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Departamento de Ingenieŕıa Matemática
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Abstract

We propose the following conjecture: For every fixed α ∈ [0, 12 ],

each graph of minimum degree at least (1+α)k2 and maximum degree
at least 2(1− α)k contains each tree with k edges as a subgraph.
Our main result is an approximate version of the conjecture for bounded
degree trees and large dense host graphs. We also show that our con-
jecture is asymptotically best possible.
The proof of the approximate result relies on a second result, which
we believe to be interesting on its own. Namely, we can embed any
bounded degree tree into host graphs of minimum/maximum degree
asymptotically exceeding k

2 and 4
3k, respectively, as long as the host

graph avoids a specific structure.
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by Fondecyt Regular Grant 1183080.

1



1 Introduction

A central challenge in extremal graph theory is to determine degree condi-
tions a graph G has to satisfy in order to ensure that it contains a given
subgraph H. One of the most interesting open cases are trees. Instead of
focusing on the containment of just one specific tree T , one usually asks for
containment of all trees of some fixed size k ∈ N. To this end, bounds on
the average degree, the median degree or the minimum degree of the host
graph G have been suggested in the literature. Let us give a quick outline of
the most relevant directions.

Starting with a simple observation, it is very easy to see that every graph
of minimum degree at least k contains each tree with k edges. This is not
true if we weaken the bound of the minimum degree, even if just by one: It
suffices to consider the disjoint union of complete graphs of order k, which
does not contain any tree with k edges.
The well known Erdős–Sós conjecture from 1963 (see [6]) states that every
graph of average degree strictly greater than k− 1 contains each tree with k
edges. A proof of this conjecture for large graphs was announced by Ajtai,
Komlós, Simonovits and Szemerédi in the early 1990’s, and for other partial
results, see e.g. [4, 20]. The Loebl–Komlós–Sós conjecture from 1992 (see [7])
states that every graph of median degree at least k contains each tree with
k edges. For progress on the latter conjecture, see [1, 5, 10–16, 22].

A new angle to the problem was introduced in 2016 by Havet, Reed, Stein,
and Wood [9], who impose bounds on both the minimum and the maximum
degree. They suggest that every graph of minimum degree at least b2k

3
c and

maximum degree at least k contains each tree with k edges. We call their
conjecture the 2

3
–conjecture, for progress see [9, 17, 18].

In [3], the present authors proposed a variation of this approach, conjecturing
that every graph of minimum degree at least k

2
and maximum degree at

least 2k contains each tree with k edges. We call this conjecture the 2k–k
2

conjecture.

Comparing the two variants of maximum/minimum degree conditions given
by the latter two conjectures, it seems natural to ask whether one can allow
for a wider spectrum of bounds for the maximum and the minimum degree of
the host graph. We believe it might be possible to weaken the bound on the
maximum degree given by the 2k–k

2
conjecture, if simultaneously, the bound

on the minimum degree is increased.
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Quantitatively speaking, we suggest the following.

Conjecture 1.1. Let k ∈ N, let α ∈ [0, 1
2
] and let G be a graph with δ(G) ≥

(1 + α)k
2

and ∆(G) ≥ 2(1− α)k. Then G contains each tree with k edges.

Note that for α = 0, the bounds from Conjecture 1.1 conincide with the
bounds from the 2k–k

2
conjecture, and for all α ∈ [1

3
, 1
2
], Conjecture 1.1

follows from the 2
3
–conjecture. So Conjecture 1.1 can be seen as a unification

of the other two conjectures.
We show that Conjecture 1.1 is asymptotically best possible for infinitely
many values of α.

Proposition 1.2. For all odd ` ∈ N with ` ≥ 3, and for all γ > 0 there
are k ∈ N, a k-edge tree T , and a graph G with δ(G) ≥ (1 + 1

`
− γ)k

2
and

∆(G) ≥ 2(1− 1
`
− γ)k with the property that T does not embed in G.

We prove this proposition in Section 2. Note that Proposition 1.2 covers all
values of α ∈ {1

3
, 1
5
, 1
7
, 1
9
, . . .}. The tightness of our conjecture for other values

of α will be discussed in Section 6.3.
We remark that Proposition 1.2 disproves a conjecture from [19] (see Section 2
for details).

On the positive side, observe that Conjecture 1.1 trivially holds for the star
and for the double star. Also, it is not difficult to see that the conjecture
holds for paths. In fact, if the tree we wish to embed is the k-edge path Pk,
it already suffices to require a minimum degree of at least k

2
and a maximum

degree of at least k in the host graph G.1

We provide further evidence for the correctness of Conjecture 1.1 by prov-
ing an approximate version for bounded degree trees, and large dense host
graphs.

Theorem 1.3. For all δ ∈ (0, 1) there exist k0 ∈ N such that for all n, k ≥ k0
with n ≥ k ≥ δn and for each α ∈ [0, 1

3
] the following holds.

Every n-vertex graph G with δ(G) ≥ (1+δ)(1+α)k
2

and ∆(G) ≥ 2(1+δ)(1−
α)k contains each k-edge tree T with ∆(T ) ≤ k

1
67 as a subgraph.

Theorem 1.3 only holds for α ∈ [0, 1
3
], but all other allowed values for α

from Conjecture 1.1 are covered by a result from [3] that is an analogy of

1This is enough because the latter condition forces a component of size at least k + 1,
and thus the statement reduces to a well known result of Erdős and Gallai [8].
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Theorem 1.3 for the 2
3
-conjecture (which, as we noticed above, implies Con-

jecture 1.1 for all α ∈ [1
3
, 1
2
]).

The proof of Theorem 1.3 will be given in Section 5. It relies on another
result, namely Theorem 1.4 below, which we already prove in Section 4,
making use of a powerful embedding tool from [3] (Lemma 4.2). We believe
Theorem 1.4 is interesting in its own right.
Theorem 1.4 is a variant of Theorem 1.3, but with the much weaker conditions
δ(G) ≥ (1 + δ)k

2
and ∆(G) ≥ (1 + δ)4

3
k. Because of Proposition 1.2, these

bounds are not sufficient to guarantee an embedding of any given tree T , but
if we are not able to embed T , then some information about the structure
of G can be deduced. We will give an explicit description of the corresponding
class of graphs, which we will call (ε, x)-extremal graphs, in Definition 4.1,
but already state our result here.

Theorem 1.4. For all δ ∈ (0, 1) there is n0 ∈ N such that for all k, n ≥ n0

with n ≥ k ≥ δn, the following holds for every n-vertex graph G with δ(G) ≥
(1 + δ)k

2
and ∆(G) ≥ (1 + δ)4k

3
.

If T is a k-edge tree with ∆(T ) ≤ k
1
67 , then either

(a) T embeds in G; or

(b) G is ( δ4

1010
, x)-extremal for every x ∈ V (G) of degree at least (1 + δ)4k

3
.

We discuss some further directions and open problems in Section 6. More
precisely, we discuss possible extensions of Theorems 1.3 and 1.4, and the
influence of additional assumptions on the host graph, such as higher con-
nectivity, on the degree bounds from Theorem 1.3. Also, we discuss the
sharpness of Conjecture 1.1 for those values of α not covered by Proposi-
tion 1.2.

2 Sharpness of Conjecture 1.1

This section is devoted to showing the asymptotical tightness of our conjec-
ture, for infinitely many values of α. In order to be able to prove Proposi-
tion 1.2, let us consider the following example.

Example 2.1. Let `, k, c ∈ N with 1 ≤ c ≤ k
`(`+1)

such that ` ≥ 3 is odd and
divides k.
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Figure 1: The graph Hk,`,c from Example 2.1

For i = 1, 2, we define Hi = (Ai, Bi) to be the complete bipartite graph with

|Ai| = (`− 1)

(
k

`
− 1

)
and |Bi| =

k

2
+

(c− 1)(`+ 1)

2
− 1.

We obtain Hk,`,c by adding a new vertex x to H1 ∪H2, and adding all edges
between x and A1 ∪ A2. Observe that

δ(Hk,`,c) = min{|A1|, |B1|+ 1} = |B1|+ 1 =
k

2
+

(c− 1)(`+ 1)

2

and

∆(Hk,`,c) = |A1 ∪ A2| = 2(`− 1)

(
k

`
− 1

)
.

Let Tk,` be the tree formed by ` stars of order k
`

and an additional vertex v
connected to the centres of the stars.

We will use Example 2.1 to prove Proposition 1.2. However, a similar propo-
sition (with slightly weaker bounds) could be obtained by replacing one of the
graphs Hi from Example 2.1 with a small complete graph. See Example 2.4
near the end of this section.
Let us now show that the graph Hk,`,c from Example 2.1 does not contain
the tree Tk,`.

Lemma 2.2. For all `, k, c ∈ N with 1 ≤ c ≤ k
`(`+1)

such that ` ≥ 3 is odd and
divides k, the tree Tk,` from Example 2.1 does not embed in the graph Hk,`,c.
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Proof. Observe that we cannot embed Tk,` in Hk,`,c by mapping v into x,
since then, one of the sets Bi would have to accommodate all leaves of at
least `+1

2
of the stars of order k

`
. But these are at least

`+ 1

2
·
(
k

`
− 1

)
=
k

2
+

1

2`
(k − `(`+ 1)) ≥ k

2
+

1

2
(c− 1)(`+ 1) > |Bi|

leaves in total, so they will not fit into Bi.
Moreover, we cannot map v into one of the Hi, because then, we would have
to embed at least ` − 1 stars into Hi. The leaves of these stars would have
to go to the same side as v, but together these are

(`− 1)

(
k

`
− 1

)
+ 1 > |Ai| ≥ |Bi|

vertices (note that we count v), so this, too, is impossible. We conclude that
the tree Tk,` does not embed in Hk,`,c.

Before we prove Proposition 1.2, let us state a weaker result, Proposition 2.3,
which we will prove as a warm-up.

Proposition 2.3. For all α ∈ (0, 1
2
) there are k ∈ N, a k-edge tree T , and a

graph G with δ(G) = k
2

and ∆(G) ≥ 2(1 − α)k such that T does not embed
in G.

This result is already sufficient to disprove the conjecture from [19] mentioned
earlier.2

Proof of Proposition 2.3. Given α ∈ (0, 1), we set ` := 2d 1
α
e − 1. Then

` ≥ 3 is odd, and we can consider the tree Tk,` and the graph Hk,`,c from
Example 2.1, where we take k := `(` + 1) and c := 1. By Lemma 2.2, we
know that Tk,` does not embed in Hk,`,c.
Observe that δ(Hk,`,c) = k

2
and, by our choice of k,

∆(Hk,`,c) = 2(`− 1)
(1

`
− 1

k

)
k = 2

(
1− 2

`+ 1

)
k,

and therefore, ∆(Hk,`,c) ≥ 2(1− α)k, which is as desired.

2In [19] it was conjectured that a maximum degree of at least 4
3k and a minimum

degree of at least k
2 would be enough to guarantee containment of all trees with k edges.

Let us note that Propositions 1.2 and 2.3, Conjecture 1.1 and Theorem 1.4 were found
independently of [19] (see [2]).
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Let us now prove Proposition 1.2. For this, we will let the constant c go to
infinity.

Proof of Proposition 1.2. Let ` and γ be given. For any fixed integer c ≥ 1,
set

k := c`(`+ 1),

and consider the tree Tk,` and the host graph Hk,`,c from Example 2.1 for
parameters k, ` and c.
Observe that

δ(Hk,`,c) >
(

1 +
(c− 1)(`+ 1)

k

)k
2

=
(

1 +
c− 1

c`

)k
2

=
(

1 +
1

`
− 1

c`

)k
2

and

∆(Hk,`,c) = 2(1− 1

`
− `− 1

k
)k > 2

(
1− 1

`
− 1

c`

)
k

So for any given γ we can choose c large enough such that

δ(Hk,`,c) ≥
(

1 +
1

`
− γ
)k

2

and

∆(Hk,`,c) ≥ 2
(

1− 1

`
− γ
)
k,

which is as desired, since by Lemma 2.2, we know that Tk,` does not embed
in Hk,`,c,

Let us now quickly discuss an alternative example, which gives worse bounds
than the ones given in Proposition 1.2, but might be interesting because of
its different structure.

Example 2.4. Let k, `, c be as in Example 2.1. Let C be a complete graph of
order k

2
+ (c−1)(`+1)

2
. Let Gk,`,c be obtained by taking C and the bipartite graph

H1 = (A1, B1) from Example 2.1, and joining a new vertex x to all vertices
from A1 and to all vertices in C.
Then δ(Gk,`,c) = k

2
+ (c−1)(`+1)

2
and ∆(Gk,`,c) = 3`−2

2`
k + (c−3)(`+1)

2
− 2, and an

analogue of Lemma 2.2 holds.
Moreover, in the same way as in the proof of Proposition 1.2, we can show
that if k is large enough in terms of (odd) ` ≥ 3 and γ, then

δ(Gk,`,c) ≥ (1 +
1

`
− γ)

k

2
and ∆(Gk,`,c) ≥

3

2
(1− 1

`
− γ)k.
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This example, as well as the examples underlying Propositions 2.3 and 1.2
illustrate that requiring a maximum degree of at least ck, for any c < 2 (in
particular for c = 4

3
), and a minimum degree of at least k

2
is not enough

to guarantee that any graph obeying these conditions contains all k-edge
tree as subgraphs. Nevertheless, we could not come up with any radically
different examples, and it might be that graphs that look very much like the
graph Hk,`,c from Example 2.1 or the graph Gk,`,c from Example 2.4 are the
only obstructions for embedding all k-edge trees. This suspicion is partially
confirmed by Theorem 1.4.

3 Regularity

In the proofs of our results, we will make use of the regularity lemma, which
we quickly introduce here.
For a bipartite graph H = (A,B), the density of any subpair (X, Y ) ⊆ (A,B)

is d(X, Y ) := e(X,Y )
|X||Y | . For fixed ε > 0, the pair (A,B) is said to be ε-regular if

|d(X, Y ) − d(A,B)| < ε for all (X, Y ) ⊆ (A,B) with |X| > ε|A| and |Y | >
ε|B|. If, moreover, d(A,B) > η for some η > 0, we call the pair (ε, η)-regular.
The regularity lemma of Szemerédi [21] states that the vertex set of any
large enough graph can be partitioned into a bounded number of sets such
that almost all pairs form an ε-regular bipartite graph. We will use the
well known degree form of the regularity lemma. Call a vertex partition
V (G) = V1 ∪ . . . ∪ V` an (ε, η)-regular partition if

1. |V1| = |V2| = . . . = |V`|;

2. Vi is independent for all i ∈ [`]; and

3. for all 1 ≤ i < j ≤ `, the pair (Vi, Vj) is ε-regular with density either
d(Vi, Vj) > η or d(Vi, Vj) = 0.

Lemma 3.1 (Regularity lemma - Degree form). For all ε > 0 and m0 ∈ N
there are N0,M0 such that the following holds for all η ∈ [0, 1] and n ≥ N0.
Any n-vertex graph G has a subgraph G′, with |G|−|G′| ≤ εn and degG′(x) ≥
degG(x) − (η + ε)n for all x ∈ V (G′), such that G′ admits an (ε, η)-regular
partition V (G′) = V1 ∪ . . . ∪ V`, with m0 ≤ ` ≤M0.

The (ε, η)-reduced graph R of G, with respect to the (ε, η)-regular partition
given by Lemma 3.1, is the graph with vertex set {Vi : i ∈ [`]}, where ViVj
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is an edge if d(Vi, Vj) > η. We will often refer to the (ε, η)-reduced graph R
without explicitly referring to the associated (ε, η)-regular partition. It turns
out that R inherits many properties of G. For instance, it asymptotically
preserves the minimum degree of G (scaled to the order of R). Indeed, for
every Vi, we have

degR(Vi) ≥
∑

Vj∈NR(Vi)

d(Vi, Vj) =
∑
v∈Vi

degG′(v)

|Vi|
· |R|
|G′|

, (1)

and so, in particular, one can deduce that

δ(R) ≥ δ(G′) · |R|
|G′|
≥
(
δ(G)− (ε+ η)n

)
· |R|
n
. (2)

4 Maximum degree 4k
3

In this section we will prove our tree embedding result for host graphs of
maximum degree approximately 4k

3
and minimum degree approximately k

2
,

namely Theorem 1.4. The proof of Theorem 1.4 crucially relies on an em-
bedding result from [3], Lemma 4.2 below. This lemma describes a series of
configurations which, if they appear in a graph G, allow us to embed any
bounded degree tree of the right size into G.
Before stating Lemma 4.2, and defining the class of (ε, x)-extremal graphs
(the graphs that are excluded as host graphs in Theorem 1.4), let us go
through some useful notation.

For a fixed θ ∈ (0, 1), we say that a vertex x of a graph H θ-sees a set
U ⊆ V (H) if it has at least θ|U | neighbours in U . If C is a component of
a reduced graph of H − x, then we say that x θ-sees C if it has at least
θ|
⋃
V (C)| neighbours in

⋃
V (C).

A nonbipartite graph H is said to be (k, θ)-small if |V (H)| < (1 + θ)k. A
bipartite graph H = (A,B) is said to be (k, θ)-small if

max{|A|, |B|} < (1 + θ)k.

If a graph is not (k, θ)-small, we will say that it is (k, θ)-large.

We are now ready to define the excluded hosts from Theorem 1.4.

Definition 4.1 ((ε, x)-extremal). Let ε > 0 and let k ∈ N. Given a graph G
and a vertex x ∈ V (G), we say that G is (ε, x)-extremal if for every (ε, 5

√
ε)-

reduced graph R of G− x the following conditions hold:
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(i) every component of R is (k · |R||G| , 4
√
ε)-small;

(ii) x
√
ε-sees two components C1 and C2 of R and x does not see any other

component of R;

and furthermore, assuming that deg(x,
⋃
V (C1)) ≥ deg(x,

⋃
V (C2)),

(iii) C1 is bipartite and (2k
3
· |R||G| , 4

√
ε)-large, with x only seeing the larger side

of C1;

(iv) if C2 is nonbipartite, then C2 is (2k
3
· |R||G| , 4
√
ε)-small, and if C2 is bipartite,

then x sees only one side of the bipartition.

We will now state Lemma 4.2.

Lemma 4.2. [3, Lemma 7.3] For every ε ∈ (0, 10−10) and M0 ∈ N there
is n0 ∈ N such that for all n, k ≥ n0 the following holds for every n-vertex
graph G of minimum degree at least (1 + 4

√
ε)k

2
.

Let x ∈ V (G), and suppose G − x has an (ε, 5
√
ε)-reduced graph R, with

|R| ≤M0, such that at least one of the following conditions holds:

(I) R has a (k · |R|
n
, 4
√
ε)-large nonbipartite component; or

(II) R has a (2k
3
· |R|
n
, 4
√
ε)-large bipartite component such that x

√
ε-sees

both sides of the bipartition; or

(III) x
√
ε-sees two components C1, C2 of R and one of the following holds:

(a) x sends at least one edge to a third component C3 of R; or

(b) Ci is nonbipartite and (2k
3
· |R|
n
, 4
√
ε)-large for some i ∈ {1, 2}; or

(c) Ci = (A,B) is bipartite for some i ∈ {1, 2}, and x sees both A
and B; or

(d) Ci = (A,B) is bipartite for some i ∈ {1, 2}, with min{|A|, |B|} ≥
(1 + 4

√
ε)2k

3
· |R|
n

and x seeing only one side of the bipartition.

Then every k-edge tree T of maximum degree at most k
1
67 embeds in G.

Let us remark that the original result in [3] actually covers even more cases
than we chose to reproduce here. It also allows for relaxing the bound of
the maximum degree of the tree, if the host graph has minimum degree
substantially larger than (1 + δ)k

2
.

We are now ready for the proof of Theorem 1.4.
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Proof of Theorem 1.4. Given δ ∈ (0, 1), we set

ε :=
δ4

1010
. (3)

Let N0,M0 be given by Lemma 3.1, with input ε, η := 5
√
ε and m0 := 1

ε
,

and let n′0 be given by Lemma 4.2, with input ε and M0. We choose

n0 := (1− ε)−1 max{n′0, N0}+ 1

as the numerical output of Theorem 1.4.
Let G and T be given as in Theorem 1.4. Consider an arbitrary vertex
x ∈ V (G) with deg(x) ≥ (1 + δ)4

3
k, and apply Lemma 3.1 to G − x. We

obtain a subgraph G′ ⊆ G− x which admits an (ε, 5
√
ε)-regular partition of

G− x, with corresponding (ε, 5
√
ε)-reduced graph R. Note that

δ(G′) ≥
(

1 +
δ

2

)k
2
≥ (1 + 100 4

√
ε)
k

2
.

IfR has a (k· |R|
n
, 4
√
ε)-large component, we are in scenario (I) from Lemma 4.2,

and we can embed T . So let us assume this is not the case. In particular, we
can assume that condition (i) of Definition 4.1 holds.
Since G′ misses less than εn+ 1 vertices from G, we have that

degG(x,G′) ≥
(

1 +
δ

2

)4

3
k ≥ (1 + 100 4

√
ε)

4

3
k. (4)

It is clear that x has to
√
ε-see at least one component C1 of R. Indeed,

otherwise, we would have that

4

3
δn ≤ 4

3
k ≤ degG(x,G′) =

∑
C

degG(x,
⋃

V (C)) ≤
√
εn, (5)

where the sum is over all components C of R, and this contradicts (3). Now,

if x only sees C1, then, since C1 is (k · |R|
n
, 4
√
ε)-small and deg(x,

⋃
V (C)) ≥

(1 + δ
2
)4k

3
, we are in scenario (II) from Lemma 4.2, and we can embed T . In

particular, this implies that

degG(x,G′ \
⋃

V (C1)) ≥ (1 + 50 4
√
ε)k

3
. (6)

Thus, a computation similar to (5) shows that x
√
ε-sees at least two compo-

nents of R. If x sees a third component, then we are in scenario (IIIa) from
Lemma 4.2 and T can be embedded.
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Therefore, we know that x actually
√
ε-sees exactly two components, which

we will call C1 and C2. (In particular, we know that condition (ii) of Defini-
tion 4.1 holds.)
By symmetry, we may assume that deg(x,

⋃
V (C1)) ≥ deg(x,

⋃
V (C2)) and

thus, by (4),

deg(x,
⋃

V (C1)) ≥ (1 + 100 4
√
ε)2k

3
. (7)

Thus, if C1 is nonbipartite we are in scenario (IIIb) from Lemma 4.2, and
therefore, we can assume C1 = (A1, B1) is bipartite. Also, x only sees one
side of the bipartition, say A1, since otherwise we are in scenario (IIIc).
Moreover, by (7), and since we may assume we are not in scenario (IIId), we
know that

|A1| ≥ (1 + 100 4
√
ε)2k

3
· |R||G| and |B1| ≤ (1 + 4

√
ε)2k

3
· |R||G| . (8)

So, condition (iii) of Definition 4.1 holds. Furthermore, if C2 is nonbipartite,

then it is (2k
3
· |R||G| , 4

√
ε)-small, as otherwise we are in case (IIIb). If C2 is

bipartite, then x can only see one side of the bipartition, since otherwise we
are in scenario (IIIc). Therefore, C2 satisfies condition (iv) of Definition 4.1,
implying that G is ( δ4

1010
, x)-extremal.

5 The proof of Theorem 1.3

This section contains the proof of our main result, Theorem 1.3. We will
need some preliminary results.
Our first lemma is folklore. It states that every tree T has a cutvertex
which separates the tree into subtrees of size at most |T |

2
. The proof is

straightforward, and can be found for instance in [9].

Lemma 5.1. Every tree T with t edges has a vertex z such that every com-
ponent of T − z has at most d t

2
e vertices.

A vertex z as in Lemma 5.1 is called a t
2
-separator for T and x. We also need

the following lemma from [3], which will allow us to conveniently group the
components of T − z obtained from Lemma 5.1 when applied to a tree T .

Lemma 5.2.[3, Lemma 4.4] Let m, t ∈ N+ and let (ai)
m
i=1 be a sequence of

integers with 0 < ai ≤ d t2e, for each i ∈ [m], such that
∑m

i=1 ai ≤ t. Then

12



(i) there is a partition {J1, J2} of [m] such that
∑

i∈J2 ai ≤
∑

i∈J1 ai ≤
2
3
t;

and

(ii) there is a partition {I1, I2, I3} of [m] such that
∑

i∈I3 ai ≤
∑

i∈I2 ai ≤∑
i∈I1 ai ≤ d

t
2
e.

Finally, we need another embedding result from [3]. This result will enable
us to embed any bounded degree forest into any large enough bipartite graph
with an underlying (ε, η)-regular partition of a certain structure.
Let us first define the kind of forest we are interested in.

Definition 5.3. Let t1, t2 ∈ N and let c ∈ (0, 1). We say that a forest F
with colour classes C1 and C2 is a (t1, t2, c)-forest if

1. |Ci| ≤ ti for i = 1, 2; and

2. ∆(F ) ≤ (t1 + t2)
c.

We are now ready for the embedding result.

Lemma 5.4.[3, Corollary 5.4] For all ε ∈ (0, 10−8) and d,M0 ∈ N there
is t0 such that for all n, t1, t2 ≥ t0 the following holds. Let G be a n-vertex
graph having an (ε, 5

√
ε)-reduced graph R with |R| ≤M0 such that

(i) R = (X, Y ) is connected and bipartite;

(ii) diam(R) ≤ d;

(iii) deg(x) ≥ (1 + 100
√
ε)t2 · |R|n , for all x ∈ X; and

(iv) |X| ≥ (1 + 100
√
ε)t1 · |R|n .

Then any (t1, t2,
1
d
)-forest F , with colour classes C0 and C1, can be embedded

into G, with C0 going to
⋃
X and C1 going to

⋃
Y .

Moreover, if F has at most εn
|R| roots, then the roots going to

⋃
X can be

mapped to any prescribed set of size at least 2ε|
⋃
X| in X, and the roots

going to
⋃
Y can be mapped to any prescribed set of size at least 2ε|

⋃
Y |

in Y .

We are now ready for the proof of our main theorem, Theorem 1.3.

13



Proof of Theorem 1.3. Given δ ∈ (0, 1), we set

ε :=
δ4

1010

and apply Lemma 3.1, with inputs ε, η = 5
√
ε and m0 := 1

ε
, to obtain

numbers n0 and M0. Next, apply Lemma 5.4, with input ε and further
inputs d := 3 and M0 to obtain a number k′0. Choose k0 as the larger of n0,
k′0 and the output of Theorem 1.4.
Now, let k, n ∈ N, let α ∈ [0, 1

3
), let T be a tree and let G be a graph as in

Theorem 1.3. Let x be an arbitrary vertex of maximum degree in G. Note
that

deg(x) ≥ 2(1 + δ)(1− α)k ≥ (1 + δ)4k
3
.

We apply the regularity lemma (Lemma 3.1) to G− x to obtain a subgraph
G′ ⊆ G− x which admits an (ε, 5

√
ε)-regular partition with a corresponding

reduced graph R. Moreover, since G′ misses only few vertices from G, we
know that

deg(x,G′) ≥ 2(1 + δ
2
)(1− α)k (9)

and
δ(G′) ≥ (1 + δ

2
)(1 + α)k

2
. (10)

Thus,

δ(R) ≥
(

1 +
δ

2

)
(1 + α)

k

2
· |R|
n
. (11)

Apply Theorem 1.4 to T and G. This either yields an embedding of T , which
would be as desired, or tells us that G is an (ε, x)-extremal graph. We assume
the latter from now on.
So, we know that x

√
ε-sees two components C1 and C2 of R, where C1 =

(A,B) is bipartite, say with |A| ≥ |B|. Moreover, x does not see any other
component of R.
Furthermore,

(A) Ci is (k · |R|
n
, 4
√
ε)-small, for i = 1, 2;

(B) C1 is (2k
3
· |R||G| , 4

√
ε)-large, and x does not see B.

By (9), and since we assume x sends more edges to
⋃
V (C1) than to

⋃
V (C2),

we know that

deg(x,
⋃

V (C1)) ≥
(

1 +
δ

2

)
(1− α)k, (12)
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and thus, by (B),

|C1| ≥ |A| ≥
(

1 +
δ

2

)
(1− α)k · |R|

n
, (13)

since the vertex x has at least that many neighbours in A, because of in-
equality (12).
Also, note that because of (A) and because of the bound (11), we know that
any pair of vertices from the same bipartition class of C1 has a common
neighbour. Therefore,

the diameter of C1 is bounded by 3. (14)

Let us now turn to the tree T . We apply Lemma 5.1 to find a t
2
-separator z

of T , for an arbitrary leaf x. Let F denote the set of all components of T −z.
Then

each component of F has size at most
⌈ t

2

⌉
. (15)

Let V0 denote the set of all vertices of T − z that lie at even distance to z.
We claim that if we cannot embed T , then

|V0| ≥ (1 + α)
k

2
. (16)

Indeed, suppose otherwise. Then we can apply Lemma 5.2 (i) to obtain a
partition of F into two sets J1 and J2 such that

|
⋃
J2| ≤

k

2
and |

⋃
J1| ≤

2

3
k.

We embed z into x. Our plan is to use Lemma 5.4 with reduced host graph C1,
and with

t := |
⋃
J1| ≤

2

3
k

where we accordingly choose t1 and t2 as the sizes of the two partition classes
of
⋃
J1. Note that then

k2 ≤ |V0| ≤ (1 + α)
k

2

(since we assumed (16) not to hold). We can therefore embed
⋃
J1 into C1,

with the roots of J2 embedded in the neighbourhood of x. Observe that

15



conditions (iii) and (iv) of Lemma 5.4 are met because of (11) and (13),
respectively, and the neighbourhood of x is large enough to accommodate
the roots of the trees from J1 because of (12). In order to see condition (ii)
of Lemma 5.4, it suffices to recall (14).
Also, because of (10), and since x also

√
ε-sees the component C2, we can

embed the trees from J2 into C2. We do this by first mapping the roots of the
trees from J2 into the neighbourhood of x in C2. We then use the minimum
degree of G′ to greedily complete the embedding. Thus we have embedded
all of T .
So, from now we will assume that (16) holds.

We split the remainder of the proof into two complementary cases, which will
be solved in different ways. Our two cases are defined according to whether
or not there is a tree F ∗ ∈ F such that |V (F ∗)∩ V0| > αk. Let us first treat
the case where such an F ∗ does not exist.

Case 1: |V (F ) ∩ V0| ≤ αk for each F ∈ F .

In this case, we proceed as follows. First, we embed z into x. We take an
inclusion-maximal subset F1 of F such that

|
⋃
F1 ∩ V0| ≤ (1 + α)

k

2
(17)

holds. Then, because of our assumption on |V (F )∩ V0| for the trees F ∈ F ,
we know that

|
⋃
F1 ∩ V0| ≥ (1− α)

k

2
. (18)

Hence, the trees from F1 can be embedded into C1, by using Lemma 5.4, as
before, with t := |

⋃
F1| and t1, t2 chosen appropriately. Indeed, inequali-

ties (17) and (11) ensure that condition (iii) of the lemma holds. Furthermore,
because of (13) and (18), we know that

|
⋃
F1 \ V0| ≤ (1 + α)

k

2
≤ 1

1 + δ
2

|
⋃

V (A)|,

and hence, it is clear that also condition (iv) of Lemma 5.4 holds.
Condition (ii) of Lemma 5.4 holds because of (14). Finally, inequality (12)
ensures we can embed F1 in C1 in such a way the roots of F1 are embedded
into the neighbourhood of x in C1.
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Now, the trees from F2 := F \F1 can be embedded into C2. First, embed the
neighbours of z into the neighbourhood of x in C2. Then, observe that (18)
implies that

|
⋃
F2| ≤ (1 + α)

k

2
≤ δ(G′).

Therefore, we can embed the remainder of the trees from F2 into C2 in a
greedy fashion.

Case 2: There is a tree F ∗ ∈ F such that |V (F ∗) ∩ V0| > αk.

In this case, let us set F ′ := F \ {F ∗}, and note that

|V (
⋃
F ′) ∩ V0| ≤ (1− α)k. (19)

Our plan is to embed z into a neighbour of x in A, and embed all trees
from F ′ into C1. We then complete the embedding by mapping the root
of F ∗ to x, and the rest of F ∗ to C2.
For the embedding of {z} ∪

⋃
F ′, we will use Lemma 5.4 as before, but this

time the roles of A and B will be reversed. That is, all of

F0 := ({z} ∪
⋃
F ′) ∩ V0

is destined to go to A, while all of

F1 := ({z} ∪
⋃
F ′) \ V0

is destined to go to B.
We choose t := |

⋃
F ′| + 1 and choose t1, t2 as the sizes of the bipartition

classes of {z} ∪
⋃
F ′, that is, we set t1 := |F0| and t2 := |F1|. Because

of (16), there are at most (1− α)k
2

vertices in T − z at odd distance from z.
In particular, t2 ≤ (1 − α)k

2
. So, by (11), we know that condition (iii) of

Lemma 5.4 holds (and condition (i) is obviously true).
Now, condition (iv) of Lemma 5.4 is ensured by inequality (19) together
with (13). Condition (ii) of Lemma 5.4 holds because of (14). Therefore, we
can embed all of {z} ∪

⋃
F ′ with the help of Lemma 5.4. Furthermore, we

can make sure that z is embedded into a neighbour of x.
It remains to embed the tree F ∗. We embed its root r(F ∗) into x, and embed
all neighbours of r(F ∗) into arbitrary neighbours of x in C2. We then embed
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the rest of F ∗ greedily inyo C2. Note that this is possible, since by (15), we
know that

|F ∗ − r(F ∗)| ≤
⌈k

2

⌉
− 1,

and so, our bound (10) guarantees that we can embed the remainder of F ∗

greedily into C2.

6 Conclusion

6.1 Extensions of Theorem 1.4

In Theorem 1.4, we saw that asymptotically, requiring maximum degree at
least 4

3
k and minimum degree at least k

2
is enough to guarantee the appear-

ance of every tree of maximum degree bounded by k
1
67 as a subgraph, as long

as the host graph is large and dense enough to apply the regularity method,
and as long as the host graph does not resemble too closely the graph from
Example 2.1. It seems natural to ask whether this can be generalised in any
of the following directions.
First, we might ask whether the same holds for a larger class of trees (or
possibly, all trees).

Problem 6.1. Does Theorem 1.4 continue to hold if we relax the condition
on the maximum degree of T?

Also, it might be possible to describe the forbidden structure in more explicit
terms. Perhaps the graphs Hk,`,c and Gk,`,c from Examples 2.1 and 2.4,
respectively, do not only appear in the reduced graph, but also in the host
graph itself, if we fail to embed some tree T .

Problem 6.2. Can we describe the forbidden structure from Theorem 1.4
more explicitly, for instance by excluding the graphs Hk,`,c and Gk,`,c as sub-
graphs of G, for ` ≥ 3 (or for odd ` ≥ 3)?

Or, instead of forbidding these graphs as subgraphs, it might be enough to
forbid them as components of the host graph G.
It is also not clear what an analogue of Theorem 1.4 for sparse graphs might
look like.

Problem 6.3. Find a version of Theorem 1.4 for sparse graphs.
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6.2 Extensions of Theorem 1.3

6.2.1 Lower bounds on the minimum degree

Let us now discuss why variants of Conjecture 1.1 (or of Theorem 1.3) with
bounds on the minimum degree that are below the threshold k

2
are not pos-

sible. In fact, if we do not add further restrictions, and the minimum degree
of the host graph G is only bounded by some function f(k) < bk

2
c, then no

maximum degree bound can make G contain all k-edge trees. In order to see
this, it suffices consider Kn1,n2 , the complete bipartite graph with classes of
size n1 := bk−1

2
c and n2 := n − bk−1

2
c, respectively. No perfectly (or almost

perfectly) balanced k-edge tree embeds into Kn1,n2 , since one would need to
use at least bk+1

2
c vertices from each class.

One might think that perhaps, the situation changes if we require the min-
imum degree bound f(k) to be at least as large as the smaller bipartition
class of the tree. But that is not true: Let ` ∈ N such that ` + 2 divides
k + 1, and let T be obtained from a 2k+1

`+2
-edge path by adding ` − 2 new

leaf neighbours to every other vertex on the path. This tree has bipartition
classes of sizes 1

`
(k+1) and `−1

`
(k+1). However, it cannot be embedded into

the graph obtained by joining a universal vertex to a disjoint union of (any
number of) complete graphs of order c := bk−1

2
c, since for every v ∈ V (T ),

at least one component of T − v has at least dk
2
e > c vertices.

6.2.2 Higher connectivity

The examples from the previous section, as well as Examples 2.1 and 2.4 from
Section 2, all have a cutvertex. So one might think that in a c-connected
host graph, for some c ≥ 2 which might even depend on k, we could cope
with lower bounds on the minimum (or maximum) degree.
However, we would not gain much by requiring higher connectivity, as the
following variation of Example 2.1 illustrates.

Example 6.4. Let Hk,`,c be as in Example 2.1, with slightly adjusted size of
the sets Ai, namely, we choose

|Ai| = (`− 1)
(k
`
− 2
)

and |Bi| =
k

2
+

(c− 1)(`+ 1)

2
− 1.

Now, add a matching of size |B1| between the sets B1 and B2, and call the
new graph H ′k,`,c.
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The graph H ′k,`,c is k
2
-connected, and for any given γ there is a number c such

that δ(H ′k,`,c) ≥ (1 + 1
`
− γ)k

2
and ∆(H ′k,`,c) ≥ 2(1 − 1

`
− γ)k. But, similarly

as in Lemma 2.2, we can show that the tree Tk,` from Example 2.1 does not
embed in H ′k,`,c.

It is not clear what happens if we require a connectivity of (1 + ε)k
2
, for some

0 < ε ≤ α. It is possible that then, the bound on the maximum degree can
be weakened, perhaps to ∆(G) ≥ 2(1− 2α)k.

6.3 Is Conjecture 1.1 tight for all values of α?

Finally, we believe it would be very interesting to generalise Proposition 1.2
to even `, if this is possible. Or even better, find examples so that the term 1

`

from the proposition can be replaced with any α ∈ [0, 1
2
].

Question 6.5. Is Conjecture 1.1 asymptotically tight for all α /∈ {1
`
}`≥3,` odd?

We believe that Conjecture 1.1 might be tight (or close to tight) in the range
α ∈ [0, 1

3
]. Indeed, for any α ∈ [0, 1

3
] and given γ > 0 small, we can construct

examples of graphs with minimum degree at least (1+α−γ)k
2

and maximum
degree at least 2(1−g(α)−γ)k, where g(α) is a function which is bigger than α
but reasonably close to it. In particular, g(α) satisfies |α − g(α)| = O(α2),
and, more explicitly, for any even ` ≥ 3 we obtain g(1

`
) = 1

`
+ 1

`(`−2) . These
examples are very similar to Example 2.1. The difference is that the small
stars that make up the tree may have different sizes (more precisely, one star
is smaller than the other ones). The host graph is the same, with slightly
adjusted size of the sets Ai.
However, for α ∈ [0, 1

2
] the situation might be very different. We are inclined

to believe that Conjecture 1.1 is not sharp in the range [1
3
, 1
2
], and that in

this range, the 2
3
–conjecture gives the ‘correct’ bounds.
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[21] Szemerédi, E. Regular partitions of graphs. In Problèmes combi-
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