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Abstract: In recent years, polymeric hydrogels (PolyHy) have been extensively explored for their
applications in biomedicine as biosensors, in tissue engineering, diagnostic processes, and drug
release. The physical and chemical properties of PolyHy indicate their potential use in regulating
drug delivery. Calcineurin inhibitors, particularly cyclosporine (CsA) and tacrolimus (TAC), are two
important immunosuppressor drugs prescribed upon solid organ transplants. Although these drugs
have been used since the 1970s to significantly increase the survival of transplanted organs, there are
concerns regarding their undesirable side effects, primarily due to their highly variable concentrations.
In fact, calcineurin inhibitors lead to acute and chronic toxicities that primarily cause adverse effects
such as hypertension and nephrotoxicity. It is suggested from the evidence that the encapsulation of
calcineurin inhibitors into PolyHy based on polysaccharides, specifically alginate (Alg), offers effective
drug delivery with a stable immunosuppressive response at the in vitro and in vivo levels. This not
only may reduce the adverse effects but also would improve the adherence of the patients by the
effective preservation of drug concentrations in the therapeutic ranges.

Keywords: polymeric hydrogels; drug delivery; calcineurin inhibitors; cyclosporine; tacrolimus

1. Introduction

Hydrogels represent a special class of polymers that are widely found in nature, fulfilling important
functions in tissues such as elastin or collagen. Hydrogels are three-dimensional hydrophilic polymers
forming cross-linked networks. They possess fascinating physical and chemical properties and adopt
different shapes and sizes depending on the existing environment.

Recently, PolyHy have aroused great interest in different disciplines of science due to their
biocompatibility and ability to absorb water. Relative to other polymeric materials, these properties
make them excellent candidates for applications in biomedicine, such as the construction of diagnostic
devices, cell culture substrates, blood detoxifiers, tissue engineering, drug delivery systems, etc.
This review gives an overview of the classification and characterization of PolyHy, focusing on their
physical and chemical properties for their application in controlled drug release.

1.1. Family of Hydrogels

Polymeric hydrogels can be classified based on different factors:

i Types of bonds in the reticulated three-dimensional structure:
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ii.

ii.

iv.

e Physically cross-linked PolyHy: This hydrogel undergoes a transition from the
three-dimensional state to the initial state of polymeric chains in solution and thus
constitutes the so-called ‘reversible ones’. Cross-links are formed via attractive forces
or interactions between the polymeric chains (Figure 1A), such as hydrogen bonding,
hydrophobic and electrostatic interactions [1]. This group consists of multifunctional
hydrogels based on the copolymers of polyacrylamide and tannic acid that are cross-linked
through hydrogen bonds [2].

e  Chemically cross-linked PolyHy: This type of hydrogel is more stable in comparison with
the physically cross-linked one due to the involvement of covalent bonds (Figure 1B).
This indicates that they are irreversible, unless labile covalent bonds are intentionally
introduced into the cross-linked structure. For instance, the chemical cross-linking of
poly(vinyl alcohol) (PVA) hydrogels with citric acid has been successfully obtained to
generate a controlled drug release system. Citric acid is a cheap and non-cytotoxic reagent
compared to other crosslinkers that cannot be employed in biomedical applications due to
their toxicity [3].

Stimuli-responsive hydrogels. The advances in chemical synthesis, availability of new
precursors, and improvement in reaction mechanisms have resulted in the development
of biomaterials that respond to environmental stimuli. This promotes the conversion of
static hydrogels to dynamic ones that respond to generated changes or specific inputs in
variables such as temperature and pH. Furthermore, the stimulus-sensitive PolyHy are known
as ‘smart hydrogels’ because of their response to any slight changes in the environment, such as
temperature, pH, ionic strength, light, electric field, and biomolecules, by changing the degree
of swelling. The response of the smart hydrogels depends on the type of monomer or polymer
used and/or structural modifications within the compound. The challenges in the development
of smart hydrogels that exhibit a rapid response to the stimuli of the medium are primarily
based on synthetic mechanisms [4-9].

PolyHy can also be classified based on their charge. Hydrogels are composed of molecular
structures such as nonionic, cationic, anionic, amphoteric polyelectrolytes, or zwitterionic
species. The development of zwitterionic hydrogels further confirmed their potential application
in wound dressing [10,11]. The dual cross-linked networks composed of anionic and cationic
monomers improve the mechanical properties of hydrogels and thus find application as
injectable hydrogels [12]. On the other hand, new synthetic methodologies have been introduced
in the field of cell adhesion to obtain composite hydrogels incorporating cationic groups in
their structure to improve flexibility as well as cell adhesion [13].

Another classification involves natural and synthetic hydrogels. Due to the biocompatible,
biodegradable, and non-toxic nature, natural hydrogels find potential biomedical applications.
Based on the type of natural polymer, there are three biomaterials, namely protein-based,
polysaccharide-based, and natural polyester-based hydrogels [14-17]. In this review, we are
interested in focusing on the biomedical applications of hydrogels based on polysaccharides,
mainly. Therefore, later, we dedicate a section to this type of biomaterial. On the other hand,
synthetic hydrogels have favorable properties for industrial applications, such as superior
mechanical properties compared to natural hydrogels. However, hybrid hydrogels with
improved and intermediate properties between natural and synthetic hydrogels have been
manufactured. Biocompatible hydrogels functionalized with carbon nanotubes have been
successfully synthesized to stabilize hydroxyapatite. The cytotoxicity results of these materials
show promising insights for their application in bone tissue engineering [18]. In addition, there is
a group of biodegradable synthetic hydrogels, which have been widely used for biomedical
applications. Principally, in this group we can mention polymers, such as poly(caprolactone),
poly(glycolic acid), poly(lactic acid), poly(D,L-lactide-co-glycolide), and polyurethane [19].
The studies on fucoidan-modified PVA hydrogels have revealed substantial improvement in cell
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adhesion and hemocompatibility, suggesting the utility of these hybrid materials as implants or
vascular devices [20]. In cell microenvironment engineering, these materials provide very thin
platforms that are utilized to seed the endothelial cells. An attractive biocompatible scaffold
based on modified gelatin and a biodegradable polyester of poly(D,L-lactic acid) (PDLLA) was
developed. The combination of these two biomaterials provides the ideal environment for
cytocompatibility and cellular interaction exhibited by gelatin. In addition, PDLLA provides
appropriate mechanical resistance for the graft tissue in corneal endothelial transplant [21].

V. Based on their size, hydrogels are classified into those containing macroscopic structures
and those containing networks of smaller dimensions, such as microgels or nanogels.
The conformation of hydrogels with micrometric precision at the level of individual cells
has allowed their application as artificial cells [22,23], drug and cell carrier systems [24,25],
and assembled elemental units in artificial tissue construction [26,27]. Polysaccharide-based
microgels are one of the most commonly used hydrogels. Recent studies have focused on
microgels that can stabilize and release lipophilic particles. Microgels were prepared from
corn starch via an oxidized-annealing process. Further, the adsorption/release capacity of
lysozyme by the microgels was evaluated. Studies showed that the oxidized-annealed microgels
exhibit high charge and release capacities over a wide range of pH and ionic strength values.
This is attributed to the electrostatic forces between the carboxyl groups generated by the
oxidation-annealing process of the microgel and lysozyme [28]. The hydrogels embedded
in microgels to form a hydrogel/microgel system have been utilized as wound dressings.
The carboxymethyl chitosan- and oxidized carboxymethyl cellulose-based microgels are
drug-loaded via the Schiff base reaction. The gel time, morphology, swelling ratio, weight loss
ratio, mechanical properties, release profiles of pH-sensitive drugs, and antibacterial activities
were analyzed. The addition of microgels was found to offer stability, improved mechanical
performance, and sensitivity to drug release at different pH conditions for the hydrogels.
The addition of Ag compounds to the hydrogel/microgel composites demonstrated desirable
antibacterial properties, which ensured their possible application in wound dressing [9]. On the
other hand, nanogels, which are also known as nano-sized hydrogels or hydrogel nanoparticles,
are nanostructured three-dimensional networks composed of functional polymers, whose sizes
are in the sub-micrometer region, typically from 20 to 200 nm. Hydrogel nanoparticles are formed
by physical as well as chemical cross-linking methods. Nanogels offer several advantages,
such as biocompatibility, high swelling capacity, and high-water solubility. In addition, they are
classified as stimuli-responsive and nonresponsive hydrogels. Nanogels respond to fluctuations
in environmental factors, such as temperature, pH, pressure, electric and magnetic fields,
molecular species, ionic strength, or a combination of different factors. Therefore, nanogels are
exceptional candidates for application in biomedicine, such as biosensors, drug release,
tissue engineering, diagnosis, etc. [20,29,30].

Some of the examples of PolyHy are listed under the respective classifications in Table 1.

As mentioned in the previous classification summarized in Figure 2, PolyHy covers a wide
range of materials and synthetic methods. In fact, these materials can be potentially applied in
biomedicine due to their versatility to modify and adapt as required. This review focuses on naturally
occurring, i.e., biodegradable, specifically polysaccharide-based hydrogels. Initially, the latest studies
on natural hydrogels for application in tissue engineering are reviewed. The later sections present
the studies on the controlled release of drugs by mainly focusing on calcineurin inhibitors (CNIs),
which are common immunosuppressive drugs used in the treatment of autoimmune diseases and solid
organ transplantation.
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Figure 1. Schematic representation of the types of cross-linking in a polymer hydrogel (PolyHy);

(A) physical cross-linking of different types of polymeric chains denoted by different colors, (B) chemical

cross-linking consisting of covalent bonds between the polymeric chains denoted by circles and

non-binding interactions such as hydrogen bonds represented by dashed lines.
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Table 1. Examples of polymeric hydrogels listed under respective classifications based on cross-linking,

ionic charge, size, and origin.

Polymeric Hydrogels

Reference

Physically and chemically cross-linked
Polyacrylamide/nanochitin
Poly methylcellulose
Polycaprolactone
Gelatin methacryloyl/carrageenan
Poly(vinyl alcohol)-g-poly(N-isopropylacrylamide)

Dongjian Li. 2020 [31]

Niemczyk-Soczynska. 2019 [32]

Cernadas. 2019 [33]
Lauren M. 2018 [34]
Sosnik A. 2017 [35]

Stimuli-responsive or smart hydrogels
Polyacrylamide/polyethoxysiloxane
Polyhydroxyethylmethacrylate/N-isopropylacrylamide
Pluronic
Chitosan/poly(allylamine hydrochloride)
N-isopropylacrylamide/hydroxyethyl methacrylate/N,N-dimethylacrylamide
Glucuronoxylan
Chondroitin sulfate-co-poly(acrylic acid)

Dongjian Li. 2020 [31]
Huang, H. 2020 [36]
Shriky, B. 2020 [37]
Ghaffar, A. 2020 [38]
Wei, HL. 2020 [39]
Hussain, MA. 2020 [40]
Ahmad, M. 2019 [41]

According to their charge
Poly(sulfobetaine acrylamide)/poly(lysine acrylamide)
Alginate/poly [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium
hydroxide-co-acrylamide
Polydopamine
Poly(sulfobetaine methyl methacrylate)
Sodium alginate/poly acrylic-acrylamide

Huang, CJ. 2020 [42]
Wang, ZK. 2020 [43]

Huang, H. 2020 [36]
Ramsey, JD. 2020 [44]
Huang, H. 2020 [36]

Natural and synthetic hydrogels
Natural soil/Alginate/polyacrylamide
Gelatin/gamma-polyglutamic acid
Gellan gum/lignocellulose
Chitosan/gamma-cyclodextrin/Clinoptilolite
Arabinoxylan/guar gum
Polyglycolic acid/poly-lactic-co-glycolic acid
Polyacrylamide/starch
Poloxamer 407

Li, JC. 2020 [45]
Liu, B. 2020 [46]
Kouhi, M. 2020 [16]
Tonelli, AE. 2020 [47]
Haider, S. 2020 [48]
Bubbly, SG. 2020 [49]
Balaban, RD. 2020 [50]
Priddy, LB. 2020 [51]

Microgels and nanogels polymeric
Janus microgels
Alginate microgels
Poly(n-isopropylacrylamide) microgel
Poly(N-isopropylacrylamide)/polyethylene glycol/graphene oxides
Chitosan/laponite nanogels
Poly(glycidol) nanogels

Ramakrishnan, S. 2020 [52]
Damiati, S. 2020 [53]
Holian, A. 2020 [54]
Zhang, XQ. 2020 [55]
Kokabi, M. 2020 [56]

Albrecht, K. 2020 [57]

1.2. Tissue Engineering Applications of Natural Polymeric Hydrogels

The hydrogels consisting of natural polymers have been recognized as prime candidates for

designing tissue scaffolds. This is attributed to the excellent characteristics such as cost efficiency,
high compatibility, and biodegradability exhibited by this type of hydrogels. Natural polymeric
hydrogels, such as polysaccharides and proteins, were similar to the natural extracellular matrix.
Thus, the hydrogels are endowed with magnificent properties, such as cellular proliferation and survival,
to overcome certain challenges in tissue engineering [58-60]. Recently, a microbial polysaccharide-based
macroporous hydrogel was manufactured from salecan and gellan gum by a one-step method [58].
These were obtained via the association of polysaccharide chains by means of Van der Waals
forces, hydrogen bonds, and hydrophobic interactions. It should be noted that the manufacturing
methodologies did not require crosslinkers or toxic monomers. Instead, the salecan/gellan gum
hydrogel that exhibits excellent biocompatibility and properties to mimic the native tissues were
utilized. In this context, cardiac tissue engineering has emerged as a branch of tissue engineering,
which uses combinations of cells, biological and/or synthetic materials, growth factors, differentiation
factors, proangiogenic factors, and monitoring, as a promising and challenging approach to induce the
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regeneration of heart tissue [61]. This field of research gave rise to the study of biocompatible hybrid
systems [62], such as polysaccharide-based PolyHy, for application in tissue engineering [63,64].

Alginate (Alg) and chitosan (CS) are natural polysaccharides that are widely used in biomedicine,
as well as food and pharmaceutical industries [65,66]. This is attributed to the high biocompatibility
and biodegradability of polysaccharides [15,67]. A recent study on the improvement of the mechanical
tensile strength of decellularized extracellular cardiac matrix (ECM) using Alg/CS hydrogels [68]
showed a high swelling capacity, good mechanical resistance, moderate biodegradable properties,
and excellent cell viability. The results of the study reveal that CS- and Alg-based platforms find potential
applications in cardiac tissue engineering. In addition, other natural polymers, such as collagen,
gelatin (Gel), and fibrin, have been studied for myocardial tissue engineering. The collagen/CS
composite scaffold has been widely used for myocardial tissue engineering [63]. Since collagen,
which is the main component of the ECM within the myocardium, has a fast degradation rate and
poor mechanical properties [69,70], it has been combined with other polysaccharides to improve the
characteristics of the composite PolyHy.

The research in tissue engineering aims to manufacture materials that mimic native tissues of
the human organs. The biomimetic materials capable of mimicking the structure and composition of
the native extracellular matrices are essential for successful organ tissue repair and transplantation in
humans. Similarly, fibrin-agarose tissue-like hydrogels (FATLHs) have allowed successful biofabrication
of different biological substitutes, and thus, delivered promising ex vivo and in vivo results [71].
These fibrin-agarose-based materials biodegrade and integrate into implanted areas and vital organs
without any histopathological alteration. Thus, FATLHs exhibit potential clinical uses in engineering
applications due to their biosecurity and biocompatibility. Furthermore, these artificial tissues combine
to be stronger, and thus offer a stable mechanical response along with favorable cytocompatibility [72].

1.3. Advantages of PolyHy in Controlled Drug Distribution

It is quite interesting that the number of papers published based on the application of PolyHy in
the controlled release of drugs in the journals indexed within the WoS database exceeded eight hundred
articles in the last five years (Figure 3). Polymers have been widely used as biomaterials for the
manufacture of medical devices as well as tissue engineering platforms. In particular, hydrogels have
aroused great interest in biomedicine, mainly focusing on the development of scaffolds that release
therapeutic agents [73-76]. In this context, hydrogels based on natural polymers have been extensively
studied for applications in biomedicine due to their intrinsic characteristics of biocompatibility,
biodegradability, and similarities to the extracellular matrix [45,77-79]. The physicochemical
characteristics of biopolymeric hydrogels used in drug delivery systems, namely molecular weight,
solubility, morphology, hydrophilicity, hydrophobicity, loading and release efficiency of the drug,
surface energy, gelation process, etc., have been investigated [80-82].

Due to their natural abundance, biocompatibility, and physicochemical properties, hydrogels
based on polysaccharides, specifically Alg and CS, are potentially used as drug delivery systems.
Alg is a naturally abundant anionic polysaccharide extracted from brown algae, comprising two
monomeric units, namely «-L-guluronic acid (G) and (-D-mannuronic acid (M) residues [83].
Due to the characteristic properties of Alg, such as affordability, non-toxicity, high adsorption
capacity, and gelation capacity, these hydrogels are suitable for application in the food industry and
biomedicine [84,85]. Alg hydrogels are prepared by physical or chemical cross-linking methods,
as described above. However, the poor mechanical properties are a major drawback for the Alg
hydrogels [86]. To resolve this limitation, previous studies reported the development of hybrid
hydrogels. Jahanban-Esfahlan et al. [87] developed a hybrid hydrogel through the Schiff base con
densation reaction of Alg with Gel, followed by the incorporation of Fe30O4 magnetic nanoparticles as a
strategy to improve the mechanical properties of the hybrid hydrogel (Figure 4A). Scanning electron
microscopy (SEM) was used to verify the microporous structure of Alg/Gel hydrogel without microphase
separation (Figure 4B). The hydrogel containing Fe;04 nanoparticles was loaded with an anti-cancer
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drug, namely doxorubicin hydrochloride. The in vitro study revealed that the doxorubicin-loaded
Alg-Gel/Fe304 magnetic hydrogel showed pH-responsive drug release behavior. Thus, the fabricated
magnetic PolyHy has excellent potential as a drug delivery system for cancer chemotherapy.
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Figure 3. Tree map shows the number of articles published under different research areas in the last
five years. The keywords used for the search and analysis were ‘PolyHy” and ‘Drug Releasing Systems’.
WoS source, August 2020.
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Figure 4. (A) The structure of a hybrid hydrogel containing Fe30, magnetic nanoparticles, and (B)
microporous structure determined by SEM. The images were extracted and adapted from reference [87].

The recent studies on Alg-based hydrogels primarily focused on improving the mechanical
properties [58,88], manufacturing methods [89,90], payload of gels [21], and transport and release of
hydrophilic and hydrophobic drugs [91,92] such as CNIs. These Alg-based PolyHy are good drug
delivery systems for the brain, cancer, antibacterial activity, immunosuppressive therapies, etc. [93-96].
This review is specifically focused on the studies undertaken for the transport and release of CNIs to
find the optimal systems in order to minimize the side effects on the human body.
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2. Calcineurin Inhibitors

2.1. Presentation, Classification, and Use

Calcineurin is a serine-threonine phosphatase with a calmodulin-binding catalytic subunit and
a calcium-binding regulatory subunit. Due to its significance in cell development, this enzyme
is expressed in most cells [97]; however, it has been better described in immune response.
Particularly, the dephosphorylation of the transcription factor, namely the nuclear factor of activated
T cells (NFAT), by calcineurin leads to translocation of the protein into the nucleus, which further
activates different leukocyte proliferation and differentiation mediators [98]. This molecular mechanism
is reported in T-lymphocytes, which are crucial for adaptive immune response and post-transplant
organ rejection.

CNIs, as previously defined, are immunosuppressant drug-targeting calcineurins that are
commonly used for the treatment of autoimmune diseases and subsequent to transplantation,
including kidney transplantation. Furthermore, CNIs have been used for the treatment of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection [99]. CNIs include cyclosporine
A (CsA) and tacrolimus (TAC), which binds cyclophilin and FK506 binding protein 12 (FKBP12),
respectively [100]. These CNIs primarily inhibit the pathway of NFAT and thus prevent the transcription
of interleukin-2 (IL-2), one of the most important cytokines for the growth and differentiation of
T-helper lymphocytes.

Since their introduction in the 1970s, CNIs have significantly lower rejection rates, which further
extends the time of graft survival. However, long-term side effects, such as nephrotoxicity [101] and
hypertension [102], represent a current concern. On the other hand, CNIs were found to be safe in
children diagnosed with glomerulopathy, which cannot be treated by steroids [103], another class of
immunosuppressant drugs.

2.2. Pharmacological Aspects of CNIs

CNIs are important for immunosuppression in solid organ transplanted patients. They have
a narrow therapeutic index that promotes therapeutic drug monitoring (TDM) in order to avoid
progressive toxic effects over time, such as nephrotoxic, cardiovascular, or neurological side-effects. In
addition, the introduction of suboptimal concentrations of CNIs reduces the risk of organ rejection [104].
TDM is performed routinely by the immunoassay of whole blood samples due to the distribution
of around 90% TAC and 50% CsA on erythrocytes [105]. A trough blood sample is required for the
accurate estimation of the area under the curve for TAC, while a sample extracted two hours after oral
administration (C2) is used to obtain the TDM of CsA.

Due to high inter- and intra-variabilities in pharmacokinetics (PK), a sensitive equilibrium needs
to be maintained after the administration of a dose of CNL. This variability is mainly explained by the
pharmacogenetic influence of the cytochrome P450 system (hepatic and intestinal polymorphisms in
CYP3A4 and CYP3A5, respectively) that alters the pharmacokinetic metabolism of these drugs [106,107].
In addition, the intestinal efflux-pump P-glycoprotein contributes to the PK variability, resulting in the
reduction in drug absorption and change in disposition [108]. This leads to significant drug interactions
with other CYP450 inducers/inhibitors, giving rise to a complex therapy [105,109].

CsA and TAC are lipophilic and low solubility drugs with an oral bioavailability around 20-25%,
which is variably influenced by food or fasting. The first-pass metabolism plays a key role in
obtaining therapeutic blood plasma concentrations [110]. Thus, intravenous administration could
improve the PK profile of the drugs. However, physiologically based PK models showed that
different covariates, such as serum albumin level, hematocrit, CYP3A4 abundance, and CYP3A5
genotype status, are quantitatively responsible for PK variability, making it difficult to understand
the drug disposition process [108,110]. Finally, it has been proposed that there is a requirement for
pharmacogenetic screening prior to the administration of drugs in order to identify rapid or slow
metabolizer patients and regulate the dosage to avoid adverse effects [111]. For instance, TAC is one of
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the drugs with available guidelines to support the necessity of pharmacogenetic evaluation before
and after transplantation [106]. Nevertheless, it is an expensive drug without widespread routine
examination to be used in every immunosuppressed patient. It requires the consultation of health
professionals to determine the appropriate genotype-based dose adjustment [112].

2.3. The Adverse Effects of CNIs

Since the 1970s, the proven efficacy of CNIs in preventing rejections has been accompanied
by undesirable side effects. Among the common and prominent side effects, hypertension appears
to be a relevant one, resulting in an increase in graft failure as well as recipient mortality [113].
Thus, it has been observed in patients and experimental animals that the CNIs promote vasoconstriction,
which is extended even to the arteriolar level in renal afferent arteriole [114] and promoted by
sympatho-excitation [115]. This results from an imbalance between the pro-contractile (endothelin and
thromboxane) and pro-dilative molecules (nitric oxide, prostaglandin E2, prostacyclin) and activation
of the renin-angiotensin system after the administration of CNIs [116-118]. In addition, Hoorn et al.
performed a study on mice that demonstrated the positive influence of TAC on increasing the blood
pressure by the activation of the renal sodium chloride cotransporter [102], which is crucial for the
reabsorption of sodium at the distal nephron. This may represent an additional mechanism for the
induction of hypertension during the administration of CNIs.

Nephrotoxicity is another important adverse effect of the CNIs that leads to kidney failure.
The acute CNI nephrotoxicity was reported as one of the first pieces of evidence for nephrotoxicity
related to CNIs, with pivotal vasoconstriction mechanisms, as mentioned above. During acute toxicity,
the CsA and TAC promote thrombotic microangiopathy [119] and isometric tubular vacuolization [120],
augmenting the renal risk after organ transplantation. Since renal hemodynamic alterations are crucial
mechanisms in CNI-induced nephrotoxicity, the diminution in renal blood flow [121] and increased
renal vascular resistance in kidneys [120] also contribute to the acute toxicity levels. On the other hand,
chronic CNI-related nephrotoxicity involves the alteration of the renal structure by inducing pro-fibrotic
factors such as TGF( [122] and promoting epithelial-mesenchymal transition, a major mechanism
involved in the interstitial fibrosis of the kidneys [123]. Additionally, the inflammatory vasculopathy
and endothelial dysfunction promoted by CNIs contribute to tissue remodeling [124]. All these effects
are reinforced by the activation of the renin-angiotensin system, resulting in acute nephrotoxicity.

The side effects of CsA and TAC pose limitations on the long-term survival of the transplant and
overall prognosis of the patient receiving the organ. The non-selective inhibition induced by the CNIs
on the immune system may further reduce the resistance to infections and augment the potential
spread of malignant conditions [125]. In addition, the CNIs may increase the risk of cardiovascular
and renal diseases through dyslipidemia and hyperglycemia [126].

The majority of the acute side effects result from the high variability in the plasma concentrations
of the CNIs, depending on the dosage. This is an important issue to be considered during the
determination of the appropriate dosage in patients. Drug formulation based on the technological
aspects provides new perspectives in drug delivery and disposition, which could possibly optimize the
stable therapeutic plasma concentration, avoid high or low exposure to the drug (wide peak-to-trough
plasma fluctuations), and improve the quality of life after immunosuppressive therapy.

3. Encapsulation of the Calcineurin Inhibitors

CsA presents limitations in oral and injectable administration, where its low aqueous solubility
and hydrophobic nature have encouraged the development of drug delivery systems with maximum
bioavailability. Thus, natural PolyHy have been proposed as local delivery systems for the sustained
release of CsA, which may be an effective way to resolve this problem [127]. Sang Shin et al. [95]
proposed a formulation based on injectable hydrogels composed of calcium hyaluronic acid (HA-Ca)
and sodium Alg (Alg-Na) for the sustained release system of CsA. The injectable HA-Ca-Alg hydrogels
were successfully prepared at different values of gel time and volume ratios without the external
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addition of calcium salts. The morphology of PolyHy was characterized and analyzed by scanning
electron microscopy, which showed the existence of irregular pores. This feature offers suitable
microenvironments for the transport of large-sized immunosuppressive drugs, such as CsA. The results
reveal effective immunosuppressive activity for prolonged duration without any effects on blood clotting
and normal cells. This study suggested the effective applicability of injectable HA-Ca-Alg PolyHy for the
sustained delivery of hydrophobic immunosuppressive drugs. Nanostructured poly(2-hydroxyethyl
methacrylate) hydrogels (p-HEMA) containing microemulsions have been developed for the prolonged
ophthalmic administration of CsA [128], which yielded promising results. However, p-HEMA lenses
cannot be worn for long duration due to their low oxygen permeability.

Studies were performed on different delivery systems for the administration of TAC, such as
mPEG-poly(lactic acid) nanoparticles [83], poly (lactide-co-glycolide) microspheres [129], and triglycerol
monostearate hydrogels [130]. Recently, a mixed PolyHy system based on thermosensitive polypeptides
and poloxamer was proposed to develop a sustained release reservoir for the delivery of subcutaneously
administered TAC in an in vivo model [131]. In addition, the rational design of two hydrogelators
was reported to establish an easy method for the release of TAC that induces an immune response
to overcome the organ transplant rejection in an animal model [132]. The in vitro cell experiments
showed that the amount of TAC released from the hydrogel was logarithmically proportional to
the number of activated T-cells, demonstrating a better cell-inhibition effect than the free TAC drug.
The in vivo liver transplantation trials indicated that the smearing of PolyHy on the graft surfaces after
surgery enhanced the survival rate. This could be a potential alternative to ensure therapeutic and
stable concentrations of TAC during the first months of organ transplantation that exhibit critically
high rates of rejection due to the inadequate plasma concentration of the immunosuppressants [112].
Another study was focused on the development of immunosuppressive prodrugs, such as TAC
modified with dibenzocyclooctin (DBCO) and its conjugation to Alg PolyHy modified with an azido
group via click chemistry (Figure 5) [133].
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Figure 5. Schematic illustration of the binding of DBCO-drug (e.g., tacrolimus) prodrugs to the
alginate-N3 gels. The schemes were extracted from reference [133]. PubChem Compound Summary for
CID 445643, Tacrolimus. Retrieved 19 August 2020 from https://pubchem.ncbi.nlm.nih.gov/compound/
Tacrolimus.

The Alg hydrogels were found to be non-immunogenic and showed the controlled local release
of immunosuppressive drugs, such as TAC. This strategy demonstrated the intravenous injection of
fresh prodrugs into the hydrogels. Therefore, there is no need to replace the implanted gels within the
tissues as the drug levels drop to the subtherapeutic levels, which avoids the trauma and inflammation
resulting from repeated gel injection. This alternative plays a key role in long-term adherence to
the treatment. The risk factors for organ rejection include polypharmacy, adverse effects, and lack
of the patient’s adherence to the chronic health conditions [112]. Thus, any new technology for the
reduction in drug administration and preservation of stable drug concentrations in the therapeutic
range is an important advancement in therapeutics. CS, another natural polysaccharide, is also
widely used and studied as a drug delivery system [134]. The chemically-modified CS compounds
containing hydrophilic and hydrophobic groups (HGC) were synthesized and loaded with TAC to be
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directed toward the kidney [135]. In this study, HGC-TAC showed no toxicity toward HK-2 cells and
enhanced the cellular uptake. The in vivo biodistribution tests showed high renal accumulation of
HGC. The in vivo TAC release profile demonstrated a higher renal concentration and lower plasma
profile, indicating the suitability of HGC-TAC as a safe TAC delivery system for the kidneys while
maintaining low plasma concentrations of TAC. Finally, type I collagen-based PolyHy have also
been used to encapsulate primary immunosuppressive agents, such as TAC. The hydrogels were
found to exhibit adequate porosity, degree of swelling, drug release, blood compatibility, and cell
proliferation [136].

4. Conclusions

The PolyHy represent a special class of polymers that are extensively found in nature.
These cross-linked networks possess fascinating physical and chemical properties and adopt different
shapes and sizes depending on the existing environment. Compared to other polymers, these hydrogels
possess the unique characteristic of water absorption and arouse great scientific interest due to their
biocompatibility and versatility. As discussed in this review, the PolyHy are used as carriers for
the drug delivery of certain medications that present low bioavailability and tissue distribution,
variable plasma therapeutic levels, high first-pass metabolism, or even low compliance of the patient
to the treatment. All of these limitations affect the pharmacological therapy and can be resolved
by improving the delivery system. The CNIs, namely TAC and CsA, constitute a drug family that
was proposed to be encapsulated in PolyHy for the treatment of autoimmune diseases but are more
relevant for immunosuppressive treatment after solid organ transplant. The first in vitro and in vivo
assays of CNIs indicated effective immunosuppressive activity and therapeutic concentrations in the
target organ. The unique in vivo results were not only observed in experimental animals but also in
pilot clinical organ transplant protocols, which is beneficial for the development of solid therapeutics.
Despite the development of other immunosuppressants, the CNIs are potentially used for maintenance
therapies after solid organ transplants due to their excellent cost-efficiency, representing the first line of
drugs to prevent acute and chronic rejections [137].
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