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ABSTRACT
We study the dynamical response of a piston-type wavemaker in a numerical wave tank. The two-dimensional, fully viscous unsteady
Navier–Stokes equations are solved on a two-phase flow configuration using the volume of fluid method to capture the free surface dynamics.
The wavemaker is a moving wall driven by an arbitrary signal waveform. The step response of the wavemaker may generate pulse-like waves
similar to an undular bore propagating along the tank. Wave elevation at the piston wall has close similarity to the time response of second
order systems found in feedback theory. The scaling found for water elevation at the piston wall for different step velocities and mean still
water levels is in agreement with that in the available theory at low Froude numbers. The results along the tank for continuous waves agree
with those of potential theory. The power input during the step response was determined during the whole wave generation process showing
that net piston forces are predominantly hydrostatic. A power scaling for different mean still water levels and step velocities as a function of the
Froude number was obtained. An active absorption strategy based upon a feedback controller driving a secondary piston was implemented.
Wave absorption was successfully achieved on regular and irregular waves.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0017376

I. INTRODUCTION

Wave tanks are centerpieces when it comes to studying hydro-
dynamics and wave structure interaction in offshore and marine
engineering. Experimental or numerical, they can reproduce the off-
shore environmental conditions (waves, currents, winds for some of
them) in order to evaluate the dynamic response to these harsh con-
ditions of vessels, offshore platforms, and marine renewable energy
structures such as fixed/floating offshore windmills or wave energy
converters. For a long time, these phenomena could only be exper-
imentally studied. The wave tank scaling should be done, according
to the similarity principle of dimensional analysis, by matching rel-
evant numbers as the Froude and the Reynolds numbers. This is
often complicated especially at small scale as explained in Ref. 1. One
approach is to test the model through increasing model scales.2 The
most simple configuration for a wave tank is a 2D tank, which is a
long tank where waves are generated on one side and absorbed or
broken up on the opposite side.

In order to generate waves at a laboratory scale, one should
displace a certain amount of water by means of a wavemaker of
choice: piston, hinged paddle, double articulated paddle, plunger,
duck. First order wavemaker theory has first been studied in Ref. 3.
Wave generation alternatives have been theoretically studied in the
1950s4 including piston, hinged paddle, or double articulated pad-
dle. In this work, we choose to use a piston wavemaker where the pis-
ton stroke along the tank is the physical mechanism to create waves.
The resulting waves from a piston wavemaker were investigated
in Ref. 4 determining a transfer function or relationship between
the piston stroke and the wave height. A validation of the piston
wavemaker theory was provided by some experiments.5 Similarly,
Madsen6 developed a theory of wavemaker generation for pistons
providing a detailed expression for wave elevation at any position in
a wave tank, and Schäffer7 developed the second-order wavemaker
theory for irregular waves. Goring8 studied solitary wave generation
with a piston wavemaker, basing his solution on the theory of Ref.
9. The impulsive wavemaker was experimentally and numerically
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studied in Ref. 10, notably showing wave profiles from the experi-
ment as well as forces on the wavemaker.

Most of the research on wavemaker theory has been con-
ducted on the basis of potential theory avoiding the determination
of viscous effects. At the same time, the necessity for local solu-
tions at the piston wavemaker was considered important in order
to understand the physics of the first instants in the wave gen-
eration. Local solutions near the piston wall are provided by Joo
et al.11 using the Laplace equation and expansion series for small
Froude numbers and basing their work on Ref. 12. They investi-
gated the contact line motion at initial times of the piston wave-
maker for ramp, step, exponential, and harmonic velocities. They
later on extended their studies to stratified fluid.13 A study of the
steady motion of a ship bow at high Froude number, which is sim-
ilar to the piston wavemaker problem, was carried out in Ref. 14.
Experimental realization of the velocity step case becomes compli-
cated because imposing a prescribed step-like wavemaker motion
involves high piston accelerations and therefore peak power inputs.
The practical case is to perform a ramp motion as indicated in
Ref. 15.

While experimental wave tanks provide a physical platform
to implement such systems, testing may be expensive or not suit-
able to comply with similarity restrictions, whereas numerical stud-
ies once performed exclusively with potential codes (irrotational,
incompressible, and nonviscous flows) are now commonly carried
out taking into account viscous effects that, nevertheless, require
more computational resources.

At present, the use of efficient codes solving viscous
Navier–Stokes equations has been reported to be useful in order
to model extreme wave conditions where the wave breaking pro-
cess16 can be captured and identified as the dominant mechanism
(instabilities) involved in extreme loading on marine structures and
wave energy converter devices.17 Numerical wave tanks may recreate
realistic waves using moving boundaries (which involves a dynamic
mesh) or static boundaries with mathematical implementation (in
the domain or at the boundaries). In this work, we use the first
option that mimics a viscous piston motion in a physical exper-
iment.18,19 Most of the numerical wave tank models include the
volume of fluid (VOF) to simulate two-phase flows20 as well as the
wave generation and propagation problem.21–24 Wave tank model-
ing with active wave absorption was developed in OpenFOAM,18,25

and recent methods such as Smoothed-Particle Hydrodynamics
(SPH) have also been developed to represent two-phase flows.26,27

In this work, we present a numerical study of a piston wave-
maker at a laboratory scale to investigate the wave generation pro-
cess and characterize the piston wavemaker dynamics, extending
Froude number regimes far beyond the ones that were studied
before. We perform fully non-linear and viscous numerical sim-
ulations of the wave tank where surface waves are produced by

the prescribed motion of a piston wavemaker. The moving bound-
aries allow reproducing the physics of a real facility. A complete
mesh independence study is carried out, and validation is performed
with theoretical data. To be able to generate waves of high qual-
ity, it is necessary to characterize the wavemaker system. It is cho-
sen here to do so by basing the study on the initial-value problem,
theoretically studied in Ref. 11. The numerical simulation allows
us to study regimes that do not appear in the theoretical study
based on potential flow. We measure the water height at the wave-
maker and in the tank for a set of prescribed wavemaker motions,
allowing one to characterize the near and far field generated waves
and determine the power input needs according to the wavemaker
dynamics.

The structure of this article is as follows: the initial-value prob-
lem and the required equations are presented in Sec. II, the numer-
ical method, mesh independence tests, and validation are presented
in Sec. II C, and finally the resulting characterization of the piston
wavemaker and the power input analysis are presented in Sec. III.

II. PROBLEM FORMULATION
The problem is described in the schematics in Fig. 1. We con-

sider a 2D wave tank of length L and height d, equipped with a
moving piston wavemaker placed at the left wall, and the opposite
wall of the tank is situated on the right. The mean still water level
is denoted h and can be varied at will. The origin of the coordinate
system is located at the left bottom of the wave tank, and all differ-
ent measurement stations along the wave tank are referred to this
coordinate system. In order to characterize the piston wavemaker
and the wave tank behavior, a series of tests will be performed to
provide the system response to input velocity signals driving the
motion of the piston wavemaker. The overall wave tank response
will be obtained from Heaviside Θ(t) input signals representing a
step response test.28 We consider the system composed by the wave-
maker, whose input signal is its velocity UG and the response is the
water level at the piston wavemaker ηw, as shown in Fig. 1. We can
define a transfer function associated with the wavemaker system,
hereafter called G where the fundamental output/input relationship
(transfer function) can be expressed as G = ηw/UG, which is crucial
when implementing feedback controlled wave-absorbers.29

A. Governing equations
The numerical simulation solves the 2D two-phase laminar

Navier–Stokes equations with two incompressible fluids (water and
air phases). The mass conservation equation is also solved in prim-
itive variables incorporating the VOF model to deal with each fluid
phase.20 These equations can be written in the vector form as

∇ ⋅U = 0, (1)

FIG. 1. Schematics of the problem. The numerical domain
is composed of (1) the piston wavemaker, (2) the tank end
boundary, (3) the atmosphere, and (4) the seabed. The gen-
erated waves (5) at the free-water surface are measured
with respect to the mean still water level (6) h.
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∂(ρU)
∂t

+∇ ⋅ (ρU U) −∇ ⋅ (μ∇U) −∇U ⋅∇μ

= −∇p∗ − g ⋅ x∇ρ + σκ∇α, (2)

∂α
∂t
+ (∇ ⋅U)α = 0, (3)

where U is the velocity vector, p∗ is the pseudo-dynamic pressure
(p∗ = p − ρg ⋅ x), ρ is the density, μ is the dynamic viscosity, g is the
gravity acceleration, x is the position vector, and σ is the fluid sur-
face tension coefficient. The volume fraction α is introduced to deal
with the two-phase formulation within the volume of fluid (VOF)
framework. κ is defined as follows:

κ = −∇ ⋅ ∇α
∣∇α∣ . (4)

In the two-phase formulation, density and viscosity on each domain
cell are computed as a weighted mean of the form30,31

ρ = αρwater + (1 − α)ρair , (5)

μ = αμwater + (1 − α)μair . (6)

The relevant dimensionless number in this work is the Froude
number Fr = UG/

√
gh controlling the wave propagation dynam-

ics. Viscous effects become important during the interaction of
the starting wave with the piston wavemaker taking place at

the beginning of the wave generation as we will discuss in
Sec. III C.

B. Boundary conditions
Boundary conditions employed in this work are summarized in

Eq. (7). On the piston wavemaker wall, we impose no-slip condition
for all velocity components. The initial still water level h is always
established before any wavemaker motion by initializing α. The vol-
ume fraction α is bounded and may adopt any value within 0 ≤ α ≤ 1
in any place of the physical domain, and Neumann boundary condi-
tions, set to 0, are applied at all boundaries for the α variable as well.
In particular, at the wavemaker, such a condition forces the contact
angle of the interface to be perpendicular to the wavemaker wall,
which agrees with the experimental results of Refs. 15 and 32 for
the case of a continuously accelerated wavemaker. In this work, the
piston wavemaker moves according to an input velocity signal dis-
played in Fig. 3(a). A velocity step UG drives the piston resulting in
linear dependency on time displacement XG(t). At the piston wave-
maker wall, the velocity matches the velocity of the moving bound-
ary in the x-direction only. A no-slip condition is used at the seabed
wall and the right end wall. The pressure is set to a reference pres-
sure (in this case 0) at the atmosphere boundary, and 0-Neumann
conditions are used at the other locations. A zero-gradient condi-
tion is applied at the atmosphere for outflow, and a velocity uϕ is
assigned for inflow based on the flux in the patch-normal direction.
The boundary conditions for the velocity, pressure, and α variables
can be summarized as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = XG(t) → ux = UG(t), uz = 0,
∂p∗

∂x
= 0,

∂α
∂x
= 0,

x = L → ux = 0, uz = 0,
∂p∗

∂x
= 0,

∂α
∂x
= 0,

z = 0 → ux = 0, uz = 0,
∂p∗

∂z
= 0,

∂α
∂z
= 0,

z = d →
inflow: ux = 0,

outflow:
∂ux

∂z
= 0,

uz = uϕ,
∂uz

∂z
= 0,

p∗ + 1
2
∣u∣2 = 0,

∂α
∂z
= 0.

(7)

C. Numerical method
The governing equations were solved with the open-source

software OpenFOAM version 5.33 OpenFOAM is an object oriented
C++ toolbox for solving continuum mechanics problems with the
finite volume method. OpenFOAM presents many advantages: as
released under the GNU General Public License, it is free and
open-source (no licensing fees, unlimited number of jobs, users,
and cores). It is also largely used in the scientific community and
thus has been validated for many applications. We use interDyM-
Foam, a solver of the Navier–Stokes equations for two incompress-
ible isothermal immiscible phases using the volume of fluid (VOF)
method. It increases the capabilities of previous solvers allowing one
to handle dynamic mesh motion. OpenFOAM solves a single equa-
tion of momentum for the two-phase mixture by introducing a vol-
ume fraction advection equation of the VOF method used to capture
the interface between the phases. Hirt and Nichols20 presented this

method as an efficient and simple way of treating the free surface in
numerical simulations, as it stores a minimum amount of informa-
tion. This method should be carefully used when the surface tension
becomes important. Some numerical solvers such as interDyMFoam
impose some restrictions in order to keep a sharp interface between
both fluid phases. An additional term called artificial compression is
introduced here,31

∂α
∂t
+∇ ⋅ (αU) +∇ ⋅ (Ucα(1 − α)) = 0, (8)

Uc = min(Cα∣U∣, max(∣U∣)). (9)

Cα is a user defined coefficient whose default value is 1. The addi-
tional term is only active close to the interface because of the prod-
uct α(1 − α) and does not impact the solution outside the interface
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region. Its role is to compress the interface and maintain α between
0 and 1 if used with discretization techniques. In the post-processing
stage, the value of α = 0.5 is chosen to detect the free surface, which
is carried out thanks to linear interpolation. The interDyMFoam
solver uses the PIMPLE algorithm, which combines both SIMPLE
(Semi-Implicit Method for Pressure Linked Equations)34 and PISO
(Pressure Implicit Split Operator)35 algorithms and allows for bigger
time steps. Simulations were performed on a CPU Xeon E5-2660 v2
cluster running on Simple Linux Utility for Resource Management
(Slurm) and based on MPI libraries. The CPU run time for a one
second transient simulation and a typical wave was about 2.4 h for a
400 000 element mesh and Δt = 5 × 10−4 s time step. The geometry
of the wave tank required a fine spatial discretization, particularly in
zones such as the water–air interface and zones of high velocity gra-
dients such as the wavemaker walls. Explicit schemes are used so that
special care is taken when choosing the time step regarding the mesh
size and CFL condition below 1. As a result of the rapid input veloc-
ity signals during the wave formation and subsequent progression
along the wave tank, the temporal discretization requires time steps
smaller than 10−3 s; thus, we choose a time step size Δt = 5 × 10−4 s
for all the simulations.

D. Mesh independence tests
A series of mesh tests are performed to look for mesh indepen-

dent results. We consider two test cases in order to achieve mesh
convergence: (i) the study of the response to an input velocity step
characterized by the overshoot and the steady state water height, and
the rising, peak, and settling times, as found on the time response
of linear dynamical systems, and (ii) the wave propagation of lin-
ear waves along the 2D wave tank (wave height, wavelength). In
the first case, a set of uniform rectangular cell meshes are generated
to look for mesh independence. Most sophisticated meshes, with a
uniform zone at the water–air interface, which includes the mini-
mum and the maximum water height during the whole simulation,
are also set up. They include refinement at the wavemakers and are
denominated “non-uniform.” They allow decreasing the computa-
tion time as the mesh size is kept in reasonable limits. The mesh,
generated thanks to the blockMesh program, is built from three char-
acteristic elements: the cell width at the piston wall Δxw, the cell

FIG. 2. Non-uniform mesh overview and zoom at the wavemaker and water–air
interface. In this case, the wave tank dimensions are 2 m × 0.25 m and water
depth is 0.15 m.

width in the wave propagation zone (far from the walls) Δx, and
the cell height in the wave propagation zone Δz. Δxw will be deter-
mined from the uniform mesh study in (i). From the wavemaker,
the longitudinal element size Δxi is being computed with the fol-
lowing geometric law: Δxi = Δxwr(i−1)∀i < nj, where r is the geomet-
ric growth rate. After nj cells, the elements reach a constant size
Δx in the wave propagation zone. A similar calculation allows us
to define the vertical element size from outside the interface zone.
Both Δx and Δz are set up considering the number of cells per
wavelength and cells per wave height, respectively. These parame-
ters will be set in (ii). Figure 2 shows the mesh in the x–z plane,
while one cell size is set up in the y-direction. Mesh type and prop-
erties are displayed in Table I. These preliminary tests with different
meshes allow an appropriate choice of the mesh size without com-
promising accuracy and CPU time (cf. Fig. 2). The dynamic mesh
is modeled using a mesh expansion/contraction strategy. The mesh
uniformly contracts and expands, conserving the global mesh cell
volumes as these motions are relatively small compared to the tank
length.

1. Step response
In order to fully test the capacity of the code to represent sud-

den and rapid water surface elevation, we choose to perform a step
response of the water tank. The input signal is a velocity step, as

TABLE I. Mesh properties to study the wavemaker response to a velocity step. Δxw is the cell size in the x-direction at the piston wavemaker, Δx is the cell size in the x-direction
in the wave propagation zone, Δz is the cell size in the z-direction at the water–air interface, ηo is the overshoot water height at the piston wavemaker, ηss is its steady state
value, and tr , tp, ts are the rising time, the peak time, and the settling time, respectively. The area a is used as an entry for the GCI study.36

Δxw (m) Δx (m) Δz (m) a (m2) Number of cells ηo (m) ηss (m) tr (s) tp (s) ts (s)

Uniform

M1
U 0.0100 0.0100 0.005 0 5 × 10−5 10 000 0.0356 0.0257 0.0536 0.1253 0.2819

M2
U 0.0050 0.0050 0.002 5 1.25 × 10−5 40 000 0.0342 0.0257 0.0481 0.1116 0.2979

M3
U 0.0025 0.0025 0.001 0 2.5 × 10−6 200 000 0.0340 0.0259 0.0479 0.1298 0.2905

M4
U 0.0015 0.0015 0.000 75 1.125 × 10−6 443 889 0.0340 0.0258 0.0491 0.1237 0.2939

M5
U 0.0013 0.0013 0.000 5 6.5 × 10−7 769 000 0.0341 0.0259 0.0493 0.1246 0.2927

M6
U 0.0011 0.0011 0.000 26 2.9 × 10−7 1 748 916 0.0341 0.0259 0.0494 0.1247 0.2909

Non-uniform
M7

NU 0.0010 0.0363 0.001 0 . . . 17 115 0.0340 0.0258 0.0491 0.1264 0.2976
M8

NU 0.0010 0.0181 0.001 0 . . . 20 055 0.0340 0.0258 0.0492 0.1262 0.2965
M9

NU 0.0010 0.0091 0.000 57 . . . 47 025 0.0341 0.0258 0.0488 0.1250 0.2954
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FIG. 3. (a) Normalized input signal for the step response test as a function of non-dimensional time (continuous blue line). The piston velocity UG(t) is normalized by its
maximum value U0. We also display the piston position XG normalized by the water depth of the wave tank (continuous black line). The smooth function for the wave train
generation in Sec. III D is also shown (by the dashed blue line). (b) Characteristic amplitude and timescales in the step response of a second order system. ηo, ηss are the
overshoot and steady state values, respectively, and tr , tp, ts are the rising, peak, and settling times, respectively. The steady state height is ηss > h as the piston wavemaker
moves constantly at UG.

shown in Fig. 3(a), and given by

UG(t) = U0Θ(t), (10)

where Θ(t) is the Heaviside function. The step value is 0 for negative
times and UG = U0 for positive times, resulting in a linear displace-
ment XG(t) of the piston wavemaker. In this part of the study, we
set the tank length to L = 4 m, the tank height to 0.25 m, and the
mean still water level to h = 0.15 m. Mesh M1

U is the coarsest and
M6

U the finest. M7
NU to M9

NU are non-uniform meshes as previously
described. They use a cell size at the wall defined later on in the
conclusion of the uniform mesh study and geometric growth rate
r = 1.05 in the x-direction and r = 1.2 in the z-direction. For the
finest mesh in the z-direction (mesh M6

U ), it is necessary to reduce
the time step to keep the Courant number below 1. This is why the
time step is set for all meshes to Δt = 10−4 s. The measured quantity
is the water elevation at the wavemaker ηw. The variables of interest
are described in Fig. 3(b) and are the following: ηo, ηss, the overshoot
and steady state values, respectively, and tr , tp, ts, the rising, peak,
and settling times, respectively. Results are reported in Table I and
shown in Fig. 4. Figure 4(a) shows the time series of the water ele-
vation at the piston wavemaker, ηw(t), for each mesh. The results of
the four finest meshes are similar. A Grid Convergence Index (GCI)
study36 is carried out with meshes 4, 5, and 6. The local order of
accuracy p ranges from 0.18 to 17.57 with a global average of 4.98.
This apparent average order is used to assess the GCI error at every
point as suggested in Ref. 36. The error made in the last mesh is
really low (the maximum GCI error is 0.3%), which allows us to
say that the results do not depend on the mesh. Figure 4(b) shows
the error for every point, and a zoom around the overshoot is dis-
played in the inset where errors increase. The mean error is an order
of magnitude lower (0.03%). The errors on the overshoot and the
steady state values are very low. Figures 4(c) and 4(d) show the con-
vergence of the different parameters composing the typical response

to the step (overshoot and steady state water elevation, rising, peak,
and settling times). They show that for these parameters, the limit
of convergence is mesh M3

U . It is chosen, for obvious practical rea-
sons, to work with mesh M3

U at the wavemaker, which allows us
to decrease computational times while assuring convergence. Non-
uniform mesh shows good agreement with the uniform ones for all
variables. In the rest of this work, we make sure that the first cell
at the piston wavemaker wall is kept below Δxw = 0.0025 m in the
x-direction and Δz = 0.001 m in the z-direction in order to keep the
results independent of the mesh. The number of cells per wavelength
and height in the wave propagation zone is analyzed in the following
paragraph.

2. Wave propagation
In order to properly study the wave propagation properties

as a function of the mesh type and quality, we use an extended
wave tank with L = 8 m. The mesh is finer at the water–air inter-
face and is kept uniform in the zone where the wave propagates.
At the wavemaker, we set Δxw = 0.001 m, and a transition is made
with a 1.05 cell to cell ratio. The piston stroke is set to X0 = 0.004
m, the wavemaker frequency to f = 1.25 Hz, and the piston wave-
maker velocity to UG(t) = X0ω/2 sin(ωt + δ) with δ = −π/2. The
corresponding wavelength can be estimated from the dispersion
relation ω2 = gk tanh(kh), where k is the wave number, and in this
case, λ = 0.82 m. A common discretization is given by 20–25 ele-
ments per wave height and 60–70 elements per wavelength in recent
works.37 We conduct our test based on three meshes whose prop-
erties are shown in Table II, where M7

NU is the coarsest mesh and
M9

NU the finest one. The number of cells per wave height ranges
from 15 to 60, while the number of cells per wavelength ranges
from 60 to 240. The time step is set to Δt = 0.001 s, and the the-
oretical CFL number is reported. Even if it shows to have a value
below 1, the time step for the finest mesh M9

NU had to be decreased
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FIG. 4. Step response. (a) Water height at the piston wavemaker for different meshes. Convergence is achieved from mesh M3
U . (b) Error made due to mesh discretization

calculated with the GCI method.36 A zoom in the overshoot region is also displayed. (c) Overshoot and steady state water height (ηo and ηss, respectively) as a function of
the mesh. These variables seem to have converged at mesh M3

U . (d) Characteristic times (rising time tr , peak time tp, and settling time ts) as a function of the mesh type.
Converged values are found from mesh M3

U .

to Δt = 0.0005 s to avoid divergence due to the use of explicit
schemes. The simulation end time is 10 s, and two probes are set
at x = 2 m and x = 4 m from the origin of the coordinate system
(cf. Fig. 1).

TABLE II. Mesh characteristics and their theoretical CFL number for the wave
propagation problem.

M7
NU M8

NU M9
NU

Cells/H 15 30 60
Cells/λ 60 120 240
Δxw (m) 0.001 00 0.001 00 0.001 00
Δx (m) 0.013 60 0.006 80 0.003 40
Δz (m) 0.000 30 0.000 15 0.000 07
Total number of cells 40 734 107 184 303 232
CFL number 0.15 0.29 0.59

Figure 5(a) shows the water level at the wavemaker wall ηw(t).
No differences between the meshes are observed as expected, since
the refinement in the x-direction and in the z-direction is finer
than the necessary one studied in (i). Figure 5(b) shows the dif-
ferences between the meshes that are used at x = 4 m. A zoom
over the highest value and for three wave periods is shown in
Fig. 5(c). The coarse mesh M7

NU effectively produces minor differ-
ences from the other two, specially at the maxima and minima.
The results for the probe at x = 2 m are compared with the the-
ory in Ref. 6 and shown in Fig. 5(d). The errors of wave crests
and troughs with the wavemaker theory are shown in Table III.
The results are quite accurate for the three meshes (almost all cases
with a rms deviation below 0.1 mm) although the coarse mesh lacks
accuracy at the maxima and minima. It is chosen to work with
the medium mesh M8

NU in the rest of this work as it allows accu-
rate wave height data and reduces the computational time com-
pared to the fine mesh. The final mesh characteristics are given in
Table IV.
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FIG. 5. Continuous wave propagation. (a) Water height at the piston wavemaker ηw as a function of time. (b) Water height at x = 4 m as a function of time. (c) Water height at
x = 4 m as a function of time, with a zoom over times between 6 s and 9 s. (d) Comparison between the medium mesh and the wavemaker theory6 at x = 2 m. The medium
mesh well represents the wavemaker theory. It allows us to validate the wave generation process with the medium mesh for small waves.

TABLE III. rms deviation relative to the theory in Ref. 6 over the 10 s simulation for
both wave gauges at x = 2 m and x = 4 m. The rms deviation is calculated according

to ΔRMS =
√
∑N

j=1 (ηj − ηtheo
j )

2
/N.

ΔRMS(x = 2m) (m) ΔRMS(x = 4m) (m)

M7
NU 7.2 × 10−5 1.10 × 10−4

M8
NU 4.3 × 10−5 0.80 × 10−4

M9
NU 4.4 × 10−5 0.83 × 10−4

TABLE IV. Characteristics of the final mesh.

Δxw (m) Cells/λ Cells/H rx rz

0.001 120 30 1.05 1.20

III. RESULTS
One of the objectives in this work is to characterize the pis-

ton wavemaker system by applying a series of velocity steps. First,
a qualitative approach is taken and observations are made about
the wave generation at small times and the generated wave pulse
is studied at longer times and far away from the wavemaker. Then,
we compare the characteristic variables with the theory developed
in Ref. 11 and explore higher Froude number regimes. The forces
exerted on the wavemaker and the power involved in the wave gen-
eration process are studied, and an active wave absorption strategy
is finally designed. The step velocity tests are carried out at four
mean still water levels: h = 0.050 m, 0.075 m, 0.100 m, 0.150 m,
and for velocities ranging from UG = 0.005 m/s to UG = 0.4 m/s.
In this problem, the fundamental velocity, length, and timescales
are
√

gh, h, and
√

h/g, respectively. The problem can be writ-
ten as f (ηw, ρ, g, h, t, UG) = 0, but according to the Buckingham
π theorem,38 it can be reduced to f (η∗w, t∗, Fr) = 0, where η∗w and
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FIG. 6. Time snapshots of the wave pulse generated (from left to right) by a velocity step applied to the wavemaker motion. The wave pulse is called here the overshoot-wave
as it is created by the overshoot of the water elevation at the piston wall. The wave profile (wave height as a function of x) is plotted in blue and the wave steepness as a
function of x in red. The velocity step is 0.3 m/s, and the mean still water level h is 0.15 m. The shown times are t = 0.05 s ≈ tr , t = 0.13 s ≈ tp, t = 0.20 s, and t = 0.31 s ≈ ts.

t∗ are the dimensionless water height at the piston wavemaker and
time, respectively. In the next sections, as a consequence of this anal-
ysis, we will express the results in a dimensionless way using the
relevant variables η∗w, t∗, and Fr.

A. First instants—The overshoot-wave
While applying a velocity step to the wavemaker, one observes

the formation of a surface water pulse propagating along the tank
as it is shown in Figs. 6 and 7. The wavemaker displaces a given

volume of water, and as the fluid is incompressible, this volume is
found under the wave profile. The water height at the wavemaker
ηw(t) first rises along the wall reaching a maximum value, the over-
shoot. Then, the wave pulse comes off the wall and self-propagates
in the positive x-direction, as the phase velocity of the wave becomes
higher than the wavemaker velocity Cp > UG. In the time snapshots
in Fig. 6, the wave pulse generated by the velocity step is called
the overshoot-wave as it is created by the overshoot of the water
elevation at the piston wall.

FIG. 7. Snapshots at times t = 1.00 s and t = 1.99 s of the wave pulse generated (from left to right) by a velocity step applied to the wavemaker motion. The wave profile
(wave height as a function of x) is plotted in blue and the wave steepness as a function of x in red. The velocity step is 0.3 m/s, and the mean still water level h is 0.15 m.
Note the change in scale in the x abscissa compared to Fig. 6.
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After leaving the wavemaker, the water height at the wave-
maker remains constant, as indicated in Fig. 9. The wave pulse
profile for times t = 0.05 s, 0.13 s, 0.20 s, 0.31 s, which correspond
to the first instants of the pulse formation, is displayed in Fig. 6.
In Fig. 6, the wave steepness, defined as ∣dη/dx∣, is superimposed.
We observe that the wave steepest shape occurs at the very first
instants of its formation, i.e., at t = 0.05 s, where the maximum
steepness is higher than 3. When the pulse starts leaving the pis-
ton wavemaker, its steepness decreases to values under 1. Such
high steepness is associated with the non-linear properties of the
overshoot-wave. Another important parameter useful to evaluate
when it comes to apply linear theory is the wave height to mean
still water level ratio η/h. It is relatively important (values around
0.5 in this example); therefore, Airy theory of linear waves can-
not be applied here. The profile of the generated pulse at longer
times is shown in Fig. 7, as well as its steepness as a function of
the x-coordinate. We can notice the generation of wiggles after the
main pulse propagating downstream as already described. The wig-
gles are trailing waves whose height decreases in the vicinity of the
piston wavemaker, while the front wave height increases as it trav-
els. These wave structures are described in the work of Ref. 11 and
are a consequence of wave dispersion. The piston motion creates a
wave packet in which each wave travels at different velocities due
to dispersion effects. We identify the created wave to be an undu-
lar bore, which was experimentally and theoretically studied in Refs.
39 and 40, respectively, while Stoker41 predicted that an impulsive
wavemaker would generate an undular bore as in the present case.
Recently, similar bore structures were obtained from a different
approach where a moving weir at the bottom of a channel may pro-
duce the volumetric water displacements necessary to develop such a
wave.42

Undular bores are of particular importance as they appear
to more likely represent a real tsunami wave instead of a solitary
wave.43 Important values of the wave steepness are observed dur-
ing the pulse formation, which decrease rapidly as the pulse prop-
agates without evidence of wave breaking. If the bore strength is
important, undular bores may display a wave breaking process.42 In
the time snapshots in Figs. 6 and 7, we observe the vector velocity
field of the numerical solution of the Navier–Stokes equations. The
vector field becomes intense precisely near the steepness peaks as
the overshoot-wave propagates along the tank. The higher the wave
height, the higher the intensity of the vector field, which is associated
with particle velocity.

The starting overshoot-wave displays a phase celerity Cp as a
function of time t, which may be compared with two characteristic
properties, the shallow water wave speed Cp =

√
g(h +H) and the

piston velocity UG, as shown in Fig. 8. The overshoot-wave celerity
may be estimated from the mean celerity as Cp = δx/δt between con-
secutive wave crests or looking for maximum steepness at different
time steps during the propagation, as shown in Fig. 6. As the phase
celerity of the overshoot-wave is found to be higher than the piston
velocity from the first instants of motion, the overshoot-wave travels
fast enough to leave the piston wavemaker. As the wave propagates
along the tank, its phase celerity increases with time, approach-
ing the shallow water phase speed given by Cp →

√
g(h +H). This

behavior agrees with that in potential theory and therefore allows
us to validate the capabilities of the numerical wave tank for wave
propagation.

FIG. 8. Instantaneous overshoot-wave phase celerity Cp(t) (in blue) as a function
of time for the case h = 0.15 m and UG = 0.3 m/s. For times lower than 0.2 s,
the maximum of the steepness is used to determine the location of the overshoot-
wave. For later times, the maximum of the wave profile is taken as the location of
the wave. The wave celerity can be compared to the piston step velocity UG and
to the phase velocity of shallow water waves.

B. Response to a velocity step
A positive velocity step (UG > 0) creates a water pulse, which

leaves the wavemaker wall as it propagates along the tank. The step
response is recorded as the water height or water elevation at the
wavemaker wall ηw(t) and is presented in Fig. 9(a).

The water height first increases, reaching a maximum or over-
shoot ηo at peak time tp, before approaching a lower steady state
value ηss. It is of particular interest to note the similarity of this
dynamic response to a step response of the second order system [cf.
Figs. 9(a) and 3(b)]. The time response of second order linear sys-
tems depends on the type of the input signal. For a step input, the
system exhibits a characteristic response defined by the rising time
tr , the maximum overshoot ηo, and the steady state value ηss obtained
at a given settling time ts.28 In Fig. 9(b), we present the normalized
time response using the Froude number as in the theory proposed
in Ref. 11. We can observe that after reaching its maximum value,
the overshoot, the water height slightly oscillates and decreases to
its steady state value ηss = hFr. The step response for small Froude
numbers found in this work is in agreement with that in the theoret-
ical work of Ref. 11. Nevertheless, some differences with the theory
are observed in the overshoot behavior for higher Froude num-
bers. The overshoot starts to increase beyond the theoretical predic-
tion, and the steady state value approaches a slightly higher value
than the expected one from theory, ηss = hFr, as we will discuss in
Sec. III B.

The relative deviation from theory11 is presented in Table V
for the four mean still water levels and the velocity range from
0.005 m/s to 0.3 m/s. The relative deviations are defined as Δo

= ∣ηo − ηre f
o ∣/ηre f

o and Δss = ∣ηss − ηre f
ss ∣/ηre f

ss , where the superscript
ref refers to the study of Ref. 11. The arrows indicate how the Froude
number changes while varying the step velocity or the mean still
water level. It is interesting to note that the relative deviation stays
low for the steady state value (< 10.5% for all velocities and mean
still water levels). For both overshoot and steady state values, the
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FIG. 9. (a) Water height at the wavemaker as a function of time. (b) Non-dimensional water height as a function of non-dimensional time. A comparison between the CFD
simulation and the theoretical study carried out in Ref. 11 is shown.

deviation decreases with the increase in the water level (which actu-
ally corresponds, for a given step velocity, to lower Froude numbers).
Finally, the deviation for the overshoot value can reach high values
(> 40%) for the highest Froude numbers (high velocity, low mean
still water level).

The dominant controlling parameter in this work is the Froude
number Fr defined as the ratio between inertial (ρh2U2

G) and
gravitational (ρgh3) forces, and thus, Fr = UG/

√
gh. The similar-

ity of the system response to the typical second order response
under a step velocity can be analyzed through the characteristic
timescales and maximum overshoot of the response. Timescales
as well as the amplitude of the water height response must be
plotted as a function of the step velocity UG. As in many feed-
back control systems, the time response of a second order sys-
tem will be completely determined when one knows the maxi-
mum overshoot ηo, the steady state amplitude ηss, and the rising,
peak, and settling times tr , tp, ts, respectively. If the time response

is correctly described by the second order response, we should
find a scaling law for the characteristic timescales at different
water depths h and step velocities UG otherwise said the Froude
number.

The overshoot ηo as a function of the step velocity UG is plotted
in Fig. 10(a) and the steady state ηss is plotted in Fig. 10(c), both for
two mean still water levels h = 0.05 m and h = 0.15 m. The steady
state values evolve linearly with the generation step piston veloc-
ity as they correspond to the water height of the displaced volume,
which increases linearly in time as the step velocity UG is constant
for t > 0. However, the overshoot dependence on UG is not linear
as the overshoot-wave originates during a rapid transient process.
The curve collapse under the proposed scaling is relatively good in
the range of mean still water levels shown as 0.05 ≤ h ≤ 0.15 m. The
scaling for the overshoot fails when Fr > 0.2 as the overshoot-wave
height increases over the linear limit and starts to move faster with
higher UG.

TABLE V. Relative deviation from the model of Ref. 11 at different water depths and step velocities (0.005 < UG < 0.3 m/s).
The relative deviation is defined as Δo = ∣ηo − ηref

o ∣/ηref
o , Δss = ∣ηss − ηref

ss ∣/ηref
ss . The superscript ref refers to the study of

Ref. 11. The arrows indicate how the Froude number varies with the step velocity and the mean still water level.
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FIG. 10. (a) Overshoot ηo of the water elevation at the piston wall as a function of the piston step velocity UG. Two still water levels are considered: 0.05 m and 0.15 m. (b)
Dimensionless overshoot at the piston wall η∗o = ηo/h vs Froude number. A linear fit for low Froude number Fr < 0.1 is drawn as a dashed black line for comparison and is
given by η∗o = 1.267 ⋅ Fr − 0.0015 and R2 = 0.9994. (c) Steady state water elevation ηss as a function of the piston step velocity UG. Two still water levels are considered:
0.05 m and 0.15 m. (d) Dimensionless water height steady state at the piston wall η∗ss = ηss/h vs Froude number. A linear fit for low Froude number Fr < 0.1 is drawn as a
dashed black line for comparison and is given by η∗ss = 1.046 ⋅ Fr − 0.0005 and R2 = 0.9997. The different still water levels are represented with symbols.

The evolution of the characteristic timescales of the response to
a velocity step is shown in Fig. 11. As it is indicated in Fig. 3, these
timescales are associated with a second order dynamical response,
where the water height at the piston wall ηw is measured and com-
pared to the steady state height ηss. The rise time tr and the peak
time tp are associated with the very first instants of the wave motion,
when the overshoot-wave is created. Both time constants appear to
be independent of the step velocity and provide an interesting scal-
ing independent of the Froude number where the dimensionless
timescale is written as

t∗ = t√
h/g

. (11)

As shown in Fig. 9, after the main wave leaves the piston zone,
the water height on the piston wall scales perfectly with the Froude
number as ηw/(hFr) = 1 because the displaced volume in the steady

state regime is entirely determined by the steady state water eleva-
tion ηss. The associated settling time ts is computed within a 10%
band and slightly grows with the Froude number. In Fig. 11(b),
the time scaling indicated in Eq. (11) produces a very tight col-
lapse of each characteristic time as a function of the Froude
number.

The scaling seems to confirm the similarity of the water ele-
vation response with a second order response. As the wave pulse
is created by the excess or overshoot of the water elevation at the
piston wall, we called it the overshoot-wave. The piston motion
produces the displacement of a water volume (per unit depth)
given by V(t) = UGth, which displays an initial transient peak,
the overshoot, superimposed into a water slug rising over the
mean still water level h. The overshoot-wave has its own dynam-
ics, moving at shallow water speed, running over the water slug,
and therefore leaving the displaced volume faster than the linear
waves.
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FIG. 11. (a) Characteristic timescales as a function of the wavemaker step velocity UG. (b) Dimensionless characteristic timescales t∗ = t√
h/g as a function of the Froude

number.

C. Forces involved in the step response
In this section, we present new findings such as the force

decomposition and the maximum power as a function of the Froude
number. The objective of this section is to determine the forces orig-
inated on the piston wavemaker during the step response. As the
problem is 2D, there are only two components of the forces pro-
jected on the piston wall in the x-direction and z-direction, which
are inertial, pressure, and viscous forces. These forces can be calcu-
lated from the pressure and velocity fields at the wavemaker using
the stress tensor ε , the elementary surface area dS (which is in the
2D case an elementary length), and its normal n,

Fw = ∫
z

ε ⋅ n dS. (12)

The stress tensor is defined as

ε = −p[1 0
0 1] + 2μ

⎡⎢⎢⎢⎢⎢⎢⎣

∂ux

∂x
1
2
(∂uz

∂x
+ ∂ux

∂z
)

1
2
(∂uz

∂x
+ ∂ux

∂z
) ∂uz

∂z

⎤⎥⎥⎥⎥⎥⎥⎦

. (13)

In Fig. 12, we display the resulting normal and tangential force pro-
files [ f x(z) and f z(z), respectively] as a function of the vertical
coordinate starting from the bottom of the tank and across both fluid
phases. As the mean still water level is h = 0.15 m, we note a marked
change at the air–water interface z = 0.15 m on both types of forces.
However, as expected, there is approximately a five orders of magni-
tude difference between both components. The normal force profile
f x(z) is mainly hydrostatic and insensitive to time, and the viscous
or tangential force profile f z(z) is dependent on time at low UG
values. Wall shear is created during the formation of the overshoot-
wave, which indicates the positive increase in the resulting vertical

FIG. 12. Normal and tangential force profiles (along the z axis, f x and f z , respectively) per unit area at the wavemaker for times 0.05 s, 0.13 s, 0.20 s, 0.31 s, and 0.60 s and
h = 0.15 m. Notice the difference of power of ten between the two plot vertical axes. (a) UG = 0.03 m/s. (b) UG = 0.30 m/s.
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FIG. 13. Pressure forces [hydrostatic ρg(h + η) and p − ρg(h + η)] (along the z axis) at the wavemaker for times 0.05 s, 0.13 s, 0.20 s, 0.31 s, and 0.60 s and h = 0.15 m.
(a) UG = 0.03 m/s. (b) UG = 0.30 m/s.

force Fz(z) in Fig. 14(b). When the overshoot-wave leaves the pis-
ton, and the progressing volume pushed by the piston reaches a
steady state motion, the shear forces become very small. When the
step velocity is increased to UG = 0.3 m/s, the normal force profile
f x(z) displays notorious changes in time but finally evolves into an
almost hydrostatic vertical profile, as shown in Fig. 13(b).

In order to verify the effects of the initial fluid motion on the
pressure field during the step response, we recorded the pressure
profiles at both step velocities UG = 0.03 m/s and UG = 0.3 m/s.
The sudden increase in water elevation at the piston wall is more
important at higher UG, which is explained by the higher volume
displaced during the initial times. Shear forces change in sign dur-
ing the formation of the overshoot-wave, as shown in Fig. 12 at both
step velocity values. The first water elevation motion produces a pos-
itive shear on the piston wall and therefore a positive shear force,
which start to decrease, becoming negative as the overshoot-wave

leaves the piston wall and the force points downward before van-
ishing in the steady state regime. The pressure profile is dominated
by hydrostatics, as shown in Fig. 12. However, when we subtract
hydrostatic pressure due to the initial wave elevation along the z axis,
i.e., we plot p(z) − ρg(h + η), we observe traces of the creation of
the overshoot-wave on the remanent pressure. As time progresses
and the overshoot-wave leaves the piston wavemaker, this rema-
nent dynamic pressure contribution approaches very low values with
respect to hydrostatics.

In order to compute the power delivery involved in the pro-
cess, we must get a good estimate of the resulting forces on the
piston. In Fig. 14, we present the normal and tangential forces on
the piston wall as a function of time, uncovering the initial tran-
sient associated with the overshoot-wave formation and during the
steady state regime. The normal and tangential force profiles are
obtained integrating the force profiles in Fig. 12 along the piston

FIG. 14. Resulting net forces per unit length as a function of time. (a) Normal net force Fx(t) and (b) tangential net force Fz(t). The mean still water level is h = 0.15 m, and
the step velocity range is 0.01 m/s ≤ UG ≤ 0.3 m/s.
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FIG. 15. Power delivery during wave generation. (a) Maximum power per unit length Pmax vs step velocity UG at h = 0.05 m and h = 0.15 m. (b) Dimensionless maximum
power per unit length P∗max as a function of the Froude number Fr at different mean still water levels. A quadratic fit is carried out and gives P∗ = 2.0079Fr2 + 0.2740Fr
+ 0.0087 (with the correlation coefficient R2 = 0.999 06).

wall during each time step, providing an accurate estimation of the
net forces shown in Fig. 14. The resulting normal forces Fx(t) are
negative as they oppose the piston motion. If we plot the absolute
values, we find a time evolution very similar to that of water ele-
vation ηw(t) in Fig. 9. The first rising part is associated with the
force excess resulting from the creation of the overshoot-wave fol-
lowed by a steady state force associated with the progressive motion
of the mass of the water slug moving at constant velocity UG. On
the other side, the tangential averaged forces Fz(t) shown in Fig. 14
display a change in sense (sign), indicating how the fluid is mov-
ing on a boundary layer created on the piston wall. At first, the
fluid moves upward, then stops, and then moves downward reaching
a local (downward) maximum precisely when the overshoot-wave
leaves the piston. The critical time when the resultant shear force
is zero t ∼ 0.2 s does not correspond to the peak time as water is
still rising at the bottom of the wavemaker, as shown in Fig. 6.
X-force characteristic times (rise and peak times) are much larger
than those for the kinematic observations. The minimum shear force
time corresponds to the maximum force in the x-direction, show-
ing the correlation between both phenomena. We can imagine that
a feedback controlled piston wavemaker might also be designed
by measuring the vertical force instead of the one in the direction
of the piston motion. If the overshoot-wave is going away lead-
ing to a fluid flow downward at the interface, the global motion is
more complicated, with a flow still going upward at the base of the
piston.

During the design of a piston wavemaker, it is important to
evaluate the power input during the step response associated with
the wave generation process, as it can be particularly useful in deter-
mining the scaling. For example, the Flowave facility power demand
can creep close to 300 kW when it creates a sea state moving the
168 paddles.44 Dimensioning the necessary power supply is then of
crucial importance. This section is devoted to the evaluation of the
energy input required to create a wave pulse resulting from a piston
velocity step. The power involved in the step motion of the piston
wavemaker is calculated according to the following equation:

P(t) = Fw ⋅Uw. (14)

In this case, the piston wall velocity is Uw = UGx̂, which is the Heavi-
side step function. Maximum power delivery as a function of the step
velocity is shown in Fig. 15(a). The maximum power corresponds to
the maximum water elevation at the piston wall. An expected power
increase is found when the step velocity increases, but more impres-
sive is the radical change in the power delivery when the mean still
water level is increased. If we look for a scaling of the power delivery,
we may use a characteristic force per unit length and velocity to per-
form the normalization. The normalized maximum instantaneous
power can be written as

P∗ = P
ρgh h

√
gh
= P

ρg3/2h5/2 ,

where P is the power per unit length. The involved force is the hydro-
static pressure force, and the velocity is the corresponding shallow
wave celerity

√
gh. In Fig. 15(b), the normalized maximum power

P∗ vs Froude number collapse for different mean still water levels
confirms that the scaling has been properly defined and it follows
accurately a quadratic fit (obtained by least square fitting). This law
can be used as an entry design tool to define the maximum power
that is necessary to generate waves.

D. Active wave absorption
An active wall driven by a feedback controller may be useful not

only to cancel wave reflections but also to attenuate wave impacts
associated with extreme waves on a vertical wall and reduce their
consequences.45 We have here implemented an active wave absorp-
tion strategy using our results from the response of the wavemaker to
velocity steps discussed in Sec. III B. First, consider a wave created
at the wavemaker, propagating from left to right, whose shape is a
leading trough, as shown in Fig. 16. To absorb this wave at the right
active wall, a wave crest of nearly opposite phase has to be super-
imposed, which is generated by the motion of a wave-absorber, a

AIP Advances 10, 115306 (2020); doi: 10.1063/5.0017376 10, 115306-14

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 16. Schematics of the wave absorption problem. The numerical domain is composed of (1) the piston wavemaker, (2) the piston wave-absorber on which the water
level ηw is measured, (3) the atmosphere, and (4) the seabed. The generated waves (5) at the free-water surface are referenced to the mean still water level (6) h. A second
frame of reference, on the wave-absorber, is indicated as (x′, z′).

wavemaker situated at the right side of the tank, according to the
following strategy.

Consider a wave-absorber consisting of an active flat wall with
a sensor that measures the water level at the wall ηw. On the frame
of reference (x′, z′) associated with this wave-absorber, the positive
motion is from right to left (note that x′-direction is the opposite
of x). The wall water level ηw can be compared to a reference value
ηref = 0 in order to attenuate reflections. The error ε = ηref − ηw is
permanently computed and fed into a proportional controller of
gain K, which provides the absorption velocity UA = Kε. The cor-
responding block diagram of the feedback control strategy using
a proportional controller is shown in Fig. 17(a). The efficiency of
the control strategy relies on the choice of K where we propose
to use the kinematic results of the step response rather than typ-
ical methods.28 In Sec. III B, we have shown that the wall water
level at the wavemaker reaches an overshoot value after a short
time (as seen in Fig. 9) corresponding to the standard peak time
of the system (see Fig. 11). The overshoot η0, the maximum water
level at the wavemaker during the step, was related to the piston
velocity UG by a linear relationship at the lower part (Fr < 0.2) of
Fig. 10(b). If we want to absorb a wave of given amplitude at the
wave-absorber wall, then we are more efficient if the change in
amplitude, ηw → η0(UG), takes into account the corresponding step
velocity UG.

The slope of the linear scaling in Fig. 10(b) (the lower part
of the plot) will determine the proportional controller gain K. The
absorption velocity is then computed as UA = Kε = −Kηw, where
K = 1/1.267

√
g/h represents the inverse of the linear fit slope in

Fig. 10(b).
The dimensionless controller gain K∗ = K

√
h/g is reproduced

in Fig. 17(b) at different water levels, for a better understanding of
the gain selection.

In order to determine the efficiency and limits of the feedback
strategy, an irregular wave train, an undular bore, and regular wave
cases were tested. The first example of the implementation of such an
absorption strategy for irregular waves is shown in Fig. 18. A wave
train is generated by the wavemaker on the left with the help of a
smooth velocity pulse function defined as

UG(t) = −
S
τ

sech2( t − t0

τ
), (15)

with S = 0.077 m, t0 = 1.30 s, and τ = 0.342 s. This function can be
visualized in Fig. 3(a). The wave train is moving in the direction
of the wave-absorber at the right end part of the wave tank and
is formed of a leading trough followed by wiggles (see time t = 3.5
s). The waves are then absorbed according to the feedback con-
trol strategy with an update of the absorption velocity at every time
step, where the error at the wave-absorber wavemaker is plotted in

FIG. 17. (a) Absorption block system. A proportional controller compares the value of the water level at the wave-absorber wavemaker ηw with a reference value ηref .
It multiplies then the error with a constant coefficient K, which gives the absorption velocity UA. Error ε and absorption velocity as a function of time. (b) Dimensionless
overshoot-wave height at the paddle as a function of the Froude number, zoomed-in view of Fig. 10(b). The dimensionless proportional coefficient K∗ is represented on the
curve as the inverse of the slope (in red). K∗ = 1/1.267 so that K = 1/1.267

√
g/h.
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FIG. 18. Wave profile η as a function of the x-coordinate and for times from 2.50 s to 8.00 s. For times t = 2.20 s and 3.50 s, a blue arrow indicates the direction of the incident
wave train. The active feedback absorber velocity and direction [in the frame of reference (x′, z′)] are shown with red arrows. For the last time (t = 8 s), the wave state for
the case without absorption is superimposed in the dashed black line.

Fig. 19(a). The error alternates between positive and negative values
causing the absorption velocity UA, which is also shown in the same
graph, to behave similarly. The error decreases to zero while the
wave-absorber performs the canceling action. The maximum error
corresponds to 21% of the mean water level, that is to say, at the limit
of the non-linear portion of the plot in Fig. 10(b). It results in an
almost fully absorbed wave state at times t = 7 s and 8 s, where the
water surface is calm at every location of the wave tank. Note that
a reflected wave will take a time greater than t > 8 s to arrive into
the wave-absorber after reflection at the left wavemaker. That means
the error ε(t) falls to zero rapidly. In Fig. 18, in the last snapshot
at t = 8 s, the black dashed curve is obtained with the controller off,
and thus, the wave-absorber is at rest, allowing one to qualitatively
compare the efficiency of the absorption strategy. It is possible to
compute the energy of the wave tank in order to evaluate (and pro-
pose) the absorption efficiency of our method. The kinetic energy
and potential energy per unit width (in J/m) for the water phase are
defined as

Ec =
1
2

ρ∫
XA

XG
∫

h+η

0
(u2

x + u2
z) dxdz,

Ep = ρg∫
XA

XG
∫

h+η

0
zdxdz,

(16)

where ux and uz are the horizontal and vertical fluid velocities,
respectively. The initial energy (at t = 0 s) is equal to the poten-
tial energy of the still water level, that is to say, E0 = ρgLh2/2. As
the tank length is not constant in time since both generating and
absorbing wavemakers move at positions XG(t) and XA(t), a refer-
ence energy, which corresponds to the potential energy of the tank
for a still water level retrieved by volume conservation considering
these new positions, is defined as

Ere f (t) =
1
2

ρg( L2h2

XA(t) − XG(t)
). (17)

Results of the energy computations are shown in Fig. 19(b), and they
are shown with the initial energy state E0 as a basis. We observe
the decrease in the energy in the system during the generation pro-
cess (t < 2 s), then a plateau corresponding to the wave propagation
stage (2 s ≤ t ≤ 3 s), and finally an increase in the energy (until t = 8
s), which is due to the wave absorption of the incident waves and
its convergence until a final energy value. We can compare these
results with the case without absorption where we observe a nearly
constant value of the total energy once the generating wavemaker
stops. It is interesting to note the permanent trade between kinetic
and potential energies as the waves reflect on the still wavemakers.
The slight decrease in total energy is due to wave attenuation during
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FIG. 19. Case of the absorption of an irregular wave train generated by Eq. (15) for a still water level h = 0.075 m. (a) Proportional controller error ε as a function of time.
The corresponding velocity of the wave-absorber [in the frame of reference (x′, z′)] is indicated in the second y axis on the right. The 5% error band is indicated by the black
dashed curve, and the corresponding final time t f = 7.00 s is indicated. (b) Energy as a function of time. Kinetic, potential, and total energies are shown with reference to the
initial energy in the tank E0.

propagation and reflection against the still walls. An estimation of
the reflection coefficient can be made by computing the energy ratio
between incident and reflected waves (adapted from Ref. 46),

CR =
√

ER

EI
=
¿
ÁÁÀ ∣Ep(t f ) + Ec(t f ) − Ere f (t f )∣

max(∣Ep(t) + Ec(t) − Ere f (t)∣)
, (18)

where EI and ER are the incident and reflected wave energies and t f is
the time when the error reaches and stays inside 5% of the error band
such that ∣ε(t ≥ t f )∣ ≤ max(∣ε(t)∣) × 5/100 is verified. The time t f
as well as the 5% error band is indicated in Fig. 19(a). We make
sure that at this time, no re-reflection on the absorbing wavemaker
has occurred. Perfect wave absorption would lead to Etot = Eref (t f ),
but as some reflection happens, this energy level is not reached. It

is important to take into account the reference energy as the length
of the wave tank is not constant, thus impacting the general level
of potential energy. The computation of the reflection coefficient
with this method leads to CR = 16%. Another analysis is carried out
thanks to the separation of incident and reflected wave fields by
means of the Fourier transform of two wave gauge data recordings
at different tank locations.46 It leads to the value of CR = 15%, which
is similar to the previous one and shows the attenuation in the wave
absorption process.

The waterfall plot in Fig. 20(a) helps to visualize the motion of
the wavemakers as illustrated by the extension of the wave tank at
the left during the wave generation and the oscillations of the wave-
absorber wavemaker as the incident waves make contact with the
wall sensor. Finally, the efficiency of the process can be observed as

FIG. 20. Waterfall plot of the wave train propagating in the wave tank for a still water level of h = 0.075 m. The generating wavemaker follows the velocity defined by Eq. (15).
(a) With active absorption. (b) Without active absorption.
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the reflected waves are small compared to the initial waves. A com-
parison with the case without absorption is also plotted in Fig. 20(b)
and shows that the wave height at the (still, controller off) wave-
absorber wavemaker fully fluctuates between low (ηw < −0.025 m)
and high (ηw > 0.03 m) values. When the controller is turned on,
those fluctuations disappear and ηw → 0 as a result of the absorption
mechanism.

The second test case consists in an undular bore, which is
generated with a velocity square function defined as

UG(t) = U0(Θ(t) −Θ(t − t0)), (19)

where U0 = 0.2 m/s, t0 = 2.5 s, and Θ is the Heaviside function, for a
4 m long wave tank and a still water level of h = 0.075 m. The undu-
lar bore, shown in Fig. 21, is generated on the left, propagates toward
the wave-absorber wavemaker on the right, and is absorbed accord-
ing to the proportional strategy. In this case, the error is almost
always negative at the wave-absorber wall, with variations due to the
incoming bore wiggles, as shown in Fig. 22(a). The starting error is
important due to the high amplitude incoming undular bore, but
rapidly the controller action decreases it and makes the stationary
error converge to zero. In Fig. 22(b), the energy analysis is shown
and a similar behavior is observed as in the previous case, with
an increase in the total energy during the wave generation and a

constant level during the propagation stage (0 s ≤ t ≤ 2.5 s for the
first one and 2.5 s ≤ t ≤ 4 s for the second one).

The total energy then decreases as long as the wave-absorber
actuates and converges to the final energy, which corresponds to the
final still position of both wavemakers. An estimation of the reflec-
tion coefficient can be made with the energy analysis and conducts
to CR = 10%. The analysis of the reflection coefficient in Ref. 46 leads
to CR = 16%. The difference can be explained by the method in Ref.
46, which is not well suited for high amplitude non-linear waves
as can be the undular bore. This analysis shows that the strategy is
interesting and can effectively absorb non-regular waves, even steep
waves.

Finally, tests are carried out on harmonic cases, consisting of
the absorption of regular waves generated as for the wave propaga-
tion mesh study in Sec. II D 2. The excitation functions and general
setups are reported in Table VI. The reflection coefficient is calcu-
lated according to Ref. 46 and leads to a value lower than 10% for
both cases, showing the efficiency of the proposed strategy in order
to absorb waves. A summary of all test cases is reported in Table VI,
and the reflection coefficients are given.

When we considered the steady state value of the step response,
ηss, it was shown that the water level at the wavemaker reached a
constant value after a short time, ts, at which ηw/h = Fr, as shown in
Fig. 9(b). The absorption velocity and constant coefficient K may be

FIG. 21. Wave profile η as a function of the x-coordinate and for times from 0 s to 8.00 s for the undular bore absorption. For times t = 0 s and 3 s, a blue arrow indicates the
direction of the incident wave train. The active feedback absorber velocity and direction [in the frame of reference (x′, z′)] are shown with red arrows. For the last time (t = 8 s),
the wave state for the case without absorption is superimposed in the dashed black line.

AIP Advances 10, 115306 (2020); doi: 10.1063/5.0017376 10, 115306-18

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 22. Case of the absorption of an undular bore generated by Eq. (19) for a still water level h = 0.075 m. (a) Proportional controller error ε as a function of time. The
corresponding velocity of the wave-absorber [in the frame of reference (x′, z′)] is indicated in the second y axis on the right. The 5% error band is indicated by the black
dashed curve, and the corresponding final time t f = 9.49 s is indicated. (b) Energy as a function of time. Kinetic, potential, and total energies are shown with reference to the
initial energy in the tank E0.

TABLE VI. Test cases for the absorption controller and reflection coefficients.

Reflection coefficient CR

Wave type Piston velocity function UG(t) Parameters Method in Ref. 46 (%) Energy method (%)

Irregular − S
τ sech2( t−t0

τ ) h = 0.075 m, S = 0.077 m, τ = 0.342 s, 15 16
wave train t0 = 1.30 s, L = 2 m
Undular U0(Θ(t) −Θ(t − t0)) h = 0.075 m, U0 = 0.2 m/s, t0 = 2.5 s, 16 10
bore L = 4 m
Harmonic X0πf sin(2πft + δ) h = 0.15 m, X0 = 0.004 m, f = 1.25 Hz, 5 . . .

δ = −π/2, L = 8 m
Harmonic X0πf sin(2πft + δ) h = 0.05 m, X0 = 0.04 m, f = 0.5 Hz, 9 . . .

δ = −π/2, L = 8 m

alternatively defined according to UA = Kε(t) with K =
√

g/h.
This coefficient was already given in Ref. 47 and was deduced from
a mathematical study of the problem. The choice of the first strategy
based on the overshoot (K = 1/1.267

√
g/h) rather than this last one

is justified by the peak time tp associated with the overshoot, which
is shorter than the settling time ts associated with the steady state, as
shown in Fig. 11, or better said, the wavemaker moving at constant
speed generates a transient wave that is used to cancel the incident
wave.

The active wall driven by a feedback controller has proven to
be useful not only to cancel wave reflections but also to attenuate
high amplitude irregular wave impacts as in the undular bore exam-
ple. In the future work, we will push further the absorption strategy
to effectively reduce the consequences of extreme high amplitude
waves using controllers for non-linear waves.

IV. CONCLUSION
In this work, we performed numerical simulations of a two-

dimensional wave tank in order to study the piston-type wavemaker

initial-value problem and wave generation using the free and open-
source code OpenFOAM. The numerical model reproduced the
motion of a solid body piston-type wavemaker by moving a solid
boundary driven by an external arbitrary signal waveform. We con-
sidered a fully viscous model solving the unsteady Navier–Stokes
equations on the basis of a two-phase flow strategy and the vol-
ume of fluid method to capture the free surface dynamics. Velocity
step signals (Heaviside functions) were applied to the piston-type
wavemaker, generating a pulse-like wave that propagated along the
tank followed by smaller waves or wiggles, which was identified as
an undular bore. Recording of the wave elevation time series at the
moving wall and in different tank locations was compared with theo-
retical data, providing a very good agreement and proving the capa-
bilities of the OpenFOAM solver interDyMFoam to simulate two-
phase flows with wave propagation involving both free surfaces and
moving boundaries. Wave elevation at the piston wall was found to
have close similarity to the time response of the second order system
found in feedback theory. In particular, the overshoot and rise, peak,
and settling timescales were very close to those in the theory. The
scaling found for water elevation at the piston wall at different step
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velocities and mean still water levels was in close agreement with that
in the theory for low Froude numbers.11 At higher Froude numbers,
the scaling differs considerably from that in the theory, being unable
to take into account the main wave dynamics. The resulting main
wave pulse is generated and detaches from the piston wall at the
same time as the overshoot takes place in the wall elevation signal;
thus, we call this wave the overshoot-wave. Results along the tank
downstream agree with those of potential theory. The overshoot-
wave propagates faster than piston velocity increasing its velocity
and reaching asymptotically the shallow water celerity downstream
the tank. As we solved fully viscous equations, we were able to quan-
titatively determine the power input during the step response associ-
ated with the wave generation process using the entire stress tensor
at the piston wall. Net piston forces were obtained integrating pres-
sure and shear stresses on the piston wall. A power scaling was found
for different mean still water levels and step velocities as a function
of the Froude number.

Finally, in this work, we proposed a feedback proportional con-
troller driving a secondary piston for wave absorption, where the
controller gain was determined from the wavemaker step response.
The feedback controlled piston method proved to be very efficient
on both regular and irregular wave absorption. This novel approach
provided the basis from which more complex active wave genera-
tion/absorption strategies can be further implemented on numer-
ical and experimental wave tanks to improve efficiency under the
influence of different parameters such as the water depth, the wave
steepness, and negative velocity steps.
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Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 79, 036306 (2009).
31H. Rusche, “Computational fluid dynamics of dispersed two-phase flows at high
phase fractions,” Ph.D. thesis, University of London, 2002.
32S. A. Yang and A. T. Chwang, J. Eng. Mech. 118, 735 (1992).
33H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, Comput. Phys. 12, 620 (1998).
34S. Patankar, Numerical Heat Transfer and Fluid Flow (CRC Press, 1980).
35R. I. Issa, J. Comput. Phys. 62, 40 (1986).
36I. B. Celik, U. Ghia, P. J. Roache, and C. J. Freitas, J. Fluids Eng. 130, 078001
(2008).
37E. Didier, P. R. F. Teixeira, and M. G. Neves, Defect Diffus. Forum 372, 1 (2017).
38E. Buckingham, Phys. Rev. 4, 345 (1914).
39H. Favre, Étude théorique et expérimentale des ondes de translation dans les
canaux découverts (Dunod, 1935), Vol. 150.
40D. H. Peregrine, J. Fluid Mech. 25, 321 (1966).
41J. J. Stoker, Water Waves: The Mathematical Theory with Applications (Wiley-
Interscience, 1957), p. 328.
42S. D. Hatland and H. Kalish, Phys. Fluids 31, 033601 (2019).
43P. A. Madsen, D. R. Fuhrman, and H. A. Schäffer, J. Geophys. Res.: Oceans 113,
C12012 (2008).
44D. Ingram, R. Wallace, A. Robinson, and I. Bryden, in Proceedings of Oceans
2014 MTS/IEEE (Institute of Electrical and Electronics Engineers, IEEE, Taipei,
Taiwan, USA, 2014).
45J. P. McHugh and D. W. Watt, Phys. Fluids 10, 324 (1998).
46Y. Goda and Y. Suzuki, “Estimation of incident and reflected waves in random
wave experiments,” Coastal Eng. 1(15), 47 (1976).
47H. A. Schäffer and K. Jakobsen, “Non-linear wave generation and active absorp-
tion in wave flumes,” in Long Waves Symposium, Thessaloniki, Greece, 2003.

AIP Advances 10, 115306 (2020); doi: 10.1063/5.0017376 10, 115306-20

© Author(s) 2020

https://scitation.org/journal/adv
https://doi.org/10.1080/14786441008564913
https://doi.org/10.1051/lhb/1951033
https://doi.org/10.1017/s0022112060000037
https://doi.org/10.9753/icce.v12.36
https://doi.org/10.1016/0029-8018(95)00013-b
https://doi.org/10.1017/s002211209000009x
https://doi.org/10.1093/qjmam/40.1.129
https://doi.org/10.1007/bf02915951
https://doi.org/10.1017/s0022112089003034
https://doi.org/10.1017/jfm.2015.307
https://doi.org/10.1063/1.1738417
https://doi.org/10.1177/0957650915570351
https://doi.org/10.1016/j.coastaleng.2015.04.003
https://doi.org/10.1063/1.5026394
https://doi.org/10.1016/0021-9991(81)90145-5
https://doi.org/10.1115/OMAE2009-79392
https://doi.org/10.1115/OMAE2009-79392
https://doi.org/10.1016/j.coastaleng.2012.07.002
https://doi.org/10.1016/j.coastaleng.2017.06.004
https://doi.org/10.1016/j.jfluidstructs.2016.11.015
http://hdl.handle.net/1842/5780
https://doi.org/10.1103/PhysRevE.79.036306
https://doi.org/10.1061/(asce)0733-9399(1992)118:4(735)
https://doi.org/10.1063/1.168744
https://doi.org/10.1016/0021-9991(86)90099-9
https://doi.org/10.1115/1.2960953
https://doi.org/10.4028/www.scientific.net/ddf.372.1
https://doi.org/10.1103/physrev.4.345
https://doi.org/10.1017/s0022112066001678
https://doi.org/10.1063/1.5085861
https://doi.org/10.1029/2008JC004932
https://doi.org/10.1063/1.869543
https://doi.org/10.9753/icce.v15.47

