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a b s t r a c t

One of the current challenges in structural health monitoring (SHM) is to take the most advantage
of large amounts of data to deliver accurate damage measurements and predictions. Deep Learning
methods tackle these problems by finding complex relations hidden in the data available. Amongst
these, Capsule Neural Networks (CapsNets) have recently been developed, achieving promising results
in benchmark Deep Learning problems. In this paper, Capsule Networks are expanded to locate and
to quantify structural damage. The proposed approach is evaluated in two case studies: a system
with springs and masses that simulate a structure, and a beam with different damage scenarios.
For both case studies, training and validation sets are created using Finite Element (FE) models and
calibrated with experimental data, which is also used for testing. The main contributions of this study
are: A novel CapsNets-based method for dual classification–regression task in SHM, analysis of both
routing algorithms (dynamic routing and Expectation–Maximization routing) in the context of SHM,
and analysis of generalization between FE models and real-life experiments. The results show that the
proposed Capsule Networks with dynamic routing achieve better results than Convolutional Neural
Networks (CNN), especially when it comes to false positive values.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Early detection of damage in structures is vital for preventing
ccidents. Buildings, bridges, dams and other large-scale struc-
ures have many sources of external loads throughout their lifes-
an that cannot be controlled or measured. These loads result in
tructural damage which must be detected and tracked down as
oon as possible so that preventive actions are taken. According
o [1], structural health monitoring (SHM) is ‘‘the process of
mplementing a damage identification strategy for aerospace, civil
nd mechanical engineering infrastructure’’. It is the monitoring
f one or more variables in a structure and the evaluation of
ts operational conditions. Among different methods of SHM [2],
ibration-based methods stand out because of their ability to rec-
gnize global properties of the structure and the non-destructive
valuation methods. The authors in [3] review a large number
f cases in which different vibration-based methods are used for
tructural damage identification.
A main challenge in vibration-based damage assessment is

ow to take the most out of data to estimate damage accurately.

∗ Correspondence to: Beauchef 851, West Bldg, Office 411, Santiago, Chile.
E-mail address: elopezdroguett@ing.uchile.cl (E.L. Droguett).
ttps://doi.org/10.1016/j.asoc.2020.106732
568-4946/© 2020 Elsevier B.V. All rights reserved.
Using the raw measurements of a series of accelerometers is one
straightforward way, but there is information about the structure
that cannot be identified clearly through this method. Instead,
transmissibility functions (TFs) have been widely used for damage
assessment [4–9]. TFs relate the responses between two points
of the structure, and, of all dynamic responses, they are the
easiest to obtain in real-time because of the straightforward in-
situ measurement. No modal extraction is needed; therefore, data
contamination with modal extraction errors is avoided. In [4,7–
9], the use of transmissibility for damage detection is introduced
and validated. The first work uses TFs to detect damage in a
simple simulated lumped-parameter mechanical system. The rest
of the aforementioned works validate the approach through ex-
perimental procedures on a simplified model of a metallic aircraft
wingbox (i.e., a plate incorporating stiffening elements) and a
Gnat aircraft wing.

So far, the most common way to use vibration data to per-
form structural damage analysis is through inverse modeling
approaches. This can be done by using a Finite Element (FE) model
of a structure, which is updated using optimization algorithms to
minimize the difference between the numerical and experimental
data [10–12]. For example, the authors in [13] detect cracks in
a beam using a genetic algorithm, first defining a new beam

element with a number of embedded transverse edge cracks for
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Abbreviations

CapsNets Capsule neural networks
CNN Convolutional neural networks
Conv Convolution
DL Deep learning
DME Damage missing error
DNN Deep neural network
DOF Degree of freedom
DR Dynamic routing
DS Dataset
EM Expectation–Maximization
EMR EM routing
FAE False alarm error
FE Finite element
GAN Generative adversarial networks
HL Hidden layer
LANL Los Alamos National Laboratory
MLP Multilayer perceptron
MSE Mean sizing error
NN Neural network
OS-ELM Online sequential extreme learning ma-

chine
ReLU Rectified linear unit
RUL Remaining useful life
SHM Structural health monitoring
SM Spring–Mass
TF Transmissibility function

computing natural frequencies, and then solving an optimization
problem to pursue the solution. In [14], Meruane et al. propose
a methodology for antiresonance frequencies from transmissibil-
ity functions. These frequencies are used in a model-updating
algorithm for structures. The algorithm correlates antiresonance
frequencies in the objective function.

As an alternative to model-based algorithms in vibration anal-
sis, machine learning algorithms have been proposed. Indeed,
esearchers have used neural networks along with feature extrac-
ion to learn from data and to perform different tasks. In [15],
eural networks are used for damage detection in truss and
rame structures. Meruane et al. [16] use an online sequential
xtreme learning machine (OS-ELM) to improve neural networks
earning speed and to reduce the number of parameters. The
eural network is used to identify and to quantify damage in two
xperimental cases: an 8 DOF spring–mass system and a beam
nder different damage scenarios. In, [5] Meruane et al. use a lin-
ar approximation method along with antiresonant frequencies
dentified from transmissibility functions, which leads to solving
ultiple nonlinear equations.
In all of the aforementioned works, feature extraction is key.

enerally, this process is performed by experts, but there is no
onsensus to a ‘‘correct’’ feature extraction process. To tackle
his issue, and with a general motivation towards automation,
eep learning techniques have proven useful [17–26]. The au-
hors in [17] propose the use of autoencoders and deep neural
etworks (DNN) for structural damage detection. First, the input
ector suffers a non-linear dimensionality reduction using an
utoencoder, and then goes through a regression process. The
ramework uses frequencies and mode shapes as input vectors,
nd outputs stiffness reduction values in each element of the
tructure analyzed, which is a seven-storey steel frame structure.
he authors in [18] use neural networks to build an enhanced
2

non-linear principal component analysis technique for structural
damage identification. This network has the shape of an au-
toencoder, with mirrored layers being pre-trained separately.
After this, fine tuning is performed over the whole network. This
framework is evaluated on two bridges with different damage
scenarios.

Among deep learning techniques, Convolutional Neural Net-
works (CNN) naturally stand out in reliability problems for their
automatic feature extraction process. CNNs have been also ap-
plied in the field of structural health monitoring [21–27]. In [22],
Modarres et al. use CNNs to identify and to classify structural
damage. The framework is validated with synthetic data of a
composite sandwich panel and with real concrete bridge crack
images. In [24], damage detection is proposed by employing
a multi-scale module composed of several different convolu-
tional layers stacked together. This is done for obtaining as many
features from the input signal as possible. These features are
then passed on to a neural network with a large number of
layers, including residual learning, convolutional, pooling and
dropout layers. This approach is validated on two datasets based
on numerical simulations, and two datasets based on laboratory
measurements. In [27], CNNs are used to locate and to quan-
tify structural damage using transmissibility images, achieving
promising results. They take advantage of the CNNs capability for
analyzing images to feed transmissibility images with minimal
data preprocessing.

Although CNNs have been used for years, achieving state-of-
the-art results in various fields, they have some limitations. CNNs
are not capable of recognizing hierarchies within an image (or
in any data structure for that matter), as all neurons output in a
low-level layer are used equally in a high-level layer.

There has been some research to solve the existing drawbacks
within CNNs. In [28], Hinton et al. realize that, while the ma-
chine learning community is using scalar output neurons, the
computer vision community uses complex vectors as outputs and
tries to address this with an auspicious idea of neurons giving
an output vector containing instantiation parameters. The most
recent approach has shown promising results. Indeed, in [29],
Sabour et al. present Capsule Networks (CapsNets), a capsule
system in which each capsule is a set of neurons arranged into
a vector whose length represents its activation value. Capsules
are organized into layers, just like a neural network, and the
activation of a next-level capsule layer depends on a routing
algorithm. In each routing iteration, capsules predict the output
of the next layer capsules. The agreement between predictions is
measured and determines the activation values. This model has
surpassed state-of-the-art results in MNIST dataset of handwrit-
ten number images [30]. In [31], a different view on capsules
is presented. Instead of vectors, capsules are represented by a
pose matrix containing information about position and orien-
tation for a particular feature, and an activation unit. This is
inspired in computer graphics whereby pose matrices are used
to define viewpoints with respect to an observer (a camera, for
example) and to establish hierarchies between different parts
of a whole. This architecture has shown particularly promising
results in smallNORB, which is a dataset containing images of 3D
objects, taken from different angles and with different lightning
configurations.

Although CapsNets have been presented recently, they have
been applied in various fields. In [32], Afshar et al. use Magnetic
Resonance Imaging (MRI) images to classify types of brain tumors
with CapsNets, achieving better results than those from CNNs.
In [33], Upadhyay et al. use CapsNets in Generative Adversarial
Networks (GANs) as a replacement to CNN discriminators, re-
sulting in an improvement of the generator performance. In [34],
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aLonde et al. adapt CapsNets to object segmentation. This is ap-
lied to pathological lung segmentation using Computed Tomog-
aphy (CT) scans. In [35], the EM routing algorithm is modified by
easuring agreement by the amount of alignment in a linear sub-
pace, instead of agreement in clusters. Successful experiments
re performed on MIMIC-III public dataset [36]. In [37], Ruiz-
agle Palazuelos et al. use CapsNets with dynamic routing for
he remaining useful life (RUL) estimation on NASA Commercial
odular Aero Propulsion System Simulation (C-MAPSS) dataset,
xpanding their use to regression tasks. It can be noticed that
one of the aforementioned models and applications of Capsule
etworks is related to structural damage assessment. Most of
hem are based on benchmark studies, revealing that CapsNets
re still in an early stage of development. Also, with the exception
f [37], only classification tasks are shown, which means possible
apsNets applications in regression tasks should be explored.
Since the AlexNet breakthrough in 2012 [38], CNNs have been

nalyzed extensively and achieved state-of-the-art results in var-
ous fields, including vibration-based methods for SHM. Nonethe-
ess, there are many challenges still to be addressed, such as gen-
ralization capabilities, volume of training data, number of hyper-
arameters, amongst others. Particularly in the field of SHM, one
pecific challenge is the detection of cracks as soon as possible,
t the earliest stage, and hopefully prevent their occurrence.
his has not yet been achieved and is one of the reasons that
otivate researchers to analyze other kinds of algorithms. In

urn, Capsule Networks are a result of a continuation work by
he same research group that presented CNNs for solving some
f its drawbacks. Its promising results encourage the idea of
esearching Capsule Networks applications in SHM.

In this paper, a new Capsule Network is proposed to locate and
o quantify structural damage, which involves a dual classification
nd regression task. Two different routing algorithms (dynamic
outing and EM routing) are explored and assessed in terms of
heir applicability in the structural damage assessment context
y means of two case studies: a spring–mass system and a beam
nder different damage scenarios. Each of them is studied in dif-
erent scenarios according to the number of damaged elements.
he main contributions of this research are:

• A novel CapsNets-based method for dual classification–
regression task in SHM.
• Analysis of both routing algorithms (DR and EM routing).
• Analysis of generalization between FE models and real-life

experiments.

The remainder of this paper is structured as follows: Section 2
rovides the background on transmissibility functions. In Sec-
ion 3, Capsule Networks are explained in detail. Section 4 shows
he case studies to be analyzed and descriptions of the datasets.
ection 5 presents and describes the proposed capsule neural
etworks for damage localization and quantification. Section 6
resents the results obtained for both case studies and com-
arison with other models. Section 7 provides some concluding
emarks.

. Background

This section presents a general background to transmissibility
unctions and structural damage.

.1. Transmissibility functions

In vibrations analysis, transmissibility is a concept for mea-
uring the response to a certain stimulus at a specific location
n a structural element. It numerically describes how vibrations
ropagate through an element.
3

There are two ratios that apply the concept of transmissibility:
force transmissibility and displacement transmissibility. Force trans-
missibility is the ratio between the response and the stimulus in
terms of force; displacement transmissibility is equivalent to the
first one, but measuring displacement amplitude. Typically, both
are presented in the frequency domain.

Transmissibility can be measured in complex systems using
accelerometers. The concept of transmissibility is not only use-
ful when measuring the ratio between response and stimulus,
but also between two different responses to the same stimu-
lus, that is, responses in different positions. Accelerometers can
be installed at various locations of a structure, thus capturing
many transmissibility functions. Experimental transmissibility
functions are calculated by:

T k
ir (ω) =

Xik(ω)
Xrk(ω)

(1)

where T k
ir (ω) is the transmissibility function between points i and

r subject to an excitation at k, and Xrk(ω) is the response of point
r due to an excitation force at k. As observed, only the location
of the exciting force is needed, not its magnitude, which is an
advantage.

To build a dataset, each data point should correspond to one
experiment submitted to a particular damage scenario. This pro-
cess would take long to be completed experimentally. Therefore,
numerical methods have been used as a replacement. This can be
done because a well calibrated model can accurately describe the
structural element or system and generate a large volume of data,
each with a different scenario to work with. In the case of a linear
structure, its motion is described by:

M ẍ+ C ẋ+ Kx = f (t) , (2)

where M , C , and K are mass, damping and stiffness matrices, f (t)
is the external force vector, and x represents displacement, with
its derivatives. Since transmissibility functions are presented in
the frequency domain, Eq. (2) is transformed via Fourier Trans-
form:(
−ω2M + jωC + K

)
X (ω) = F (ω) , (3)

where ω is the frequency and j =
√
−1. From Eq. (3), the

requency Response Function H(ω) is defined:

X (ω) =
(
−ω2M + jωC + K

)−1 F (ω) = H (ω) F (ω) , (4)

H (ω) =
(
−ω2M + jωC + K

)−1
. (5)

H (ω) can be redefined in terms of X (ω) and F (ω):

H (ω) =
X(ω)
F (ω)

. (6)

Thus, one can obtain the numerical transmissibilities through
the definition:

T k
ir (ω) =

X ik(ω)
X rk(ω)

=
H ik(ω)
H rk(ω)

. (7)

Transmissibility functions have been widely used in SHM be-
cause of their high sensitivity to damage [4–9,14,16,27,39,40].
Fig. 1 shows how transmissibilities are affected by damage. Al-
though the form of the curve remains similar, there is a displace-
ment of its peaks and valleys. This suggests the use of image-
recognition algorithms to map these displacements to damage
conditions.

2.2. Structural damage

As seen in the Introduction section, structural damage can
be represented in more than one way. In this paper, damage is
represented by a stiffness reduction, as expressed in Eq. (8):

K d
= 1− o K , (8)
i ( i) i
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Fig. 1. Transmissibility functions from a spring–mass system. The red line
corresponds to the undamaged case, whereas the blue line corresponds to
the system with one random damaged element. An element corresponds to a
spring–mass pair, and damage is represented by a stiffness reduction.
Source: [27]

here K d
i is the damaged stiffness matrix of the ith element,

i is the undamaged stiffness matrix, and oi is the stiffness
eduction of the ith element. This has shown good results in
amage detection algorithms [5,14,16,27,41].

. Capsule networks

Most deep learning algorithms are born as an effort to imitate
he way the human brain uses different pieces of information
nd makes the associative processes that lead to learning. Deep
eural Networks are the clearest example. Each node in the
etwork is called ‘‘neuron’’ because its properties are vaguely
imilar to actual neurons in the human nervous system. While
rtificial neurons have a number of input channels and an output
hat can serve as an input to another neuron, biological neurons
ave dendrites that act as input channels, a body that processes
nformation, and an axon that connects the output to another
euron.
In the case of CNNs, the original task is to imitate the way

he human brain recognizes images. The convolution operation
n CNNs performs operations in small windows of an image, just
ike the visual cortex analyzes a small region of the visual field.
o cover the whole image, there is overlap between different
egions, while in CNNs there is also an overlap measure that can
e tuned.
Over the years, CNNs have proven to be useful and accurate,

eaching state-of-the-art results in many fields. However, there
s one aspect that makes researchers believe CNNs could work in
better way. The pooling operation that comes after a convolu-

ion, used to reduce the number of parameters in the network,
nd therefore reducing training time, produces positional and
ranslational invariance. Pooling acts as a summary of features in
region of the image, meaning some information is lost. Since
ll of the features in that region are represented by one value
normally the maximum or the average), changes in that region
re not perceived by the next layer. For the network to recognize
translation or rotation on a particular image, it is necessary
4

to feed it with many images at different locations and rotations,
and even then, it may not perform successfully, because pooling
makes CNNs tolerant to small changes, but it does not really
understand those changes.

To tackle the problem of invariance, capsules of neurons are
introduced in [29]. This is, in a way, inspired by cortical mi-
crocolumns [42]. Microcolumns are sets of neurons organized in
vertical columns. The authors in [43] state that a microcolumn
plays an important role in object recognition through senses
and explain the way it is done. Although it is explained with
recognition only through touching, the same explanation can be
applied to vision.

According to [43], a single microcolumn being paired to a
sensor (a fingertip, for example) generates a location signal as
the sensor approaches an object. This location signal activates
the neurons in the microcolumn that can decode the signal to
recognize a feature. This represents a prediction to what feature
is to be sensed. When the object is sensed, some sets of neurons
are activated. Neurons that were also activated due to the location
signal are propagated to an output layer. These neurons repre-
sent all the objects containing the sensed feature at the sensed
location. This action is repeated at multiple locations to discard
possible elements and to accurately identify the correct object.
Multiple microcolumns are interconnected to accelerate this pro-
cess. In the case of touching an object with fingertips, touching
it at different locations with just one fingertip may take some
time, but touching with two or more fingertips certainly helps
recognize the object much faster and accurately. With vision,
the process is similar. To recognize an object, the eye inspects
it at different locations. A trained brain would activate neurons
according to the agreement between them on what the object
should be. This is done very quickly because the eye has lots of
sensors, meaning the process is done simultaneously with many
microcolumns.

Inspired by the process explained above, CapsNets were pro-
posed in [29]. A Capsule Network is a type of neural network in
which, instead of applying a function to each neuron in a layer
to define its activation state, a routing algorithm is applied to
a whole set of neurons, now referred to as capsules. A capsule
non-scalar output represents both the probability of existence
of an entity and certain properties of it. As mentioned before,
between two adjacent layers of capsules, a routing algorithm
decides which capsules to activate, according to an inner iterative
process.

These sets of neurons called capsules are inspired on mi-
crocolumns. Each capsule contains neurons with features that
are extracted using convolutions (these features could also come
from a lower-level capsule layer). These neurons evaluate the
most possible output for the next layer capsules. The final output
is decided based on a measure of agreement between all the
predictions. The latter step is called routing by agreement and
is an iterative process. The predictions are used to compute the
actual output, and the agreement between these two determines
the predictions made by capsules in the next iteration, which are
used to update the output. This is done a few times (typically,
3–5).

Two different models of CapsNets for classification tasks have
been proposed in the literature. In [29], a capsule is a set of
neurons represented as a vector. The individual values are to
capture features of an object, while the length of the vector
shows the capsule activation probability. For the vector to rep-
resent a probability, its length value must be between 0 and 1,
accomplished by the following squashing function:

vj =

sj2
1+

sj2 sjsj2 (9)

were v is the ‘‘squashed’’ value of the capsule output s .
j j
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The first layer of capsules comes from the output of a con-
volution. This output is rearranged into vectors with a previously
specified dimension (and is shrunk using the squashing function),
which are used to compute the output of a next layer set of
capsules.

The algorithm with which the next layer capsules are com-
puted using the current layer of capsules outputs is called dy-
namic routing. It takes predictions from the current level cap-
sules about the output of the next layer capsules and computes
the actual output according to an agreement metric between
predictions.

The predictions about the next layer capsules are calculated
by a multiplication with a matrix of weights:

ûj|i = W ijui (10)

here ui is the output of capsule i in the current layer, W ij is the
eights matrix between capsule i in layer l and capsule j in layer
+ 1, and ûj|i is the predicted output of capsule j given the output

of capsule i. The output of capsules sj in layer l+ 1 corresponds
to a weighted sum over all ûj|i (and shrunk using the squashing
function):

sj =
∑

i

cijûj|i (11)

vj =

sj2
1+

sj2 sjsj2 (12)

here cij are called coupling coefficients and are calculated as:

ij =
exp(bij)∑
k exp(bik)

(13)

hese coupling coefficients change iteratively because the bij log-
ts are updated through the following:

ij ← bij + ûj|i · vj (14)

he expression ûj|i ·vj measures the agreement between the actual
utput in layer l+ 1 and the prediction made by a capsule in layer
.

Eqs.(11), (13) and (14) are the core of the routing process.
or each capsule in the next layer, the predicted outputs from
ll of the capsules in the current layer are combined linearly,
s shown in Eq. (11). This combination obtains the output. The
eights in the equation, ci,j, represent the importance of each
apsule prediction in the calculation of the capsules in the next
ayer. These weights are updated iteratively using Eqs. (13) and
14). The process of assigning the relevance of each capsule in
he next layers capsules is referred to (by the authors in [29]) as
outing. Fig. 2 shows a simplified representation of this process.

In [31], capsules are no longer seen as one entity, but two:
pose matrix and an activation unit. The pose matrix captures

he pose of the image in space so that the algorithm recognizes
otated images, with one image rotated in different angles and
ot different objects, thus requiring less data to train and to
chieve desirable results. The activation unit, similar to the length
f the vector in a vector-like capsule, represents the probability
f existence of a feature.
Similarly to the previous work on Capsule Networks [29], the

irst instance capsules appear after a convolutional layer. In this
ase though, not only is a rearrangement (reshape operation)
ecessary. To obtain the pose matrix, another convolution is done
o the values obtained through previous convolutions, with a
eLU activation function. The result is rearranged to a matrix
hape. To obtain the activation value, another parallel convolution
s performed to get a single value output.

To get the votes (predictions made by the capsules in layer l
egarding the capsules in layer l+ 1), the capsules are multiplied
5

Fig. 2. Routing process example between a layer with three capsules and a layer
with two capsules.

by a weights matrix modified during the training process. These
votes are used to compute the output for the capsules in layer
l+ 1, using an algorithm called EM Routing, where EM stands
or Expectation–Maximization. This algorithm assigns capsules in
ayer l to clusters. Each cluster represents a capsule in layer l+ 1
nd follows a Gaussian distribution. The mean of each Gaussian
istribution µ is the output of each capsule in layer l+ 1.
The algorithm alternates between the E-step (Expectation)

nd the M-step (Maximization). During the E-step, assignment
robabilities R ij are calculated, which are the probabilities that
apsule i in layer l is assigned to capsule j in layer l+ 1. This is
one through the following equations:

pj =
1√∏H

h 2π
(
σ h
j

)2 exp

(
−

H∑
h

(
V h
ij − µh

j

)2
2
(
σ h
j

)2
)

(15)

ij =
ajpj∑
k akpk

(16)

In the expression for pj, V h
ij is the hth dimension of the vote

rom capsule i to capsule j, µh
j and σ h

j are the hth dimension for
he mean and variance of capsule j. For R ij, aj is the activation
alue for capsule j (the sum appearing in the denominator uses
ll the capsules in layer l+ 1). This value is calculated in the M-
tep. In this step, the clusters characterizations are modified by
pdating µh

j and σ h
j . Also, R ij is updated:

R ij = R ij ∗ ai (17)

µh
j =

∑
i R ij ∗ V h

ij∑
i R ij

(18)

σ h
j

)2
=

∑
i R ij ∗

(
V h
ij − µh

j

)2∑
i R ij

(19)

he clusters are redefined to minimize a cost function that con-
iders the probabilities that each cluster generates the values
hown by the capsules in layer l. That cost function is used to
pdate the activation value for each capsule in layer l+ 1:

costh =
(
βu + log

(
σ h
h

))∑
i

R ij (20)

aj = logistic

(
λ

(
βa −

∑
h

costh
))

(21)

where the values βu, βa, are learned to minimize the cost func-
tion, and λ decreases with each iteration according to a fixed
rate.
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EM routing is more complex than dynamic routing. However,
the underlying idea is the same: for capsules to make predictions
(in this case, Vi,j), and use them to calculate the real output of
the next layer capsules. The approach is to see those capsules as
multivariate Gaussian distributions and update their parameters
through the Expectation–Maximization algorithm. Fig. 3 shows
how this algorithm builds the next layer capsules. Firstly, capsules
in the next layer are initialized. After the routing process, the
mean and variance of every capsule are determined using the
votes according to their assignment probabilities, R ij.

4. Case studies and datasets

In this section, the two case studies discussed herein are
presented, followed by a description of the approach used for
generating the datasets. The first case corresponds to a simple
experimental structure with 8 degrees of freedom. The level
and location of damage introduced in this structure is known.
Therefore, this case study allows assessing the precision in the
damage identification. Meanwhile, the second case corresponds
to a beam with individual and multiple cracks. In this case, it is
not straightforward to estimate the actual stiffness reduction, but
it allows evaluating the algorithm in a more realistic structure.
Both experimental case studies have been selected due to their
availability on the internet and because they have been widely
used as benchmark problems to evaluate damage identification
algorithms [5,16,27,44–46].

4.1. Case study 1: Spring–mass system

The first case study corresponds to a spring–mass system de-
signed by Los Alamos National Laboratory (LANL) [47]. It consists
of eight aluminum disk masses connected by seven springs. Each
mass is a disk of aluminum with a diameter of 76.2 mm and a
thickness of 25.4 mm. The masses can slide freely along a center
rod that provides support to the whole system and constrains
the masses to translate along the rod. Boundary conditions are
unrestrained. Fig. 4 illustrates the experimental test bed; springs
and mass locations are designated sequentially with the first ones
closest to the shaker attachment.

The excitation force comes from a shaker connected to the first
mass, which provides a random excitation force. One accelerom-
eter is connected to each mass. These accelerometers measure
horizontal acceleration data and are used to calculate transmis-
sibility functions. Data is acquired with a frequency resolution of
0.125 [Hz], in the range of 10–110 [Hz]. The resulting dataset is
public and available at [48], which is where the authors of this
paper obtained it from.

The numerical model is built in Matlab with linear springs and
concentrated masses. The model parameters are as set as follows:

• Mass 1: 559.3 g (This mass is greater than the others because
of the hardware required to attach the shaker).
• Masses 2 to 8: 419.4 g
• Spring constants: 56.7 kN m−1

This system is adequate for testing damage identification al-
gorithms because damage can easily (and accurately) be rep-
resented by a spring having less stiffness than the others. In
the undamaged configuration, all springs are identical and have
a linear spring constant equal. Here, damage is simulated by
replacing the fifth spring with another spring with lower stiffness
(55% reduction in stiffness), this means that the fifth element is
damaged with y5 = 0.55.

The models proposed in Section 5 (see Tables 4 and 5 for
details) are trained using data generated from the numerical
model for the mass–spring system and are then tested with the
experimental damaged case.
6

Table 1
Damage scenarios for the beam case study — experimental cases.
Damage
Scenario

Number of
cuts

Distance from
the left side
[mm]

Damaged
Element

Cut depth
[mm]

1 1 637 13 9

2 2 361 8 8
812 17 15

3 3
363 8 13
574 12 8
696 14–15 6

4.2. Case study 2: Beam

In [44], an experimental setup for damage assessment is pro-
posed. The structure consists of a steel beam with a rectangular
cross-section. The dimensions of the beam are length = 1 m
and section = 25 × 10 mm2. As in the first case, a shaker is
connected to one end of the beam to generate a random ex-
citation force, and the structure is suspended with two springs
holding it. These springs have low stiffness to simulate a ‘‘free-
free’’ scenario. Eleven accelerometers are connected to the beam
to measure vibrations and to calculate transmissibilities. There
are different techniques that have been proposed to determine
the optimal vibration sensor placement for SHM applications.
These techniques intend to maximize the information captured
by a limited number of sensors, in particular information related
to the different natural frequencies and mode shapes [49]. In
the case of a beam with free-free boundary conditions, the best
option is an even distribution of the sensors. A larger number of
sensors will allow capturing information from higher frequencies
modes, which are more sensitive to local damage. In this case,
the eleven vibration sensors were placed evenly distributed on
the beam. Data is acquired with a frequency resolution of 1 [Hz],
in the range of 1–2000 [Hz]. The experimental setup is illustrated
in Fig. 5.

To build the Finite Element (FE) model, unidimensional beam
elements are used, with two nodes per element and two degrees
of freedom per node. As illustrated in Fig. 6, The beam is divided
into 20 elements of 5 [cm] each.

The structure is subjected to different damage scenarios con-
taining single and multiple cracks. Cracks are introduced to the
structure by saw cuts as illustrated in Fig. 7. As in the previous
case study, here the models proposed in Section 5 (see Tables 4
and 5 for details) are tested with three experimental cases, de-
scribed in Table 1. This table indicates the distance from the
left-end to the cut, the corresponding element in the numerical
model and the cut length. For this case study, these scenarios
compose the test set, which are used after the training process
to evaluate the different models in real-life situations.

Note that while in the first case study a stiffness reduction of
a spring implies a damage by the same amount of the reduction,
in this case, the saw cuts inflict stiffness reduction and, there-
fore, damage, but this damage value is unknown. For example,
a cut depth of 15 [mm] (of a total depth of 25 [mm]) does not
necessarily mean the element suffers a 60% stiffness reduction.

4.3. Datasets

To train the models presented herein, transmissibility func-
tions are used. These are represented by grayscale images. To
obtain them, the logarithmic magnitude of the different trans-
missibilities is scaled to the range of 0–255. Thus, each pixel in-
tensity represents a different logarithmic magnitude at a specific
frequency.
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Fig. 3. EM routing example, with 10 capsules in the current layer and two capsules in the next layer. For simplicity, h = 1. In the upper part, capsules before routing
are displayed. In the lower part, the product of the routing process is shown.
Fig. 4. 8 DOF Spring–Mass system.
Since more than one transmissibility function is measured per
ach datapoint, each row in the image represents one transmissi-
ility. For both case studies, 10 transmissibilities are calculated in
frequency range of 0–2000 [Hz]. Each image is 10 × 96 in size.
he frequency domain is converted using a bi-cubic interpolation.
ig. 8 shows an example of 10 transmissibility functions from
structural beam, while Fig. 9 shows those functions trans-

ormed into image format. As seen in Section 2.1, the relation
etween transmissibility functions and damage is a displacement
f peaks and valleys, shown in Fig. 9 in white and black colors,
espectively. This means that the damage information (number of
amaged elements, location and amount of damage per element)
s contained within each image. To date, the exact relationship
7

between transmissibility functions and structural damage is un-
known. This is why image recognition techniques are suitable for
this problem.

Deep learning algorithms take advantage of large amounts of
data. Since it is unfeasible to perform thousands of measurements
for both case studies, training images are generated via a fi-
nite element model calibrated with experimental measurements,
which are used for testing. For both case studies, four types
of images are generated according to the number of damaged
elements, as shown in Table 2. First, 10,000 images simulating
structures with no damaged elements are generated using the FE
model. Then, 30,000 images are generated, simulating structures
with one, two and three damaged elements, respectively. Each
damaged element has a stiffness reduction selected randomly.
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Fig. 5. Beam setup.
Fig. 6. Beam element numbering.
Fig. 7. Beam cut examples.
Table 2
Types of training images.
Damaged elements Number of images

0 10,000
1 30,000
2 30,000
3 30,000

After that, noise is injected, with values up to 6%, also selected
randomly. This simulates sensor noise. According to [50], sensor
noise does not exceed 6% when measuring vibrations.

With these four kinds of images, three datasets (DS) are pro-
osed for each case study, as shown in Table 3. Even though
atasets are unbalanced regarding the number of damaged ele-
ents each image represents (see Table 2), this is not an issue

or the development of our work. First, images with damaged
lements have different amounts of damage located at different
laces within the structure. This generates datasets with great
ariability. Second, our work’s objective is to characterize damage
orrectly, and not to classify images according to the number of
amaged elements its structure represents.
8

Table 3
Training Datasets.
Dataset Types of images Number of images

DS1 0 and 1 damaged elements 40,000
DS2 0, 1, and 2 damaged elements 70,000
DS3 0, 1, 2, and 3 damaged elements 100,000

Each model is trained and validated with one of these datasets,
using 85% for training, and 15% for validating. Then, the trained
models are evaluated in the experimental scenarios detailed in
Sections 4.1 and 4.2.

5. Proposed capsule neural networks for damage localization
and quantification

The proposed capsule neural networks aim at both structural
damage localization and quantification. Note that standard (also
called vanilla) Capsule Neural Networks were presented initially
for image classification purposes. We have found only one appli-
cation with regression [37] for estimating the remaining useful
life of turbofans. Thus, we extend the vanilla CapsNets to carry out
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Fig. 8. Transmissibilities measured in a beam.

Fig. 9. Image representation used as input.

oth damage localization (i.e., classification) and quantification
i.e., regression).

Indeed, vanilla CapsNets have two main parts: convolutions
nd routing. After a determined number of convolutions, capsules
o through a routing process to calculate next level capsules,
oth their properties and activations. The capsules in the last
evel represent the network output, which are classes (e.g., health
tates). The capsule with the highest activation value represents
he predicted class (multiple classes could also be accepted; in
hat case, the loss function should be modified). Note that this
pproach only works for structural damage localization, because
ach capsule would represent an element within the structure: if
he capsule activation value is near to 1, the element presents
amage. However, this method does not work for quantifying
amage (i.e., for regression), because the capsules activations
epresent the probability of existence of a feature; in this case,
tructural damage. There is no output value that could represent
nd assess the amount of damage. To overcome this limitation,
he proposed capsule networks include an MLP that uses the
ast level capsules output as input. The MLP output describes the
mount of damage in every element in the structure. The network
s used for supervised learning tasks; therefore, the loss function
o be optimized during learning compares the output of the MLP
fter the capsules with the labels.
Fig. 10 shows the approach for damage localization and quan-

ification. The input data structure (e.g., transmissibility image) is
ubmitted to two convolution layers. Then, the primary capsules
re obtained. The method for this depends on the type of capsules
matrix or vector). Then, through a routing process (which can
e dynamic routing or EM routing), secondary capsules are ob-
ained. The number of secondary capsules depend on what they
re meant to represent. Finally, information from the secondary
apsules is used as input for an MLP, which in turn calculates the
mount of damage per element in the structure.
In this paper, both routing algorithms are explored and an-

lyzed in the context of damage localization and quantification.
he idea behind CapsNets is to recognize hierarchies within an
mage. Both capsule representations achieve this because the
9

grouping of features in one unit helps recognize more complex
features in the upper layers of the model. Note that in damage
detection and measurement using transmissibility functions, not
only the intensity of each peak matters, but also its location
within the frequency range, as seen in Fig. 1.

The use of CapsNets for this problem is more appropriate than
CNNs because they are better at recognizing spatial relationships
within the image than CNNs. In CNNs, higher-level features are
obtained out of linear combinations of low-level features that
are passed through an activation function, thus not considering
the interactions between the features within the image. CapsNets
address this issue by storing pose information in each of the
capsules. Since capsules are no longer scalar values but vectors or
matrices, they store information about the relative position of the
feature within the image and other features [29]. They send their
information to higher-level capsules that ‘‘agree’’ with their own
information. This ensures that capsules in the next layer consider
not only the features of the lower-level capsules, but also their
interactions with each other and their position within the image,
establishing a spatial hierarchy of features. This is useful for our
SHM problem because not only is the shape of the transmissibility
curves important but also their displacement within the fre-
quency range and the distance between peaks and valleys. While
CNNs focus more on recognizing the shape of the transmissibility
curves and have some trouble with dealing with displacements,
CapsNets should address this issue through non-scalar entities
and routing algorithms. The spatial hierarchy obtained from this
process should deal with the relations between peaks and valleys
within the frequency range (which, as explained in Section 2.1,
are directly related to damage properties of the structure) in a
better way than CNNs do, since it establishes hierarchical re-
lations between features, which is what is needed for a better
characterization of damage from transmissibility functions.

As mentioned before in this section, the original CapsNets
algorithms introduced in [29] and [31] were presented as algo-
rithms for image classification. In both algorithms, the output
layer is comprised of capsules, and the one with the highest
activation value determines the class the input image belongs to.
It would be unfeasible to use this same configuration to locate
and quantify structural damage in the way the data is presented.
To solve this issue while keeping the advantages of CapsNets, the
algorithm is extended with fully connected layers that take the
last capsule layer as input, in order to locate damaged elements
and quantify the amount of damage. Even though fully connected
layers are also present in CNNs (and are applied in this way
in [27]), they receive features as inputs, which means there is
no classification tasks within the convolution operations, as is the
case with routing in CapsNets. We postulate that this should help
in obtaining more accurate results, as shall be corroborated by the
results presented in Section 6.

For CapsNets with dynamic routing, the corresponding pro-
posed general model is shown in Fig. 11.

The input image is convoluted using 32 filters, thus generating
32 feature maps. To capture all of the transmissibility functions
information in one filter, each of them has a dimension of 10 × 1
nd a stride of 1. Then, a second convolution is performed, this
ime generating 64 feature maps. The filters size is 1 × 5 with
stride of 1. After both convolution layers, a ReLU activation

unction is applied to inject nonlinearity to the model. Before
he primary capsules, a reshape operation is conducted to the
4 feature maps obtained by the last convolution, which turns
ach of the 1 × 91 × 64 neurons with a scalar output into

1 × 91 × 8 8-dimensional vectors. A squashing function is ap-
lied to all capsules to ensure their lengths represent activation
robabilities. Routing, as described in [29], is then performed
o compute the secondary capsules values. Besides varying the
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Fig. 10. Proposed Capsule Networks general approach.
Fig. 11. Capsule Networks with dynamic routing, proposed general model.
Table 4
Models description.
Model name Case study Routing Dataset Dropout

SM_DR_DS1

Spring–Mass (SM)

Dynamic (DR)
1 (DS1)

No

SM_DR_DS2 2 (DS2)
SM_DR_DS3 3 (DS3)

SM_EMR_DS1
EM (EMR)

1
SM_EMR_DS2 2
SM_EMR_DS3 3

B_DR_DS1

Beam (B)

Dynamic
1

B_DR_DS2 2
B_DR_DS3 3

B_EMR_DS1
EM

1
B_EMR_DS2 2
B_EMR_DS3 3

B_DR_DS1_D
Dynamic

1
Yes (D)B_DR_DS2_D 2

B_DR_DS3_D 3

number of routing iterations for achieving the best results, the
original routing algorithm is applied as presented in [29].

Note that the number of secondary capsules depends on the
ataset (see Table 3). For CapsNets with dynamic routing, there
re three types of specific models per case study, one for each
ataset. For dataset DS1, there are only two possible health states:
ndamaged and one damaged element. Therefore, there are two
econdary capsules. Following the same logic, for datasets DS2
nd DS3, there are 3 and 4 secondary capsules, respectively. The
bjective is for secondary capsules to detect what kind of scenario
in terms of number of damaged elements) the image represents.
hus, the capsule with the greatest length shows what kind of
cenario the model predicts to correspond to an input image, and
ts properties are chosen to be fed to a neural network, the rest
f them being discarded. This is an implicit classification task.
his capsule is then fed to a neural network with two hidden
ayers, the first with 1024 hidden units and the second one with
12, both with ReLU activation functions. The final output is a
10
N-dimensional vector, with N being the number of elements in
the structure. Each neuron in the layer represents the amount of
damage in the corresponding element.

In the case of EM routing, the proposed general model is
shown in Figure Fig. 12. The first convolution is equal to the one
used for dynamic routing. The second convolution layer is com-
prised of 32 1 × 6 filters with a stride of 3 to reduce the network
size and to capture abstract features using overlapping. As shown
in Section 2, each capsule contains an activation value and a pose
matrix. The pose matrix represents the capsule features, which
correspond to complex features in the transmissibility functions
images, whereas the activation value represents the probability
of existence of those features in the pose matrix. To obtain the
primary capsules pose matrices, the output from the second
convolution layer (Conv2) is submitted to a convolution with
no activation function. This generates 4 × 4 matrices. To obtain
the activation values, the Conv2 layer output is simultaneously
submitted to a convolution with a sigmoid activation function.
This convolution generates numbers between 0 and 1, which are
meant to represent probabilities of existence of the features in
the corresponding capsule.

After obtaining the primary capsules, EM routing is performed
to obtain both the activation values and pose matrices for the
secondary capsules layer. As with dynamic routing, the EM rout-
ing algorithm is applied exactly as described in [31], with the
exception of the variation of the number of routing iterations
in the fine tuning process to achieve the best results possible.
The number of secondary capsules in the layer corresponds to
the number of nodes in the structural element. For the first case
study (spring–mass system), there are seven secondary capsules,
whereas for the second case study (beam), there are 18 secondary
capsules. All the information contained in those capsules is used
as input to an MLP with 2 hidden layers with ReLU activation
functions. The final output corresponds to the amount of damage
in every element of the structure.

In this paper, various models based on the general models
shown in Figs. 11 and 12 are developed, as shown in Tables 4 and

5. Their configurations are determined via grid search, in which
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everal configurations are tested to see which one achieves the
est results. Number of layers, types of layers, neurons per layer,
ctivation functions, capsule sizes, capsules per layer, number
f routing iterations and weights initializers are the grid search
arameters.
During training, for each model, the mean squared error is

sed as cost function:

=
1
NO

∑
(yi − oi)2 (22)

here yi is the estimated output, oi is the observed output and
NO is the number of nodes. This cost function is appropriate for
the task because it compares, node by node, the network output
with the real damage for each training image, and it stimulates
the algorithm to allocate damage to the correct nodes.

To evaluate the proposed models’ performance, proper metrics
must be defined. Since the tasks are to locate and to quantify
structural damage, performance is measured in terms of how the
different models are able to locate and to quantify damage. Thus,
to assess the models’ capacity to quantify damage, Mean Sizing
Error (MSE) is used:

MSE =
1
NO

∑
|yi − oi| (23)

where NO is the number of output nodes, yi is the estimated
output for node i, and oi is the real output for node i. For local-
ization performance measurement, Damage Missing Error (DME)
and False Alarm Error (FAE) assess the fraction of damaged ele-
ments unnoticed and undamaged elements tagged as damaged,
respectively. DME is given by:

DME =
1
NT

∑
ϵ l
i (24)

here NT is the number of true damaged elements and ϵ l
i is

efined by:

l
i =

{
1, yi ≤ αc, oi ≥ 0
0, ∼

(25)

To consider a damaged element as detected, yi must be greater
han a limit value αc , which is considered as αc = MSE. FAE is
given by:

FAE =
1
NF

∑
ϵu
i (26)

here NF is the number of predicted damage locations and ϵu
i is

iven by:

u
i =

{
1, yi ≥ αc, oi = 0
0, ∼

(27)

When training a model, the three performance metrics should
ll be as small as possible. Since there is no standard to deter-
ine whether a model has acceptable performance metrics or
 o

11
not, one must make comparisons between models to determine
which one is more suitable. However, having a clear understand-
ing on what each metric represents leads to a better analysis
of the results. Indeed, MSE gives a measure of how accurate
the damage quantification for each damaged element is, while
DME and FAE indicate the number of false negatives (a damaged
element being unrecognized by the model) and false positives
(undamaged elements assessed as damaged), respectively. These
last two metrics generally have competing behaviors, meaning
that a model presenting a low DME will most likely have a high
FAE, and vice versa. In terms of structural integrity and safety
in SHM, a high DME value is more detrimental than a high FAE,
since a false negative means a potentially dangerous situation is
being unnoticed, which could lead to an accident. In this sense,
appropriate models must have lower DME values than FAE.

Furthermore, we also explore the impact of regularizing the
proposed models via dropout. Models B_DR_DS1_D, B_DR_DS2_D
and B_DR_DS3_D are trained using dropout in the first hidden
layer of the neural network for regression, with p = 0.5.

The summarized methodology shown in this section is illus-
rated in Fig. 13. It shows how, at the beginning, data is generated
hrough a FE model calibrated with experimental data. Then, data
s organized into the different dataset shown in Table 3. For each
f those datasets, training (85%) and validation (15%) sets are
andomly defined. While the training set is used to adjust the
etwork trainable weights, the validation set is used in every
poch to see how the model behaves in a dataset which does
ot intervene in the training process, to look for overfitting. After
raining, performance metrics are obtained and each model is
ested using the experimental cases. Testing in real experimental
ases shows if the models, despite being trained using images
enerated by a FE model, can be applied to recognizing and
uantifying damage in real-life situations.

. Results and discussion

This section reports and discusses the results from training
ach of the 15 models developed in the previous section. Each
odel is analyzed in terms of training with the datasets gener-
ted through a finite element method and testing with experi-
ental data.

.1. Case study 1: Spring–mass system

Table 6 shows the training results for the proposed models
or both routing alternatives, using numerical data. DME and
AE metrics are strongly related to the capability of the model
o locate damaged elements. DME is particularly important for
tructural reliability as it measures the false negatives given by
he model. A high DME means the model has greater probability

f not detecting a damaged element, leads to an important safety
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Table 5
Model layers specifications.
Model name Input Conv1 Conv2 Primary capsules Secondary capsules HL1 HL2 Output

SM_DR_DS1

10 × 96 1 × 96 × 32

1 × 91 × 64 1 × 91 × 8 × 8
16 × 2

1024

512

7

SM_DR_DS2 16 × 3
SM_DR_DS3 16 × 4

SM_EMR_DS1
1 × 31 × 32 1 × 31 × (16+1) × 32 16 × 7SM_EMR_DS2

SM_EMR_DS3

B_DR_DS1
1 × 91 × 64 1 × 91 × 8 × 8

16 × 2

18

B_DR_DS2 16 × 3
B_DR_DS3 16 × 4

B_EMR_DS1
1 × 31 × 32 1 × 31 × (16+1) × 32 16 × 18B_EMR_DS2

B_EMR_DS3

B_DR_DS1_D
1 × 91 × 64 1 × 91 × 8 × 8

16 × 2
1024(D*)B_DR_DS2_D 16 × 3

B_DR_DS3_D 16 × 4
Table 6
Training performance metrics, first case study.
Model MSE [%] DME [%] FAE [%] Time per epoch [s]

SM_DR_DS1 0.045 0.37 22.8 22.6
SM_DR_DS2 0.091 0.94 16.2 49.0
SM_DR_DS3 0.209 1.58 9.77 101.4
SM_EMR_DS1 0.067 0.33 48.92 46.1
SM_EMR_DS2 0.172 1.36 18.83 81.7
SM_EMR_DS3 0.253 1.46 16.45 116.8

issue. In this regard, each of the six models show DME values
nder 1.6%. This shows that the proposed model considers lo-
alization of damage during the optimization stage, even though
he cost function nature is primarily related to quantification. The
inimum value the cost function can achieve is when not only

he quantity of damage in the structure is well identified, but
lso when it is located in the correct spots, because it evaluates
he difference between the real and predicted outputs in every
lement.
In turn, the FAE metric measures the number of false positives,

nd in the six models, the maximum value reaches 49%. As
odels get more complex (in terms of the kind of images used

or training), the FAE values decrease. This is explained by the
act that in those models there are images with more damaged
lements, in which case it is less likely for them to give a false
egative. A data point with 3 damaged elements can only have 4
alse positives, whereas one with 1 damaged element can have 6
alse positives.

Comparing CapsNets with dynamic routing and with EM rout-
ng, Table 6 shows that results are very similar in terms of
erformance metrics, except for FAE. CapsNets with dynamic
outing show, for all models, less false positives than those with
M routing, with a mean value of 36% less. Training time also
stablishes a difference as models with dynamic routing take
uch less time in training that those with EM routing.
With the training process completed, damage predictive capa-

ilities are tested based on the experimental results discussed in
ection 4.1, i.e., for the case of detecting the fifth damaged ele-
ent in the spring–mass system. Indeed, as shown in Fig. 14, the
apsule Networks models with both routing algorithms success-
ully identify and quantify the 5th damaged element. However,
hen the models are trained to detect scenarios with two and
hree damaged elements in the structure, an increase in false
ositives is observed, i.e., the FAE value increases, although train-
ng results show the opposite. This can be explained by the fact
hat false positive values increase in their magnitude, not in their
uantity. It is not that there are more false positive values, but

hat those fewer values are more perceptible.

12
The predictive capabilities of the CapsNets based models are
also compared against a Convolutional Neural Network based
model, presented in [27]. This CNN model is trained and tuned
based on the same case studies and datasets. This makes this
CNN model suitable for comparison with the models and results
presented in this work. The CNN model’s architecture is as fol-
lows: a first convolution with 32 filters of 10 × 1, followed by a
second convolution with 64 filters of 1 × 5; this is followed by a
fully connected neural network layer with 1024 hidden units. This
configuration is quite similar to the Capsule Networks models
without the routing part, in order to show how routing impacts
the final model predictive capabilities. From the experimental
results reported in Fig. 10 in the case with 55% damage reduction
in the fifth element, note that all three models achieve similar
results as they are able to correctly quantify (within a range of
±7%) the damaged element with no false negatives. False positive
values appear mainly adjacent to the damaged element. Even
though the spring–mass system is not a continuous one, each
spring is connected to two masses; thus, a stiffness reduction
in one spring will affect the vibrations of two masses. Then, a
model may interpret this as a stiffness reduction in the adjacent
element, leading to a false positive. However, other false positive
values that are not near that region are due to a model error,
i.e., although every kind of false positive is an error, the latter
kind is associated to a deficiency of the model itself and thus not
explained by physical reasons.

Also note that the CNN-based model presents more false pos-
itives than the CapsNets-based ones. When using the models
trained to detect two and three damaged elements (i.e., trained
with datasets 2 and 3, respectively), Fig. 14 shows that the total
percentages of false positives in the CNN model add up to 23%
and 18%, respectively. For CapsNets with dynamic routing, these
values reach 10% and 8%. When using EM routing, the values are
9% and 7%, respectively. Moreover, false positives coming from
the CNN-based model are more distributed along the spring–
mass system than those from the CapsNets model. For example,
in Fig. 14(c), a 5% false positive is shown in the first element of
the system, whereas the two CapsNets models do not present any
amount of damage in that element.

In terms of generalization capabilities, neither CNN nor Cap-
sNets models suffer from overfitting: all the models are capable of
identifying the correct damaged element and to measure damage
accurately. All the models present false negatives, but they are
within the range of 0%–10% damage.

Based on the results above, one can argue that the CapsNets-
based models are competent in performing localization and quan-
tification of structural damage in the spring–mass system, as it is

also the case for the CNN, but to a lesser degree.
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.2. Case study 2: Structural beam

The performance metrics for this case study are reported in
able 7. MSE values are observed to increase as more complex

datasets are used (more damaged elements are to be identified),
regardless of the routing algorithm. For the dynamic routing,
the minimum MSE reaches a value of 0.038% and the maxi-
mum is 0.783%. In the case of EM routing, the minimum and
maximum are 0.132% and 0.948%, respectively. This behavior
can be explained by noticing that models trained with more
diverse datasets (DS2 and DS3 are more diverse than DS1, as
they include more types of images) are fed with images that will
probably have a greater amount of total (or accumulated) damage
in the structure, because there are images with more damaged
elements. Thus, the task of recognizing the proper amount of
damage and assigning it to the correct beam elements is harder
13
when there are up to two (e.g., B_EMR_DS2 and B_DR_DS2models)
r even three elements (e.g., B_EMR_DS3 and B_DR_DS3 models)
hat might be damaged, as opposed to models with up to one
amaged element (as is the case of B_EMR_DS1 and B_DR_DS1).
his also explains the increase in DME, since the more the total
amage increases, the greater is the chance of misallocating it
hrough the beam. As with the first case study, FAE values de-
rease because as the detection complexity increases by having
mages with more damaged elements, there are less possibilities
or false alarms.

In Fig. 15 to Fig. 17, FAE and DME are presented for the six
odels according to the damage percentage. This is important
onsidering that it is not the same to have, for example, a false
egative in an element with a damage of 70% than a 3% one,
or the first case would mean the model failed to identify a
0% damaged element, which is far more serious in terms of
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Fig. 14. Comparison between models performance in: (a) dataset 1 (i.e., models SM_DR_DS1 and SM_EMR_DS1 compared with CNN), (b) dataset 2 (i.e., models
M_DR_DS2 and SM_EMR_DS2 compared with CNN), and (c) dataset 3 (i.e., models SM_DR_DS3 and SM_EMR_DS3 compared with CNN).
able 7
raining performance, second case study.
Model MSE [%] DME [%] FAE [%] Time per epoch [s]

B_DR_DS1 0.038 1.17 65.30 22.3
B_DR_DS2 0.415 5.33 55.28 30.1
B_DR_DS3 0.783 6.17 44.70 132.2
B_EMR_DS1 0.132 1.59 77.43 153.8
B_EMR_DS2 0.464 4.36 52.08 260.1
B_EMR_DS3 0.948 6.14 45.24 375.9

safety than the second case. The results show that, for models
trained in dataset 1 (i.e., for detecting one damaged element),
false alarms and false negatives only accumulate in the range of
0%–10% damage. For models trained in datasets 2 and 3 (i.e., for
detecting two and three damaged elements, respectively), those
values accumulate in the ranges of 0%–10%, 10%–20%, and 20%–
30%. These results suggest that any element with more than a 30%
damage is properly identified (i.e., it is not a false positive), and
that any element with more than a 30% damage will certainly be
identified as such (the proper amount of damage depends on the
MSE metric). Also note that false negatives are far more scarce
than false positives, without the need of penalizing a false nega-
tive more than a false positive in the loss function. This indicates
that the proposed CapsNets models are conservative, which is
preferable from a structural safety and reliability perspective.

Comparing both routing algorithms, and based on the results
n Table 7 and Fig. 15 to Fig. 17, it can be observed that dy-
amic routing-based models outperform the models using the EM
outing when trained to detect one damaged element (trained on
ataset 1). However, that is not so clear for the models developed
o detect two and three damaged elements (trained in datasets
and 3, respectively). When identifying two damaged elements,
ynamic routing is superior at quantifying damage (i.e., better
SE), but less accurate when localizing damage (i.e., lower DME

and FAE) than EM routing. When detecting and quantifying three
damaged elements, both routing algorithms present virtually the
same performance. This can be explained by the types of models
14
used for each routing algorithm. The models used along with the
dynamic routing algorithm have 2, 3 or 4 secondary capsules,
depending on whether the model is required to identify up to
three damaged elements (and, thus, four health states). Model
B_DR_DS1, in turn, has two secondary capsules as there are only
two health states: undamaged beam or one damaged element.
That is, the health state diagnostics (i.e., classification task) is
easier than in the other models because there are only two
options: from a routing point of view, results show that the
two clusters formed by the dynamic routing algorithm are very
separated, unlike those in the other models. The algorithm can
isolate undamaged beams with relative ease. However, segrega-
tion between multiple damaged elements results harder for the
other models. Moreover, in the case of CapsNets-based models
using EM routing, there are 18 secondary capsules, one for each
element in the beam. The activation of each capsule indicates the
probability of existence of a damaged element in the beam. This
means that the secondary capsules layer comprises the task of
locating damage and not only identifying the number of damaged
elements, as is the case of the capsules in the dynamic routing.
As seen in Table 5, all EM routing models are the same. This also
explains why the results do not vary as much as in the case of
models using dynamic routing.

All the proposed CapsNets models in Table 7, with both dy-
namic routing and EM routing, are tested with three unseen
damage scenarios and compared to CNN-based models in de-
tecting damage under the three experimental scenarios shown
in Table 1 (see Fig. 18 to Fig. 26). Since damage is represented
as a stiffness reduction, there is no precise way of knowing the
amount of damage a cut inflicts on the beam. However, we know
a deep cut inflicts more damage than a shallow one. This gives a
rough estimate of what the real damages should be.

First, let us consider the models developed and trained to
detect and to quantify up to one damaged element in the beam
(i.e., models trained in dataset 1). Based on Fig. 18 to Fig. 20, the
best results are achieved in the experimental damage scenario 1
(i.e., one damaged element in the beam). Moreover, results for
experimental cases 2 and 3 (Fig. 19 and Fig. 20, respectively) show
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Fig. 15. DME and FAE versus damage level for models B_DR_DS1 (left) and B_EM_DS1 (right).
Fig. 16. DME and FAE versus damage level for models B_DR_DS2 (left) and B_EM_DS2 (right).
Fig. 17. DME and FAE versus damage level for models B_DR_DS3 (left) and B_EM_DS3 (right).
hat the models do not present a good generalization capabil-
ty, mainly because they were not trained with these types of
cenarios. In the case of dynamic routing, B_DR_DS1 model is in-
rinsically built to recognize only 0 or 1 damaged element due to
ts secondary capsules. This affects its generalization capabilities.
his behavior is replicated in models trained in datasets 2 and 3.
mongst Figs. 21–23, Fig. 22 presents the most precise outcome
f all the scenarios, being the one with the smallest number of
alse positives, and concurrently less important ones, in terms of
amage quantity. This is also shown in Figs. 24–26, where the
atter shows the most precise results.

In terms of false negatives, the results from the testing in the
amage scenarios in Table 1 are somewhat inferior (in terms
f damage size) to the ones obtained in the training process.
15
This discrepancy is far more substantial in those results from EM
routing than those from dynamic routing. Also, Fig. 21 shows
false positives with damage size over 30%, which are higher than
the false positives reported in Fig. 16. This is because training
and validation sets are built using FE model, whereas the test
set is built on experimental cases on a real beam. The results
show that the algorithms do well at learning the equation behind
the FE model. However, this leads to a lack of generalization
when dealing with experimental cases, whereby the physical
phenomenon behind them would have been represented by a
much more complex equation. This is dealt with below.

Now, comparing the proposed CapsNets models with CNN,
Fig. 18 to Fig. 26 show that the CapsNets models with dynamic
routing present better results for all the experimental damage



J.F. Barraza, E.L. Droguett, V.M. Naranjo et al. Applied Soft Computing Journal 97 (2020) 106732

T
C

h
d
i
t
b
c
d
I
o
o
m
i
e
s
c
f
(
p
t

t
p
t
d
s
s
e
a
s
m
o
o
i

6

t
m

H
t

able 8
omparison between models with and without dropout, training phase.
Model MSE [%] DME [%] FAE [%] Time per epoch [s]

B_DR_DS1 0.038 1.17 65.30 22.3
B_DR_DS1_D 0.138 3.79 51.67 22.5
B_DR_DS2 0.415 5.33 55.20 30.1
B_DR_DS2_D 0.610 9.96 47.96 48.11
B_DR_DS3 0.783 6.17 44.70 132.2
B_DR_DS3_D 0.949 10.53 46.99 137.4

scenarios in Table 1 than both the CNN and the CapsNets models
with EM routing. In fact, the most accurate cases are shown in
Figs. 18, 22 and 26, whereby CapsNets models with dynamic
routing correctly quantify the damaged elements and exhibit the
smallest number of false positives. Also note that most of these
values are located next to the actual damaged elements. This is
related to the fact that, unlike the spring–mass system, a beam is
a continuous structure where elements are not clearly delimited,
and divisions are set arbitrarily.

Moreover, the CapsNets models with EM routing deliver a
igher rate of false positive, as shown, for example, in Fig. 21. For
iagnostics purposes, these false positives can generate confusion
n the analysis as they might act as distractors and thus make
he model unreliable from a practical perspective. This occurs
ecause the CapsNets models based on EM routing are more
omplex in terms of parameters to be learned than the ones using
ynamic routing, thus affecting their generalization capability.
ndeed, CapsNets models with EM use 18 secondary capsules,
ne for each element in the beam. Even though the same type
f models for the EM-based models are used for the spring–
ass system, overfit is not observed and a good generalization

s therefore obtained. This behavior can be attributed to each
lement of the spring–mass system being independent, and the
ystem itself being a discrete one, unlike the beam which is
ontinuous, and also because CapsNets models with EM routing
or the spring–mass system only have 7 capsules instead of 18
for the beam example), thus resulting in a simpler model, fewer
arameters, which reduces the risk of overfitting given the same
raining dataset.

To detect overfitting, a data subset is used only to estimate
he loss function value. This subset is not used for training pur-
oses. This validation loss is compared to the training set loss
o detect overfitting. In this case, no signs of overfitting were
etected. There is no overfitting between training and validation
ets, but there are clear signs of overfitting between the training
et and the experimental cases. This occurs because, unlike the
xperimental cases, training and validation sets are built from
FE model and are presented as TF images. Thus, overfitting

igns uncover the capacity of the algorithms to recognize the
athematical model behind the generation of images. They focus
n describing the underlying equations. These equations achieve
nly a simplified representation of the real phenomenon, which
s why experimental cases show poorer results than expected.

.3. Case study 2: Structural beam — application of dropout

For overcoming overfitting and thus achieve better generaliza-
ion between the training sets (which are generated through a FE
odel) and the experimental cases, dropout [51] with p = 0.5

(this value is defined via sensitivity analysis) is added to the first
hidden layer for dynamic routing models only. This means that,
with each iteration, each neuron in the layer will have 50% chance
of being turned off and not considered in the learning process.
This lowers its training results, but achieves better generalization
by avoiding overfitting. Training results are shown in Table 8:
16
Each model is tested using the experimental cases and com-
pared with the best result previously achieved, which is dynamic
routing without dropout. The results are shown in the following
figures:

As shown in Table 8, by using dropout, the training perfor-
mance metrics (MSE, DME and FAE) decrease. However, greater
generalization capability is achieved. It is clearly noted that train-
ing results lower their quality, particularly with MSE and DME.
owever, these results are very similar to what it is shown in
he experimental results in Fig. 27 to Fig. 29. Model B_DR_DS1
correctly locates damage for images with one damaged element
and shows no false alarms, which is very important because it
shows the model can isolate damaged elements in a very reliable
way. For cases 2 and 3, the model cannot recognize the element
with the least amount of damage. However, Fig. 27 shows that
model B_DR_DS1_D can assign a greater amount of damage to the
image than without dropout, and even though it presents a larger
false positive in the 7th element, it corresponds to the fact that
the 8th element is greatly damaged (cut depth: 13 [cm]).

For dataset 2, experimental results also improve with the
use of dropout. The models still perform well in cases 1 and 2,
showing only a small percentage of false positives. In case 2,
model B_DR_DS2_D is capable of recognizing the element with the
small amount of damage as well as the one with a great amount,
showing only a 6% of false positive value located in the 18th
element, next to the truly damaged element. In case 3, despite
B_DR_DS2_D being trained with up to 2 damaged elements im-
ages, the algorithm correctly detects the three damaged elements,
with the drawback of showing an important number of false
positives. This shows that the algorithms achieve a better capacity
for generalization when using dropout, and from two points of
view: the first one refers to the capacity of the model to learn
generalizable features from the FEM images to the experimental
cases. The second one (which is more complex and difficult to
achieve) refers to the capacity of the models to locate and to
quantify more damaged elements per beam than those from
which the algorithm learned the task (Fig. 28).

For dataset 3, the algorithm correctly assesses damage bet-
ter than without using dropout. Particularly, Fig. 29 shows that
the use of dropout directly affects the quantity of false positive
values. Fig. 29 (upper right) shows that the use of dropout takes
away the false positive from element 11 but misallocates the less
damaged element. Instead of allocating it to the 8th element, it is
allocated to the 7th. For damage assessment purposes, however,
this is not a highly relevant mistake because the element is dis-
placed by only one element, but its quantity is correctly assigned.
Finally, Fig. 29 shows that the model recognizes that there are
3 damaged elements, it locates them correctly, and assigns the
correct amount of damage to each damaged element. Also, the
most relevant false positive value has a damage of 2% and is
located next to the element with the highest damage percentage.
Comparing B_DR_DS3_D with B_DR_DS3, there is a significant
difference in terms of false positives. A 25% false positive, located
at element 7, and a 16% one located at element 11 act as great
distractors in terms of assessment, which are not present when
using dropout.

6.4. Case study 2: Structural beam — comparison with other meth-
ods

The results for the second case study using DS3 (up to 3
damaged elements) shown above are compared to other methods
in the literature, namely OS-ELM, MLP and CNN. Also, we test
our approach using Random Forest to compare our results with
a machine learning algorithm outside neural networks. For the
methods used in [16] and [27], the same two case studies from
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Fig. 18. Comparison between the models performance in damage scenario 1, dataset 1 (i.e. models SM_DR_DS1 and SM_EMR_DS1 compared with CNN).
Fig. 19. Comparison between the models performance in damage scenario 2, dataset 1.
Fig. 20. Comparison between the models performance in damage scenario 3, dataset 1.
Fig. 21. Comparison between the models performance in damage scenario 1, dataset 2 (i.e. models SM_DR_DS2 and SM_EMR_DS2 compared with CNN).
t
s

his paper are analyzed. However, the experimental scenarios
ithin the case studies are not the same, thus, we cannot perform
fair comparison of the test results. Therefore, we compare the
 a

17
raining performance in terms of DME and FAE measures. The
tructures of the different models (all of them properly tuned to
chieve the best results) used for comparison are:
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Fig. 22. Comparison between the models performance in damage scenario 2, dataset 2.
Fig. 23. Comparison between the models performance in damage scenario 3, dataset 2.
Fig. 24. Comparison between the models performance in damage scenario 1, dataset 3 (i.e. models SM_DR_DS3 and SM_EMR_DS3 compared with CNN).
Fig. 25. Comparison between the models performance in damage scenario 2, dataset 3.
• OS-ELM: This model uses antiresonant frequencies as inputs.
As authors state in [16], the best performance of the model
is obtained using a network with a single layer of 165 nodes
with a sigmoid activation function.
18
• MLP: One hidden layer of 1024 units and ReLU activation

function. The output layer has the same number of units

as the number of elements in the structure. The model is
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Fig. 26. Comparison between the models performance in damage scenario 3, dataset 3.
Fig. 27. Comparison between B_DR_DS1 and B_DR_DS1_D performance in all three experimental cases.
optimized via Adam optimization algorithm and dropout is
used with 0.5 keep probability.
• CNN: Two convolution layers that generate feature maps

of 1 × 96 × 32 and 1 × 91 × 94, respectively, followed
by a fully connected layer of 1024 units. All layers have a
ReLU activation function, and dropout is used with 0.5 keep
probability. Adam optimizer is used.
• Random Forest: 300 estimators and sampling with replace-

ment are used when training.

As in Figs. 15–17, the results are divided according to the real
amage values to see how the algorithms perform at different
amage levels. The results are displayed in Tables 9 and 10. It
an be seen that the MLP model is the one that has the lowest
erformance, showing the highest percentages at all levels. The
S-ELM algorithm shows high levels of DME up to 20% damages.
his means that damaged elements with 20% damage or less
ave a high probability of being undetected. Observing the false
larms (FAE), the same issue is present. Up to 30% damage levels,
here are many false alarms compared to the rest of the models.
he Random Forest model shows the best results in both tables,
howing only an 8% of false negatives (DME) at the <10% damage
evel. False alarm values are also the lowest ones. This shows how
he model can identify and measure damage accurately when
19
trained with FE model images. Nonetheless, performance drops
when it is tested in experimental scenarios. Fig. 30 shows how
the model assesses the damage scenarios with one, two, and three
damaged elements, respectively. Fig. 30(a) shows correct damage
identification, but one false alarm with 14% damage. In Fig. 30(b),
the element with a shallow cut (see Table 1) is not recognized by
the Random Forest model. Even though the one with the deepest
cut is recognized, the model predicts less damage than in the
CapsNets models, and has a 30% damage false positive next to it.
For the case with three damaged elements, the Random Forest
model recognizes two of them, also having considerable false
alarms distributed through the beam. These results show how,
despite the Random Forest presenting better performance metrics
in the training stage, the evaluation in experimental scenarios
demonstrates it has poor generalization in real cases.

Regarding computation times, one must evaluate the time a
trained model takes to assess a new datapoint. This is due to the
fact that a deployed model is constantly assessing new scenarios,
whereas training occurs only once. The time the model takes
for doing this determines whether it is capable of doing online
monitoring or not. In relation to this,

Table 11 presents a comparison of all the models mentioned
in this section when assessing a new datapoint, with exception
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Fig. 28. Comparison between B_DR_DS2 and B_DR_DS2_D performance in all three experimental cases.
Fig. 29. Comparison between B_DR_DS3 and B_DR_DS3_D performance in all three experimental cases.
f MLP. However, knowing that MLPs are less complex algo-
ithms than CNNs, we can assume its computation time might
e lower than 0.31 [s]. For the rest of the algorithms, there is
clear difference between the Deep Learning models (CNN and
apsNets-based models) and the rest (OS-ELM and RF), being
apsNets with EM routing the model that takes the most time,
nd Random Forest the one that takes the less time, being the
atter 3,900 times faster than the former, and 1,650 times faster
han CapsNets with dynamic routing and dropout. However, this
oes not discard them as models used for online monitoring,
ecause they all take less than a second to assess a new image [5].
20
7. Conclusions

In the present work, capsule neural networks were developed
for locating and quantifying damage in structural elements. Two
types of routing algorithms within capsule networks were stud-
ied: dynamic routing and EM routing. Both general models were
analyzed with two case studies: a spring–mass system and an ex-
perimental beam. In both cases, various models were developed
and trained using images containing 10 transmissibility functions,
each image representing various damage scenarios. Images were
created using a FE model tuned via experimental data. The trained
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Table 9
Comparison of DME performance between CapsNets models and the existing literature.
DME [%]

Reference Algorithm Damage Level [%]

<10 10-20 20-30 30-40 40-50 50-60 60-70 70-80

[27] MLP 82 72 46 20 9 4 2 1
[16] OS-ELM 78 42 8 2 0 0 0 0
[27] CNN 56 8 1 0 0 0 0 0
– Random Forest 8 0 0 0 0 0 0 0
– CapsNets EM 46 1 0 0 0 0 0 0
– CapsNets DR 55 8 2 1 0 0 0 0
– CapsNets DR with Dropout 75 23 8 2 1 0 0 0
Table 10
Comparison of FAE performance between CapsNets models and the existing literature.
FAE [%]

Reference Algorithm Damage Level [%]

<10 10-20 20-30 30-40 40-50 50-60 60-70 70-80

[27] MLP 96 74 44 18 5 1 0 0
[16] OS-ELM 99 86 28 5 2 0 0 0
[27] CNN 98 37 8 2 0 0 0 0
– Random Forest 97 8 0 0 0 0 0 0
– CapsNets EM 97 9 4 0 0 0 0 0
– CapsNets DR 97 18 4 1 1 0 0 0
– CapsNets DR with Dropout 97 18 5 0 0 0 0 0
Fig. 30. Random Forest model evaluation in experimental scenarios.
models were validated using experimental cases and compared
with CNN, Random Forest, and models taken from the literature.

Even though the results show capsule networks outperform
CNN, there were important differences between the two case
studies. In the spring–mass system case study, the results from
the FE model-based data matched the experimental results, there
are no false negative values and few false positives. In the second
case study involving the structural beam, the results based on
the FE model-based data differ from the experimental results,
leading to the conclusion that some overfitting is occurring. For
21
this reason, dropout was applied to the model with dynamic rout-
ing, slightly decreasing the validation performance metrics, but
obtaining better generalization capacity. Moreover, these results
from models incorporating dropout layers outperform CNNs, no-
tably reducing false positive values, while maintaining a correct
damage estimation at the correct locations.

From a practical perspective, model B_DR_DS3_D can be con-
sidered the most suitable model among the proposed ones. It
can adequately assess cases with one, two and three damaged
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ssessment time for new datapoints.
Algorithm Computation time for new datapoint [s]

MLP No information available
OS-ELM 0.005
CNN 0.31
Random Forest 0.0002
CapsNets EM 0.78
CapsNets DR 0.33
CapsNets DR with Dropout 0.33

elements. Despite the training results for this model not be-
ing the best ones, tests on experimental data show that model
B_DR_DS3_D has a stable performance across various numbers of
amaged elements. When compared to other models (as shown
n Tables 9 and 10) B_DR_DS3_D stands out for showing accept-
able training results and the best performance in real scenarios.
This result closes the gap between research and real-life applica-
tions, because it shows how an algorithm trained on simulated
data can achieve good levels of generalization and yield accept-
able results in real life cases. These results show that CapsNets are
a promising approach for damage identification and localization
in structures and further research should be carried out. For
example, the analysis of more complex structures should produce
interesting insights on how CapsNets locate and quantify damage
in more complex scenarios.

Although the results are promising, the proposed capsule neu-
ral networks have some limitations. Due to the use of routing
algorithms, CapsNets are computationally expensive to train, par-
ticularly when compared to convolutional neural networks. To
circumvent this, the models considered herein were constructed
with only one routing-between-capsules layer. This might be a
limitation for other applications. Thus, deeper models should be
analyzed as well as ways to accelerate the training process. More-
over, as is the case with neural networks in general, CapsNets
provide a single point estimate as results, meaning there is no
uncertainty quantification and propagation. Therefore, one could
further extend the proposed models by developing Bayesian cap-
sule neural networks able to explicitly quantify uncertainty (both
model and parameter uncertainty) [52,53].
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