We used 
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data from one week (April 15–21, 2013) to build the smartcard matrix using the Munizaga and Palma (2012) methodology; the 2013 
Metro ODS, which contains 156,350 observations made between July 30 and November 26; and fare evasion measurements made 
during the second semester of 2012, which contain observations of 10,767 bus expeditions (DICTUC, 2012). We restrict our analysis to 
trips made on workdays between 6:30AM and 8:30PM. Running on an Intel(R) Core(TM) i5-3450 CPU @ 3.1 GHz, 4.00 GB of RAM and 
64-bit Windows 7 OS, the total processing time was 23 min. 

4.1. Partial fare evasion 

Following the proposed methodology, the first step is to identify the Metro stations where the proportion of users who declared 
using the bus to access the Metro (according to the Metro ODS) was higher than the proportion observed in the smartcard matrix. This 
is true for 79 out of 100 stations. Therefore, a partial fare evasion correction factor is applied to these 79 stations. 

Higher partial fare evasion factors were found at end-of-the-line Metro stations and at those connecting with main bus corridors. 
This is explained by the higher proportion of trips that reach the Metro station using the bus instead of walking. 

This methodology calculates evasion rates at the trip level (instead of the trip stage level), where some trips are completely evaded, 
and others are only partially evaded. According to this methodology, 536,109 trips were made without paying the initial bus fare (i.e., 
partial evasion), out of a total of 10,357,930 trips observed in the smartcard sub-matrix of trips that originated or transferred at a Metro 
station. This corresponds to an overall figure of 5% for partial fare evasion; that is to say, on average, 5 of every 100 users that reach a 
Metro station do not pay for the prior bus trip stage. 

The next steps are to discount this partial fare evasion from the matrix and then correct for complete trip fare evasion. 
After obtaining the number of trip stages evaded between each zone and each Metro station corresponding to partial evasion, these 

trip stages are subtracted from the total trip stage evasion data obtained from DICTUC (2012), at the zonal level. This number of 
evaded trip stages is used in the next stage to correct for complete trip evasion. 

Table 2 shows the total number of trip stages evaded and summarizes the evasion rates at the trip stage level. Partial evasion 
accounts for 12% of total trip stage evasion (3% over 26%). The other 88% corresponds to complete evasion. 

Fig. 5 shows the spatial distribution of partial fare evasion. The green symbols show the 79 stations where a correction factor was 
applied, whereas the red symbols represent the remaining 21 stations where the correction factor was not feasible. The zone colour 
shows the balance between partial evasion and complete evasion in that area. This is calculated as the number of trip stages associated 

Fig. 5. Spatial distribution of partial fare evasion.  

Table 2 
Bus evasion at trip stage level.   

Total Paid Evaded 

Bus trip stages 18,511,304 13,698,635 
74% 

4,812,939 
26% 

Evaded bus stages of bus-only trips   4,276,830 
23% 

Evaded bus stages to reach Metro   536,109 
3%  
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with partial fare evasion, divided by the total number of trip stages evaded, expressed as a percentage. Green is associated with mainly 
complete trip fare evasion, whereas red indicates a more even split between complete trip and partial fare evasion. 

Fig. 6 shows the city centre in more detail. It can be observed that a lower proportion of partial fare evasion is observed at zones 
near Metro stations. This can be explained by the fact that walking access to Metro is also an option in those zones. 

4.2. Complete trip evasion 

After discounting partially-evaded trip stages, the complete trip correction method is applied. The result of this process consists of a 
set of expansion factors based on the boarding zone of each trip stage, which allows for the expansion of the origin–destination matrix 
at the zonal level. To facilitate the interpretation of results, we aggregate the results to the municipality level (the Santiago metro
politan area is organized into 34 municipalities, as shown in Table 1). 

The OD pairs with the highest and lowest complete trip evasion rates, and with more than 4000 trips, are shown in Tables 3 and 4 
respectively. The seven highest pairs reach levels between 50% and 60%, while the lowest pairs remain below 18%. High-income 
municipalities such as Providencia, Las Condes, Vitacura, and Lo Barnechea (see income figures in Table 1) are predominant OD 

Fig. 6. Spatial distribution of partial fare evasion in the city centre.  

Table 3 
OD pairs with highest complete trip evasion rates.  

Origin-Destination Income Metro connection Paid Evaded Total Evasion % 

Puente Alto – Puente Alto Low - Low No 125,822 172,052 297,874 58 
Puente Alto – La Pintana Low - Low No 6,994 9,643 16,637 58 
Puente Alto – La Granja Low - Low No 6,057 7,866 13,923 56 
Puente Alto – Santiago Low - Medium Yes 19,195 20,872 40,068 52 
Renca –Pudahuel Low - Low No 4126 4228 8354 51 
Renca – Cerro Navia Low - Low No 2306 2440 4747 51 
La Granja – La Pintana Low - Low No 2121 2248 4369 51  

Table 4 
OD pairs with lowest complete trip evasion rates.  

Origin- Destination Income Metro connection Paid Evaded Total Evasion % 

Providencia – Las Condes High - High Yes 49,992 8724 58,716 15 
Providencia – Vitacura High - High No 9824 1896 11,720 16 
Santiago – Providencia Medium - High Yes 66,141 13,965 80,106 17 
Las Condes – Providencia High - High Yes 51,889 10,544 62,432 17 
Santiago – Independencia Medium - Low No 35,233 7,183 42,416 17 
Las Condes – Santiago High - Medium Yes 30,740 6460 37,200 17 
Santiago – Las Condes Medium - High Yes 25,731 5515 31,246 18  
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pairs with low rates complete trip evasion. This type of income effect was also observed by Guarda et al. (2016). Furthermore, we 
observed that Metro accessibility seems to have an effect as well. Most of the OD pairs with a high percentage of complete trip evasion 
do not have an easily-accessible Metro connection. 

Our estimation yields an evasion rate for bus-only trips of 37%; in other words, 37 of every 100 trips that do not use Metro are not 
paid for (see Table 5). This figure is greater than the 26% evasion rate measured at the trip stage level. This is because, even though the 
numerator is smaller (as some evaded trip stages correspond to partial evasion), the denominator is much smaller (as it only accounts 
for trips without Metro usage, as Metro usage is associated with practically no evasion). Table 5 also shows the total trip evasion rate 
(20%). Note that the total number of trips evaded does not include trips with partial evasion, as those trips are indeed considered paid 
(not in the initial bus trip stage, but in the subsequent Metro trip stage). Note also that the 0% of evaded trips with a Metro trip stage is 
not a result, but rather an assumption, of the model. The Metro trip stage evasion rate is very small, according to manual 
measurements. 

5. Conclusions 

We propose a method to correct public transport OD matrices obtained from smartcard data, incorporating information 
regarding trips not registered in the smartcard database. This method incorporates two types of unobserved trips: partial fare 
evasion, in the case of bus-Metro combinations where the initial bus trip stage is not paid; and complete trip fare evasion. These two 
types of evasion have different effects on the estimated OD matrices. Partial evasion generates a bias towards Metro-only trips. 
Complete trip fare evasion progressively underestimates the trips in OD pairs with higher evasion rates. To be able to apply these 
methods and make reliable corrections, exogenous observations of passenger flows are required. These observations must be in
dependent of payment technology systems and provide information about Metro access (proportion of bus/walking access) and 
evasion rates at the stop/station or zone level. The proposed methods consider independent factors, which are sequentially applied 
to the smartcard OD matrix. 

We apply this methodology to the case of fare evasion in Santiago, where the smartcard is the only available payment option and 
fare evasion within the Metro system is negligible. The partial evasion correction is applied only for bus-Metro combinations where the 
initial bus trip stage is not paid, as this is the predominant partial fare evasion case in Santiago. The negligible Metro fare evasion rate 
implies that the complete trip evasion correction procedure needs only be applied to bus-only trips. The implementation of the method 
shows that 5% of multiple-stage Metro trips include partial fare evasion. These figures are higher at some stations, depending on the 
public transport network structure and other variables. Stations that connect with important bus corridors or are at the end of a line 
require higher correction factors. In other stations, the effect is less dramatic. Partial evasion rates are lower for trips originating in 
zones close to Metro stations, where users can walk to the station instead of relying on bus access. At the trip stage level, partial evasion 
accounts for only 12% of the observed evaders, whereas the other 88% corresponds to trip stages evaded by complete trip evaders. 
Additionally, we estimate that 37% of bus-only trips and 20% of total trips (bus-only, Metro-only, and combined) correspond to cases 
of complete trip fare evasion. Complete trip fare evasion is found mainly in short intramunicipal trips and/or trips originating in low- 
income areas, especially those without Metro access. 

This methodology allows for the determination of evasion rates not only at the trip stage level, but also at the complete trip level. 
This is important, as complete trip evasion is harder and more expensive to measure than trip stage evasion (evaders would need to 
be followed during their complete trip, instead of simply counting how many users pay and how many do not). Complete trip evasion 
affects system revenue, as opposed to partial evasion, where the fare is eventually collected at the Metro station. These calculations 
are made assuming that, for a given origin and time period, the trip structure of fare evaders is similar to that of the passengers who 
pay for their trips. This assumption is difficult to verify, as there is no readily-available information about the actual trip structures 
of fare evaders. They are not registered in the system databases and there are no surveys available in Santiago that address fare 
evasion behaviour in terms of trip structure. An interesting topic for future research would be to enrich the model with additional 
sources of information, such as mobile phone traces, automatic passenger counting (APC) systems, or surveys about the trip 
behaviour of fare evaders. This enriched data would allow us to explore the differences in the trip structure of fare evaders and 
payers. 

In terms of other future research avenues, the methodology could be adapted to more complex fare structures such as zone fare 
systems, where partial evasion not only distorts the OD matrix, but also implies reduced revenue collection, because the registered trip 
is shorter than the actual trip. If fares change during the day (reduced off-peak fares), partial evasion could also lead to a different fare 
being charged, because the registered start time of the trip may differ from the actual start time. The methodology can also be 
considered to address other problems arising from partial smartcard database information. For example, if other payment methods (e. 

Table 5 
Evasion at trip level.   

Total Paid Evaded 

Bus-only trips 12,104,766 7,623,735 
63% 

4,481,031 
37% 

Trips with Metro stage (Metro-only and bus + Metro) 10,357,930 10,357,930 
100% 

0 
0% 

Total trips 22,462,696 17,981,665 
80% 

4,481,031 
20%  
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g., single paper tickets or travel cards) are available, this information may not be included in the automatically collected smartcard 
data and could greatly distort the estimated OD matrices. Adapting the methodology presented in this paper, OD matrices could be 
constructed from the smartcard databases and corrected to include the unregistered information from paper tickets. 

The correction procedures presented assume that the information provided by traditional surveys and measurements is good 
enough to be used as a basis for correction. The veracity of this assumption obviously depends on the quality of the surveys and 
measurements themselves. Besides methodological considerations, the quality of the results of surveys and measurements strongly 
depends on the amount of funding that is available for this type of manual data collection. As measurements, and especially surveys, 
can be quite expensive, automatically-collected data can free up funds to be used for other surveys that cannot be replaced using 
passive data collection. In fact, we could expect that traditional surveys and measurements will be replaced as information gleaned 
from automatically-collected data increased the need for simpler (and less expensive) surveys and manual measurements, for which 
more funds could be available, thus improving their quality. For example, by freeing up funds used for traditional OD surveys, larger 
samples of trip stage evasion measurements could be gathered, allowing for evasion estimations for different periods of the day. It is 

b c d e Σ 
a 500 400 350 130 1,380
b 200 300 100 600
d 150 150

Σ 500 600 650 380 2,130

Fig. B1. Public transport network.  

Table B1 
Partial fare evasion correction iterations.  

Iteration αa  αb  βd  βe  Difference  

1 1.04167 0.95000 1.00000 1.00000 – 
2 1.04167 0.95000 1.00064 0.99819 0.191871% 
3 1.04169 0.94997 1.00064 0.99819 0.003586% 
4 1.04169 0.94997 1.00064 0.99819 0.000106% 
5 1.04169 0.94997 1.00064 0.99819 0.000002% 
6 1.04169 0.94997 1.00064 0.99819 0.000000%  

Table B2 
Evasion survey expansion.  

Boarding bus stop Paid stages 
Spaid_i 

Evasion rate 
evi 

Unpaid 

SPaid i∙
evi

1 − evi  

First stage evasion SPE_i Bus-only trips evaded stages SCTE_i 

a 1380 9.21% 140 20 120 
b 600 6.25% 40 0 40  

Table B3 
Complete trip fare evasion correction factor iterations.  

Iter γn
ab  γn

bc  γn
ac  t̂ab  t̂bc  t̂ac  

∑
hγn

h∙th∙δ
h
ab  

∑
hγn

h∙th∙δ
h
bc  Rab  Rbc  |ε|

1 1.000 1.000 1.000 500 200 400 900 600 0.13 0.07 1,340 
2 0.133 0.067 0.100 66.67 13.33 40.00 106.7 53.3 1.13 0.75 26.7 
3 0.150 0.050 0.094 75.00 10.00 37.50 112.5 47.5 1.07 0.84 15.0 
4 0.160 0.042 0.089 80.00 8.42 35.79 115.8 44.2 1.04 0.90 8.4 
5 0.166 0.038 0.087 82.91 7.62 34.74 117.6 42.4 1.02 0.94 4.7 
6 0.169 0.036 0.085 84.57 7.20 34.12 118.7 41.3 1.01 0.97 2.6 
7 0.171 0.035 0.084 85.50 6.97 33.76 119.3 40.7 1.01 0.98 1.5 
8 0.172 0.034 0.084 86.03 6.84 33.56 119.6 40.4 1.00 0.99 0.8 
9 0.173 0.034 0.084 86.32 6.77 33.45 119.8 40.2 1.00 0.99 0.5 
10 0.173 0.034 0.083 86.48 6.73 33.39 119.9 40.1 1.00 1.00 0.3 
11 0.173 0.034 0.083 86.57 6.71 33.36 119.9 40.1 1.00 1.00 0.1 
12 0.173 0.034 0.083 86.62 6.70 33.34 120.0 40.0 1.00 1.00 0.1 
13 0.173 0.033 0.083 86.65 6.70 33.33 120.0 40.0 1.00 1.00 0.0  
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improbable that automatically-collected databases will provide all information needed. Therefore, a key issue to resolve in the near 
future will be the consolidation of joint estimations of OD matrices, considering both information source types: smartcard data and 
complementary surveys. The incorporation of other sources of automatically-collected data, such as smartphone or toll road data, is 
another interesting challenge. This work presented a real example of how a successful merger of both types of information can be 
achieved to not only obtain an experimental OD matrix exclusively based on smartcard data, but also to adequately incorporate in
formation about non-registered trips using information from traditional surveys, therefore obtaining a more complete public transport 
OD matrix. These methodologies, which merge automatically-collected data with traditional surveys and manual measurements to 
construct richer, more relevant databases, can help build OD matrices that are more frequently-updated, lower-cost, and reliable when 
compared to traditional survey methods. 
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Appendix A. List of variables 

{
t0
ij

}
a priori matrix estimated from fare transactions considering pre-Metro and Metro boardings only 

{
t̂M
ij

}
matrix corrected for partial fare evasion 

αi trip origin expansion factor 
βj trip destination expansion factor 
DM

j the summation of each column of the adjusted matrix 
OM

j the summation of each row of the adjusted matrix 
evi fare evasion proportion measured at stop i 

χ2 distance indicator calculated as 
∑{

( t̂ij − tij)2
/tij

}

Si number of trip stages (corrected) with origin in i 
SiODS total trip stages in the origin–destination survey matrix with origin in i 
SCTE_i number of stages associated with complete trip fare evasion in zone i 
SPE_i number of stages associated with partial fare evasion in zone i 
Spaid_i number of paid trip stages in zone i 
h observed sequence of trip stages 
t̂h number of evaded trips that follow sequence h 
thnumber of paid trips that follow sequence h 
γh proportion of the paid trips that follow the same sequence h 
δh

i dummy variable that takes the value 1 if stop i belongs to sequence h, and zero otherwise 
Ri ratio between corrected and evaded stages associated with complete trip evasion in zone i 
εi difference between the observed boardings and those predicted by the model at stop i 

Appendix B. Numerical example 

To illustrate the method, we propose a simple public transport network, described in Fig. B.1, where aband bc are two different bus 
routes, and M is a Metro system with two segments. The matrix shown in Fig. B.1 is the OD matrix estimated from AFC and GPS data. 

In this network, there is only one route to go from one stop to another. The types of trips that can occur are bus-only {tab, tac, tbc}, 
bus-Metro {tad, tae} and Metro-only trips {tbd, tbe}. Let us also suppose that the proportion of users who declare bus access to Metro in 
the Metro ODS is 0.57 (25 from 44 observations), and that the expanded Metro trips are 500 with origin in a and 380 with origin in b, 
which are the target values related to the ODS matrix. The observed evasion rates are 9% at bus stop a and 6% at bus stop b. There is no 
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fare evasion in the Metro. 
Partial fare evasion correction (bus-Metro trips): 
According to the methodology, the first step is to compare the proportion of users who declare using the bus to access the Metro in 

the Metro OD survey with the proportion observed in the smartcard matrix. 
To apply the proposed method, we build the a priori matrix tij0 as the sub-matrix that contains the trips that originate or transfer at a 

certain Metro station. In our case, Metro station b. 

(B.1) 

With these values, we calculate the proportion of trips with bus access to Metro O0
a

O0
a+O0

b 

O0
a = t0

ae + t0
ad = 350+ 130 = 480 (B.2)  

O0
b = t0

be + t0
bd = 300+ 100 = 400 (B.3) 

Resulting in a partition of 54.5%. As this figure is lower than the proportion obtained from the Metro ODS (57%), we assume that 
partial fare evasion exists, and the partial fare evasion correction is applied. The Metro survey is expanded to adjust the origins to the 
new total (880 total trips), resulting inÔa = 500, Ôb=380. 

We then apply a bi proportional method to obtain the corrected matrix, which explains each trip with an a priori matrix (t0
ij ), and 

two factors, αiexplaining the expansion for origins, and βj, adjusting for destinations. 

t̂ij = αi*βj*t0
ij (B.4) 

Since we assume that destinations are correct in the original matrix, we will not make any correction to these totals4,5. The con
strains are laid out in Eqs. (B.5) to (B.8). 

t̂ad + t̂ae = Ôa = 500 (B.5)  

t̂bd + t̂be = Ôb = 380 (B.6)  

t̂ad + t̂bd = Dd = 650 (B.7)  

t̂ae + t̂be = De = 230 (B.8) 

Following our methodology, we iterate to adjust equations αi and βj as shown in Eqs. (B.9) and (B.10) respectively 

Oi
∑

jβj*t0
ijM

= αi (B.9)  

Dj
∑

iαi*t0
ijM

= βj (B.10) 

Initializing βj = 1∀j, we run iterations on each group of parameters, αi and βj. The iterations are shown in Table B.1. 

(B.11) 

The corrected sub-matrix B.11 increases by 20 (364.8–350 + 135.2–130) the number of trips with origin in a (bus access to Metro) 
and decreases trips beginning in the Metro station by the same amount. The new matrix, corrected for partial fare evasion, is presented 
in B.12. 

(B.12) 

Complete trip correction (bus-only trips): 

4 t̂ad + t̂bd = t0
ad + t0

bd  
5 t̂ae + t̂be = t0

ae + t0
be 
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Using the trip stage evasion measurements at bus stops a and b, we estimate the total number of trip stage-level evaded trips to be 
corrected by the expansion factors (see Table B2). 

Since we already have explained 20 trip stages evaded between bus stop a and the Metro station, corresponding to cases of partial 
evasion, these are subtracted from the total trip stage evasion data at the zonal level, following Eq. (5). This modified number of evaded 
trip stages is used in the next step to correct for complete trip evasion. 

Note that Spaid_i includes both bus and bus-Metro trips. Bus-only trips can be isolated from the OD matrix. Here we have three cases 
of bus only trips. Following Eq. (6), we define: h = 1 going from a to b boarding service ab (δh

ab = 1, δh
bc=0), h = 2 going from b to c 

boarding service bc (δh
ab = 0, δh

bc=1) and h = 3 going from a to c boarding services ab and bc (δh
ab = 1, δh

bc=1). A correction or expansion 
in sequence 3 trips will explain trip stage evasion for both services. 

(B.13) 

Following Eq. (9) we initialize every γh as 1, and apply Eqs. (9) and (10). The first iteration results in 

Ra =
SCTEa∑

hγn
h∙th∙δh

i
=

120
500∙1 + 400∙1

=
120
900

= 0.1333 (B.14)  

Rb =
SCTEb∑

hγn
h∙th∙δh

i
=

40
200∙1 + 400∙1

=
40
600

= 0.0666 (B.15)  

γ1
ab = 1∙

∑
hRi∙δh

ab∑
h1∙δh

ab
=

0.1333
1

= 0.1333 (B.16)  

γ1
bc = 1∙

∑
hRi∙δh

bc∑
h1∙δh

bc
=

0.0666
1

= 0.0666 (B.17)  

γ1
ac = 1∙

∑
hRi∙δh

ac∑
h1∙δh

ac
=

(0.1333 + 0.0666)
1 + 1

=
0.2
2

= 0.1 (B.18) 

According to Eq. (12), the difference |ε|in the first iteration is: 

|ε| = |120 − 900| + |40 − 600| = 1340 (B.19) 

Applying these equations iteratively, we obtain a result that converges when |ε|approaches zero. These steps are illustrated in 
Table B.3. 

The ratios Rab and Rbc represent the ratio between corrected and evaded stages; as they approach 1, the error |ε| in total trips 
approaches 0. 

The final corrected matrix, where the evaded trips are added to the matrix already corrected for partial fare evasion, is presented in 
B.20. Besides the difference in the OD matrix structure, the corrected matrix has 6% more trips than the original matrix. 

(B.20) 

In order to analyze the effect that the assumption that fare evaders have the same trip structure as those who pay might have on the 
results, we carried out sensitivity analysis scenarios considering two alternative assumptions: 

Alternative Assumption 1: If the proportion of two-stage trips made by fare evaders is only 50% of those made by paid passengers, 
we obtain the matrix described in B.21. Besides having more ab and bc trips, the total number of trips is also greater in this case (6,7% 
greater than that of the original matrix). 

(B.21) 

Alternative Assumption 2: Following the same tendency, if all fare evaders make only one-stage trips, the total number of trips 
would be 7,5% greater than that of the original matrix. 
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