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Abstract. We study the structure of multi-field inflation models where the primordial cur-
vature perturbation is able to vigorously interact with an ultra-light isocurvature field — a
massless fluctuation orthogonal to the background inflationary trajectory in field space. We
identify a class of inflationary models where ultra-light fields can emerge as a consequence
of an underlying “scaling transformation” that rescales the entire system’s action and keeps
the classical equations of motion invariant. This scaling invariance ensures the existence of
an ultra-light fluctuation that freezes after horizon crossing. If the inflationary trajectory is
misaligned with respect to the scaling symmetry direction, then the isocurvature field is pro-
portional to this ultra-light field, and becomes massless. In addition, we find that even if the
isocurvature field interacts strongly with the curvature perturbation — transferring its own
statistics to the curvature perturbation — it is unable to induce large non-Gaussianity. The
reason is simply that the same mechanism ensuring a suppressed mass for the isocurvature
field is also responsible for suppressing its self-interactions. As a result, in models with light
isocurvature fields the bispectrum is generally expected to be slow-roll suppressed, but with
a squeezed limit that differs from Maldacena’s consistency relation.
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3.2.2 Trajectories with Ẏ 6= 0 10
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1 Introduction

What are the general conditions leading to primordial non-Gaussianity in multi-field models
of inflation? A distinctive feature of multi-field inflation is that isocurvature fields (fluc-
tuations orthogonal to the background inflationary trajectory in field space) can transfer
their statistics to the primordial curvature perturbation [1, 2]. This transfer can in principle
enhance the generation of primordial non-Gaussianities as long as the isocurvature field ex-
periences sizable self-interactions [3–23] (see also some recent works on non-Gaussianities in
multi-field inflation with a curved field space [24–28]). Understanding in detail this process
would allow us to distinguish multi-field models from single field models [29–33] in future
surveys aimed at characterizing non-Gaussian patterns in the primordial distribution of cur-
vature perturbations.

At linear order, the interaction between the curvature field R and other scalar degrees
of freedom depend on the interplay of two key parameters: the entropy mass µ of the isocur-
vature field σ and the turning rate Ω of the trajectory [34–38]. This can be seen directly in
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the quadratic action of a general two-field inflationary model:

S =

∫
d4xa3

[
ε

(
Ṙ − 2Ω√

2ε
σ

)2

− ε

a2
(∇R)2 +

1

2
σ̇2 − 1

2a2
(∇σ)2 − 1

2
µ2σ2

]
, (1.1)

where a is the scale factor and ε is the usual first slow-roll parameter. As emphasized in [38],
a non-vanishing turning rate can be interpreted geometrically as sizing how curved (non-
geodesic) the inflationary trajectory is in field space, and so one would expect Ω 6= 0 to be
a generic characteristic of multi-field dynamics. The interaction strength coupling together
curvature and isocurvature fields is proportional to Ω/H, but the effect of this interaction
is limited to a period of time determined by µ. This is because, for a given wavelength,
the amplitude of the isocurvature perturbation decays after horizon crossing. This decay is

proportional to exp(− µ2

3H2N) if µ . 3H/2, or proportional to exp(−N/3), if µ & 3H/2, where
N is the number of efolds after horizon crossing. Thus, if the isocurvature field has a mass
of order H or larger, the amplitude of the isocurvature mode vanishes after a few efolds, and
the interaction between the two modes becomes negligible.

If the entropy mass µ is much smaller than H (the ultra-light limit), the amplitude of
the isocurvature modes freezes, and the interaction between the curvature and isocurvature
modes persists after horizon crossing. At linear order, this implies that the amplitude of
the curvature perturbation grows after horizon crossing, sourced by the frozen isocurvature
fluctuation [1]. As a result, the curvature perturbation inherits more efficiently the statistics
of the isocurvature perturbation, as determined by its self-interactions. In principle one may
expect large levels of local non-Gaussianity.

However, currently known scenarios where ultra-light isocurvature fields emerge show
negligible levels of non-Gaussianity. A recent example is offered by a class of models called
shift-symmetric orbital inflation [2]. In these models, the isocurvature field remains light,
and it can interact strongly with the curvature perturbation. Nevertheless, one finds that
the amount of non-Gaussianity parametrized by the fNL parameter is suppressed by slow roll
parameters, in a way similar to single field models of inflation.

The purpose of this article is to examine, more closely, the ultra-light regime of multi-
field inflation, paying special attention to the generation of local non-Gaussianity and the
possible mechanisms ensuring that the isocurvature perturbation remains light (µ2 � H2).
General field theory arguments suggest that µ must be of order H or much larger, unless
a symmetry ensures its smallness. In ref. [1] it was pointed out that, at linear order, a
symmetry enforcing a vanishing mass, but allowing a non-vanishing Ω is given by

σ → σ + c, Ṙ → Ṙ+
2Ω√

2ε
c, (1.2)

for a constant parameter c. The question we wish to answer then is: is there a symmetry
at a more fundamental level1 ensuring that the action for the fluctuations R and σ remains
invariant under the transformation (1.2)? As we shall see, a partial answer to this question
is that there is at least a class of models where the emergence of this symmetry can be at-
tributed to a rescaling of the full action (scalars plus gravity) under a non-trivial simultaneous
transformation of fields and coordinates.

1At the level of the UV theory from where the action (1.1) for the fluctuations is derived.
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1.1 Summary of results

For convenience of the reader we now summarize our findings and refer to the main formulas
in our paper.

In section 2 we introduce a class of two-field models characterized by admitting a simi-
larity transformation whereby the full action of the theory (including gravity) rescales by a
single factor. This transformation arises from an extension of an isometry of the hyperbolic
kinetic term

− 2K = 4R2
0

∂T∂T̄

(T + T̄ )2
= (∂Y )2 + e2Y/R0(∂X)2 , (1.3)

with T = e
− Y

R0 + i XR0
, under which the potential rescales. The resulting similarity trans-

formation leaves invariant the equations of motion determining the background inflationary
trajectory.

Crucially, the transformation allows one to identify the existence of an ultra-light field
F , which is defined as the fluctuation along the scaling direction. It turns out that the field F
can be identified with R or σ depending on which inflationary attractor the system chooses.
More precisely, in section 3 we identify two classes of inflationary attractors in two-field
systems with this similarity:

• Trajectories aligned along the scaling transformation direction (symmetry probing so-
lutions [39]): these are trajectories whose evolution probes the scaling transformation.
In this case, the F-field coincides with the curvature perturbation R. The isocurvature
field σ represents a fluctuation orthogonal to F , and therefore its mass is not protected
to remain small. An example model is given by the potential

V ∝ X2 +X2.5e−Y , (1.4)

with R0 = 0.5.

• Trajectories misaligned with respect to the direction of the scaling transformation: in
this case, the fields σ and F become proportional to each other, and the isocurvature
perturbation σ inherits the shift symmetry respected by F , which leads to a realization
of (1.2). An example model is given by the potential

V ∝ X2β . (1.5)

In other words, we find that the second class of attractors allow configurations where the
isocurvature fields can remain light and still interact vigorously with the curvature perturba-
tion for most of the inflationary history. This we confirm by explicit computation in section 4
and in the remaining part of the paper we therefore focus on the second class of attractors.

On the other hand, (1.2) will inevitably have consequences for non-Gaussianity. Indeed,
as we will see in section 5 and 6, invariance of the action for the fluctuations under the non-
linear version of the transformation (1.2) will keep self interactions of the isocurvature fields
suppressed, forbidding the appearance of large non-Gaussianity. In section 5 we analyse the
consequences of the similarity on the ultra-light perturbations. First, the correlation functions
of F are found to be invariant under this transformation. Furthermore, we apply the scaling
property of the system to compute the squeezed limit of the bispectrum of the ultra-light
field F . The argument used to derive this limit (based on the background-wave method) is
similar to that encountered in the derivation of Maldacena’s consistency relation [40–43] in
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single field models of inflation. It is based on the observation that the long modes of massless
fields cannot be distinguished from the background, hence leading to a modulation of the
power spectrum of short-wavelength modes that can be used to infer the amplitude of the
squeezed limit of the bispectrum, which is found to be given as

〈FS(k1)FS(k2)FL(k3)〉sq = (2π)3δ(3)

(∑
i

ki

)
(1− nF )PF (kL)PF (ks), (1.6)

which corresponds to equation (5.21), the main result of section 5. Here nF is the spec-
tral index of PF which is found to be slow roll suppressed (for reasons analogous to those
encountered in the suppression of the spectral index in single-field slow-roll inflation).

In section 6 we perform a gauge transformation to go to the comoving gauge, and deduce
the squeezed bispectrum of curvature perturbations. Our main results are given in (6.12)
and (6.14). We find that, even though the ultra-light limit corresponds to a regime where
the multi-field nature of inflation is accentuated (because Ω 6= 0), the final predictions are
similar to those of single-field inflation, although they differ in the details. In particular,
because of (1.6) the squeezed limit of the bispectrum is found to be suppressed, but is still
given by a distinctive combination of slow-roll parameters — different from the single-field
case — that future surveys could constrain [44].

Understanding the point that a small entropy mass along the entire inflationary history
can be related to small self-interactions, one can have a more general understanding on how
primordial non-Gaussianity can be enhanced in general. The existence of self-interactions
necessarily will come together with a non-vanishing mass, and so, after horizon crossing,
there will be a limited amount of time in which the non-Gaussianity produced by this self-
interaction can be transferred to the curvature perturbation.

2 Scaling transformation

A period of inflation in which the isocurvature field remains light can be sustained if there is
a mechanism that protects the mass from acquiring large values. We will show that one way
to realize a (nearly) vanishing entropy mass is by assuming a symmetry that relates different
background solutions to each other, where one of the fields shifts by a constant. For the
purpose of the present discussion, it will be sufficient for us to consider a two-field model of
inflation with a hyperbolic field space. The kinetic term can be written in the following form

K = −1

2
(∂Y )2 − 1

2
e2Y/R0(∂X)2. (2.1)

Here R0 sets the negative curvature of the field space as R = −2/R2
0. Recall that hyperbolic

spaces are maximally symmetric. A particular consequence of this is that the kinetic term is
invariant under the following reparametrization of the fields

Y (x)→ Y ′(x) = Y (x) + Λc, (2.2)

X(x)→ X ′(x) = e−cΛ/R0X(x), (2.3)

where Λ is a given mass scale, and c is an arbitrary dimensionless constant parametrizing the
redefinition of fields. Inflation requires a non-trivial potential, which necessarily breaks the
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previous symmetry on the level of the action. However, we can preserve it as a symmetry of
the equations of motion, if the potential satisfies the condition

XVX −R0VY = 2βV, β ≡ R0

Λ
, (2.4)

where VX = ∂XV and VY = ∂Y V . An example of a multi-field potential with this property
is given by

V (X,Y ) = X2βG(XeY/R0), (2.5)

where G is an arbitrary function of the particular combination XeY/R0 . The function G
and the coefficient β may be tuned appropriately in order to achieve inflation with the right
characteristics (i.e. spectral index and tensor to scalar ratio compatible with observations).
Notice that a simple monomial potential of the form V (X) ∝ X2β (where β is an arbitrary
real number) already satisfies the constraint (2.4). The potential in (2.5) should not be
regarded to be valid everywhere in field space. Towards the end of inflation, where the
system has to enter a reheating phase, new operators in V must appear in order to break the
relation in eq. (2.4), allowing the system to end inflation.

The action obtained by putting together K and V is

S =

∫
d4x
√
−g
(
M2

Pl

2
R+K − V

)
, (2.6)

where R is the Ricci scalar and g represents the determinant of the spacetime metric gµν(x).
Because of the presence of V , it should be clear that this action is not invariant under the
set of transformations (2.2) and (2.3) under which K is invariant. However, we may extend
these transformations to include a space-time dilation as:

Y (x)→ Y ′(x′) = Y (x) + Λc, (2.7)

X(x)→ X ′(x′) = e−cΛ/R0X(x), (2.8)

xµ → x′µ = ecxµ. (2.9)

Under this transformation, the action picks up an overall factor

S → S′ = e2cS. (2.10)

It immediately follows that under the previous transformations the classical equations of
motion remain unchanged. For the same reasons, although this set of transformations do not
constitute a true symmetry transformation, for the sake of simplicity we will refer to it as a
symmetry. As we shall soon see, that the inflationary attractor solution respects the same
scaling transformation. This implies that we can map different background solutions onto
each other. This is the key property that we exploit in this work. We study the implica-
tions of this scaling transformation on the behavior of perturbations around the inflationary
background solution.

2.1 Implications for perturbations: existence of an ultra-light field

Given a particular background solution (X̄(t), Ȳ (t)) we can map it to a family of solutions,
parametrized by the quantity c appearing in the scaling transformation of eqs. (2.7)–(2.9). To
be precise, we can define new background solutions (Xc(t), Yc(t)) out from (X̄(t), Ȳ (t)) as:

Yc(t) = Ȳ (e−ct) + Λc, (2.11)

Xc(t) = e−cΛ/R0X̄(e−ct). (2.12)
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Now, we would like to define fluctuations about the background inflationary trajectory (X̄(t),
Ȳ (t)) that represent deviations from homogeneity. The previous relation suggests that a
natural way to parametrize perturbations around the homogeneous background solution is
given by

Y (x) = Ȳ (t+ π(x)) + F(x), (2.13)

X(x) = e−F(x)/R0X̄ (t+ π(x)) . (2.14)

The fluctuations π and F correspond to the two scalar degrees of freedom of the system. As
we shall see in section 4, we may trade one of them (say π) for a metric perturbation through
a gauge choice. Notice that the perturbation F fluctuates along the direction generated by
the parameter c.

It is particularly important to notice that configurations with constant values of F and
π correspond to an allowed background solution, which is evident from (2.11) and (2.12).
This in turn implies that constant F and π are allowed solutions of the perturbed system
(a statement that we shall confirm in the next sections). Given that in an expanding FRW
background the physical wavelength is stretched, we anticipate that the inhomogeneous equa-
tions of motion must admit a solution for F which becomes constant in the long wavelength
limit. In other words, F must freeze after horizon crossing. This means that we can identify
F as an ultra-light field.

3 Background attractor solutions

The homogeneous background equations of motion describing the dynamics of the scalar
fields evolving in a flat FLRW spacetime ds2 = −dt2 + a2dx2, are given by

Ẍ + 3HẊ +
2

R0
Ẏ Ẋ + e−2Y/R0VX = 0, (3.1)

Ÿ + 3HẎ − 1

R0
e2Y/R0Ẋ2 + VY = 0, (3.2)

3H2 =
1

2
e2Y/R0Ẋ2 +

1

2
Ẏ 2 + V, (3.3)

where ˙ = d/dt, H = ȧ/a is the Hubble expansion rate. One may combine these three
equations to obtain a relation for Ḣ, found to be given by:

− Ḣ =
1

2
e2Y/R0Ẋ2 +

1

2
Ẏ 2. (3.4)

It is straightforward to show that the previous equations of motion are invariant under
the scaling transformations (2.7)–(2.9). Nevertheless, a generic solution to the equations of
motion spontaneously breaks the symmetry. Indeed, we may use the property of eq. (2.4) to
integrate once the equations of motion (3.1)–(3.3). One finds the following relation valid for
any background trajectory

C(t) ≡ e2Y/R0XẊ −R0Ẏ + 2βH =
C0

a3
, (3.5)

where C0 is an integration constant set by the initial conditions of the background trajectory.
It is straightforward to verify that C(t) is not invariant under (2.7)–(2.9), because the right-
hand side of (3.5) scales differently than the left-hand side (this can been seen most easily by
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absorbing the transformation of the spatial coordinates in a transformation of the scale factor
a → a′ = eca). However, the system approaches the attractor regime C = 0 exponentially
fast (in e-folds), at which point the symmetry is dynamically restored. We conclude that
the inflationary background solution spontaneously breaks the symmetry, but it quickly gets
dynamically restored as C → 0. The equation C = 0 can be used to replace one of the three
equations (3.1)–(3.3), simplifying the search of solutions to the system.

For later convenience, here we define the slow-roll parameters as

ε ≡ − Ḣ

H2
, η ≡ ε̇

Hε
. (3.6)

For the upcoming analysis of perturbations, we also find it useful to define a dimensionless
parameter ∆ by:

1 + ∆ ≡ 1− βẎ /(εR0H)√
1− Ẏ 2/(2εH2)

. (3.7)

The equations of motion allow one to show that 1 + ∆ can also be expressed as

1 + ∆ =

√
1 +

X2

R2
0

e2Y/R0 − 2β2

εR2
0

. (3.8)

In section 6 we will show that this background quantity relates the ultra-light field F (intro-
duced in section 2.1) and the isocurvature mode σ [introduced in eq. (1.1)], at linear level, as

σ = (1 + ∆)F + O(F2) . (3.9)

Additional relations among background parameters involving ∆ can be derived by using the
background equations of motion. We list these relations in appendix A.

For the rest of this section we consider two main classes of attractor trajectories. We
shall show that the scaling transformation approach provides a possible unification for dif-
ferent realizations of the “ultra-light isocurvature” scenario.

In what follows we will use the notation

s ≡ XeY/R0 ,

so the potential eq. (2.5) takes the form V = X2βG(s), with G an arbitrary function.

3.1 Class 1: symmetry probing attractors

The existence of the symmetry ensures a class of inflationary trajectory that lies along the
direction where scaling transformation is realized. It is straightforward to find that, in terms
of e-folds N (related to cosmic time t through dN = Hdt), the solutions are

X = X0e
−Y ′0N/R0 , (3.10)

Y = Y0 + Y ′0N, (3.11)

where X0, Y0 and Y ′0 are constants. The equations of motion require that H evolves in time as

H = H0e
−ε0N , ε = ε0 (3.12)
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where H0 and ε0 are additional constants. Notice that in this class of backgrounds s is
constant:

s ≡ XeY/R0 = const = γ. (3.13)

It turns out that the equations of motion imply conditions on all the constants except for
one, which remains as a free parameter. Let us choose this parameter to be X0. Then one
finds that γ must be a solution of the following algebraic equation

4γ2β2

3(R2
0 + γ2)− 2β2

− 2βR2
0 − (R2

0 + γ2)γ
G′(γ)

G(γ)
= 0. (3.14)

When this equation is not satisfied for a real value of γ, this class of probing symmetry solu-
tion is not possible. On the other hand, we have verified numerically that, when the solution
is stable, for arbitrary initial conditions the system quickly evolves towards a state in which
γ satisfies (3.14). Then, every background quantity can be determined in terms of γ and X0.
Concretely, one finds

Y ′0 =
2βR0

R2
0 + γ2

, (3.15)

ε0 =
2β2

R2
0 + γ2

, (3.16)

H2
0 =

R2
0 + γ2

3R2
0 + 3γ2 − 2β2

X2β
0 G(γ). (3.17)

Out of these quantities, one can additionally compute expressions for the aforementioned
parameter ∆, together with the rate of turn Ω and the entropy mass µ. These are found to
be given by

∆ = −1, (3.18)

Ω2

H2
=

4β2γ2

R2
0(R2

0 + γ2)2
, (3.19)

µ2

H2
= (3− ε0)

(
2β2

R2
0ε0

G′′

G
+

[
4β

γ
+

γ

R2
0

]
G′

G

+ ε0
(2β − 1)R2

0

βγ2
− 2ε0

β

)
− 2ε0
R2

0

+ 3
Ω2

H2
. (3.20)

Recall from eq. (3.9) that, to linear order, σ = (1 + ∆)F . It follows that in this class of
trajectories the relation between σ and F becomes ill defined. This result does not imply that
σ cannot be defined. It simply informs us that the fluctuation F does not constitute a good
parametrization of the perturbed system, and so it cannot be identified with the isocurvature
field. In fact, in the case 1+∆ = 0 the fluctuation F becomes directly related to the curvature
perturbation R, which indeed parametrizes fluctuations along the trajectory. We will come
back to this issue when we study more closely the dynamics of fluctuations in section 4.

3.2 Class 2: misaligned attractors

The system under study also admits attractor solutions along trajectories misaligned with
the symmetry-probing direction. If the potential is appropriately chosen — consistent with
eq. (2.4) —, these solutions can satisfy the slow roll condition ε� 1 during the whole period
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of inflation. We find that these solutions are characterised by ∆ =constant (but ∆ 6= −1).
There are two particularly interesting families of attractor trajectories within this class of
solutions that we find worth discussing, which we do in what follows.

3.2.1 Trajectories with Ẏ = 0

It is interesting to notice that the present system includes potentials admitting trajectories
such that Ẏ = 0. The most readily available example is given by the choice G(s) = w2

0(3 −
2β2/s2). In this case, the potential can be written as

V (X,Y ) = w2
0X

2β

(
3− 2

β2

X2e2Y/R0

)
. (3.21)

To verify that this potential admits Ẏ = 0 solutions, it is enough to recognise that this
potential can be written in terms of a “fake” superpotential W (X) as

V (X,Y ) = 3W 2 − e−2Y/R2W 2
X , (3.22)

where W (X) = w0X
β (in the previous expression, WX denotes a derivative of W with respect

to X). It turns out that this system automatically satisfies the following Hamilton-Jacobi
equations:

Ẋ = −1

2
WX , Ẏ = −1

2
WY , H = W. (3.23)

Given that in this example W is independent of Y , it follows that the system has an attractor
characterised by Ẏ = 0. The present system with a potential given by (3.21) corresponds
to shift-symmetric orbital inflation introduced in ref. [2] in the specific case where the field
space has a hyperbolic geometry. We can in fact generalise the potential V (X,Y ) of eq. (2.5)
away from the specific Hamilton-Jacobi structure. In order to ensure Ẏ = 0, a potential of
the form given in eq. (2.5) must agree with the following equations of motion

Ẍ + 3HẊ + e−2Y/R0VX = 0, (3.24)

VY =
1

R0
e2Y/R0Ẋ2, (3.25)

3H2 =
1

2
e2Y/R0Ẋ2 + V. (3.26)

A potential satisfying these equations of motion must be such that its function G(s) satisfies
the following differential equation:

s
d

ds
F + (2 + F ) (2β + F ) = s

√
6F (2 + F ), (3.27)

where we have defined F (s) ≡ s dds lnG. It can be verified that the choice G(s) = w2
0(3 −

2β2/s2) introduced earlier satisfies this equation, in which case w0 turns out to be an inte-
gration constant. More general forms of G(s) can be obtained from (3.27), a task that we do
not examine in the present article.

Now, from eq. (3.7) we see that this type of trajectory implies that ∆ = 0, and so F
and σ becomes exactly the same field. As we shall see soon, ∆ = 0 implies exactly that the
entropy mass µ is zero, as expected.
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3.2.2 Trajectories with Ẏ 6= 0

It is also possible to have other trajectories that remain misaligned with respect to the
symmetry probing solution, but without Ẏ = 0. Analytic results for this category are in
general rather hard, but we can at least obtain reliable approximations in the particular
case in which we can neglect VY in the equation of motion (3.2). A concrete example was
discussed in ref. [1], where VY = 0 was taken to be exact. By neglecting VY in eq. (3.2) and
disregarding slow-roll corrections, the background equations of motion become

3HẊ + e−2Y/R0VX = 0, (3.28)

3HẎ =
1

R0
e2Y/R0Ẋ2. (3.29)

These equations show that the slow-roll motion ofX is controlled by the slope of the potential,
whereas Y rolls slowly thanks to the centrifugal force imposed by the turning of the trajectory.
The corresponding trajectories are given by

Ẋ ' −2βH

X
e−2Y/R0 , (3.30)

Ẏ ' 4β2H

3R0X2
e−2Y/R0 . (3.31)

Notice that, in this solution, both fields have non-vanishing velocity. The ratio of their
physical velocities is given by

e2Y/R0Ẋ2/Ẏ 2 =
9R2

0

4β2
X2e2Y/R0 =

9R2
0

2εX
, (3.32)

where εX ≡ 1
2H2 e

2Y/R0Ẋ2 � 1. Thus for a not too small R0, the kinetic energy of the X
field is much larger than the one of the Y field. As a result, the leading order contribution
to ε is given by

ε ' εX =
2β2

X2
e−2Y/R0 . (3.33)

Using εX � 1 and expanding the background equations order by order, we can also compute
ε up to next-to-leading order

ε =
2β2

X2
e−2Y/R0

(
1− 2

3β
εX +

2

9R2
0

εX

)
. (3.34)

Next we compute the parameter ∆ defined in (3.7). Interestingly for this class of trajectories,
the leading term in ε is exactly cancelled in the expression of ∆. Then the next-to-leading
order (3.34) gives us

(1 + ∆)2 =

(
1− 2β

3R2
0

)2

, (3.35)

where ∆ is constant but non-zero. Notice that for β > 1 and 2β . 3R2
0, the system becomes

part of the symmetry probing class for which ∆ = −1, described in section 3.1. This is a
special case in the derivation above, which should not be seen as misaligned trajectories.

We have examined numerically other varieties of attractor solutions with Ẏ 6= 0, away
from the simpler case whereby VY can be neglected, and have consistently found that as long
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as slow roll is imposed, they contain backgrounds with constant ∆. Given that σ = (1+∆)F ,
it follows that, again, F and σ can be identified, up to a proportionality constant. This will
nevertheless still imply that the properties of F are inherited by σ and, in particular, σ will
be ultralight for this type of background trajectories. We examine these statements more
closely in the next sections.

4 Perturbations

We now derive the quadratic action for the perturbations defined in section 2. This derivation
will allow us to understand the role of the scaling symmetry, and will confirm our intuition
about how it ensures the existence of an ultra-light field. The perturbed fields are given
in (2.13)–(2.14), where we write the perturbed metric using a slightly modified ADM-like
decomposition

ds2 = e2F
[
− dt2N2 + a2

(
e2ϕ̃δij + hij

)
(dxi +N idt)(dxj +N jdt)

]
, (4.1)

where N and N i are the lapse and shift functions, and hij are the primordial tensor modes.
Notice that F appears as a dilatonic fluctuation multiplying the entire metric. In order to
have the usual definition of the lapse, we should actually absorb the factor e2F/R0 in N .
Nevertheless, in what follows we will keep the definition of N as in (4.1). Finally, we pick a
new gauge in which π(x) = 0. In this gauge the metric fluctuation ϕ̃, representing spatial
curvature perturbations, becomes physical. However, notice that this is not the comoving
gauge, since the perturbations along the trajectory (which involves F) are non-vanishing.
We call it the ultra-light gauge, and will establish its connection to the comoving gauge in
section 6.1 and appendix B. By inserting the perturbed metric (4.1) and the perturbed fields
of (2.13)–(2.14) back into the original action (2.6), we find that the full perturbed action (to
all orders) is given by

S=
1

2

∫
d4xa3e3ϕ̃e2nF/R0N

− 2

a2
e−2ϕ̃

[
2∇2(ϕ̃+nF/R0)+(∇(ϕ̃+nF/R0))2

]
+

1

2N2

(
N i

,jN
j
,i+δijN

i,kN j
,k−2N i

,iN
j
,j

)
− 6

N2

(
H+ ˙̃ϕ+n

Ḟ
R0
−N iϕ̃,i−nN iF,i

R0

)2

+
4

N2

(
H+ ˙̃ϕ+n

Ḟ
R0
−N iϕ̃,i−nN iF,i

R0

)
N j
,j+

1

N2
e2Ȳ /R0

(
˙̄X−X̄ Ḟ

R0
+N iX̄

F,i
R0

)2

+
1

N2
( ˙̄Y +Ḟ−N iF,i)2−e2Ȳ /R0

X̄2

R2
0

hijF,iF,j−hijF,iF,j−2V (X̄, Ȳ )

 . (4.2)

We see that the only place where F appears without space-time derivatives acting on it, is
in the overall exponential factor. This means that its equations of motion will be equal to a
functional of derivatives of F and ϕ̃, and the lapse and shift. Therefore, as long as the lapse
and shift don’t depend on F without space-times derivatives acting on it, it follows that F
admits a constant solution in the long wavelength limit.

To obtain the quadratic (or cubic) action for the perturbations, we need first order
solutions of the lapse and shift functions. For notational convenience we define

ϕ ≡ ϕ̃+ βF/R0 . (4.3)
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Varying the perturbed action (4.2) with respect to N i, one finds the following constraint on
the lapse N :

N = 1 +
ϕ̇

H
− C(t)

2H

F
R0
, (4.4)

where C(t) is the background quantity defined in eq. (3.5). On the other hand, varying the
action with respect to N , one finds that the shift function must satisfy

∂iN
i = −∇

2ϕ

a2H
− (3− ε)HδN + 3ϕ̇+

(
C(t)

2H
− β

)
Ḟ
R0

. (4.5)

Whenever δN is independent of F , it follows that ∂iN
i will be independent of F as well.

Notice that the dependence of N on F is proportional to C(t). Its presence breaks the shift
symmetry in F . This makes sense, because the non-attractor solution does not respect the
scaling transformation, as we saw in section 2. The symmetry is restored as soon as the
system converges to the attractor C = 0. Therefore, we have explicitly shown that to third
order in perturbation theory F indeed admits a constant solution.

Let us now deduce the quadratic action for the perturbations on the attractors. By
inserting (4.4) back into (4.2) and expanding up to second order, we finally deduce

S =
1

2

∫
d4xa3

− 2ε

a2
(∇ϕ)2 +

4β

a2R0
∇F · ∇ϕ−

(
1 +

X̄2

R2
0

e2Ȳ /R0

)
(∇F)2

a2

+ 2ε

(
ϕ̇− βḞ

εR0

)2

+

(
1 +

X̄2

R2
0

e2Ȳ /R0 − 2β2

R2
0ε

)
Ḟ2

 , (4.6)

where we have assumed that C(t)→ 0 has settled. Thanks to eq. (3.8), we see that F is well
defined as long as ∆ 6= −1, which excludes the first class of trajectory solutions studied in
section 3.1. In the case ∆ = −1, we must therefore directly work with the action (1.1), with
parameters given in eqs. (3.19) and (3.20).

Notice that (4.6) is symmetric under constant shifts of F , confirming the reasonings
of section 2, based on the invariance of the classical equations of motion. The equations of
motion derived from (4.6) are

1

a3

d

dt

[
a3ε

(
ϕ̇− βḞ

εR0

)]
− ε

a2
∇2

[
ϕ− β

εR0
F
]

= 0, (4.7)

1

a3

d

dt

[
a3(1 + ∆̄)2Ḟ

]
− (1 + ∆̄)2∇2

a2
F − 2ε

(
ϕ̇− βḞ

εR0

)
d

dt

[
β

εR0

]
= 0, (4.8)

where we have used 1 + ∆̄ introduced in eq. (3.8) to keep the notation simple. A simple

inspection of these equations shows that
(
ϕ̇− βḞ

εR0

)
quickly decays to zero during inflation.

Therefore, we can infer from the F equation of motion for that F = const is the dominant
solution. The other solution is decaying on superhorizon scales. This allows us to trade a
long wavelength F perturbation for a scaling transformation of the background solution.
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5 Consequences of the scaling transformation

In this section, we study a few direct consequences of the scaling transformation on the
behavior of the field F . For instance, we may infer the squeezed limit of the 3-point function of
F from the way in which the scaling transformation acts on F and the background quantities.
We will use this result in the next section to derive the squeezed limit of the bispectrum of
the primordial curvature perturbation R.

5.1 Scaling transformation and perturbations

Let us revisit how the scaling transformations (2.7)–(2.9) act on the perturbed fields X(x)
and Y (x) given in eqs. (2.13)–(2.14). Notice that the scaling transformation can be re-stated
as a transformation on the fluctuation F(x) and the coordinates x, instead of on the fields
X and Y (which only appear as background quantities). That is, we may summarize the
transformation as:

F(x) = F ′(x′) + c, x′ = ecx. (5.1)

(Recall that we are working in a gauge where π = 0). Now the background fields X and Y
transform as scalars:

X(t)→ X ′(t′) = X(t), (5.2)

Y (t)→ Y ′(t′) = Y (t). (5.3)

That is, the only effect of the transformation is to rescale the time coordinate, without
affecting the field. If needed, now one could rewrite (5.2) and (5.3) as X ′(t) = X(e−ct) and
Y ′(t) = Y (e−ct). Equations (5.1)–(5.3) imply that any background quantity will transform
according to how they scale with time. For example, it is straightforward to see that the scale
factor also transforms as a scalar a(t) → a′(t′) = a(t), and therefore the Hubble parameter
transform as:

H(t)→ H ′(t′) = e−cH(t). (5.4)

We can now identify F ′(x′) as a fluctuation about a background determined by X ′(t′), Y (t′)
and H ′(t′), that differs from the original background by a re-scaling of time. However, be-
cause the transformation is not a symmetry of the action, there is an important distinction
between F and F ′. Indeed, the transformations (5.1)–(5.3) imply that the action (4.2) for the
fluctuations rescales as S → S′ = e2cS, as expected. This re-scaling tells us that the quantiza-
tion of F and F ′ follow slightly different rules. To be precise, while F is quantized employing
~, the fluctuation F ′ must be quantized using a value of the Planck constant given by

~′ = e2c~, (5.5)

which is obtained by requiring that S′/~′ = S/~, after considering S → S′ = e2cS.

5.2 Power spectrum of F

Let us use the previous results to establish a simple consequence concerning the computation
of the 2-point function for F that will be useful in the next subsection. First, recall that
the quadratic action (4.6) is symmetric under shifts of the field F (without considering the
simultaneous re-scaling the coordinates). This implies that the F field must admit a solution
with a constant amplitude. In particular, at long wavelengths (after horizon crossing) F will

– 13 –



J
C
A
P
1
0
(
2
0
2
0
)
0
1
8

freeze to a constant value (because the other non-constant solutions turn out to be decaying
solutions). To make this statement more tractable, let us expand F in Fourier modes as

F(x) =
1

(2π)3

∫
d3kF̂k(t)eik·x. (5.6)

At linear order, Fk(t) may be expanded in terms of creation and annihilation operators as:

F̂k(t) = Fk(t)ak + F∗k (t)a†−k. (5.7)

The statement that F freezes on superhorizon scales is equivalent to say that the amplitude
Fk(t) becomes a constant at wavelengths such that k/a(t) � H(t). The value of Fk(t) on
superhorizon scales must be given by a function of background quantities. This is because
the coefficients of the action (4.6) depend only on background quantities such as a(t), ε, and
combinations X2e2Y/R0 . Then, from dimensional analysis, at superhorizon scales Fk(t) must
be proportional to k−3/2 times a given constant B with dimensions of t−1 that is determined
by background quantities (for instance, B could be given by H∗, where the ∗ denotes that H
is evaluated at the time of horizon crossing). In other words:

Fk(t)→ k−3/2B. (5.8)

The dimensionless power spectrum PF (k) may be defined as the amplitude of the 2-point
function as:

〈FF〉(k1,k2) = (2π)3δ(3)(k1 + k2)
2π2PF
k3

. (5.9)

Then, it follows that

PF =
B2~
2π2

. (5.10)

This looks like a scale invariant power spectrum. However, B will necessarily depend on k
through its dependence on the background quantities. More to the point, B is a constant
function of background quantities that are evaluated at a time t∗, determined by the equation
H(t∗)a(t∗) = k (which signals horizon crossing). This implies that B inherits a k dependence,
that will be small as long as the background quantities on which it depends are slowly evolving
in time (as expected if ε and η are small).

Now, if we had computed the power spectrum of F ′ instead of F , then we would have
considered a background B′ and a value of the Planck constant given by ~′. This would have
led to the result

P ′F =
B′2~′

2π2
. (5.11)

Then, because B has dimensions of t−1, we necessarily have B′ = e−cB. In addition, recall
that ~′ = e2c~. These two transformation rules then imply that

P ′F = PF . (5.12)

That is, the power spectrum remains invariant under the scaling transformation.
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5.3 The squeezed limit of the 3-point function

Let us now show how to compute the squeezed limit of the 3-point function of F . Here
we follow the background-wave method introduced in [40] to derive the squeezed limit (see
also [41–43]). First, we may split F(x) into short and long-wavelength contributions as
F = FS + FL. This splitting implies that FL(x) contains contributions from wavelengths
that exited the horizon at times earlier than FS(x). Given that F freezes at horizon crossing,
and given that the gradients of FL are more suppressed than those of FS , we can take FL
as a constant (in comparison to FS). Then, setting c = FL in the transformation rule (5.1),
we obtain:

FS(x) = F ′(eFLx). (5.13)

Now, in the previous section we learned how to compute the power spectrum of F ′(x′). Let
us write this result as

〈F ′(x′)F ′(y′)〉 = 〈F ′F ′〉(|x′ − y′|). (5.14)

As a consequence, relation (5.13) allows us to compute the power spectrum of FS(x) and
express it as a function of FL:

〈FSFS〉(|x− y|) = 〈F ′F ′〉(eFL |x− y|)〉. (5.15)

Now, from eq. (5.12) we see that the only dependence of the right hand side on FL is through
the argument. This implies that the previous expression can be simply rewritten as

〈FSFS〉(|x− y|) = 〈FF〉(eFL |x− y|)〉, (5.16)

where 〈FF〉(|x − y|) is nothing but the 2-point function of F (instead of F ′) using the
linear theory. The salient point of the previous relation is that it informs us how does FL
non-linearly affects FS . We may now expand this result in terms of FL as

〈FS(x)FS(y)〉 = 〈FF〉(|x− y|)〉+ FL
d

d ln |x− y|
〈FF〉(|x− y|). (5.17)

Next, by Fourier transforming the fields as

F(x) =
1

(2π)3

∫
d3kFke

ik·x, (5.18)

we obtain the following relation in momentum space

〈FSFS〉(k1,k2) = 〈FF〉(k1,k2)−FL(kL)(nF − 1)PF (ks), (5.19)

where ks = (k1−k2)/2 and kL = k1 +k2, and where PF (ks) is the power spectrum satisfying
〈FF〉(k1,k2) = (2π)3δ(3)(k1 + k2)PF (ks). In addition, we have defined the spectral index of
PF as

nF (ks)− 1 =
d

d ln ks
ln
[
k3
sPF (ks)

]
. (5.20)

We can now correlate the 2-point correlation function 〈FSFS〉 with the long mode FL(k3).
This gives us an expression for the squeezed limit of the 3-point function (where |k3| � |k1|,
|k2|), which is found as:

〈FS(k1)FS(k2)FL(k3)〉sq = (2π)3δ(3)

(∑
i

ki

)
(1− nF )PF (kL)PF (ks). (5.21)
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Therefore the scaling transformation property of the ultra-light field also suppresses its self-
interaction, and thus the bispectrum of F becomes negligible. This is the main result of this
section, which will be used in the following section to derive the bispectrum of the primordial
curvature perturbation R.

6 Comoving gauge and squeezed bispectrum

As we have already stressed, the ultra-light fields ϕ and F are not the usual curvature and
isocurvature perturbations (hereby denoted asR and σ) in the comoving gauge. Nevertheless,
they can be related by a gauge transformation. We leave the detailed derivation for the change
of variables between two gauges up to second order to appendix B. In this section, based
on our previous results in the ultra-light gauge, we explore the perturbation behavior in
the comoving gauge, and compute the squeezed limit of the bispectrum for the primordial
curvature perturbation.

6.1 Back to comoving gauge

By comparing the quadratic actions (1.1) and (4.6) it is straightforward to realize that, to
linear order, the two sets of perturbations are related as (see appendix B):

R = ϕ− β

εR0
F , (6.1)

σ = (1 + ∆)F , (6.2)

where we identified ∆ with the help of eq. (3.8). In terms of these new perturbation variables,
the action (4.6) becomes the well known expression already reported at the introduction:

S =

∫
d4xa3

[
ε

(
Ṙ − 2Ω√

2ε
σ

)2

− ε

a2
(∇R)2 +

1

2
σ̇2 − 1

2a2
(∇σ)2 − 1

2
µ2σ2

]
, (6.3)

where Ω is the turning rate of the inflationary trajectory in field space, and µ is the entropy
mass of the isocurvature field. In terms of ∆ and slow-roll parameters, they are found to be
given as

Ω =
βηH√

2ε(1 + ∆)R0

, (6.4)

µ2 = − ∆̈

1 + ∆
− 3H

∆̇

1 + ∆
. (6.5)

These results, especially eq. (6.5), confirm an important point: that the isocurvature field σ
inherits the properties of the ultralight field F , and becomes ultra-light itself, provided that
∆ is a constant along the trajectory (which, as we have seen, it is ensured by the symmetry of
the UV model) which, as we have seen, can be the consequence of the underlying symmetry.
In addition, Ω is in general non-vanishing, and so the interaction between the isocurvature
field σ and the curvature perturbation R remains turned on throughout inflation.

In what follows, we derive the squeezed limit of the bispectrum of curvature pertur-
bations for the class of models in which ∆ remains constant, but different from the value
−1. We start with the simpler case ∆ = 0, and then move on to consider the more general
case ∆ 6= 0.
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6.2 Bispectrum in the case ∆ = 0

Let us first look at the exact ultra-light case with ∆ = 0 (or equivalently, Ẏ = 0) studied
in section 3.2.1. Notice from (6.2) that the ultra-light field F can be identified with the
isocurvature perturbation σ, due to the fact that ∆ = 0 in this case. Therefore σ remains
constant on superhorizon scales, and as a canonically normalized scalar field, the frozen
amplitude is given by σ∗ = F∗ = H/(2π). We denote the amplitude of the comoving curvature
perturbation around horizon crossing as

R∗ = ϕ∗ −
β

ε∗R0
F∗, (6.6)

whose amplitude is of order H∗/
√
ε∗. At the end of inflation, we have ε = 1, and since the

ultra-light fields F and ϕ remain constant, the final amplitude of R can be expressed as

R(tend) = ϕ− β

R0
F ' R∗ +

β

ε∗R0
F∗. (6.7)

Comparing these two terms, we find the dominant contribution at the end of inflation comes
from the second one, which is of order H∗/ε∗. Therefore the final curvature perturbation can
be seen as mainly generated by the isocurvature degree of freedom, which is the essence of
the “ultra-light isocurvature” scenario [1, 2]. More specifically, this requires ε∗R

2
0/β

2 � 1.
Then the power spectrum is given by

PR '
β2

ε2∗R
2
0

PF . (6.8)

We now derive the soft limit of the bispectrum of the curvature perturbation. To
compute the correlation functions of the comoving curvature perturbation, first we perform
the gauge transformation from the ultra-light gauge to the comoving gauge to second order
in perturbation theory (see appendix B)

R = ϕ− β

ε

F
R0
−
(
ηβ2

4ε2
+
β

2ε

)
F2

R2
0

+
β2

ε

ḞF
R2

0H
− β

ε

ϕ̇F
HR0

. (6.9)

Since ϕ and F freeze out after horizon-exit, the last two terms will go to zero. Then up to
second order, the curvature perturbation at the end of inflation can be expressed as

R(tend) ' R∗ +
β

ε∗

F∗
R0

+

(
β

2ε∗
+
η∗β

2

4ε2∗

)
F2
∗

R2
0

, (6.10)

where we assume that ηend � η∗/ε
2
∗. We have now at hand all ingredients to derive the

soft limit of the bispectrum of the curvature perturbations. The relation (6.10) allows us to
express the bispectrum of curvature perturbations in terms of the bispectrum 〈FFF〉 and
four convolutions of the trispectrum of F evaluated at horizon crossing. Taking the squeezed
limit of the bispectrum, we use the relation (5.21) to rewrite the squeezed bispectrum of F as
function of its power spectrum. Moreover, considering the ultra-light field are the dominant
source of the final curvature perturbation, we find

lim
kl/ks→0

〈R(kl)R(ks)R(ks)〉= (1−nF )
(

β

ε∗R0

)3
PF (kl)PF (ks)+

(
β

ε∗R0

)4(2ε∗
β

+η∗

)
PF (kl)PF (ks)

≈
(

2ε∗
β

+η∗

)
PR(kl)PR(ks) . (6.11)
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As expected, the tree-level contribution from the isocurvature self-interaction is suppressed
with respect to the curvature bispectrum produced at super-horizon scales. Therefore, the
final amplitude is given by

fNL =
5

12

(
2ε∗
β

+ η∗

)
. (6.12)

This expression is consistent with the bispectrum of the orbital inflationary models with
power-law potentials studied in [2], for which η = 2ε/β, applied to the hyperbolic field
metric (2.1). The resulting amplitude is slow-roll suppressed, however not equivalent to the
single field inflationary prediction, because it violates Maldacena’s consistency relation [40]
fNL = 5

12 (1− ns) = 5
12 (2ε∗ + 2η∗).

6.3 Bispectrum in the case with constant non-vanishing ∆

Next, we focus on those background trajectories where VY can be neglected, such that ∆ is
a non-vanishing constant, as discussed in section 3.2.2. We have verified numerically that
the results reported in this section are re-obtained in other situations where VY cannot be
neglected. Here, because σ and R are proportional to each other, the isocurvature field σ
freezes to an amplitude determined by σ∗ = (1 + ∆)F∗ = H∗/(2π). Meanwhile, since the
linear order gauge transformation to R is given by (6.1), the final amplitude of curvature
perturbation remains the same with (6.8). For the squeezed limit of the bispectrum we
repeat the same steps as in section 6.2, with the only difference that the non-linear gauge
transformation changes. The full expression is derived in appendix B. The final amplitude
of the bispectrum is proportional to the coefficient of F

2

R2
0

of the gauge transformation and we

find the curvature perturbation at the end of inflation

R(tend) ' R∗ +
β

ε∗

F∗
R0

+

[
η

4
+

ε

2β
− Ẏ 2

2βH2
− 2Ẏ

R0H

(
1− Ẏ 2

2εH2

)
+
εR0

4β2

Ẏ

H

−εR0

4β2

Ẏ

H

(
4− Ẏ 2

εH2

)
(1 + ∆)2

]
β2F2

∗
ε2∗R

2
0

. (6.13)

Next using the relations we derived in section 3.2.2, and keeping the leading order contribu-
tion, we find

fNL =
5

12

(
η∗ +

2

β
ε∗ −

16

3R2
0

ε∗

)
, (6.14)

which is slow-roll suppressed and violates Maldacena’s consistency relation.

7 Discussion & conclusions

The present article was driven by the following questions: what is the active mechanism
leading to the appearance of ultra-light isocurvature fields? And what is the generic pre-
diction for non-Gaussianity from models admitting ultra-light isocurvature fields? We have
seen that there are entire classes of multi-field systems that can sustain inflation with the
very distinctive feature of having an ultra-light isocurvature fluctuation interacting with the
primordial curvature perturbation. These systems are characterized by having an action that
scales under a special class of transformation (a scaling transformation) that simultaneously
acts on fields and space-time coordinates.
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This transformation leaves invariant the background equations of motion, and ensures
the existence of two main classes of trajectories. The first class, introduced in section 3.1,
consists of trajectories that lie along the symmetry direction. In this case, the isocurvature
field is not protected against acquiring a non-vanishing mass. In the second class, introduced
in section 3.2, the trajectory stays misaligned with respect to the first class, allowing the
isocurvature field to fluctuate along the symmetry direction (when the parameter ∆ defined
in (3.7) stays constant). In such a case, the isocurvature field becomes ultra-light and it is
possible to infer some outstanding properties about the primordial spectra. In particular,
we were able to infer the squeezed limit of the bispectrum of the ultra-light fields, which is
found to be suppressed by factors of order slow-roll.

One of the main aspects of the present article that we wish to highlight is that the
scaling property of the action ensures the existence of ultra-light fields for a long period of
time during inflation — at least long enough to affect the entire set of curvature perturbations
relevant to observable scales. Understandably, the same mechanism ensuring the existence of
ultra-light fields does not only suppress the value of the entropy mass, but also, it suppresses
any other self-interaction experienced by the isocurvature field. As a consequence, even
though ultra-light fields can efficiently transfer their statistics to the curvature perturbation,
the amount of non-Gaussianity available for such a transfer happens to be marginal, and so
the predicted level of primordial non-Gaussianity is found to be tiny.

All in all, one can now have a more general understanding on how primordial non-
Gaussianity, as produced by an isocurvature field, can be enhanced. As already emphasized
several times during this work, the existence of sizeable self-interactions is expected to come
together with a non-vanishing entropy mass. Thus, after horizon crossing, there will be a
limited amount of time during which the non-Gaussianity produced by these self-interactions
can be transferred to the curvature perturbation. A clear example of this situation is of-
fered by quasi-single field models of inflation [13, 14], where a cubic self interaction of the
isocurvature field is able to induce the appearance of local non-Gaussianity thanks to the
linear coupling between the curvature and isocurvarture fields induced by Ω. In this case,
the amplitude of the bispectrum is found to be proportional to the cubic self-coupling of the
isocurvature field, but it is also found to be suppressed by a given function of µ/H. On the
other hand, there are new examples of multi-field models where the self-interactions of the
isocurvature field are determined by a scalar potential with a rich field structure, leading to
the generation of tomographic non-Gaussianity [22, 23] (whereby the non-Gaussian proba-
bility distribution function stores information of the shape of the landscape potential). In
these cases, the structure of the potential — which introduces a mass to the isocurvature
field — also introduces the self-interactions, leading to a controlled small enhancement of
non-Gaussianity (in which high n-point functions could play a significant role).

Another important thing to notice is that, in the “ultra-light isocurvature” scenario
we studied, only one single degree of freedom (the ultra-light field) is responsible for both
curvature and isocurvature perturbations by the end of inflation. This fact, besides the
suppressed isocurvature self-interactions, also plays a crucial role in the result of small non-
Gaussianity. If we go beyond the “ultra-light isocurvature” scenario, it is interesting to see
similar behaviour also happens in “multi-field α-attractors” [45], where although the multi-
field effects are significant, in the end only the radial field fluctuation will contribute to the
curvature perturbation, and its self-interaction is suppressed by the hyperbolic stretching
effect. As a result, all the model predictions, including non-Gaussianity, recover the single-
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field results modulo small corrections due to non-gravitational couplings.2 These different
studies of multi-field models indicate that inflation with unstabilized light fields can still
yield single-field-like phenomenologies, and the origin of this result is related to the one,
dominating single degree of freedom of perturbations with suppressed self-interaction.
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A Algebraic relations

There are a few identities we can use to rewrite our expressions for the slow-roll parameters,
turn rate, etcetera. These are the scaling relation of the potential and the integration constant
that quickly decays to zero

XVX −R0VY = 2βV, (A.1)

ẊXe2Y/R0 −R0Ẏ + 2βH = 0 , (A.2)

together with the field equations of motion

Ẍ + 3HẊ +
2

R0
Ẏ Ẋ + e−2Y/R0VX = 0, (A.3)

Ÿ + 3HẎ − 1

R0
e2Y/R0Ẋ2 + VY = 0. (A.4)

We wish to find expressions that allow us to parameterize deviations from the ultra-light
scenario, in which Y is constant. Therefore, for notational convenience, we define

εY ≡
Ẏ 2

2H2
, (A.5)

ηY ≡
ε̇Y
HεY

, (A.6)

ξY ≡
η̇Y
HηY

, (A.7)

(1 + ∆)2 = 1 +
X2

R2
0

e2Y/R0 − 2β2

εR2
0

. (A.8)

2For instance, the well known Maldacena’s consistency relation obtained in the squeezed limit of single
field inflation is not recovered. This is because, here, the self-interactions that determine the squeezed limit
of the present system are not fixed by diffeomorphism invariance.
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Here ∆ appears in the gauge transformation (6.2), and determines both the turn rate (6.4)
and the entropy mass of the isocurvature perturbations (6.5). Notice that εY is simply the
contribution of the kinetic energy of Y to ε, and therefore by definition εY ≤ ε. In the
ultra-light scenario all these parameters are zero. We will see in a moment how to take the
limit properly.

We can eliminate all Ẋ in terms of Ẏ using (A.2) and all VX in terms of VY using (A.1).
This allows us to solve for the combination that appears in the definition (A.8)

X2e2Y/R0

2β2
=

(
1− Ẏ R0/(2βH)

)2

ε− εY
, (A.9)

which reduces to 1/ε when Ẏ = 0, such that ∆ becomes zero. Indeed, we can use this result
to rewrite

(1 + ∆)2 =

[
1− βẎ /(εR0H)

]2

1− Ẏ 2/(2εH2)
. (A.10)

Having found this expression, we can now compute the physical quantities, such as the turn
rate and the entropy mass along the inflationary trajectory.

First of all, the turn rate is given by

Ω2

H2
=
β2η2

2εR2
0

1− Ẏ 2/(2εH2)[
1− βẎ /(εR0H)

]2 , (A.11)

which decreases with Ẏ , provided that the other parameters are kept constant. Moreover,
taking a time derivative of (A.9) we can relate η to ε. In the ultra-light regime this reduces
to the simple expression

η =
2ε

β
if Ẏ = 0 . (A.12)

It is a bit more involved to find the expression of the entropy mass. First we need to
compute the time derivative of ∆:

∆̇

1 + ∆
=

βẎ

4εR0H

H

1− βẎ /(εR0H)

[
2η + (η − ηY )

2− Ẏ R0/(βH)

1− Ẏ 2/(2εH2)

]
(A.13)

Notice that we have rewritten the time derivatives of εY in terms of ηY . We need to do this
to have an expression that goes manifestly to zero in the ultra-light limit, which is otherwise
hidden by the non-trivial relation between η and ε for the general background solution.
From (6.5) that the entropy mass is given by

µ2 = −3H
∆̇

1 + ∆
−

(
∆̇

1 + ∆

)2

− ∂t

(
∆̇

1 + ∆

)
, (A.14)

which is a functional of Ẏ , εY /ε, ηY , ξY , η and ξ. Interestingly, the above expression has
the same form with the entropy mass derived from the Hamilton-Jacobi formalism, after

identifying ∆̇
1+∆ → −WNN , where WNN is the Hessian of the fake superpotential W projected

along the direction orthogonal to the inflationary path [46]. The possible relation with the
multi-field Hamilton-Jacobi system deserves a closer look. In addition, the entropy mass
vanishes for a constant ∆, which is the case for the isometry trajectories (∆ = 0) and VY ' 0
attractors (∆ = −2β/(3R2

0)).
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B Gauge transformation

In this appendix, we derive the non-linear gauge transformation between the comoving gauge
and ultra-light gauge, and build the second order relation from F and ϕ to the comoving
curvature perturbation R and isocurvature perturbation σ.

Let us denote the spacetime coordinates in the ultra-light gauge as x̃ and in the comoving
gauge as x, and the same for the fields. A scalar field transforms as a scalar under a gauge
transformation, i.e.:

φ̃a(x̃) = φa(x). (B.1)

In the ultra-light gauge the field fluctuations are given by φ̃a(x̃) =
(
e−F(x̃)/R0X(x̃),Y (x̃)+F(x̃)

)
.

Writing t̃= t+T (t,x), we can expand φ̃a(x̃) to second order

φ̃a(x̃) =

(
X + ẊT +

1

2
ẌT 2 −X F

R0
− ẊT F

R0
−X Ḟ

R0
T +X

F2

2R2
0

,

Y + Ẏ T +
1

2
Ÿ T 2 + F + ḞT

)
. (B.2)

The comoving gauge is defined to have no perturbations along the inflaton trajectory. At
linear order this simply means the perturbation along the tangent direction vanishes and
the one in the normal direction is the isocurvature mode σ. Here we define the tangent
and normal unit vectors as T a = (Ẋ, Ẏ )/φ̇ and Na = (−Ẏ e−Y/R0 , ẊeY/R0)/φ̇, where
φ̇2 = e2Y/R0Ẋ2 + Ẏ 2. Then at the leading order the scalar fields and perturbations are
expressed as φa(x) = φa0(t) + σ(x)Na(t). Beyond linear order, the effects of the curved
field manifold becomes nontrivial, and one convenient way is to formulate the field fluctu-
ations as the one along a geodesic in the field space. In our case, φa0(t) and Na specify
one geodesic along the normal direction. Thus we can follow the covariant approach de-
veloped in refs. [47, 48] to parametrize the isocurvature perturbation up to second order
φa(x) = φa0(t) + σ(x)Na(t)− 1

2ΓabcN
bN cσ2, which gives us

φa(x) =

(
X + σNX −NXNY σ

2

R0
, Y + σNY +

1

2
e2Y/R0N2

X

σ2

R0

)
. (B.3)

Next, solving eq. (B.1) to first order we find

T (1) = − β

εHR0
F , (B.4)

and also the relation between isocurvature perturbation and F

σ = (1 + ∆)F , (B.5)

where we used the identity (A.2) and the parameter ∆ in (A.8) to simplify the expression.
After some algebra, the second order solution gives us

T (2) =

(
−ηH

4
+
εH

2
+
Ẋ2

0 Ẏ0GXX
εH2R0

)
β2

ε2
F2

H2R2
0

− X0Ẋ0GXX
4εR2

0H
2
F2 − GXXẊ

2
0

2εR0H2

(
β

εHR0

)
F2

+
Ẏ0

8ε2R0H4

(
2φ̇2

0 − Ẏ 2
0

)
σ2 +

β2

ε2
FḞ
H2R2

0

. (B.6)
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Meanwhile, the metric perturbations in these two gauges are connected by a(t)eR(t) =
a(t̃)eϕ(t̃), which leads to

R+
1

2
R2 = ϕ+HT +

1

2
ϕ2 + ϕ̇T +

1

2

ä

a
T 2 +HTϕ . . . (B.7)

Here we neglected the spatial gradient terms [40], since they are suppressed on superhorizon
scales. To first order we find

R(1) = ϕ+HT (1) = ϕ− β

εR0
F . (B.8)

And finally at the second order, the relation between curvature perturbation and two ultra-
light fields F and ϕ is given by

R(2) =HT (2)−β
ε

ϕ̇

H

F
R0
−β

2

2ε

F2

R2
0

=−

[
η

4
+
ε

2β
+
εR0

4β2

Ẏ

H
− Ẏ 2

2βH2
− 2Ẏ

R0H

(
1− Ẏ 2

2εH2

)
− εR0

4β2

Ẏ

H

(
4− Ẏ 2

εH2

)
(1+∆)2

]
β2

ε2
F2

R2
0

−β
2

ε2
FḞ
R2

0H
−β
ε

ϕ̇

H

F
R0

. (B.9)

On superhorizon scales, since F and ϕ freeze, we can drop the last two terms with time
derivatives.
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