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Abstract 

Simultaneously estimating plasma parameters of the ionosphere presents a problem for the incoherent scatter radar 
(ISR) technique at altitudes between ~ 130 and ~ 300 km. Different mixtures of ion concentrations and temperatures 
generate almost identical backscattered signals, hindering the discrimination between plasma parameters. This tem‑
perature–ion composition ambiguity problem is commonly solved either by using models of ionospheric parameters 
or by the addition of parameters determined from the plasma line of the radar. Some studies demonstrated that it is 
also possible to unambiguously estimate ISR signals with very low signal fluctuation using the most frequently used 
non-linear least squares (NLLS) fitting algorithm. In a previous study, the unambiguous estimation performance of 
the particle swarm optimization (PSO) algorithm was evaluated, outperforming the standard NLLS algorithm fitting 
signals with very small fluctuations. Nevertheless, this study considered a confined search range of plasma parameters 
assuming a priori knowledge of the behavior of the ion composition and signals with very large SNR obtained at 
the Arecibo Observatory, which are not commonly feasible at other ISR facilities worldwide. In the present study, we 
conduct Monte Carlo simulations of PSO fittings to evaluate the performance of this algorithm at different signal fluc‑
tuation levels. We also determine the effect of adding different combinations of parameters known from the plasma 
line, different search ranges, and internal configurations of PSO parameters. Results suggest that similar performances 
are obtained by PSO and NLLS algorithms, but PSO has much larger computational requirements. The PSO algorithm 
obtains much lower convergences when no a priori information is provided. The a priori knowledge of Ne and Te/Ti 
parameters shows better convergences and “correct” estimations. Also, results demonstrate that the addition of Ne and 
Te parameters provides the most information to solve the ambiguity problem using both optimization algorithms. 
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Introduction
Incoherent scatter radar (ISR) is one of the most pow-
erful ground-based sounding techniques to estimate 
plasma parameters of the ionosphere at altitudes between 
80 and ~ 1000  km (Evans 1969; Beynon and Williams 

1978). Multiple parameters are estimated simultaneously 
through the fitting of the backscattered signal autocor-
relation function (ACF) or its Fourier transform, the 
incoherent scatter spectra (ISS), at each altitude range 
defined by the transmitted pulse width of the radar. Nev-
ertheless, the estimation process presents problems due 
to the existence of a mixture of different ion species (Oli-
ver 1979). Different combinations of ion temperatures as 
well as molecular and atomic ion concentrations generate 
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almost identical signals, producing an ambiguous estima-
tion of plasma parameters (Aponte et  al. 2007). Indeed, 
molecular ions NO+ and O+

2  are predominant at low alti-
tudes (Evans and Oliver 1972; Hoffman et al. 1969), but 
are not distinguishable to the radar because of the simi-
larity of their molecular masses (Oliver 1979). Therefore, 
these molecular ions are typically assumed to behave as a 
single mixed molecular species ( M+ ) with a mass of 30.5 
amu (i.e., a mixture of 25% O+

2  and 75% NO+ ; Cabrit and 
Kofman 1996; Lathuillere et al. 1983). On the other hand, 
the topside ionosphere is dominated by atomic oxygen 
ions ( O+ ), while at higher altitudes the protonosphere 
is mainly governed by lighter atomic ions ( H+ and He+ ; 
Schunk and Nagy 2009; Kelley 1989). Therefore, in the 
transition region between molecular and atomic oxygen 
ions, found at altitudes between ~ 130 to ~ 300  km, two 
possible solutions of plasma parameters can be obtained 
(Lathuillere et al. 1983; Wu et al. 2015). Different electron 
and ion temperatures are acquired depending on the rela-
tive abundance of molecular ions value ( p = n(M+)/Ne ). 
This effect is known as the “temperature–ion compo-
sition ambiguity” (TICA) problem of ISR (Martínez-
Ledesma and Díaz 2019).

Moreover, the multiple couplings of the magneto-
sphere–ionosphere–thermosphere (MIT) system (Sar-
ris 2019; Borovsky and Valdivia 2018) and internal 
ionospheric processes provide a large variability to the 
ion composition at the ionospheric valley region. A study 
conducted by Lathuillere and Pibaret (1992) showed 
a large diurnal and seasonal variability of the transi-
tion altitude between molecular and atomic oxygen ions 
( z50 ). Additionally, this transition altitude revealed a clear 
dependence on the Kp geomagnetic activity index. Simi-
lar ion composition variabilities were obtained by Shibata 
et al. (2000) in the auroral zone. At high latitudes, magne-
tospheric activity generates ion outflows, carrying fluxes 
of atomic oxygen ions from the ionosphere to the mag-
netospheric plasma sheet (Borovsky and Valdivia 2018). 
In these outflow events, molecular ions are upwelled to 
high ionospheric altitudes during magnetic storms. These 
molecular ions may be transported to mid-latitudes dur-
ing strong storm conditions. At mid-low latitudes, the 
ion downwelling might carry atomic ion species to lower 
ionospheric altitudes (Richmond and Lu 2000). Satellite 
measurements in the auroral zone have detected atomic 
oxygen ion depletions and increments of molecular ions 
related to ion outflow events (Brinton et al. 1978). Even 
during low magnetic activity and solar minimum condi-
tions, simple ionospheric models show a large variability 
of ion composition at high latitudes (Sojka et  al. 1981). 
These models agree with the ion densities obtained by 
the AE-C satellite located at ~ 300  km altitude (Brinton 
et al. 1978). Furthermore, recent satellite measurements 

have observed molecular ions in the magnetospheric ring 
current during small magnetic storms, indicating that the 
ion outflow is in fact a highly frequent phenomenon (Seki 
et al. 2019). Moreover, molecular ions were not found in 
the magnetosphere during geomagnetic quiet periods, 
suggesting that magnetic storms are a key driver of the 
low-altitude ionospheric ion loss through ion outflow 
processes. To date, it is still unknown what mechanisms 
control the ion outflow, as well as its spatial and temporal 
scales, and the amount of flux transported through this 
process (Borovsky and Valdivia 2018). The correct deter-
mination of ion composition and temperatures by the ISR 
method could provide an extremely relevant insight into 
these questions, helping disentangle several of the most 
outstanding current unknowns about the Earth’s MIT 
system (Sarris 2019).

Different methods have been studied in the literature 
to solve the TICA problem. The most common solution 
is the use of theoretical models of plasma parameters to 
restrict the solutions of the ambiguous estimation. Initial 
methods considered equal ion and neutral temperature 
profiles or smooth variations of plasma parameters with 
altitude (Waldteufel 1971; Evans and Oliver 1972). Para-
metric models of ion composition and temperature were 
implemented by Oliver (1979) based on early rocket and 
satellite measurements. Models of ion composition were 
also employed to simultaneously estimate parameters 
of the entire ionospheric column using the full profile 
inversion method (Cabrit and Kofman 1996; Litvine et al. 
1998). Furthermore, in the auroral region, different mod-
els were developed to analyze Joule heating events (Kelly 
and Wickwar 1981) and strong electric fields (Blelly et al. 
2010; Zettergren et al. 2011). Alternatively, several meth-
ods have been developed to provide additional informa-
tion from the plasma line of the radar, constraining the 
feasible solutions to solve the ambiguity (Wand 1970; 
Bjørnå and Kirkwood 1988; Fredriksen et  al. 1989; Fre-
driksen 1990; Nicolls et al. 2006; Aponte et al. 2007). As 
the ion acoustic band of the radar presents the most pro-
nounced features of the spectrum, plasma parameters 
have been commonly estimated from this frequency band 
(Akbari et al. 2017). Alternatively, the plasma line is a fre-
quency peak in the megahertz range, which depends on 
electron density, electron temperature, and the magnetic 
aspect angle (Yngvesson and Perkins 1968). The plasma 
line is not routinely detected by most ISRs, but it is occa-
sionally enhanced by nonthermal effects such as local or 
magnetic conjugate photoelectrons, secondary electrons, 
and electron beams (Akbari et al. 2017). Plasma parame-
ters that can be estimated from the plasma line resonance 
frequency are the electron density ( Ne ) and the electron-
to-ion temperature ratio ( Te/Ti;Wand 1970; Waldteufel 
1971; Aponte et  al. 2007), the electron temperature ( Te ; 
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Kofman et  al. 1981; Bjørnå and Kirkwood 1988; Nicolls 
et  al. 2006), and the electron bulk velocity ( Ve , Behnke 
and Ganguly 1986; Akbari et al. 2017). Moreover, Oliver 
(1979) proposed a different method to solve the ambigu-
ity based on the use of ISR signals with very small fluctua-
tions. This study determined the two possible parameters 
solutions and posteriorly selected the solution that pro-
vided the smoother ion composition profile at different 
altitudes. Later, this method was implemented in Lathu-
illere et  al. (1983) and Lathuillere and Pibaret (1992) by 
post-integrating signals with long integration times of 
5 min.

The most recent study of the TICA problem (Martínez-
Ledesma and Díaz 2019) presented a theoretical frame-
work to quantify the probability of solving the TICA 
problem and determined the signal fluctuation thresh-
olds for which the problem is unambiguously solved. 
This study evaluated the unambiguous estimation per-
formance of the most commonly used non-linear least 
squares (NLLS) optimization algorithm in ISR analyses, 
for both range-gate and full profile estimation methods 
(Erickson 1998; Swoboda et  al. 2017; Hysell et  al. 2008; 
Nikoukar et al. 2008): the Levenberg–Marquardt (L–M) 
algorithm (Levenberg 1944; Marquardt 1963). In their 
study, the authors assessed the convergence of the esti-
mated solutions by using the statistical distribution of 
the reduced Chi-square ( χ2

r  ) minimization cost function. 
By selecting only convergent solutions, the TICA prob-
lem was solved at a very small signal fluctuation level. 
The addition of a priori information from the plasma line 
increased the fluctuation level at which the signal could 
be unambiguously estimated. Furthermore, the study 
of Martínez-Ledesma and Díaz (2019) demonstrated 
that the optimization search was not always success-
ful, even when the initial parameters of the search were 
near the correct solution. However, it was determined 
that the success rate depends on both the distance of 
the initial search parameters to the true solution and the 
signal fluctuation level. To overcome the initial assump-
tions constraint, the authors suggested a new estimation 
method based on Monte Carlo simulations and L–M 
optimization: the Monte Carlo Levenberg–Marquardt 
(MCLM) method. In this new method, the analyzed fit-
tings used different initial parameters uniformly selected 
from the search space of the parameters. Hence, the most 
frequently obtained set of parameters is most likely to be 
the solution of the estimation problem. In this study, the 
probabilities of convergence and unambiguous estima-
tion of the MCLM method were calculated for different 
combinations of parameters assumed to be known a pri-
ori with different levels of uncertainty.

A different fitting algorithm was evaluated by Wu et al. 
(2015) to unambiguously estimate plasma parameters 

of ISR signals obtained at the Arecibo Radio Observa-
tory: the particle swarm optimization (PSO) algorithm 
(Kennedy and Eberhart 1995). This study analyzed the 
performance of the PSO algorithm by fitting ISR signals 
with different combinations of parameters assumed to 
be known a priori. Their results suggested that the PSO 
algorithm outperformed the standard NLLS optimiza-
tion algorithm commonly used in ISR fittings. Never-
theless, three elements from this work are important to 
note and might be interesting to explore: (i) the signals 
analyzed were obtained with signal-to-noise ratios (SNR) 
between 15 and 20, owing to the simultaneous frequency 
transmission (Sulzer 1986a) and coded long pulse (Sulzer 
1986b) techniques used at Arecibo. This low signal fluc-
tuation characteristic is difficult to achieve by other ISR 
facilities other than the Arecibo Radio Observatory. (ii) 
The PSO algorithm presents the problems of stagnation 
and early convergence to local minimums, which were 
not evaluated or analyzed in the study. And (iii) the PSO 
implementation constrained the search range of plasma 
parameters using theoretical assumptions of the ion 
composition that may be inappropriate in certain cases.

The work of Wu et  al. (2015) proposed an interesting 
and powerful tool for parameter estimation of ISR sig-
nals. The PSO is a widely used optimization algorithm 
capable of determining optimal solutions in multi-dimen-
sional complex search spaces (Freitas et al. 2020; Zhang 
et al. 2015). However, no previous study has determined 
the capacities of the PSO algorithm to solve the TICA 
problem in different noise regimes. The objective of the 
present study is to analyze the unambiguous estimation 
performance of the standard PSO algorithm at different 
signal fluctuation levels. Besides, our study provides new 
techniques to detect stagnation and determine incorrect 
estimation cases of PSO fittings. Furthermore, a compar-
ison study of the PSO algorithm is done with both limited 
and full ion composition search ranges. Additionally, the 
performance of the standard PSO algorithm is compared 
to the MCLM method to determine which optimization 
technique provides the best estimation characteristics to 
solve the TICA problem.

This article is organized in four sections. “Methods” 
section describes the PSO algorithm implemented, the 
simulation methods, and the statistical analysis of simu-
lation results. “Results and discussion” section shows the 
results and discussion, and “Conclusions” section indi-
cates our conclusions.

Methods
The particle swarm optimization algorithm
The PSO algorithm was originally proposed and devel-
oped in 1995 by R.C. Eberhart and J. Kennedy in two 
different papers (Kennedy and Eberhart 1995; Eberhart 
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and Kennedy 1995). The PSO algorithm is a method for 
optimizing nonlinear functions based on social behav-
iors found in nature, such as bird flocks seeking for food. 
It is a stochastic algorithm that resembles the collective 
behavior of a decentralized and self-organized system 
(i.e., swarm intelligence; Zhang et  al. 2015). Further-
more, this algorithm has been proven to work efficiently 
and stably with noise (Wang et  al. 2018). This method 
is based on the premise that the knowledge is spread 
between individuals of a population, but also relies on the 
social distribution of information among different gen-
erations of this population (Freitas et al. 2020). Multiple 
variants, enhancements, and extensions that improve the 
original PSO algorithm have been proposed in the litera-
ture to address different kinds of problems (for reviews of 
this technique, see Freitas et al. 2020; Wang et al. 2018; 
Sengupta et al. 2019; Zhang et al. 2015).

In the PSO algorithm multiple individual agents, called 
particles, are potential solutions of the optimization 
problem (Wang et al. 2018). The positions and velocities 
of the n particles that comprise the swarm are initial-
ized randomly using a uniform distribution in the search 
space (which prevents the PSO algorithm being sensitive 
to initial conditions). Then, supposing a P-dimensional 
space of parameters of the objective function, the parti-
cles move iteratively through the solutions space to find 
the global minimum of the problem by adjusting their 
trajectories and velocities. At each iteration, the algo-
rithm stores the best fit of each particle ( pbesti ) as well 
as the current global best fit of all particles ( gbest ). The 
optimization ends when the number of iterations of the 
algorithm reaches a maximum value or when the global 
best fit value reaches a specific tolerance. In this case, the 
optimization result corresponds to the global best loca-
tion of all particles.

The way in which the PSO algorithm has been designed 
allows the particles to explore and exploit the search 
space with the aim of finding the global optimum (Trelea 
2003). At each iteration, the algorithm calculates the posi-
tions and velocities of the particles by sharing information 
between them. Each new position is a combination of the 
individual knowledge (the previous velocity and position 
of the particle and its best historical position; pbesti ) and 
the collective knowledge of the swarm ( gbest ; Yang 2014). 
In addition, the movement of each particle contains a sto-
chastic component that contributes to maintaining an ade-
quate level of diversity in the swarm population (Freitas 
et al. 2020). Therefore, the velocity ( vij ) and position ( xij ) of 
each particle are updated according to the following equa-
tions (Shi and Eberhart 1998):

(1)vij(t + 1) =ω · vij(t)+ c1(ϕ1)
(

pbest(t)− xij(t)
)

+ c2(ϕ2)
(

gbest(t)− xij(t)
)

xij(t + 1) = xij(t)+ vij(t + 1),

where vij is the velocity vector of particle i into the j 
dimension, xij is the position of particle i into the j 
dimension, ϕ1 and ϕ2 are uniformly distributed ran-
dom numbers ( ϕ1 , ϕ2 ∈ [0, 1] ), ω is the inertia weight, 
and c1 and c2 are the cognitive and social components, 
respectively.

Nevertheless, the PSO algorithm frequently selects 
local optimum solutions in mid- and large-size prob-
lems (Lin et  al. 2014). This selection of local optimums 
depends on the complexity of the objective function, 
but it can also be related to the fast disappearance of 
the diversity of the particles in the search space (Wang 
et al. 2018). Furthermore, the PSO algorithm presents the 
problem of premature convergence (Wang et  al. 2018). 
Previous studies have verified the convergence unique-
ness of the PSO algorithm, demonstrating that the par-
ticles converge in mean square to the best position found 
by the swarm (Wang and Shen 2012; Jian et  al. 2007). 
Nevertheless, this convergence position is not obliged 
to be a global or local optimum of the objective function 
(Jian et al. 2007; Yuan and Yin 2015). This early conver-
gence effect is known as a “stagnation problem” and it 
occurs when particles stop changing their positions, gen-
erating an early convergence to a position not guaranteed 
to be the global or local minimum (Freitas et  al. 2020). 
Additionally, it has been theoretically and experimentally 
demonstrated that the PSO algorithm would not con-
verge to the optimum solution if the number of used par-
ticles is very small for the problem (Raß et al. 2015).

Relevance of the PSO parameters selection
The selection of the parameters c1 , c2 , and ω of the PSO 
algorithm has a large impact on the performance of the 
optimization (Zhang et  al. 2015). In multimodal prob-
lems, where multiple areas of the search space may 
contain local solutions, the determination of those 
parameters is even more relevant (Freitas et  al. 2020), 
and it is difficult to improve the accuracy of the algorithm 
by their adjustment (Lin et al. 2014). The cognitive com-
ponent ( c1 ) represents the individual knowledge of each 
particle and encourages the particle to move towards 
its own best-known position. Alternatively, the social 
or cooperation component ( c2 ) represents the collabo-
rative knowledge of the swarm and moves the particle 
toward the global solution. Both parameters are posi-
tive constants ( c1 > 0 and c2 > 0 ), also called “accelera-
tion constants” or “learning factors” (Wang et  al. 2018; 
Zhang et al. 2015). Commonly used cognitive and social 
components are those originally suggested by Kennedy 
and Eberhart (1995), i.e., c1 = c2 = 2 (Wang et al. 2018; 
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Yang 2014). Nevertheless, Van den Bergh and Engel-
brecht (2006) demonstrated that the critical condition 
c1 + c2 < 2(ω + 1) is required to guarantee convergence. 
Furthermore, Wang et al. (2012) suggested that the sum 
of these constants should not exceed 3 (i.e., c1 + c2 ≤ 3 ), 
and also recommended a larger social component 
( c2 > c1 ) to provide better performance.

Alternatively, the inertia weight ( ω ) parameter was 
first introduced by Shi and Eberhart (1998) to balance 
the search of the particles between the local and global 
environments (i.e., exploration and exploitation of the 
search space, respectively; Zhang et al. 2015). The use of 
this parameter highly improved the optimization perfor-
mance of the original PSO algorithm (Wang et al. 2018). 
Therefore, the use of ω became extensive by the commu-
nity, being commonly referred to as the standard PSO 
(SPSO; Freitas et  al. 2020). A high value of ω provides 
higher relevance to the individual knowledge of the par-
ticle. Alternatively, a small value of ω increases the use 
of the collective swarm knowledge, providing the neces-
sary momentum for particles to travel across the search 
space (Zhang et al. 2015), and preventing the algorithm 
from converging to local minimums (Freitas et al. 2020). 
As this parameter has the greatest influence on the algo-
rithm performance, multiple studies have been focused 
on evaluating different methods to configure the inertia 
weight value (e.g., see Wang et al. 2018). Due to the diffi-
culty of dynamically adapting the value of ω to every par-
ticular search space, Shi and Eberhart (1998) proposed 
the idea of a time-varying inertia. In a later study, Shi and 
Eberhart (1999) demonstrated that a linearly decreas-
ing ω that starts at 0.9 ( ωmax ) and ends at 0.4 ( ωmin ) 
with c1 = c2 = 2 provided fast convergences to multiple 
experimental tests, independently of the number of par-
ticles used. More recently, Wang et  al. (2012) suggested 
that ω should decrease linearly from 0.8 to 0.5 to guaran-
tee the critical condition obtained by Van den Bergh and 
Engelbrecht (2006).

The study of Wu et  al. (2015) implemented a SPSO 
algorithm to estimate plasma parameters from ISR spec-
trum signals. Their parameter configuration was initially 
suggested by Shi and Eberhart (1999). In a previous study, 
Chen et al. (2013) demonstrated that this parameter con-
figuration provides better results than the configuration 
proposed by Eberhart and Shi (2000), which uses a fixed 
inertia weight ω = 0.729 and c1 = c2 = 1.49445.

Alternatively, the selection of the number of particles of 
the swarm population ( n ) depends on the objective func-
tion to optimize. Although the algorithm performance is 
not very sensitive to the size of the swarm (Wang et al. 
2018), an insufficient number of particles may not con-
verge to the optimum solution (Raß et  al. 2015). In the 

study of Wu et al. (2015), a total of 100 particles were used 
to estimate more than one plasma parameter, but only 10 
particles were used when fitting one parameter. Further-
more, complex problems require not only increasing the 
number of particles, but also increasing the maximum 
number of iterations. A maximum of 5000 iterations was 
used by Wu et  al. (2015) to solve the problem of fitting 
one plasma parameter, but much larger maximum values 
were used for fitting two and three parameters (20,000 
and 30,000 iterations, respectively). Nevertheless, it is 
assumed that the PSO algorithm implementation of Wu 
et  al. (2015) increases the iteration counter each time a 
particle is evaluated. Therefore, configurations of a maxi-
mum number of 500, 200, and 300 iterations of all parti-
cles were used in their study when evaluating 1, 2, and 3 
plasma parameters, respectively.

PSO parameters choice
To allow a direct comparison with the results obtained 
by Wu et al. (2015), in our work, we used the parameter 
configuration proposed by Shi and Eberhart (1999), i.e., 
c1 = c2 = 2 and a linearly decreasing ω from 0.9 to 0.4. 
From herein, this configuration is known as “Param. 1”. 
Besides, to evaluate the performance of PSO using a dif-
ferent configuration, a second parameter configuration 
was implemented (“Param 2”): c1 = 1.2 , c2 = 1.8 , as well 
as the linearly decreasing ω from 0.8 to 0.5 suggested by 
Wang et al. (2012). It is important to note that the later 
parameters c1 and c2 verify the conditions c2 > c1 and 
c1 + c2 ≤ 3 recommended by Wang et al. (2012).

In our work, more than one plasma parameter was esti-
mated simultaneously. Therefore, we selected n = 100 , 
the number of particles used by Wu et  al. (2015) when 
a similar number of plasma parameters were estimated. 
Furthermore, to verify the sensitivity of the optimization 
performance to this configuration, several fitting simu-
lations were done with different numbers of particles. 
Results of these simulations are explained in Additional 
file 1: Text S1 and Figures S1, S2, and S3.

To properly determine the maximum number of itera-
tions required to estimate plasma parameters from ISR 
signals (i.e., max_iterations ) and reduce the overall com-
putation time of all Monte Carlo simulations, different 
fitting simulations were done with max_iterations val-
ues of 1000, 500, and 300. Results of these simulations 
are shown in Additional file 1: Text S2 and Figures S4, 
S5, S6, and S7. These simulation results suggest that 
simulations with max_iterations = 500 provide the best 
tradeoff between computing time and estimation per-
formance. Note that, in our PSO implementation, the 
iteration counter increases each time all particles are 
evaluated.
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Optimization algorithm implementation
Despite the fact that there are multiple possible vari-
ants of the PSO algorithm that could be considered to 
improve different aspects of the standard algorithm, our 
study is mainly focused on evaluating the performance 
of the most common PSO implementation to solve the 
TICA problem, as in Wu et al. (2015). In this way, to allow 
a direct comparison with the study of Wu et  al. (2015), 
we have implemented a SPSO algorithm to fit simulated 
spectra (ISS) with known ionospheric parameters. The 
flowchart of the implemented algorithm is illustrated in 
Fig. 1. Different modifications of the PSO algorithm and 
hybridizations with other optimization algorithms (such 
as those indicated in Freitas et al. 2020; Wang et al. 2018; 
Zhang et al. 2015) should be considered in future studies 
to evaluate possible improvements to this technique, but 
the discussion of those other algorithms is beyond the 
scope of this paper.

The main difference between our implementation and 
the SPSO algorithm employed by Wu et  al. (2015) is 
the use of a counter to identify stagnation (indicated by 
a dashed box in the flowchart in Fig. 1). The stagnation 
problem is generated when the best historical position 
of particles and the global best position remain constant 
during some iterations. In these cases, particles would 
only be able to leave their current positions if their previ-
ous velocities were non-zero (Freitas et al. 2020). In our 
implementation, a counter named count_const increases 
when the global best fit value remains equal during suc-
cessive iterations; otherwise it is set to zero. If this coun-
ter reaches the maximum value ( max_count_const ) 
the search is stopped. This stop condition reduces the 
computing time when stagnation occurs, but does not 
affect the estimation performance of the algorithm. It 
is relevant to highlight that, when all particles were ini-
tially located far from the local or the global optimum, 
the global best fit would remain constant during the 
initial part of the search. Therefore, erroneous stagna-
tion detections may occur during the initial explora-
tion of the search space. To avoid possible stagnation 
misinterpretations during the initial iterations of the 
algorithm, the stagnation counter is allowed to increase 
only when the minimum number of iterations is reached 
( count_const_init).

To detect the stagnation of the optimization search, 
the maximum number of consecutive repetitions with 
identical best fit ( max_count_const ) was set to 200. This 
value was selected to ensure that the number of repeti-
tions should be less than half the number of maximum 
iterations of the fitting ( max_iterations ). To avoid erro-
neous initial stagnation detections, the count_const_init 
parameter was configured to 100. Furthermore, simu-
lations were performed using the following values: 

count_const_init of 100 and 200, and their results are 
shown in Additional file 1: Text S2 and Figures S4, S5, S6, 
and S7.

By the addition of a penalty function, the PSO algo-
rithm can be applied to problems with restricted search 
spaces (i.e., constrained optimization problems). To 
implement this feature, particles with positions out of the 
allowed space of parameters ( xij < xj,min or xij > xj,max ) 
should have their objective functions increased by a large 
penalty factor (Freitas et  al. 2020). As a result of this 
addition, the minimization process of the new objec-
tive function bounds the search space by always select-
ing solutions without penalization. In our work, a penalty 
function has been used to constrain the search to the 
allowed plasma parameters ranges, as in the work of Wu 
et  al. (2015). The ranges of plasma parameters consid-
ered in our study are indicated in Sect. 2.5. Additionally, 
to improve the optimization performance, the velocity of 
the particles can be restricted ( vj,min < vij < vj,max ). This 
restriction helps avoid an overfly of potential solutions 
or an insufficient exploration of the search space (Frei-
tas et  al. 2020; Clerc and Kennedy 2002; Eberhart and 
Shi 2000). In our study, no velocity limitation has been 
implemented, as in Wu et al. (2015).

At each iteration, the PSO algorithm requires to simul-
taneously evaluate the objective function of multiple 
particles. To reduce the computing time required, the 
ISR theoretical spectrum of Martínez-Ledesma and Díaz 
(2019) was implemented using vectorization. Despite 
the fact that the PSO algorithm is known to be a paral-
lelizable algorithm (Wang et al. 2018), the ISR spectrum 
model employed is not easily parallelizable due to the 
lack of parallelization of the Faddeeva Dawson function 
(Johnson 2012) it uses. Using this vectorizing comput-
ing scheme, multiple sets of plasma parameters were 
simultaneously evaluated. This process finally obtained 
a matrix of theoretical spectrums that can be evaluated 
to minimize the cost function of multiple sets of plasma 
parameters. Computing times obtained with this vector-
ized scheme were linearly increased with the input vec-
tor length, as it can be verified in Additional file 1: Figure 
S3. Additionally, to improve the overall computing time 
of Monte Carlo simulations, the fittings of different spec-
tra were parallelized by executing each optimization in 
a different CPU core at the nodes of a supercomputing 
infrastructure (of the Chilean National Laboratory for 
High Performance Computing, NLHPC), as in Martínez-
Ledesma and Díaz (2019).

Monte Carlo data fitting simulations
Simulation methods were identical to those implemented 
in Martínez-Ledesma and Díaz (2019). The simulations 
were done considering a radar frequency of 450  MHz 
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Fig. 1  Flowchart of the standard PSO algorithm implemented. n : swarm population size; P : number of plasma parameters; max_iterations : 
maximum number of generations; t  : generations counter (from 1 to max_iterations ); i  : particle’s id counter (from 1 to n ); j  : parameter’s dimension 
from 1 to P ; vij(t) and xij(t) : i  th particle’s j  th dimension’s t  th generation’s velocity and position value, respectively; count_const: counter of 
stagnation cases (i.e., identical fit values of gbest ; from 1 to max_count_const ); count_const_init : minimum generation to start counting for 
stagnation cases
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and without magnetic aspect angle effects (Milla and 
Kudeki 2011). Synthetic radar signals ( m ) were created 
using a theoretical ISS model ( f (x) ) based on Kudeki 
and Milla (2011) plus an additional noise contribution ( ε ; 
Vallinkoski 1988). These radar signals were assumed to 
be obtained with weak SNR conditions, obtaining a sig-
nal-independent noise related to thermal and sky noises 
(Huuskonen and Lehtinen 1996; Sulzer 1986a). Signals 
from multiple radar pulses are required to be integrated 
to provide an accurate statistical estimate (Farley 1969). 
According to the central limit theorem, these multiple 
integrations provide Gaussian characteristics to the ran-
dom noise (Vallinkoski 1988). Therefore, in our simula-
tions, an additive white Gaussian noise (AWGN) was 
used with zero mean and a standard deviation ( σ ) defined 
by the selected signal fluctuation level ( δ ) multiplied by 
the maximum absolute value of the theoretical spectrum 
signal.

As a consequence of the noise normalization with 
respect to the maximum of the power spectrum, the 
same signal fluctuation level may correspond to differ-
ent SNR values. As the shape of the ISR signal spectrum 
depends on the plasma parameters, the maximum of 
the power spectrum is dependent on those parameters. 
Nevertheless, the average signal fluctuation level should 
be correctly related to the SNR level of ISR signals, as 
explained in Additional file 1: Text S3 and Figure S8.

Plasma parameters were estimated from ISR signals 
using the PSO optimization algorithm by the minimiza-
tion of the reduced Chi-square cost function ( χ2

r  ). This 
objective function is a normalization of the Chi-square 
least squares estimator ( χ2 ) commonly used in ISR fit-
tings (Erickson 1998; Vallinkoski 1988) by the number of 
degrees of freedom ( DoF  ). Therefore, this objective func-
tion is given by (Bevington and Robinson 2003; Taylor 
1997):

where mi , σ 2
i  , and fi(x) are the M vector components of 

the measured signal, measured signal variance, and theo-
retical model function, respectively. In our work, the ion-
acoustic ISR spectra are obtained at frequencies between 
± 10 kHz and with a vector length M=50.

The reduced Chi-square criterion is the maximum 
likelihood estimator for signals with AWGN stochastic 
noise characteristics and a diagonal measurement vari-
ance‐covariance matrix (Swoboda et al. 2017; Vallinkoski 
1988). The DoF  of the estimation problem was calculated 
as the vector length of the ISR signal minus the number 
of parameters to estimate (i.e., DoF = M − P ). The χ2

r  
criteria allows the ‘goodness of the fit’ to be statistically 

(2)χ2
r =

1

DoF

M
∑

i=1

(

mi − fi(x)
)2

σ 2
i

,

determined (Bevington and Robinson 2003), providing 
information about the solutions that converged to a mini-
mum of the cost function.

Estimated plasma parameters were different than those 
selected in the PSO analysis of Wu et  al. (2015). In our 
work, plasma parameters were electron density ( Ne ), 
electron temperature ( Te ), ion temperature ( Ti ), and 
molecular ion concentration ( p ). The ion drift radial 
velocity ( Vi ) was assumed to be known a priori, as it does 
not affect the determination of the other parameters 
(Martínez-Ledesma and Díaz 2019; Wu et al. 2015). On 
the other hand, the study of Wu et  al. (2015) assumed 
that Ne and Vi parameters were obtained independently. 
Also, instead of estimating the Te parameter, these 
authors estimated the ratio of electron to ion tempera-
ture ( Te/Ti ). Therefore, they considered the following 
list of fitting parameters: Ti , Te/Ti , and p . Furthermore, 
in our work, different combinations of plasma param-
eters were assumed to be known a priori from the plasma 
line (given Ne , Ne and Te/Ti , and Ne and Te parameters), 
based on previous studies of the plasma line of the radar 
(Aponte et al. 2007; Nicolls et al. 2006; Bjørnå and Kirk-
wood 1988; Waldteufel 1971). Also, this selection of 
plasma parameters allows a direct comparison with the 
estimation results of the MCLM method (Martínez-
Ledesma and Díaz 2019). Alternatively, Wu et al. (2015) 
studied different scenarios in which the ion composi-
tion or the ion temperature were assumed to be known 
a priori, although these parameters are currently not 
possible to be obtained independently from the plasma 
line. Also, note that in Wu et al. (2015) all a priori known 
plasma parameters were considered without uncertainty. 
Although the addition of a priori parameters without 
uncertainty is unrealistic, it provides the best-case esti-
mate that can be obtained by the optimization algorithm, 
as demonstrated by Martínez-Ledesma and Díaz (2019).

To determine the unambiguous estimation perfor-
mance of the PSO algorithm, Monte Carlo simula-
tions of the plasma parameters estimation process were 
conducted. Simulations were done at different signal 
fluctuation levels to determine the impact of increas-
ing the noise level of ISR signals on the estimation per-
formance. To allow a direct comparison with the results 
of the MCLM method, these fittings were done for the 
same 2000 true input parameters ( xtrue ) used in the 
Monte Carlo analysis done by Martínez-Ledesma and 
Díaz (2019). Furthermore, to provide enough statis-
tical representation, the fitting process for each set 
of input parameters was repeated 100 times adding 
a different random noise. The same set of true input 
plasma parameters was used in all simulations, allow-
ing a direct comparison of results for different noise 
fluctuation levels. These true input parameters were 
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uniformly selected from the space of parameters defined 
by the following ranges (Martínez-Ledesma and Díaz 
2019): electron density, 109 ≤ Ne ≤ 1012m−3 , electron 
temperature, 300 ≤ Te ≤ 5000  °K, ion temperature, 
300 ≤ Ti ≤ 3000  K, electron-to-ion temperature ratio, 
0.1 ≤ Te/Ti ≤ 5 , and ion composition, 0 ≤ p ≤ 1.

On the other hand, in our work, the plasma param-
eter search intervals of the optimization algorithm were 
identical to the previously indicated true input param-
eter ranges. However, electron and ion temperatures 
were configured more broadly than the input param-
eter ranges, with values ranging from 200 to 6000 °K, 
as in Martínez-Ledesma and Díaz (2019). Alternatively, 
in the study of Wu et  al. (2015) the plasma parameter 
search ranges of the PSO algorithm were confined with 
a priori information of the true input plasma param-
eters. The search interval for the molecular ion fraction 
was limited by Wu et  al. (2015) to [ max(ptrue − 0.5, 0) , 
min(ptrue + 0.5, 1) ], where ptrue is the true input ion com-
position parameter of the simulation. This limited ion 
composition search range is shown in Fig.  2. Moreover, 
the search ranges for Ti and Te/Ti were confined by Wu 
et al. (2015) to [100, 2Ti,true ] and [1, 3], respectively.

Moreover, to provide a more realistic scenario, we 
also analyzed the impact of providing a priori param-
eters with uncertainty, as in Martínez-Ledesma and Díaz 
(2019). The uncertainty levels considered were ǫ = ± 
0.05%, ± 0.1%, ± 0.5%, ± 1%, ± 5%, ± 10%, ± 25%, ± 
50%, and ± 100%. In this analysis, each repetition of the 
PSO algorithm estimation process was done with a dif-
ferent a priori parameter uniformly selected from the 

range [xtrue(1− |ǫ|/100), xtrue(1+ |ǫ|/100)] , where ǫ 
is the a priori parameter uncertainty percentage of the 
simulation.

Statistical analysis of results
To determine the impact of the PSO algorithm on the 
estimation ambiguity in different noise scenarios, results 
from the Monte Carlo simulations were analyzed. Simu-
lations performed with different signal fluctuation levels 
were evaluated with the statistical methods defined by 
Martínez-Ledesma and Díaz (2019), which are briefly 
explained below.

First, the convergence of the fitting was determined by 
selecting the solutions with χ2

r  value smaller or equal to 
the maximum cost function value ( χ2

r,max ). This maxi-
mum cost function value was selected to have a 4σ 
probability criterion (i.e., P

(

χ2
r > χ2

r,max

)

= 0.00317% , 
provided by the Chi-square statistical distribution of the 
χ2
r  cost function), ensuring that a fit with χ2

r > χ2
r,max is 

obtained by an invalid convergence of the algorithm. As 
in Martínez-Ledesma and Díaz (2019), maximum and 
minimum values of χ2

r,max are 2.073 and 2.0317 for 5 and 
2 plasma parameters ( P ), respectively. Figures S9 and S10 
of Additional file  1 show the histograms of the estima-
tion error of all plasma parameters, providing a graphical 
verification that the fittings with χ2

r > χ2
r,max obtain large 

errors in all plasma parameters.
Secondly, convergent solutions were selected as “cor-

rect” or “incorrect” depending on the distance of the esti-
mated solution ( ̂x ) to the true input plasma parameters 
( xtrue ). The ion composition parameter was selected as a 
discriminator of correctness because of the known exist-
ence of two different solutions in the limited range [0, 
1] (Lathuillere et  al. 1983; Oliver 1979; Wu et  al. 2015). 
The statistical distributions of both “correct” and “incor-
rect” ion composition solutions are assumed Gaussian. 
Therefore, the distribution of solutions follows a bimodal 
Gaussian mixture model (GMM) given by the following:

 where α is the weight of the mixture distribution 
( 0 ≤ α ≤ 1 ), and N

(

x|µ0, σ
2
0

)

 and N
(

x|µ1, σ
2
1

)

 are the 
probability density functions (PDF) of “correct” and 
“incorrect” results, respectively.

For each set of true input plasma parameters, the statisti-
cal distribution of the ion composition estimation error 
( εp = ptrue − ̂p ) was analyzed using the expectation maximi-
zation (EM) algorithm (Dempster et al. 1977). The determi-
nation of the GMM distribution by the EM algorithm allows 
the clustering of both “correct” and “incorrect” solutions.

(3)
fGMM

(

x|α,µ0, σ
2
0 ,µ1, σ

2
1

)

= α ·N

(

x|µ0, σ
2
0

)

+ (1− α) ·N

(

x|µ1, σ
2
1

)

,

Fig. 2  Graphic representation of the limited search interval of the ion 
composition parameter used in the PSO analysis of Wu et al. (2015). 
Maximum and minimum values of the search range are shown as red 
and blue dash-dotted lines. The allowed search range is represented 
in gray color. The parameter ptrue is the true input ion composition 
value of the simulation
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Finally, the performance of the optimization algorithm 
was evaluated using different probabilities. The probabil-
ity of valid convergence of the fit ( Pfit valid ) was calculated 
as:

where Nfit valid is the number of convergent results of a 
simulation ( χ2

r (x̂) ≤ χ2
r,max ), and Ntotal is the total num-

ber of parameters simulated ( Ntotal = NMC · Nrep , and 
where NMC is the number of different input parameters 
of the Monte Carlo simulation, NMC=2000, and Nrep is 
the number of fitting repetitions of each input parameter 
of the simulation, Nrep=100).

The probability of ‘correct’ estimation ( Pcorrect ) was cal-
culated as:

where Ncorrect is the number of “correct” results of a sim-
ulation obtained by the EM clustering algorithm.

And, the probability of valid convergence and ‘correct’ 
estimation ( Pfit valid & correct ) was calculated as:

Results and discussion
The following sections show the results of the Monte 
Carlo simulations of fittings using the PSO algorithm 
with different combinations of plasma parameters 
assumed to be known a priori from the plasma line. 
The following case studies were analyzed: a) 4 unknown 
parameters ( Ne , Ti , Te , and p ); b) 3 unknown parameters 
( Ti , Te , and p ) given a priori Ne ; c) 2 unknown parameters 
( Ti and p ) given a priori Ne and Te/Ti ; and d) 2 unknown 
parameters ( Ti and p ) given a priori Ne and Te.

Effects of the limited ion composition search space
In Wu et  al. (2015), the limited ion composition search 
range (shown in Fig. 2) restricts the possible ambiguous 
solutions obtained by the optimization algorithm. This 
search interval uses a priori information of the true input 
ion composition, which is information not available in 
real radar measurements. Therefore, it is assumed that 
the restricted search range applied by Wu et  al. (2015) 
artificially enhances the unambiguous estimation perfor-
mance of the PSO algorithm.

To identify the number of “incorrect” solutions not 
considered in the limited ion composition search inter-
val of Wu et  al (2015), Monte Carlo simulations were 
done with the full ion composition search range (i.e., 
0 ≤ ̂p ≤ 1 ) at different signal fluctuation levels. Fur-
thermore, these simulations were done with the PSO 

(4)Pfit valid = Nfit valid

/

Ntotal,

(5)Pcorrect = Ncorrect

/

Nfit valid,

(6)
Pfit valid & correct = Pfit valid · Pcorrect = Ncorrect/Ntotal.

parameters used by Wu et  al (2015) (i.e., parameters 
configuration “Param. 1” indicated in “PSO parameters 
choice” section). Figure 3 shows the estimated ion com-
position parameters obtained from simulations with the 
full ion composition search range at different signal fluc-
tuations and (as black dashed lines) the boundaries of the 
limited search interval of Wu et al (2015).

Simulation results without a priori information (case 
study a in Fig.  3) at mid and large signal fluctuations 
( δ > 0.05% ) obtained several ion composition estimates 
outside of the limited search interval. The addition of 
information from the plasma line (case studies b, c, and d) 
reduced the number of estimates located in these inter-
vals. Particularly, the addition of a priori knowledge of Ne 
and Te information (case study d) had almost no “incor-
rect” estimates. Therefore, in this case study, almost all 
solutions were found inside of the limited search range 
of Wu et al. (2015). This combination of a priori known 
parameters solves the TICA problem even at high signal 
fluctuations, as does the MCLM algorithm (Martínez-
Ledesma and Díaz 2019). The number of convergent 
solutions found outside of the search interval of Wu et al 
(2015) is shown in Fig.  4 at different signal fluctuations 
for these different combinations of parameters known a 
priori. At large signal fluctuations ( δ > 10% ), the num-
ber of “incorrect” solutions found in the limited search 
range greatly increases in all case studies. It is relevant 
to highlight that the area outside of the search space of 
Wu et al. (2015) corresponds to 25% of the total available 
space. Therefore, the number of cases higher than 25%, 
obtained at high signal fluctuations, indicates that “incor-
rect” ion composition values were more often obtained at 
highly noisy scenarios. This result suggests that ion com-
position solutions were not uniformly distributed in the 
search space at high signal fluctuations. Alternatively, the 
number of cases outside the search interval was abruptly 
reduced at small signal fluctuations in case studies a 
and b (with δ < 0.2% and δ < 0.5% , respectively). It is 
assumed that this reduction is related to the decrease of 
convergent estimates that occurs at small signal fluctua-
tions, which is explained below.

Additionally, to evaluate the impact of the limited 
search range on the unambiguous estimation perfor-
mance of the PSO algorithm, similar Monte Carlo sim-
ulations were done using the ion composition search 
interval employed by Wu et  al (2015). Figure  5 shows 
the probabilities obtained with a limited ion composi-
tion search range and with a full search range (dashed 
and continuous lines, respectively). This figure shows the 
probability of convergence of the optimization algorithm 
( Pfit valid ), the probability of having a “correct” estimation 
( Pcorrect ), and their joint probability ( Pfit valid & correct).
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Simulations with a limited ion composition search 
range showed slightly higher values of Pfit valid for case 
studies a and b (without a priori information and know-
ing a priori Ne parameter, respectively). The increase 
in convergent solutions of case study b was larger than 
those of case study a (with values ~ 11% and ~ 4%, respec-
tively). Also, the probability of convergence in these two 
case studies decayed for signal fluctuations smaller than 
0.5%. Alternatively, simulations of case studies c and d 
obtained almost perfect convergences ( Pfit valid ≈ 100% ) 
in all noise scenarios, independently of the search range 
configuration. These results suggest that the limited 

ion composition search range of Wu et  al. (2015) does 
not generate a significant impact on the convergence of 
the PSO algorithm. Nevertheless, a relevant result was 
obtained in simulations without adding a priori informa-
tion. In these simulations, independently of the ion com-
position search range, more than half of the total number 
of estimations were not convergent ( Pfit valid < 50% ) for 
small signal fluctuations ( δ < 0.1% ). Moreover, at very 
small noise scenarios ( δ = 0.01% ) almost no estimations 
were convergent ( Pfit valid ≈ 10% ), indicating that the 
optimization algorithm was unable to find a minimum of 
the cost function in the majority of the cases. This result 

Fig. 3  Scatter plot of estimated and input values of ion composition, obtained from the Monte Carlo analysis of different combinations of 
parameters known a priori from the plasma line using the PSO algorithm: a without a priori information, b given Ne , c given Ne and Te/Ti , and d 
given Ne and Te . Each color represents results obtained by simulations with a particular signal fluctuation percentage ( δ(%) ). Simulations were done 
with the full ion composition search range. Black dashed lines represent the maximum and minimum values of the confined ion composition 
search range of Wu et al. (2015)



Page 12 of 25Martínez‑Ledesma and Jaramillo Montoya ﻿Earth, Planets and Space          (2020) 72:172 

suggests that the selection of the PSO algorithm param-
eters ( c1 , c2 , ω , and number of particles n ) made by Wu 
et al. (2015) is not useful to estimate plasma parameters 
of ISR signals in very small noise scenarios without the 
addition of a priori information. Note that this case study 
(i.e., fitting 4 plasma parameters without a priori infor-
mation) was not evaluated in their study.

On the other hand, the use of the limited search range 
produced an impact on the probability of unambiguous 
estimation. The increments of Pcorrect when using the 
search range of Wu et al. (2015) were ~ 17% and ~ 11% for 
case studies a and b, respectively. Note that the effect of 
using the limited ion composition search range in simu-
lations without adding any a priori information gener-
ates a Pcorrect similar to the case of knowing a priori Ne . 
Alternatively, case study c displayed a probability incre-
ment smaller than 5% at signal fluctuations smaller than 
δ ≤ 10% . On the other hand, almost identical and per-
fectly unambiguous estimations were obtained when 
knowing a priori Ne and Te parameters (case study d), 
as in the case of using the MCLM algorithm (Martínez-
Ledesma and Díaz 2019). The small increase obtained 
in case studies c and d implies that the knowledge of Ne 
and Te/Ti or Ne and Te provided more information than 
the use of the confined ion composition search range of 
Wu et al. (2015). Also, of relevance is that Pcorrect value 

without a priori information (case study a) did not reach 
100% at very small signal fluctuations ( δ = 0.01% ). This 
result is assumed to be related to the small number 
of convergent solutions at this signal fluctuation level 
( Pfit valid ≈ 10% ) which impacted the average number of 
“correct” solutions.

In summary, these results verify that the use of the 
confined search range provides a priori information 
that artificially increases the unambiguous estimation 
performance of the algorithm in almost all case stud-
ies. Nevertheless, this segmented search range did not 
impact the convergence of the algorithm of case stud-
ies c and d. Therefore, the knowledge of Ne and Te/Ti or 
Ne and Te provides more information than the use of the 
confined search range. Furthermore, almost no perfor-
mance improvement was obtained in the case of know-
ing a priori or Ne and Te parameters. This suggests that 
the addition of those parameters already solved the ambi-
guity problem. Even so, to avoid “incorrect” estimates in 
case these ion composition assumptions were invalid, it is 
suggested to fit plasma parameters always using the full 
search range of parameters. The following sections show 
the probability results that were obtained using the full 
search range.

Impact of PSO parameters choice
To evaluate the impact of the selection of the PSO inter-
nal parameters, Monte Carlo simulations were also done 

Fig. 4  Number of convergent solutions located outside of the search range defined by Wu et al. (2015), obtained from the analysis of the PSO 
simulations shown in Fig. 2 at different signal fluctuation percentages ( δ(%))
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at different signal fluctuation levels using the configura-
tion of parameters “Param. 2” (defined by Wang et  al. 
2012). Figures included in Additional file  2 show the 
histograms of χ2

r  and the error of the ion composition 

estimate of case studies a, b, c, and d using this configu-
ration of parameters. Figure 6 shows Pfit valid and Pcorrect 
values obtained from the simulations of the previously 
indicated combinations of plasma parameters known 

Fig. 5  Probability of convergence ( Pfit valid ) and probability of “correct” estimation ( Pcorrect ) (in percentage) obtained by simulations (dashed lines) 
with the limited search range of Wu et al. (2015) and (continuous lines) with the full ion composition search range ([0, 1]). Simulations were done at 
different signal fluctuation percentages ( δ(%) ) fitting different combinations of known a priori plasma parameters from the plasma line: without a 
priori information, given Ne , given Ne and Te/Ti , and given Ne and Te parameters
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from the plasma line (i.e., case studies a, b, c, and d; 
dashed lines). For comparison purposes, Fig. 6 also shows 
the probability results of simulations done with the con-
figuration of parameters “Param. 1” (dash-dotted lines) 

and with the MCLM method (continuous black lines; 
obtained from Fig.  7 of Martínez-Ledesma and Díaz 
2019; available at https​://doi.org/10.5281/zenod​o.14661​
84).

Fig. 6  Probability of convergence ( Pfit valid ) and probability of ‘correct’ estimation ( Pcorrect ) (in percentage) obtained by simulations (black continuous 
lines) using the MCLM method, and using the PSO algorithm with the parameter configuration (dash-dotted lines) “Param. 1” used by Wu et al. 
(2015) and (dashed lines) “Param. 2”. Simulations were done at different signal fluctuation percentages ( δ(%) ) fitting different combinations of 
known a priori plasma parameters from the plasma line: without a priori information, given Ne , given Ne and Te/Ti , and given Ne and Te parameters

https://doi.org/10.5281/zenodo.1466184
https://doi.org/10.5281/zenodo.1466184
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Simulation results without a priori information (case 
study a) showed different probabilities of convergence 
using the configuration of parameters “Param. 2”. In this 
case, this configuration obtained an increase of Pfit valid 
between 14 and 22% at signal fluctuations smaller than 
δ < 0.5% . Nevertheless, the other case studies (i.e., b, c, 
and d) showed almost identical values of Pfit valid for both 
configurations of PSO parameters. Moreover, Pcorrect val-
ues were almost identical in all case studies. The unam-
biguous estimation probability differences obtained in 
case studies b, c, and d were smaller than 1%, but differ-
ences up to 5% were found in simulations without a priori 
information. These results indicate that the use of a dif-
ferent configuration of PSO parameters did not affect the 
unambiguous estimation performance of the algorithm, 
but slightly increased the convergence of solutions when 
no a priori information was provided.

Figure 7 shows the average standard deviation of both 
“correct” and “incorrect” distributions of the GMM 
PDFs calculated by the EM algorithm ( σcorrect and 
σincorrect , respectively) for simulations using the con-
figuration of PSO parameters “Param. 1” and “Param. 
2” (left and right columns, respectively). In small noise 
regimes (signal fluctuations smaller than δ < 2%), stand-
ard deviations increased with the signal fluctuation 
percentage. In this signal fluctuation region, estimated 
regressions of standard deviation ( σest ) were obtained. 
In higher noise regimes, an almost constant standard 
deviation ( σsat ) was obtained with a value of ~ 0.16. The 
signal fluctuation level where the standard deviation 
reaches this saturation value is approximately equal 
to δcross , which is the signal fluctuation level at which 
Pcorrect = 50% in Fig. 6. In case studies a and b, the esti-
mated σest were slightly smaller when the configura-
tion “Param. 2” was used. Furthermore, in case study 
a (without a priori information) at small signal fluctua-
tions the values of “correct” standard deviations were 
much larger than the “incorrect” values, an effect not 
obtained by simulations with information provided 
from the plasma line. Alternatively, identical estimates 
of σest and δcross were obtained in case studies c and d 
using both configurations of parameters. These results 
suggest that the estimation accuracy (i.e., ion composi-
tion estimation uncertainty) of the PSO algorithm did 
not improve significantly using different configurations 
of parameters. Moreover, when no a priori informa-
tion was provided, larger estimation uncertainties were 
obtained by the optimization algorithm at small signal 
fluctuations.

PSO algorithm computation time
The number of iterations and computing times of the 
PSO algorithm for simulations using both configurations 

of PSO parameters (“Param. 1” and “Param. 2”) are 
shown in Fig. 8. The average number of iterations (Fig. 8, 
top) obtained by simulations using the configuration 
“Param. 1” were equal to the maximum number of itera-
tions ( max_iterations= 500 plus 1 for the determination 
of the initial random particle locations) in all case stud-
ies. Alternatively, simulations using the configuration 
“Param. 2” presented a smaller number of iterations. The 
number of iterations obtained was gradually reduced 
by the addition of different a priori information in each 
case study. Simulations assuming known a priori Ne and 
Te parameters obtained the minimum number of itera-
tions (~ 472 iterations). The maximum reduction of itera-
tions was found in the high signal fluctuation range in all 
case studies. This reduction of iterations is related to the 
increase of stagnation detections obtained at high sig-
nal fluctuations when using the configuration “Param. 
2”, shown in Fig. 9. Note that, at high signal fluctuations 
almost all solutions were convergent ( Pfit valid ≈ 100% in 
Fig. 6), indicating that stagnated solutions detected were 
the minimums of the cost function. Therefore, this result 
suggests that the configuration “Param. 2” improves the 
optimum detection speed of the PSO algorithm. Never-
theless, the reduction of iterations obtained by the stag-
nation detections did not generate a large impact on the 
overall computing time, as can be seen in Fig. 8 (middle). 
This effect is related to the large number of minimum 
iterations of the algorithm required to determine stagna-
tion ( max_count_const+count_const_init= 300). As this 
number is large relative to max_iterations , the detection 
of stagnation cases generated only a small reduction in 
the total number of iterations. 

Nevertheless, computing times were smaller when 
using the configuration of parameters “Param. 2” in all 
case studies. Boxplots of computing times for each case 
study are shown in Fig.  8 (bottom). Average computing 
time reductions were of 8.37%, 5.76%, 6.74%, and 5.96% 
for case studies a, b, c, and d, respectively. Therefore, this 
result indicates that the configuration of PSO parameters 
“Param. 2” obtains a reduction in the overall computing 
time of the PSO algorithm.

Comparison with MCLM optimization algorithm
Probabilities obtained by the MCLM optimization algo-
rithm (Martínez-Ledesma and Díaz 2019) shown in Fig. 6 
(continuous black lines) allow a visual comparison of the 
estimation performance with the PSO algorithm. Results 
of PSO simulations without a priori information (case 
study a) obtained much lower convergences ( Pfit valid ) 
than MCLM simulations at very small signal fluctua-
tions (with probability differences up to ~ 44% or ~ 58% 
depending on the configuration of PSO parameters). On 
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Fig. 7  Average standard deviation values (in logarithmical scale) of “correct” (blue) and “incorrect” (red) statistical distributions obtained by fitting 
simulations using the PSO algorithm with the configuration of parameters (left column) “Param. 1” used by Wu et al. (2015) and (right column) 
“Param. 2”. Simulations were done estimating different combinations of known a priori plasma parameters from the plasma line at different signal 
fluctuation percentages ( δ(%) ). Vertical dotted line represents the estimated fluctuation value ( δcross ) at which Pcorrect = 50% . The maximum 
standard deviation value is represented with a horizontal dashed line ( σsat ). The continuous black line represents the estimated regression of the 
standard deviation of “correct” solutions ( σest ) before arriving to the saturation value. The dash-dotted black line represents the estimated regression 
of the MCLM method ( σMCLM)
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Fig. 8  (Top) Average number of iterations and (middle) corresponding computing times of the PSO algorithm estimating different combinations 
of known a priori plasma parameters from the plasma line at different signal fluctuation percentages ( δ(%) ). Results were obtained from simulations 
with the parameter configuration (dash-dotted lines) “Param. 1” used by Wu et al. (2015) and (dashed lines) “Param. 2”. (Bottom) Boxplot of average 
computing times of simulations with different combinations of a priori plasma parameters using the configurations “Param. 1” and “Param. 2”
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the other hand, PSO simulations of case studies b and c 
obtained larger Pfit valid values than MCLM simulations, 
with differences of ~ 8% and ~ 14%, respectively. Finally, 
the PSO simulations of case study d were almost per-
fectly convergent ( Pfit valid ≈ 100% ), as obtained by the 
MCLM algorithm. Of relevance is that the simulations 
of case study c have an almost perfect convergence using 
the PSO algorithm, while the use of the MCLM provided 
Pfit valid ≈ 85% at small signal fluctuations. Therefore, the 

PSO algorithm improves the convergence of the MCLM 
algorithm when adding a priori information, particularly 
when assuming known a priori Ne and Te/Ti parameters.

Approximately similar unambiguous estimation per-
formance ( Pcorrect ) was obtained by the PSO algorithm 
and the MCLM method. The most remarkable result was 
obtained in the case of simulations knowing a priori Ne 
and Te parameters (case study d). In this case, identical 
values of Pcorrect were obtained using both optimization 

Fig. 9  Number of stagnation detections obtained by fitting simulations using the PSO algorithm with the configurations of PSO parameters “Param. 
1” and “Param. 2”. Simulations were done estimating different combinations of known a priori plasma parameters from the plasma line at different 
signal fluctuation percentages ( δ(%))
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algorithms. These probability values were almost per-
fectly “correct” up to high signal fluctuations. This result 
suggests that the use of the a priori information of Ne 
and Te parameters solves the ambiguity and provides 
the maximum unambiguous estimation probability that 
could be obtained by any optimization algorithm, as 
indicated by Nicolls et al. (2006). On the other hand, the 
PSO simulation results without adding a priori infor-
mation (case study a) obtained probabilities similar to 
the MCLM. In this case study, probability differences 
between PSO and MCLM algorithms were between ± 6%, 
and between − 2.8% and 4% when using the configu-
ration of PSO parameters “Param. 1” and “Param. 2”, 
respectively. Also, PSO simulation results of case studies 
b and c were identical to those of the MCLM method for 
signal fluctuations δ ≤ 0.2% . In those study cases, prob-
ability differences obtained were below 7%, with maxi-
mum differences located at signal fluctuations δ=2% and 
5%, respectively.

The signal fluctuation thresholds for obtaining a 
Pcorrect ≥ 95.45% (a 2σ criterion) of the PSO algorithm 
were identical to those obtained by the MCLM algo-
rithm only in case studies b and d ( δth(Ne) PSO = 0.14% 
and δth(Ne and Te)PSO = 7.9%, respectively). However, 
PSO simulations without adding a priori information 
obtained a value of Pcorrect ≈ 95% at signal fluctuations 
δ  =  0.01%, which is smaller than the global thresh-
old ( δth(no a priori) MCLM = 0.05%) obtained by Mar-
tínez-Ledesma and Díaz (2019). It is assumed that this 
small threshold value is related to the lower conver-
gence of the algorithm at this signal fluctuation level 
( Pfit valid(δ = 0.01%) ≈ 10% or 25%, depending on the 
configuration of PSO parameters used). Aside, the sig-
nal fluctuation threshold obtained in simulations of the 
PSO algorithm knowing a priori Ne and Te/Ti parameters 
(case study c) was approximately δth(Ne and Te/Ti) PSO = 
1.4%. In this case study, the threshold value when using 
the MCLM algorithm was δth(Ne and Te/Ti)MCLM = 0.568%. 
Therefore, the PSO algorithm improved the unambigu-
ous estimation threshold of the MCLM algorithm when 
adding a priori Ne and Te/Ti parameters.

On the other hand, in some case studies, the joint prob-
ability Pfit valid & correct obtained a much larger improve-
ment. Of relevance is the increase in probability of ~ 7.3% 
and ~ 14% in case studies b and c, respectively. Simula-
tions of the PSO algorithm knowing a priori Ne and Te/Ti 
parameters showed almost perfect Pfit valid & correct values 
up to this signal fluctuation threshold value, as in the case 
of knowing a priori Ne and Te parameters. Therefore, in 
these two cases of adding a priori information, the con-
vergence of the PSO algorithm is not required to be 
verified.

The estimated tendencies of standard deviation of “cor-
rect” distributions calculated from simulations of the 
MCLM optimization algorithm ( σMCLM obtained from 
Fig.  6 of Martínez-Ledesma and Díaz 2019) are shown 
in Fig. 7. In case studies b, c, and d, the results of simu-
lations with the PSO algorithm have similar or identical 
increase tendencies to the results of the MCLM algo-
rithm. Alternatively, when no a priori information was 
provided (case study a) the average values of “correct” 
standard deviation of the PSO algorithm were much 
larger than the results of the MCLM algorithm at small 
signal fluctuations. Furthermore, “incorrect” standard 
deviations obtained by the PSO algorithm were similar 
to the estimated standard deviation values of the MCLM 
algorithm. This result suggests that the PSO algorithm 
without a priori information obtained “correct” estima-
tions with larger uncertainties than the MCLM algorithm 
at the small signal fluctuation range.

Moreover, PSO simulations were done to analyze the 
impact of using a priori information with uncertainty. 
The resulting probabilities of convergence and unam-
biguous estimation are shown in Fig.  10. These Monte 
Carlo simulations were done with the configuration of 
PSO parameters “Param. 2” at different signal fluctuation 
levels and with different uncertainty levels on the a priori 
parameters. To allow a direct comparison, this figure also 
shows the probabilities obtained by the MCLM method 
(gray dotted lines) when considering the uncertainty of 
the a priori parameters (obtained from Fig.  9 of Mar-
tínez-Ledesma and Díaz, 2019). Very similar probability 
results were obtained by both the PSO algorithm and the 
MCLM method. As indicated in Martínez-Ledesma and 
Díaz (2019), these results verify that the uncertainty of a 
priori parameters should be smaller than the signal fluc-
tuation level of the ISR signal ( δ ≥ |ǫ| ) to ensure the con-
vergence of the algorithm. Moreover, the use of a priori 
parameters with uncertainties |ǫ| ≤ 1% provide Pcorrect 
values almost identical to simulations without uncer-
tainty. Finally, the results at low signal fluctuation verify 
the existence of a global signal fluctuation threshold 
δth = 0.05% to completely solve the estimation ambigu-
ity ( Pcorrect = 100% ) independently of the type of a priori 
information provided and the level of uncertainty of the a 
priori parameters.

As in the case of simulations without uncertainty, 
identical probabilities of convergence and of unam-
biguous estimation were obtained by both optimization 
algorithms from simulations knowing a priori Ne and 
Te parameters (study case d). Nevertheless, some dif-
ferences were found at 0.1% ≤ δ ≤ 10% in simulations 
with large uncertainties ( ǫ = ±50% and ǫ = ±100% ) due 
to the small number of convergent solutions obtained. 
Also, the convergence rates ( Pfit valid ) obtained by the 
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PSO algorithm were larger than those of the MCLM 
method when assuming a priori known Ne and Ne and 
Te/Ti (study cases b and c). Moreover, in these study 
cases, slightly larger probabilities of unambiguous esti-
mation ( Pcorrect ) were obtained at δ > 0.2% by the PSO 
algorithm.

The average iterations required by the L–M algorithm 
used by the MCLM method are shown in Supporting 
Information Figure S7 of Martínez-Ledesma and Díaz 
(2019). Computing times of each fitting of the L–M algo-
rithm were always less than 0.45 s. Also, computing times 
were reduced when adding information from the plasma 
line and when estimating radar signals with lower noise 
characteristics. Simulations of case studies b, c, and d 
were approximately 1.2, 2.3, and 4 times faster than simu-
lations without a priori information, respectively. On the 

other hand, the computing times obtained by our vec-
torized implementation of PSO algorithm were between 
6.5 and 7.7 s for each fit, depending on the addition of a 
priori information and the internal configuration of the 
PSO algorithm parameters (Fig.  8, bottom). The lack of 
computing time information in Wu et al. (2015) prevents 
the direct comparison with our PSO implementation. 
Furthermore, no stagnation detection was implemented 
in the study of Wu et al. (2015).

Figure  11 shows the ratio between computing times 
of fittings using the PSO algorithm relative to fittings of 
the L–M algorithm. These ratios were highly depend-
ent on the a priori information provided and the signal 
fluctuation level. The L–M algorithm was between 15 
and 250 times faster than the PSO algorithm at the high 
and low signal fluctuation ranges, respectively. For noise 

Fig. 10  (Continuous colored lines) probability of convergence ( Pfit valid ) and probability of unambiguous estimation ( Pcorrect ) (in percentage) 
obtained by simulations considering uncertainty on the a priori parameters known from the plasma line: (left) given Ne , (middle) given Ne and Te/Ti , 
and (right) given Ne and Te parameters and at different signal fluctuation percentages ( δ(%) ). Simulations were done using the PSO algorithm with 
the parameter configuration “Param. 2”. Probabilities obtained without uncertainty (shown in Fig. 6) are shown with dashed black lines. Results from 
simulations using the MCLM method (dotted gray lines) are shown for comparison
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levels smaller than the signal fluctuation thresholds of the 
MCLM method (shown as vertical bars in Fig.  11), the 
probability of unambiguous estimation is high enough 
( Pcorrect ≥ 95.45% ) to assume that all estimates are “cor-
rect”. In these cases, the MCLM method only requires 
evaluating one L–M fitting. On the other hand, for noise 
levels larger than the signal fluctuation thresholds, mul-
tiple fittings of the L–M algorithm are required to be 
done with different initial parameters of the search to 
select the “correct” solution in the MCLM method. In 
the Monte Carlo simulations of Martínez-Ledesma and 
Díaz (2019), fittings were repeated 500 times. This large 
number of repetitions was required to determine with 
high accuracy the unambiguous estimation performance 
of the algorithm, obtaining high quality statistical distri-
butions of “correct” and “incorrect” estimates that were 
clustered by the EM algorithm. Also, the executions of 
the multiple L–M fittings of Martínez-Ledesma and 
Díaz (2019) were parallelized in 8 different CPU nodes to 
reduce the global computing time of the MCLM simula-
tions, as in our implementation of the Monte Carlo simu-
lations of the PSO algorithm. Therefore, the theoretical 
computing time of the MCLM method can be roughly 
approximated as TMCLM = TL−M · R/P (where TL−M is 
the L–M algorithm computing time, R is the number of 
repetitions of the fitting, and P is the number of parallel-
ized nodes used). It is relevant to indicate that Martínez-
Ledesma and Díaz (2019) did not suggest the number of 
fitting repetitions required by the MCLM algorithm to 
operationally estimate real radar measurements. Hence, 

we consider using 100 fitting repetitions in the MCLM 
method, although a much smaller number would be 
required to provide good estimates of the statistical dis-
tributions of “correct” and “incorrect” solutions. This 
number of repetitions of L–M fittings in the MCLM 
method is identical to the number of particles used in our 
implementation of the PSO algorithm, allowing a direct 
comparison between the computation requirements of 
both optimization algorithms. Therefore, the sequen-
tial execution of the MCLM method would require 100 
times the L–M algorithm computing times at noise levels 
higher than the signal fluctuation thresholds. This result 
indicates that the computing times of the sequential 
execution of the MCLM are larger than the computing 
times of the vectorized PSO algorithm (Fig. 11). Never-
theless, if we parallelize the execution of the multiple fit-
tings in 8 CPU nodes, the MCLM algorithm would only 
require 12.5 times the L–M algorithm computing times, 
which is much lower than the minimum computing time 
ratio of the PSO algorithm in any case study. Although 
further work is required to verify the computing time 
improvement of the parallelization of the PSO algorithm, 
the execution of the parallelized MCLM method would 
require lower computing times than the parallelized PSO 
algorithm. This is because the L–M algorithm requires a 
much lower number of iterations than the PSO algorithm 
to obtain a solution (as shown in Figure S7 of Martínez-
Ledesma and Díaz, 2019).

Fig. 11  Ratio between computing times of fittings using the PSO algorithm relative to fittings of the L–M algorithm at different signal fluctuation 
percentages ( δ(%) ). Vertical bars indicate the signal fluctuation thresholds of the MCLM method, for which the MCLM method should require only 
one L–M fit with random initial parameters
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Conclusions
In this paper we have statistically analyzed the perfor-
mance of the PSO algorithm estimating incoherent scat-
ter radar data at different signal fluctuation levels. A 
standard PSO algorithm similar to the used in the study 
of Wu et al. (2015) was implemented. Nevertheless, our 
implementation considered stagnation detection and a 
vectorized cost function evaluation. To reduce the fitting 
computation time, the PSO algorithm was configured 
with 100 particles and a maximum number of 500 itera-
tions. Two different configurations of PSO parameters 
( c1 , c2 , and ω ) were analyzed: “Param. 1”, corresponding 
to the parameters used in Wu et al. (2015), and “Param. 
2” suggested by Wang et al. (2012).

Monte Carlo simulations were done to determine the 
capacities of the PSO algorithm to solve the TICA esti-
mation problem of ISR at different noise scenarios. 
Simulations were done with different combinations of 
plasma parameters assumed to be known a priori from 
the plasma line of the radar. Simulation results were 
evaluated using the statistical analysis of Martínez-
Ledesma and Díaz (2019). Probabilities of convergence 
of the optimization algorithm ( Pfit valid ), of having a “cor-
rect” estimation ( Pcorrect ), and their joint probability 
( Pfit valid & correct ) were calculated.

The study of Wu et al. (2015) limited the search range 
of the ion composition parameter using information 
from the true input ion composition value. To determine 
the impact of this confined range on the estimation of 
plasma parameters, Monte Carlo simulations were done 
with the full search range and were compared with sim-
ulations with the restricted search range of ion compo-
sition. Results demonstrate that the fittings of Wu et al. 
(2015) artificially enhanced the unambiguous estimation 
performance of the PSO algorithm. Nevertheless, simi-
lar probabilities were obtained in simulations knowing a 
priori Ne and Te/Ti parameters and Ne and Te parameters 
from the plasma line. This suggests that the knowledge 
of these parameters from the plasma line provides more 
information than the reduction of the ion composition 
search range. Nevertheless, to avoid “incorrect” estimates 
in case the assumptions of the ion composition search 
range were invalid, it is suggested to fit plasma param-
eters using the full search range of parameters.

Monte Carlo simulations were done to evaluate the 
impact of the selection of the PSO algorithm internal 
parameters. Similar convergences and unambiguous 
estimation performances were obtained using both con-
figurations. Even so, the parameter configuration “Param. 
2” required less computing time than the configuration 
selected by Wu et al. (Wu et al. 2015).

PSO simulation results were also compared to those of 
the MCLM technique developed by Martínez-Ledesma 

and Díaz (2019). Simulations without adding a priori 
information obtained very low convergences at small sig-
nal fluctuations, indicating that the PSO algorithm was 
almost unable to find solutions to the problem. Moreo-
ver, in these simulations the signal fluctuation threshold 
to unambiguously estimate plasma parameters (calcu-
lated using a 2 σ criterion) was much smaller than that 
achieved by the MCLM method ( δth(no a priori)PSO ≈ 
0.01%). These results suggest that the PSO algorithm is 
not useful to estimate plasma parameters of ISR signals 
without the addition of a priori information. In the other 
study cases, similar probabilities of unambiguous esti-
mation were obtained by both optimization algorithms. 
Nevertheless, the convergence of the PSO algorithm 
was higher in simulations knowing a priori Ne and Te/Ti 
parameters from the plasma line. In this case study, the 
PSO algorithm obtained convergent solutions at all noise 
regimes and a signal fluctuation threshold larger than 
that achieved by the MCLM method ( δth(Ne and Te/Ti) PSO 
= 1.4%). The PSO algorithm also improved the unam-
biguous estimation performance of the MCLM algorithm 
when knowing a priori Ne parameter and Ne and Te/Ti 
parameters for signal fluctuations δ > 0.2% . Finally, in the 
case of simulations knowing a priori Ne parameter and 
Ne and Te parameters, the signal fluctuation thresholds of 
the PSO algorithm were identical to those of the MCLM 
method ( δth(Ne)PSO = 0.14% and δth(Ne and Te)PSO = 7.9%, 
respectively). Furthermore, the probabilities of simula-
tions knowing a priori Ne and Te parameters were also 
identical to those obtained by the PSO simulations with 
the confined ion composition search range of Wu et  al. 
(2015). In these simulations, solutions were convergent at 
all noise regimes and estimates were unambiguous up to 
high signal fluctuations. This result verifies that the addi-
tion of Ne and Te parameters provides the most informa-
tion to solve the ambiguity problem.

Monte Carlo simulations were done to evaluate the 
impact of adding a priori information with different lev-
els of uncertainty. The probability of convergence and the 
probability of unambiguous estimation of these simula-
tions presented similar behavior to those of the MCLM 
method. In all study cases, the PSO algorithm presented 
large convergence reductions for signal fluctuations 
smaller than the uncertainty level ( δ < |ǫ| ). Simulations 
with uncertainly levels |ǫ| > 1% obtained Pcorrect values 
smaller than those of the simulations without uncertainty. 
Perfectly unambiguous estimations ( Pcorrect = 100% ) 
were obtained in all simulations with signal fluctuation 
level δ ≤ δth = 0.05% . Moreover, identical probabilities 
were obtained by both optimization algorithms in the 
case of providing a priori Ne and Te parameters.

Computing times of PSO algorithm were also compared 
to those of the MCLM method. Multiple evaluations of 
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the cost function are simultaneously done by the parti-
cles in the PSO algorithm, increasing the computational 
requirements. The computing times of single fittings of 
the L–M algorithm are one or two orders of magnitude 
smaller than our vectorized implementation of the PSO 
algorithm. Nevertheless, at noise levels higher than the 
signal fluctuation thresholds, the MCLM method also 
requires executing multiple fittings of the Levenberg–
Marquardt algorithm with different initial parameters to 
determine the “correct” set of parameters. Therefore, the 
sequential execution of the MCLM technique requires 
longer computing times than the vectorized PSO algo-
rithm when using the same number of MCLM fitting 
repetitions as the number of particles of the PSO algo-
rithm. Nevertheless, the MCLM technique obtains much 
smaller computing times than the PSO algorithm when 
parallelizing the multiple fittings in different CPU nodes. 
This final result suggests that the MCLM method pro-
vides better characteristics than the PSO technique for 
unambiguously estimating plasma parameters in ISR.
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