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Resumen

La microscopia de fluorescencia permite observar fenémenos in vivo a nivel sub-celular, celu-
lar y supra-celular, con numerosas aplicaciones en ciencias biomédicas. Al usar marcadores
fluorescentes para moléculas, organelos o células especificas, es posible observar el desarrollo
de tejidos, érganos o embriones animales completos. En este contexto, la segmentacién de
membranas adyacentes en agregados celulares es un desafio pendiente: la bicapa lipidica de
las membranas es muy fina en comparacion con la longitud de onda de los fotones del es-
pectro visible, los marcadores fluorescentes de membrana entregan una senal limitada, y la
dispersion de la luz combinada con la dindmica en muestras vivas resulta en senales débiles
o ambiguas que impiden su localizacién precisa. En células vecinas las membranas se acer-
can y distancian; protrusiones como blebs, filopodios y lamelipodios; microvilli; y el trafico
de vesiculas, producen senales dinamicas variadas que dificultan ain mas la localizacion.
Existen muchos métodos de segmentacién de membranas, pero no se enfocan en precisar la
localizacién para membranas adyacentes. Esta tesis presenta un método basado en contornos
activos paramétricos seccionados 2D que (i) detecta proximidad de contornos adyacentes, (ii)
detecta secciones de contorno adyacentes, no adyacentes e intersectadas, (iii) define una po-
lilinea como seccién de contorno compartido optimizado entre dos secciones adyacentes, y (iv)
conecta secciones adyacentes y no adyacentes bajo la restricciéon de conservar la morfologia
celular inicial. El método fue evaluado en imégenes de células de érgano parapineal de un
embrion de pez cebra y sintéticas: detecta y corrige secciones de contorno adyacentes, no
adyacentes e intersectadas, en funcion de una Distancia de Adyacencia d; calcula secciones
compartidas para células vecinas con alteraciones minimas de sus caracteristicas, y entrega
soluciones de contornos activos seccionados que preservan su morfologia general. El método
presentado puede usarse para mejorar algoritmos de mallas de superficie 3D, estimaciones de
fuerzas, y/o seguimiento temporal. Se presentan fortalezas, limitaciones y casos extremos, y
recomendaciones para aplicaciones en diferentes condiciones experimentales.



Abstract

Fluorescence microscopy allows in vivo observation of phenomena at sub-cellular, cellular and
supra-cellular levels, with many applications in biomedical sciences. Fluorescent probes to
label specific molecules, organelles, or cells, allow 2D /3D time-lapse imaging of living tissues,
organs or embryos. In this context, the segmentation of adjacent cell membranes within cell
aggregates remains an essential, challenging task. The lipid bilayer is a very thin membrane
when compared to the wavelength of photons in the visual spectra. Fluorescent membrane
markers provide a limited signal intensity, and the light scattering combined with sample
dynamics leads to poor or ambivalent signal patterns that hinder an accurate localization of
membrane sheets. In the proximity of cells, membranes approach and distance each other; the
presence of membrane protrusions such as blebs, filopodia, and lamellipodia; microvilli; and
vesicle trafficking, lead to a plurality of signal patterns, and accurate localization becomes
harder. Several methods for membrane segmentation have been developed, but few of them
address the issue of adjacent membranes. This thesis presents a method based on 2D piece-
wise parametric active contours that (i) defines proximity for adjacent contours, (ii) detects
adjacent, non-adjacent, and overlapping contour sections, (iii) defines a polyline for an opti-
mized shared contour within adjacent sections, and (iv) connects adjacent and non-adjacent
sections under the constraint of preserving the initial cell morphology. The method was
evaluated upon images of parapineal organ cells of a zebrafish embryo and a synthetic data
set: it detects and corrects adjacent, non-adjacent, and overlapping contour sections within
a selected Adjacency Distance d; calculates shared contour sections for neighboring cells
with minimum alterations of the contour characteristics; and yields piecewise active contour
solutions that preserve contour shape and overall cell morphology. The presented method
can improve 3D surface meshing, force estimations, or contour tracking when combined with
existing algorithms. Pitfalls, strengths, and limitations of the method are presented, together
with a guideline for applications in varying experimental conditions.
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Chapter 1

Introduction

This chapter gives an overview of object segmentation and analysis of cellular structures from
live microscopy imaging, from a quantitative image processing perspective. To this end, light
microscopy imaging techniques are introduced, together with image processing approaches
for object segmentation and quantitative descriptions.

1.1 Motivation

High-resolution imaging and object analysis from massive data has become a key element for
basic and applied sciences worldwide: robotics, astronomy, earth & life sciences, among many
others. Continuous demand for extracting quantitative information from imaging data added
to the ubiquity of imaging systems pushes technology to increase capacities for acquisition and
processing. In particular, biological imaging and analysis techniques have become essential to
improve time and space resolution for the study of several phenomena (such as [Vonesch et al.,
2006, Skylaki et al., 2016, Pantazis and Supatto, 2014, Bengtsson, 2014]). In this context, fast
and accurate mathematical-computational analysis tools have become as relevant as optics,
fluorescence chemistry, or genetics.

In image analysis, the segmentation process aims to find regions of interest and is re-
garded as a first, crucial step [Marr, 1982]. Regions can be represented by geometric models
suitable for quantifying morphology, topology{'] and dynamics, in order to describe organi-
zation and events at sub-cellular, cellular and supra-cellular levels |[Meijering, 2012}/ Antony
et al., 2013,|Mikut et al., 2013,|Castaneda et al., 2014]. Hence, segmentation leads to a rep-
resentation of structures whose form and spatial distribution can be further analyzed for a
given image or time series. To date, several segmentation approaches have been developed
with a great variety of applications. Combined with object modeling techniques, they are es-
sential for high-throughput scientific imaging, where most of the information is not accessible
through visual inspection and thus cannot be quantified without automated approaches. In
this context, proper modeling of expert knowledge remains a challenge in computer vision and

Tt must be noted that the terms “morphology” and “topology” are used here according to their math-
ematical meanings, which may differ from their common usage in biology. Topology refers to the study of
object properties such as continuity, boundaries and related features which are independent of size and shape,
such as junctions and endpoints. Morphology, in turn, refers to size and shape object properties.



image processing research. Different constraints derive from application environments, such
as real-time computation, precision thresholds, or interactivity. In particular, for microscopy
image processing, skills for data acquisition, storing, and multi-dimensional analysis require
intense collaboration at the interface of computer science, physics, and biology. The need
for such interdisciplinary approaches is illustrated worldwide: established scientific centers
like Janelia FarmfP| the Computational Neurobiology and Imaging Centre at Mount Sinai
School of Medicind®, and the BioQuant{l] gather researchers from different disciplines for the
development of image analysis techniques in life science microscopy, with notable examples
in STED [Hell et al., 2004] and PALM [Betzig et al., 2006], combining image processing and
optics to overcome the diffraction barrier, achieving super-resolution imaging at nanometer-
scale. Following this spirit, this thesis presents a segmentation approach for fluorescence
microscopy in vivo imaging, suitable for structure and organization quantification, and in-
tended to be integrated with time-lapse image analysis tools such as tracking and motion es-
timation. It addresses the issue of detecting non-adjacent, adjacent, and overlapping contour
sections for active contours of single cells, and suggest a geometrically consistent solution for
a common shared contour with cell neighbors under the constraint of maintaining the overall
contour morphologies. This work sets out to enable access to physical interaction properties
such as membrane adhesion and surface tension, by producing the best solution for cell-cell
segmentation within the given constraints of acquisition setups.

1.2 Fluorescence Microscopy for Large Scale Imaging

Fast optical microscopy is the method of choice when it comes to in vivo observation and
quantification of cellular dynamics, migration, tissue formation, or organization of whole
organisms. The development of fast confocal microscopy techniques such as spinning disk
or light sheet, in combination with fluorescent markers that can be encoded genetically,
expressed in vivo and targeted to cell nuclei, organelles, membranes, or further constituents,
contribute to increasing spatial/temporal resolutions and signal-noise ratios. In fluorescence
microscopy, the specimens are not required to be fixed in order to be scanned, and 2D /3D
time-lapse acquisition can be performed using multiple fluorescence channels, opening a new
dimension for the study of dynamic processes that can be observed in vivo at the cellular, sub-
cellular and supra-cellular level [Pawley, 2006]. However, image quality is always a trade-off
between experimental needs and factors such as quantum yield, stability, and specificity of the
fluorescent markers, as well as optics, illumination, filters, or detectors. Together, they define
the signal quality and the size of the Point Spread Function (PSF) that collects the photon
response of a single fluorescent emitter within the focal plane |[Fink et al., 1998 |Lakowicz,
2006,(Waters and Wittman, 2014, Kubitschek, 2017] (see also Section . This poses an
active research focus in mathematical and computational image processing, considering that:

1. State of the art microscopes can generate large amounts of image data, in the range
of TiBE] per minutes (Fig. . Examples are: light sheet or single-plane illumina-
tion [Verveer et al., 2007, Keller and Stelzer, 2008, Swoger et al., 2014|, Bessel beam

’http://www.hhmi.org/janelia/

3http://www.mssm.edu/

‘http://www.bioquant.uni-heidelberg.de/

SHere the international system designation is used, with 1 tebibyte (TiB) denoting 2%° bytes; 1 gibibyte
(GiB), 220 bytes, etc.
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H2B-mCherry crestin::GFP merge

Figure 1.1: High-throughput microscopy generates high-resolution, high-speed image series
of hundreds to thousands of cells in time windows ranging from minutes to days. The
panels show the maximum-intensity projection of a 3D, 2-channel 4-lens multiview light-
sheet microscope image stack of the gastrulation process in a fluorescent transgenic zebrafish
embryo. Left: Cell nuclei (H2A-mCherry labeling) acquired by the light sheet microscope.
Center: cell cytoplasm of the Kupffer’s vesicle (asymmetry organ) dorsal forerunner cells
(crestin:GFP labeling). Right: superposition of the nuclei (red) and cytoplasm (green)
fluorescence channels. Image size: 2048 x 2048 x 400 voxels, acquired every 1 minute for 24h,
totaling ~8TiB. Source: E. Pulgar & M.L. Concha (Laboratory of Experimental Ontogeny,
U. of Chile); collaboration with Philipp Keller (Janelia Farm, HHMI, USA). Unpublished.

[Planchon et al., 2011], macro-zoom, and whole-slide scanning.

2. Optical microscopy constraints, such as light diffraction or labeling imprecision, often
restrict the extraction of accurate descriptions from image content, requiring expert
knowledge about experimental settings and features of interest.

3. Advanced mathematical-computational techniques for quantitative analysis of ROI
structure and organization within known or bounded error margins, allow for com-
parison and a better understanding of experiments, as well as the discovery of novel
phenomena at different organization levels [Keller et al., 2008, |Vonesch et al., 2006, Sky-
laki et al., 2016, Pantazis and Supatto, 2014].

Figure shows an example of a high-throughput imaging experiment, from the devel-
opment of a fish embryo can be observed during several days by acquiring 2-channel 3D-
images with a fast sample rate that allows capturing cell motion, deformation, organization,
and proliferation. For such scenarios, proper computation capabilities for image acquisi-
tion, registration, segmentation, and subsequent analysis, become an essential component for
biomedical imaging workflows [Meijering, 2012, Mikut et al., 2013|. Especially in fluorescence
imaging, automated segmentation systems are still an open field, given the difficulties for
defining ground truth/gold standards which depend on expert knowledge, and the variability
of experimental conditions to take into account. Additional analysis tasks such as object
characterization and classification can lead to different results depending on the methods
and/or criteria used for segmentation. Geometry descriptors, mass distribution, and spa-
tial orientation are examples of such cases |Castaneda et al., 2014, Pantazis and Supatto,
2014]. Thus, adequate ROI segmentation approaches, together with prior knowledge about
the structures of interest, acquisition systems, and related image properties, will significantly
improve both segmentation and morpho-topological analysis, as discussed next.



1.3 Segmentation for Morpho-Topological Analysis of
Multi-Cellular Structures

Perception, quantification and understanding of the form of living cells and tissue are es-
sential for basic and applied biomedical sciences. Examples from studies in morphogenesis,
wound healing, and diseases are numerous and have motivated the development of image
processing techniques and software tools in 2D and 3D |[Mosaliganti et al., 2012, Brodland
et al., 2014,[Veldhuis et al., 2017]. The morphology of single cells, as well as their organiza-
tion with respect to adjacent cells, are relevant for the mediation of cell-cell communication
through biochemical signals (proteins, lipids, ions or gases), or mechanical stimuli through
direct, physical contact [Veldhuis et al., 2017]. Regarding cell migration and tissue organiza-
tion, the adjacency of cells and the direct contact between cell membranes mediate the type
and strength of biochemical and mechanical interactions. The detection and quantification
of adjacent and non-adjacent membranes, the number and temporal organization of neigh-
boring cells, membrane morphology, angles formed at membrane junctions between two or
more cells, and the number and morphology of cellular protrusions, are important for a better
understanding of cell-cell communication. Cells can exert or respond to forces, and physical
contact can stimulate or inhibit the formation of cell protrusions or migration [Richardson
et al., 2016,Reig et al., 2017]. Adhesion forces and membrane contractility drive the formation
of complex supra-cellular structures like vesicles or rosettes, and cell rearrangements such as
intercalation, invagination or evagination. Specific examples are gastrulation |[Montero and
Heisenberg, 2004, Reig et al., 2017], laterality organ formation [Wang et al., 2012], and brain
development in zebrafish [Concha et al., 2012, Signore and Concha, 2014} Richardson et al.,
2016], endoderm cells evagination in ascidian embryos [Sherrard et al., 2010], and forces in
epithelia of developing Drosophila |[Aigouy et al., 2010, Bosveld et al., 2012 Ishihara and
Sugimura, 2012] and mice [Pop et al., 2013]. Examples of contact-mediated inhibition of cell
locomotion are summarized in a recent review [Roycroft and Mayor, 2018]. Cell collisions
can stimulate the formation of protrusions and migration in the opposite direction of the
contact site, loss of collisions between cancer and healthy cells is associated with metastasis.
Understanding this kind of phenomena requires also the study of cell-cell interactions within
events and processes at multicellular level, such as the extra-embryonic epithelial enveloping
cell layer and the mesenchymal embryonic cell layer during early development in annual kil-
lifish [Reig et al., 2017]. Here, the enveloping layer is used by embryonic cells as a substrate
for migration, directing the spreading of the embryonic tissue. Tissue-tissue interaction is
mediated by cell adhesion and tension and relies on the ability of embryonic cells to couple
motility to non-autonomous signals from the expanding enveloping layer. Multicellular-level
phenomena is ubiquitous in living beings, and as such it can be observed not only during
morphogenesis or organogenesis, but also in injury response processes, or disease progres-
sion/treatment, where studies are manifold (see reviews in [Friedl and Gilmour, 2009, Rerth,
2009} /Castaneda et al., 2014]).

In summary, cell-cell and cell-medium contours need to be correctly identified and localized
at both cellular and supra-cellular levels, and the segmentation of cell membranes becomes
an essential task. The detection and quantification of intercellular junctions becomes also
relevant, since they provide integrity to epithelia and other tissues, and the mechanical
machinery necessary to execute morphogenetic and homeostatic intercellular rearrangements
to coordinate tissue architecture with behavior [Yap et al., 201§].

4
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Figure 1.2: Acquisition, segmentation and morphological analysis models of a fluorescent
embryo. A: Setup for PpO confocal microscopy imaging in a zebrafish embryo. B: Dorsal
view of a transgenic flh::GAP43-EGFP zebrafish embryo acquired by fluorescence confocal
microscopy with pineal complex cell membrane labeling (green) and nuclei staining (grey).
C: 2D cell membrane segmentation of the PpO cells with manual outlining from fluorescence
confocal spinning-disk microscope images. D: 3D surface-based models (Surface, Active Con-
tour) and volume-based models (Principal Axes, Polarity, Box) for morphological analysis of
the segmented PpO cells. E: 3D surface models of the PpO cells at different times (hpf), su-
perposed to the fluorescence projection image of the pineal complex. F: Cell re-arrangement
depicted by graphic models (from top to bottom: mass center, box overlap, principal axes,
and cell polarity relative to the group mass center). G: Protein expression markers for
membrane adhesion (n-cadherin), cell polarity (aPKC apical, ZO-1 basolateral), and actin
cytoskeleton (phalloidin) indicate the formation of the PpO as a separate structure from the
pineal organ. Published in [Lemus et al., 2017]. 3D models and descriptors implemented
previously [Hartel et al., 2007].




Figure 1.3: Membrane segmentation of a cell complex in a microscopy image. A: Sample
slice from a 3D confocal microscopy image stack, showing the cells of the pineal complex in a
zebrafish embryo. B-C: Segmentation of the pineal cell membranes (red contours), manually
(B) and optimized with 2D active contours (C). Scale bar: 5pm. D-E: Zoomed 3D surface
models of a sample cell, reconstructed from the 2D segmented image slices, using a voxel-
based approach (D) next to a 3D active contour approach (E). 3D models and algorithms
implemented previously [Hartel et al., 2007].




Given the former, it becomes clear that models of interaction between cells are a key
feature for processes simulation and characterization in both reference (control) and ma-
nipulated experimental conditions, in order to assess the state and behavior of single cells
and their organelles, as well as higher level aggregates like tissues or organs (Fig. .
ROI boundary descriptors become an essential element to quantify and further understand
the interplay between cell form and function on the basis of properties like surface tension,
membrane adhesion (e.g. number of cell neighbors or shared boundary percentage), junction
angles between membranes, and protrusions. From the image processing perspective, prox-
imity /adjacency between two or more objects can be used to improve ROI detection and
optimization models by defining inter-object interaction properties, which can, at the same
time, lead to their quantification from a given image set.

1.4 Thesis Contribution

This thesis contributes to improved segmentation of adjacent structures in images with lim-
ited resolution and/or signal strength. It presents an approach for finding and adjusting ad-
jacent contour sections of two or more regions of interest (ROIs) in fluorescence microscopy
images. The ALgorithm for Piecewise Adjacent Contour Adjustment (ALPACA) [Jara-Wilde
et al., 2020] was defined considering:

1. a definition of proximity for adjacent ROI contours;
2. a detection criterion of adjacent, non-adjacent, and overlapping contour sections;
3. the definition of a polyline for an optimized shared contour within adjacent sections;

4. a solution for connecting adjacent and non-adjacent sections under the constraint of
preserving the inherent cell morphology.

The test scenarios for ALPACA are a synthetic data set, and a group of neuroepithelial
cells forming the PpO during morphogenesis in a zebrafish embryo. Quantitative analysis of
morphology, membrane adjacency, and neighbor switching frequency, are the basis to under-
stand underlying mechanisms of asymmetric morphogenesis of PpO cells and, more generally,
the vertebrate brain. During morphogenesis, PpO cells form rosette-like structures that de-
tach from the pineal complex and form a small brain nucleus |[Concha et al., 2003, Hartel
et al., 2007, Regan et al., 2009]. During this process, the cells change their shape and rela-
tionship with their neighbors, either by approaching/attaching or moving away/detaching.
This is a very dynamic process in which the membrane of each cell undergoes deformations
and displacements, with varying intercellular space between two or more neighboring cells.
All these changes influence the observed fluorescent membrane signal and further hinder
automatic segmentation approaches. ALPACA detects contour sections within a defined
Adjacency Distance d, defines a polyline for optimized shared contours, and calculates a so-
lution for connecting adjacent and non-adjacent sections under the constraint of preserving
the inherent cell morphology and to obtain the best solution for cell-cell segmentation within
the given constraints. ALPACA allows quantifying adjacent contours and can improve the
meshing of 3D surfaces, the estimation of forces, or contour tracking when combined with
existing algorithms. Pitfalls, strengths, and limits of ALPACA are presented, together with
guidelines for applications under varying experimental conditions with in vivo microscopy.



1.4.1 Publications, Related Work, and Collaborations

To date, ten articles in indexed journals have been originated or derived from this thesis work.
Eight of them are already published (first author in two), one is under revision, and one is in
preparation. Eight articles are published in journals indexed by Web of Scienceﬂ (formerly
IST), and one, by Scopusﬂ Contributions from the thesis author are listed below, grouped by
topic, and with the corresponding field of knowledge of the publication in parenthesis.

The ALPACA approach

e The main ALPACA approach (microscopy and image processing) [|Jara-Wilde et al.,
2020]. First author.

e ALPACA applied to the 3D characterization of zebrafish embryos PpO cells (develop-
mental biology) [Lemus et al., 2021].

2D Active contours with GVF/GGVF and contour interpolation techniques Im-
plemented established algorithms [Kass et al., 1988, Xu and Prince, 1997], together with
resolution control parameters for contour interpolation. Implemented approaches, parameter
values, and resolution settings, were applied to the segmentation and morphological analysis
of fluorescent structures.

e Time-lapse quantification of shape-dependent biophysical properties of lipid domains
in monolayers (membrane biophysics) |Fanani et al., 2009].

e Segmentation combined with tracking approaches for time-lapse dynamics quantifi-
cation of geometry in bacteria, macrophages, and extra-cellular traps (microbiology)
[Ménaco et al., 2021].

Numerical PDE solvers and discrete differential operators Implemented and eval-
uated for motion estimation with established optical flow algorithms [Horn and Schunk,
1981} Bruhn and Weickert, 2005,[Bruhn et al., 2002].

e Tests and comparison of optical flow algorithms in fluorescence images (image pro-
cessing) [Delpiano et al., 2012]. Established algorithms for combined, local and global
optical flow were implemented to compare different discrete differential operators and
iterative linear system equation solving schemes, upon synthetic and real fluorescence
microscopy image sequences. A reference framework was defined to allow comparing
numerical approaches of Euler-Lagrange partial differential equations to minimize inte-
gral energy functionals, which are common for variational models of active contours and
optical flow. Collaboration with a thesis work in electrical engineering [Delpiano, 2013],
aimed to integrate ALPACA and tracking approaches for segmentation in 2D+time.

e An open access article for reproducible research (image processing) [Jara-Wilde et al.,
2015]. Open source, peer-validated implementation of combined local-global optical
flow approaches and PDE solver algorithms, in addition to a detailed evaluation with
established performance metrics within an online demo, and synthetic and real sample
images from sources other than microscopy. First author.

Shttps://clarivate.com/products/web-of-science/
"https://www.scopus.com/


https://clarivate.com/products/web-of-science/
https://www.scopus.com/

Axis-aligned bounding boxes Implemented for 2D /3D ROI proximity and intersection
computations. A collaboration for implementing the 2D Sweep-and-Prune algorithm was
carried with a thesis project in computer science [Moraga, 2019]. The implemented algorithms
were integrated with the broadband proximity computations for ALPACA (see [3.4). The
3D version was integrated with the SCIAN-Soft tools (see for 3D segmentation and
quantification.

Neighboring /overlapping ROIs localization and distribution for the quantification of
damage foci relative to DNA replication sites in culture cells with confocal microscopy
(cellular biology and biochemistry) [Liddle et al., 2014].

A follow-up work was published upon super-resolution microscopy experiments and
data (cellular biology and biochemistry) [Liddle et al., 2020]. Clustering methods were
applied to quantify the foci distribution in different experimental conditions.

Surveys

In

Shape and dynamics of lipid monolayers, and derived properties in fluorescence im-
ages (membrane biophysics) [Fanani et al., 2010]. The GVF/GGVF active contour
approach [Kass et al., 1988 Xu and Prince, 1997] applied to lipid domains is described
and illustrated, together with the effect of contour resolution and force coefficients. The
approach and its advantages were introduced and discussed for the tasks of segmenta-
tion and quantification of shape-related biophysical properties.

Image processing methods for analysis of dynamic events in cell migration from fluores-
cence microscopy imaging: acquisition, registration, segmentation and quantification
of morphology and topology [Castaneda et al., 2014]. Intended as a primer for live
fluorescence microscopy users and researchers entering the field, that involves physics,
chemistry, and signal /image processing concepts, all of which need to be considered in
addition to the biological/medical experimental background. Filtering and segmenta-
tion techniques reviewed in this thesis served as a basis for elaborating the correspond-
ing section of the survey, in addition to contributing with motion estimation/registra-
tion approaches such as optical flow, and other image processing methods such as PSF
deconvolution.

addition, the following first-author conference contributions were presented:

“Modelos geométricos y analisis de imagenes bioldgicas 3D: un caso de aplicacién”. J.
Jara, N. Hitschfeld-Kahler and S. Hartel. Encuentro de Tesistas, Jornadas Chilenas de
Computaciéon. Antofagasta, Chile. Nov. 15-19, 2010.

3D intersection computation and proximity descriptors for surface mesh models in
fluorescence microscopy.

“Computational analysis for segmentation and description of biological structures in
microscopy images”. J. Jara, J. Delpiano, J. Scheer and S. Hartel. Chilean Society for
Cell Biology XXIV Annual Meeting. Pucon, Chile. Nov. 01-05, 2010.

Optical flow in moving fluorescent signals for cell biology.

“Combining active contours and optical flow for semi-automated quantification of spatio-
temporal cell-cell dynamics in microscopy image series”. J. Jara, J. Scheer, C.G. Lemus,
K. Palma, E. Pulgar, L. Briones, G. Reig, C. Figueroa, M.L. Concha, N. Hitschfeld-



Kahler and S. Hértel. International Conference on Systems Biology. Mannheim /Hei-
delberg, Germany. Aug. 28-Sep. 01, 2011.
Combined optical flow with active contours.

e “An IPOL publication story... Combined Local-Global Optical Flow”. J. Jara, M.
Cerda and S. Hartel. STIC-AmSud Reproducible Research on Image and Signal Pro-
cessing Symposium. Apr. 06-08, 2015. Maceid, Brazil.

Reproducible research in image processing, implementation and evaluation of optical
flow algorithms in an open access journal.

e “Adjacent active contours for segmenting and quantifying aggregated cell membranes
in fluorescence microscopy images”. J. Jara-Wilde, I. Castro, C.G. Lemus, K. Palma,
V. Castaneda, N. Histchfeld, M.L. Concha and S. Hartel. EMBO Workshop: Bridging
cell and tissue mechanics to fate specification in development. Furopean Molecular
Biology Organization. Apr. 02-05, 2019. Santiago, Chile.

The ALPACA approach applied for the first time to in vivo images.

The realization of this work involved collaboration with the following people:

e Carmen Gloria Lemus, Karina Palma and Eduardo Pulgar from LEO/SCIAN-Lab (BNI
and University of Chile): images and figures.

e José Delpiano, Mauricio Cerda and Jan Scheer (SCIAN-Lab, BNI and University of
Chile): co-implementation and evaluation of discrete operators in digital images and
numerical solver algorithms for energy minimization approaches [Delpiano et al., 2012,
Jara-Wilde et al., 2015].

e Héctor Moraga (University of Chile, DCC): Sweep-and-Prune algorithm for AABBs
[Moraga, 2019).

e Victor Castaneda, Felipe Santibanez, Juan Eduardo Rodriguez, Ivan Castro, and Mauri-
cio Cerda from SCIAN-Lab; and Karina Palma, Carmen Gloria Lemus and Francisca
Valdés from LEO/SCIAN-Lab: article writing, data processing, code/text reviewing,
unit tests, and support in miscellaneous coding and evaluation tasks.
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Chapter 2

Background: Active Contour Models
and Multiple-Object Segmentation

In computer vision/image processing, segmentation is the process of partitioning a given im-
age into multiple disjoint segments or subsets, with the goal of simplifying and/or changing
its representation towards meaningful components that are easier to analyze |[Shapiro and
Stockman, 2001, Marr, 1982]. Image segmentation is typically used to locate objects of inter-
est and its boundaries, which become ROIs or foreground in opposition to the background.
ROIs can be regarded as sets of shapes and /or lines (squares, circles, curves, straight angles,
etc.), but also, as real-world objects (cell membranes in the case of this work). The segmen-
tation problem then requires criteria for finding and grouping image elements with common
properties such as intensity /color homogeneity, discontinuities, or texture.

A very large number of segmentation approaches, ranging from simple pixel-level oper-
ations to highly complex models, has been devised to address different requirements for
image analysis. Relatively simple criteria, such as pixel similarity, discontinuities (for ROI
boundaries), or template matching approaches, can give a fast but rough estimation of to-
tal number, size and spatial distribution of ROIs like nuclei, vesicles or fibers, when they
present homogeneous labeling. Images with weak ROI signals and /or complex structures like
membranes and their protrusions (e.g. blebs, filopodia) require more advanced techniques
to detect them among variable acquisition conditions [Pawley, 2006, Pantazis and Supatto,
2014]. This chapter sets the context for the issue of adjacent membrane detection addressed
in this thesis. It starts with a review of fluorescence microscopy imaging and existing ap-
proaches for membrane segmentation. Next, active contour models, related image processing
and computational geometry techniques for segmenting multiple objects are presented.

Notation An image [ in n dimensions will be denoted as I = I(wy,ws, ...,w,), where the
values of I represent a measurable feature, such as light intensity, color, depth, temperature,
density, etc. In this work, 2D images are defined as arrays of pixels in a Cartesian grid,
I = I(wy,ws) = I(z,y), with discrete coordinates (pixels) and function values (light intensity
readings). Unless stated otherwise, single values (grey-scale) are used.
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2.1 Membrane Detection in Fluorescence Microscopy

Cell membranes are three-dimensional, continuous structures that enclose the cell organelles.
They appear in microscopy images as lines or planes in 2D, depending on their orientation
with respect to the acquisition plane. For fluorescence microscopy experiments, membranes
are labeled with fluorophores: molecules capable of emitting light within known wavelength
ranges that allow their acquisition. However, different factors from the sample and microscope
optics hinder a precise localization, as described in Section [2.1.1] Current segmentation
approaches suitable for membrane-like structures are reviewed in Section [2.1.2]

2.1.1 Fluorescence Microscopy

To label cellular structures of interest, fluorescence imaging relies mainly on two approaches:
synthetic dyes that bind to the targets; and over-expression of exogenous DNA-encoded
fluorescence proteins, translated and delivered to the targets through the cell machinery for
in vivo experiments [ An ideal marker should bind only to the targets (specificity), have a
small size in order to not alter the target observed position and size, in addition to physical-
chemical properties for reliable time-lapse imaging |Pawley, 2006, Lakowicz, 2006, |Waters
and Wittman, 2014, Skylaki et al., 2016]. The marker also should be able to reach every
target in the sample, requiring a perfect delivery mechanism. In practice, almost none of the
aforementioned conditions can be fully attained, which results in non-homogeneous labeling
that leads to non-uniform intensity profiles in the acquired images. Localizing membrane
sheets, especially in adjacency zones, becomes difficult, since blurry, missing, or non-specific
membrane signals are present throughout the images. In addition, cellular membranes exhibit
intrinsically heterogeneous molecular expression timings, and present deformations like blebs,
microvilli, or protrusions, which result in a plurality of signal patterns (Figs. and [2.1).

Regarding the acquisition process, image quality is always a trade-off between experi-
mental needs and factors such as quantum yield, stability, and specificity of the fluorescent
markers, as well as optics, illumination, filters, and detectors that determine the PSF |Lakow-
icz, 2006, Pawley, 2006, Waters and Wittman, 2014}|Kubitschek, 2017]. Confocal microscopes
illuminate the whole 3D sample (zyz) and acquire one focal plane (zy) at a time, by blocking
out the light from the rest of the sample (out-of-focus planes). This filtering is performed
with physical devices that cannot entirely block the out-of-focus light -even with the cur-
rent state of the art- and diffuses the ROI signals, affecting the image quality. In addition,
optical microscopy is subject to the light diffraction limit, expressed in Abbe’s law [Abbe,
1873|, so the typical PSF diameter for an in vivo confocal microscopy setting, given by the
full width at half-maximum, is ~0.25 pm in the focal xy plane, and ~0.8 pm in the optical
sectioning z axis (Fig. . This is 50 to 160 times the thickness of a lipid bilayer of a
eukaryotic cell membrane (~5nm [Clausen et al., 2017]), whose orientation with respect to
the focal membrane plane in combination with the PSF defines different intensity profiles.
Fluorescence signals are integrated only within the convolution of the PSF with the fluores-
cent intensity distribution, which is a function of the density of fluorophores attached to or
embedded within the membrane. In this regard, the effect of the convolution for different ori-
entations of giant unilamellar vesicle membranes with respect to the PSF has been discussed

'Tn some cases the auto-fluorescence phenomenon can be used, with examples in plants or fungi. In others,
the signals of interest could be masked by naturally autofluorescent molecules such as colagen or elastin.
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Figure 2.1: 2D Intensity profiles of cell membranes in confocal fluorescence microscopy. A-
C: A cell with fluorescent membrane is shown centered, across orthogonal sections in the zy
(A), zz (B), and yz (C) planes. Membrane sections orthogonal to the zy focal plane appear
with a strong and uniform signal (green and magenta arrows), while sections en-face to zy
(orthogonal to the zz and yz planes) appear a with weak and diffuse signal (blue arrows).
D: A qualitative model describing the formation of a fluorescence membrane image with
optical sectioning in 2D. Membrane signals are shown as a point cloud (input) in the zz
plane. Sample zy focal planes are marked by green lines (orthogonal to the figure plane)
and the resulting intensity profiles in the intersections are shown as plots (dark red). Cell
membranes imaged oblique and en-face such as the interface between cells are difficult to
resolve in comparison to those orthogonal to the focal planes. Adapted from |[Mosaliganti

et al., 2012].
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Figure 2.2: Effect of the Point Spread Function (PSF) in a point signal (1 pixel). Left: syn-
thetic fluorescent point signal. Center: PSF-convolved point signal a confocal microscope.
Images of 100 x 100 pixels were generated for a theoretical PSF from a confocal microscope
with 60x water objective, wavelengths of 543nm for excitation and 560nm for emission. Pixel
size is 107 pm in z and y. Right: 1-dimensional PSF intensity profile. Published in |[Delpiano
et al., 2012].

(see for example [Fidorra et al., 2009]). Cellular membranes, however, are more complex
than model membranes: they show deformations like blebs, microvilli, or protrusions, which
result in images with a plurality of signal patterns, and the accurate detection of photon
activity and membrane morphology becomes difficult [Fink et al., 1998, |[Mosaliganti et al.,
2012]. The precise localization of a membrane sheet, especially when adjacent to a neighbor-
ing membrane becomes difficult, since blurry, missing, or non-specific membrane signals are
present throughout the images (Fig. . It is frequent for neighboring cell membranes to
appear adjacent along the z axis, but clearly separated within the xy plane due to the PSF
shape [Mosaliganti et al., 2012].

To date, super-resolution approaches [Schermelleh et al., 2010] can help to overcome
such limitation but they require fixed samples, high laser energy and/or limited fields of
view, which makes them unsuitable for in vivo experiments. An additional issue for conven-
tional confocal microscopes is the light that comes from outside the acquisition plane.Recent
diffraction-limited techniques for selective plane illumination, also called light sheet mi-
croscopy (review in [Santi, 2011]), avoid illuminating the entire sample along its vertical
axis. Instead, a quasi-planar z-section section orthogonal to the emission direction is excited
with a light-sheet laser beam. This approach currently yields an out-of-focus region with a
height below 500nm [Ritter et al., 2010, Swoger et al., 2014, Mohan et al., 2014], but still
with a resolution in the focal plane that is not improved over confocal systems.

An additional issue when fast acquisition is required for rapid events in vivo, either in 2D
or 3D, is that low exposure times can result in low signal /noise ratios for the resulting image.
Even with recent advances that significantly improve the emission efficiency [Clausen et al.,
2017], an input quality trade-off between segmentation and motion estimation algorithms
[Delpiano et al., 2012,|Castaneda et al., 2014].

In the example case used for this thesis work, during zebrafish morphogenesis, the cells of
the parapineal organ form rosette-like structures that detach from the pineal complex and
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form a small brain nucleus [Concha et al., 2003 Hartel et al., 2007, Regan et al., 2009]. In
this process, the cells change their shape and relationship with their neighbors, either by
approaching/attaching or moving away/detaching. This is a very dynamic process in which
the membrane of each cell undergoes different deformations and displacements varying the
intercellular space between two or more neighboring cells. All of these changes influence
the observed fluorescent membrane signal and result in further hindrances to automatic
segmentation approaches that have precluded satisfactory performances so far.

2.1.2 Membrane Segmentation Approaches

Over the years, different algorithms for the detection and segmentation of cellular membranes
have been introduced. However, the detection and appropriate handling of cell contours for
multiple cells in tissue and whole organisms have not been solved on a general level so far.
A summary of existing methods suitable for adjacent membranes is presented in Table [2.1]
and a descriptive categorization of methods is presented next. A more extended review on
segmentation methods for the analysis of dynamic events in cell migration with microscopy
imaging can be found in a previously published work [Castaneda et al., 2014].

Template-based Operators

A simple approach is to look for line patterns in an image by finding aligned pixels, with the
Hough transform [Hough, 1959] as the classical example. A complementary approach is the
edge detection filtering which uses intensity gradient magnitudes (contrast) as ROI boundary
indicators [Marr and Hildreth, 1980} Gonzalez and Woods, 2007, Nixon and Aguado, 200§].
Edge detection filters such as Sobel [Sobel, 1970] (Fig. [2.3(C) or Prewitt [Prewitt, 1970] re-
turn the computed gradient image, upon which the Hough transform can be applied. With
additional filtering, the Canny detector [Canny, 1986 (Fig. ) and derived approaches
select only image pixels whose gradient magnitude is a local maximum and satisfies con-
nectivity rules in order to yield thin ROI boundaries, without requiring them to be straight
lines. Different methods for thinning can be also selected from a broad range, according
to different requirements, such as pixel connectivity, symmetry or others (reviews in [Lam
et al., 1992, [Papari and Petkov, 2011]). The performance of these approaches is undermined
by irregular shapes and/or intensity profiles that translate in missing or spurious gradient
information, leading to over- or under-segmentation (Fig. . Nevertheless, this class of
methods is still useful for simple and regular shapes, as in the case of the generalized Hough
transform |Ballard, 1981] for circular/spherical object detection, successfully applied to 3D
cell nuclei images in [Zanella et al., 2010]. Simpler approaches with lines (2D) and planes
(3D) have also been used |[Dzyubachyk et al., 2010].

Pixel Grouping

Instead of directly finding the ROI contours, it is also possible to segment sets of connected
ROI pixels and then recover those located at the boundaries. This kind of approach is
often used when the ROIs have homogeneous intensity profiles or present inner and outer
boundaries (e.g. membranes with thickness greater than 1 pixel, see Fig. / C). In such
cases, the first step is to group pixels with similar intensity or texture patterns. The simplest
approaches use threshold values to discard or select pixels (Fig. , which can be further
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Figure 2.3: Classical edge detectors on a fluorescence microscopy image can be used to high-
light pixels of high signal values located next to pixels of low signal values, providing a highly
rough estimation of the PpO cell membranes from in vivo fluorescence imaging. A: 2D image
slice from the sample stack of PpO cells in a zebrafish embryo with fluorescent membrane
labeling (fih::GAP43-EGFP). The intensities are inverted in order to ease visualization. B:
Manual outline (blue) of the cell membranes superposed to the image slice. C: Sobel edge
detector applied to the image slice. D: Canny edge detector applied to the image slice.
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filtered by applying similarity criteria for clustering (e.g. intensity variance |Otsu, 1979 or
entropy [Kapur et al., 1985]). If needed, the obtained ROI boundaries can be smoothed by
applying morphological operations (see examples in the books from [Gonzalez and Woods,
2007, Nixon and Aguado, 2008]). These approaches are mainly limited by the variability in the
acquisition and sample labeling conditions that give images with poor and/or irregular ROI
contrast (see example in Fig. and [Dima et al., 2011] for evaluation on cells segmentation
in fluorescence imaging). Nevertheless, they can be useful in images with a strong signal-to-
noise ratio and/or when only a rough segmentation is required.

Watershed Methods

Watershed methods operate on binary images, defining and handling ROI adjacency lines by
neighborhood criteria or chain codes at pixel level [Beucher and Lantuéjoul, 1979, Bertrand,
2005, Mashburn et al., 2012]. However, morphological characterization of the objects that
require the length or the curvature of border segments lacks precision due to the discrete pixel
representation. Watershed-smoothing (e.g. [Vachier and Meyer, 2005]) and posterior fine
meshing [Veldhuis et al., 2017] methods have been proposed to improve the watershed quality
and the subsequent membrane localization. In addition, membrane or edge enhancement
filters are frequently applied in order to avoid under/oversegmentation by smoothing and
connecting membranes previous to the watershed (e.g. [Stegmaier et al., 2016]).

Intensity Gradient Vector Fields

To improve the detection of ROIs with boundaries that can appear with low contrast, these
approaches look for image zones with similar gradient orientations, in some cases filling miss-
ing information in weak boundary sections from their surroundings. The gradient vector
flow models (GVF/GGVF) [Xu and Prince, 1997, Xu and Prince, 1998] define a field that
optimizes two properties: alignment with the strong image gradient zones, and smoothness.
From a convex integral optimization functional for the vector field, a system of partial dif-
ferential equations (PDEs) is iteratively solved to compute the solution. Different weight
functions have been used in order to provide robustness against image noise [Xu and Prince,
1997], enhance the strong gradient attraction [Xu and Prince, 1998], equalize weak signals [Li
et al., 2005,/Olmos, 2009, and/or to account for multi-channel images [Sapiro, 1997,/ Jaouen
et al., 2014]. Once the vector field is obtained, an active contour model adjusts the ROI
boundaries (see Fig. and Section . Alternative approaches are the line segment
detector (LSD) [von Gioi et al., 2012], which requires no input parameters but needs pro-
nounced intensity gradients, and the Histogram of Oriented Gradients (HOG) [Ludwig et al.,
2009] which performs angle binning with pixels of similar gradient orientation.

Morphometric Features

A more recent kind of approaches takes into account the characteristic morphology of mem-
brane structures, stemming from previous works for vessel detection in medical imaging (since
vessels and membranes can appear with the same shape in a 2D image). These approaches
enhance and/or look for intensity distribution profiles of PSF-convolved membrane zones
(Fig. 2.1D), using basic probe patterns of lines (rods), disks (balls) and planes, evaluating
a fitness function for each pattern over image patches. For increased flexibility, a multi-
scale strategy can be included to handle different membrane/image sizes (as in the case of
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Figure 2.4: Segmentation by threshold is a simple but highly rough approach to detect PpO
cell membrane signals in vivo, as for the image of Fig. [2.3] and, consequently, localize adja-
cent membranes. Available thresholding algorithms from FIJI software were used [Schindelin
et al., 2012|. First row: Default (user set), Huang, Huang2, Intermodes, IsoData. Second
row: Li, MaxEntropy, Mean, MinEntropy, Minimum. Third row: Moments, Otsu, Per-
centile, RenyiEntropy, Shanbhag. Fourth row: Triangle, Yen. Images are rotated 90° left.
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ACME |Mosaliganti et al., 2012]). Within a given scale, these methods evaluate the inten-
sity distribution using moments of inertia tensors (commonly used for mass distribution and
principal component analysis, [Castaneda et al., 2014]). Hessian-based methods for vessel
detection [Frangi et al., 1998||Obara et al., 2012] were first introduced and later extended to
3D fluorescence imaging with approaches like ACME [Mosaliganti et al., 2012] and voting
schemes for estimating cell junctions [Michelin et al., 2014]. Examples are shown in Fig. .

Combined Approaches and Machine Learning

In addition to advances in each approach (reviews for microscopy imaging can be found
in [Dima et al., 2011,|Castaneda et al., 2014, Bhanu and Talbot, 2015]), the combination of
methods often allows to overcome individual limitations and to provide flexibility for different
scenarios. In practice, this comes at the cost of having multiple parameter settings and filter
combinations to test before finding a proper processing workflow. From a more general
perspective, the problem translates into having different selection methods and criteria for
detecting points/regions of interest in a given data set, with a large space of feasible solutions
from which an ideal or optimum setting has to be found. Machine learning approaches
such as neural networks with deep learning [Schmidhuber, 2012,|LeCun et al., 2015] have
been applied to ease this task, with two main types: unsupervised approaches look for
the best classification scheme according to given class separation criteria, while supervised
approaches use a training set with segmentation examples given by the user (usually labeling
of pixels), upon which a series of filters and feature descriptors are tried within a classification
algorithm. In both cases, different filter/descriptor combinations are tried with different
weighting and /or parameter values for classification, in order to find an optimal setting that
yields the best segmentation according to a fitness criterion with respect to the training set.
The obtained classification setting can then be applied to new image sets that have not been
segmented by the user but are similar to the training set (e.g. with the same acquisition
settings, ROI intensity profiles, etc.). Machine learning approaches have shown satisfactory
performance in a number of applications within microscopy and biomedical imaging [Ching
et al., 2018]. However, they still are unable to resolve membrane structures in live fluorescence
imaging, due to the lack of higher-level descriptors to account for tissue/organ characteristics
of specific scenarios, as in the case of the embryonic zebrafish PpO cells. Results from a
trainable membrane segmentation approach upon a sample image are shown in Fig. [2.6]

The majority of the existing approaches are available in the form of software packages,
both proprietary and open-source |[Castaneda et al., 2014], designed for biomedical imaging
[Sommer et al., 2011} |Schindelin et al., 2012,|de Chaumont et al., 2012] as well as for general
purpose |Hall et al., 2009]. Such schemes can be applied to large image sets, significantly
alleviating manual labor, but still requiring user inspection and corrections. As in the example
from Fig. , the absence of shape or adjacency constraints results in missing/disconnected,
or merged membrane sections; and the detection of individual cells cannot be achieved,
which precludes the quantification of membrane geometry and physical properties (described

in Section [L.3).
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Figure 2.5: Anisotropic filtering over a fluorescence microscopy image can be used to improve
signal quality of membrane structures. A: Original fluorescence microscopy image from Fig.
2.3l The intensities are inverted in order to ease visualization. B: Manual outline (blue)
of the cell membranes superposed to the image slice. C: Perona-Malik filter, applied with
k = 10, 100 iterations. (0 pixel side). D: Tubule enhancement filter, 7 pixels length.
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Figure 2.6: Trained membrane segmentation example of fluorescent PpO cells. Upon the
image of Fig. [2.3] a Random Forest trainable classifier was applied using a the Weka plug-in
with FLJI software [Hall et al., 2009,/Schindelin et al., 2012 (http://fiji.sc/Trainable_
Weka_Segmentation).
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Table 2.1: Handling of Adjacent Sections within different segmentation approaches (published

in [Jara-Wilde et al., 2020]).
Approach

Handling of Adjacent Sections

Watershed |Bertrand, 2005, Beucher and Lantuéjoul,
1979]: Subdivides an image into a number of ROIs, fol-
lowing topographic profile transformations that generate
digital elevation models on the basis of the image in-
tensity pattern. The result are separated ROIs at pixel
level.

+ Adjacency between objects can be
defined and handled easily at pixel
level.

- ROIs defined at pixel level, border
pixels must be defined by neighborhood
criteria or chaincode algorithms. Lim-
ited morphological characterization.

Automated Cell Morphology Extractor, ACME
(watershed based) [Mosaliganti et al., 2012, Frangi
et al., 1998]: Principal directions of intensity variations
from the image enhance membrane detection in zones
with weak signal intensities of adjacent membranes, help-
ing to reconstruct interfaces of adjacent cells.

+ Enhances weak membrane signals
and applies morphological watershed.
Multiscale approach.

- No direct characterization of adjacent
interface besides watershed. Robust
morphological separation not ensured.

Real-time Accurate Cell-shape Extractor, RACE
(watershed based) [Stegmaier et al., 2016,[Vachier and
Meyer, 2005]: 2D/3D cell shape characterization from
membrane and nucleus segmentation similar to ACME.
It uses morphological watershed with flooding of a vis-
cous liquid.

T-snakes (active contours) [Mclnerney and Ter-
zopoulos, 1995b]: Grid-based model for contour merg-
ing/splitting. Grid recognizes collision between snakes.

+ Enhances the membrane signal and
applies morphological viscous water-
shed, therefore getting a smoother so-
lution for low resolution/information
boundaries.

- Same as ACME.

+ Contours are either separated or
fused, automatically discarding adja-
cency conflicts.

- No adjacency definition to resolve a
shared section between touching ROIs.

Active Contours without Edges (active contours)
[Chan and Vese, 2001]: Curvature-driven contour evolu-
tion considering ROI interior properties. ROI boundary
completion does not require strong intensity gradients.

+ Few parameters.

- No intrinsic handling of overlapping
sections. No intrinsic adjacency detec-
tion (reliant on the intensity gradient).

Subjective Surfaces (active contours) [Sarti et al.,
2002|: Boundary completion with missing information.
Contour perimeter minimization term allows for bound-
ary completion in absence of strong gradients. Requires
initialization from a point in the ROI interior.

Same as Chan and Vese.

3-D Active Meshes (active contours) |[Dufour et al.,
2011, Dufour et al., 2005]: Discrete variational energy
optimization. Fast multiple coupled active contours with
and without edges. More computationally costly than
distance-based methods. Defines a repulsion term but
without measuring the outcome.

+ Repulsion forces are exerted over
overlapping contour sections.
- Adjacency separation not guaranteed.

Advanced Level-Set-Based Cell Tracking (active
contour-based) [Dzyubachyk et al., 2010]: Radon
transform with active meshes. Separation planes are
computed for touching ROIs with the Radon transform.

Deformable Model Array (other) [Namias et al.,
2016|: Pipeline of deformable and non-deformable mod-
els. Cooperative multi-object 2D /3D segmentation.

+ Separates adjacent cells
planes/lines (3D/2D).

- Lacks expressive separation to ac-
count for adjacent membrane curva-

tures.

using

+ Ad-hoc collision detection handling.
- Not implemented. Algorithms for
contour stop/rollback only.
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2.2 Active Contour Models

Active contour models are optimization functions which impose constraints on the ROI
boundaries, acting like deformation forces over a physical body: a balance equation is defined
for desired properties, whose solution yields the optimum contour shape and placement on
the image |Aubert and Kornprobst, 2006]. The constraint-based approach has made active
contour models a broadly used technique for segmentation because of its great adaptability
to detect different shapes and to encompass high-level morphological properties. Upon these,
techniques for contour modeling and numerical solutions have been developed for fast compu-
tation, improved flexibility or robustness, and handling issues regarding contour morphology,
initialization, and parameter sensitivity, among others.

Active contours can be described as adjustable ROI boundaries (curves in 2D, surfaces
in 3D) subject to constraints of object morphology and image features which deform them
until reaching an equilibrium state. They are regarded as a type of deformable mode]ﬂ,
stemming from the idea of physical bodies deformed by the action of forces towards a state
of minimal energy. The contours are typically represented by parametric or implicit functions,
for which the constraints and the optimum are defined with integral functionals and/or PDEs
approaches (in-depth descriptions can be found in |[Aubert and Kornprobst, 2006,/Osher and
Paragios, 2003]). The first active contour model for image segmentation is known is the snake
[Kass et al., 1988]: a parametric 2D curve is iteratively deformed over the input image until it
converges to its equilibrium state, given by the solution of a PDE system that minimizes an
integral energy functional. In the snake model, the optimality condition for minimal energy
is achieved by the solution of a PDE system known as the Euler-Lagrange equations, which
is analogous to the physical phenomena of energy minimization (integral functional) through
force balance equations (PDE system); each energy term of the optimization functional is
related to a feature or constraint that the optimal contours must satisfy. The inclusion of a
time derivative yields an iterative solution (see Figs. and 2.8 and Section for details
in the parametric contour model). Most of the posterior active contour models developed
follow this scheme, either by constructing a force balance system or defining a minimal energy
functional (or both). The following main types of forces are distinguished for active contours:

e The internal forces are properties intrinsic to the contours, such as smoothness,
curvature, inflection points, or size, defined by respective terms in the minimization
model. These properties do not restrict a particular contour morphology, yielding high
flexibility for a broad variety of forms.

e The external forces correspond to image features that need to be maintained by the
contours (like intensity gradients) while satisfying the constraints of the internal forces
(see section. In addition, ad-hoc interest points or regions can be defined to attract
or repulse contours from them (for example the “spring” and “volcano” forces from the
original snakes model [Kass et al., 1988|).

e Other forces can be distinguished for parametric and implicit models, aimed to address
issues like local optima, weak object boundaries or low capture range for distant objects.
Some of these forces are not included in the analytic optimization functionals, but are
included in the PDE numerical model and/or as intermediate steps between iterations:

2However, “active contours” and “deformable models” can be found as synonyms in the literature.
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— contour-region interaction forces that depend on specific contour features and
placement during adjustment, like the “balloon force” [Cohen, 1991|, the “geo-
metric potential field” [Yeo et al., 2011], or the variable force for contour regular-
ity versus image features in the subjective contour model [Sarti et al., 2000}/Sarti
et al., 2002[;

— parametric contours with merging/splitting criteria, by checking for ROI-ROI
intersections and single-ROI continuity between iterations, in the topologically
adaptive snakes [Mclnerney and Terzopoulos, 1995b| and its 3D extension to sur-
faces [McInerney and Terzopoulos, 1999].

Regarding the representation of the contour function, two main approaches have been
described: the explicit (parametric) and the implicit models. Each approach requires different
numerical-computational methods for solving the contour adjustment, as described in the
remainder of this section. It is worth mentioning that in some cases it is possible to derive
equivalent parametric and implicit models from a common optimization functional (e.g. [Xu
et al., 2000, Sapiro, 2001,|Aubert and Kornprobst, 2006]).

2.2.1 Parametric Models

The snake method from Kass et al. is a typical example of a parametric model: a set of geo-
metric elements, such as line segments (2D) or surface mesh triangles (3D), defines a paramet-
ric function for each ROI boundary, suitable for calculating morphology-related properties
such as contour size or curvature. An iterative scheme for the force balance is applied to
each parametric function until convergence. Fig. shows an example of parametric active
contours for segmentation and contour description of microscopic structures in a 2D image.
The coefficients o and [ weight internal forces known as elasticity and rigidity, respectively.
The elasticity acts as a contraction force, while the rigidity controls the degree of bending
for the contour. The additional force coefficients x and ¢ weight image forces, and ~ is an
artificial viscosity coefficient that regulates the contour response to the other forces.

Parametric formulations require control methods over the contour sampling (such as in-
terpolation or mesh refinement), mainly due to the placement of contour elements after each
deformation step which can lead to numerical instabilities. Also, special handling for topol-
ogy changes is needed (contour splitting, merging or collapsing) when the number of initial
ROIs is not the same in the optimal segmentation, or bad initialization scenarios yield local
optima with a correct number of ROIs. Proposed approaches for handling this kind of sce-
narios include contour interpolation [Williams and Shah, 1992,|Fanani et al., 2010] and grid
data structures for intersection detection and topology tracking |[McInerney and Terzopoulos,
1995b, McInerney and Terzopoulos, 1999]. A drawback for parametric contour functionals
is that conditions for global optimum and convexity are not fully guaranteed (see [Aubert
and Kornprobst, 2006] for the snakes functional), making it necessary to use supporting
techniques in order to avoid local minima (for example, the balloon forces of [Cohen, 1991]).
Nevertheless, parametric models are easy to understand and implement in comparison with
implicit approaches, and the contour model allows flexibility for user interactivity (see for
example the “volcano” and “spring” forces in the original snake model). Another advantage
of the parametric modeling of ROI boundaries is that they allow the direct computation of
morpho-topology properties such as volume, surface area, perimeter, etc.
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Following the snake method, other parametric models were developed to extend its func-
tionality and improve convergence issues: a 3D parametric model for surfaces was presented
in [Cohen et al., 1992]. Xu & Prince introduced an image force model based on diffusion
equations to extend the capture range of the intensity gradients over the image |[Xu and
Prince, 1997, Xu and Prince, 1998|. The active shape models restrict the ROI morphology
to given shape templates, using landmark points that represent features of interest [Cootes
et al., 1995]. A classification between boundary-based and region-based active contours is
also used for models based on other ROI properties, such as color/intensity homogeneity,
size, etc. The well-known model of active contours without edges |[Chan and Vese, 2001] is a
typical example of region-based contours, although it is defined as an implicit method. The
active polygons model [Unal et al., 2005] uses information entropy measurements for image
textures as properties to detect the interior of ROIs, in addition to boundary properties.

Computational Complexity

Computational solving methods for parametric models must perform: (i) pre-processing or
filtering of the original image to obtain a feature or edge map that as the external force,
and (ii) evolution of the ROI boundaries from its initial state to a relaxed state, according
to the corresponding iterative scheme with internal and external forces. In this context, the
computations of internal forces depend intrinsically on the parametrization of the boundary,
being expressed as PDEs, for which derivatives are approximated using spatial neighborhoods
for each boundary element. The overall complexity of the computation process is the sum of
the complexities for the computation of the external (image) force and the iterative scheme
for the contour: for a 3D image with s, x s, X s, pixels and a single contour with n elements,
the first term requires space and computation time of O(s,s,s.) (i.e. directly proportional to
the number of image pixels); for the second term, the iterative scheme can be solved at each
iteration by ad-hoc strategies whose computation uses O(n) memory space and time when the
derivative computations are O(1), or by algebraic solvers ranging from O(n?) for classic L/U
matrix decompositions to O(n) for multigrid methods. It also should be taken into account
that re-parametrization of the contour may be necessary, adding O(n) complexity for typical
cases. The use of additional topology control strategies like grids for ¢-snakes approaches or
similar involves additional complexity to the defining bound of O(s,s,s,) + O(n).

Upon parametric contour models, morphological properties intrinsic to each ROI can be
computed directly: given a 2D polygon or a 3D surface mesh, computations of surface area,
perimeter, volume, curvature, etc. can be performed using the same data structure, most of
them in O(n) time. Mass distribution computations can involve additional processes for com-
puting interior volume elements. Also, the parametric contour models need dedicated data
structures for distance computations (such as bounding volume hierarchies, space partition-
ing or level set functions) in order to compute efficiently these kinds of properties, especially
for highly complex object shapes which otherwise require much more distance computations
(see the additional computation approaches in the following subsection and in .
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Figure 2.7: 2D Parametric Active Contours (“snakes”) in a microscopy image of lipid mono-
layers. a: Sample image of ceramide-enriched lipid domains using a pseudo-color scale (see
bar). b: Threshold segmentation of the lipid domains as ROIs. c¢: Spline interpolated
snakes, redistributing non-equidistant contour points (black) to equidistant interpolated
points (white). d-h: Optimization of domain morphologies using the snakes model with
different settings. Initial contours (0 iterations, it = 0) are shown together with the indi-
cated force parameters. Contours are drawn with pseudo-color from low to high curvature
values. White crosses mark inflection points. e: Snakes at 10 iterations (it = 10) with the
settings of d. f-h: Snakes after 10 iterations with high elastic force coefficient (o = 1, e),
without bending force (8 = 0, g), and without image forces (finy, = 0, h). All other force
parameters values were set as in d. Published in [Fanani et al., 2010].
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2.2.2 Implicit Models

Based on the Level Sets Method (LSM) [Osher and Sethian, 1988], implicit models embed
the deforming contours into a higher dimension function that serves as the level set func-
tion, which includes the same (or equivalent) external and internal forces for the contour
adjustment. The level set function is deformed according to a system of PDEs or equiva-
lent discrete model [Aubert and Kornprobst, 2006,Hagan and Zhao, 2009] until convergence,
and the resulting parametric ROI boundaries are recovered in a post-processing step. As
an example, Fig. shows an implicit active contour model for segmenting cell membranes
in a microscopy image of a zebrafish embryo: given an initial contour (a circle), the level
set function evolves until its zero-level set (final contour, upper right image) is placed upon
the intensity gradient zones corresponding to the cell membrane. Implicit models can in-
trinsically handle topological contour changes such as merging or splitting for several ROIs
without any special consideration for their implementation, thus being more robust with re-
spect to the initialization, but requiring a separate processing step in order to reconstruct the
resulting ROIs, impeding direct access for ROI properties like contour perimeter or surface
area. The LSM models how a front propagates depending on its curvature along its normal
direction (inwards, outwards or both), which makes it suitable for fluid dynamics and other
physics modelﬂ. LSM-based models have been introduced for detecting ROIs in images of
weak /missing intensity gradients [Chan and Vese, 2001, Sarti et al., 2000], non-homogeneous
gradients/region interiors, and noise [Chan and Vese, 2001}[Yeo et al., 2011]. LSM has also
been used for image denoising, curvature-driven shape deformation, computer graphics, and
robot navigation systems [Houston et al., 2006} Osher and Paragios, 2003,[Sethian, 2010].

Computational Complexity

Solving the LSM equation requires the level set function to be computed for the whole image.
For an image with s, x s, x s, pixels, the computational complexity depends (in space
and time) on the PDE solver used for the equation. If the derivative computation can be
performed in time O(1) per image pixel, the complexity ranges from O((s;s,s,)?) for matrix
factorization to O(s,sys,) for multigrid methodsﬂ This is the case for the basic or naive LSM
implementation, upon which different optimizations have been developed: the narrow band
level sets [Adalsteinsson and Sethian, 1995] perform the computations only for the zero-level
sets and small neighboring sections within the image (hence the name). Further optimizations
address data structures for the iterative scheme: linked lists for storing and updating the level
sets [Whitaker, 1998], fast distance computations by relying on octrees [Losasso et al., 2004]
and other space partitioning techniques [Bridson, 2003, Chiang et al., 1998|, and compressed
data structures for the level set functions such as the dynamic tubular grid [Nielsen and
Museth, 2006] or the hierarchical run-length encoded level sets [Houston et al., 2006].

The computation of external image forces must be added to the overall complexity in the
same way as for parametric models, since edge maps or similar functions need to be computed
over the entire image, typically adding O(s,s,s,) space and time. Most of the image filtering
techniques perform similarly, with computations commonly bounded by a fixed amount of
operations for each image pixel (even for more complex approaches such as the gradient

3The LSM equation corresponds to the Hamilton-Jacobi equation, well known in mathematics and physics.
4Computation speedups can be obtained at this and other stages by concurrent processing techniques
whose review is outside the scope of the present work.
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Figure 2.8: 2D implicit active contours in a microscopy image of a zebrafish embryo. The
image I shows the fluorescence membrane intensity of a dorsal forerunner cell during the
formation of a cell complex known as the Kupffer’s vesicle in a zebrafish embryo. Upon I,
an edge detector function ¢g(|VI|) is computed, which acts as a stopping term for the level
set function evolution. Image courtesy of E. Pulgar (Laboratory of Experimental Ontogeny,
U. of Chile). Segmentation performed using the available implementation of the Subjective

Surface approach [Sarti et al., 2002, Zanella et al., 2010].
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vector flow fields [Xu and Prince, 1997,|Xu and Prince, 1998]). Alternative approaches have
been used to harness parallel computing architectures, by using formulations equivalent to
the LSM, such as Lattice-Boltzmann cellular automata [Hagan and Zhao, 2009).

Implicit models require a dedicated processing step to produce a parametric boundary
model suitable for morpho-topological analysis. This can adds significant time and space
requirements, depending on the data structure used for the level set function. In turn,
implicit models can be used as auxiliary distance maps for fast computations in inter-object
topological description scenarios, like lattice formation in molecular films [de Tullio et al.,
2007, Fanani et al., 2010], shape patterns in multi-cellular complexes, and shared surface for
cell-cell interaction [Sherrard et al., 2010].

2.3 Multiple-Object Segmentation

In biomedical applications, active contour models have been extensively used since their
introduction [Mclnerney and Terzopoulos, 1995b]. Pattern recognition techniques have been
used in the form of supervised approaches with prior knowledge [Abufadel et al., 200§, as well
as combined with boundary completion techniques [Sarti et al., 2000,Michelin et al., 2014]. In
medical imaging, several applications for MRI data in joints and organs like brain and heart
have been reported [Mclnerney and Terzopoulos, 1996,Pham et al., 2000,Zhao and Xie, 2013].
Temporal criteria for 3D segmentation has been included in the so-called 4D segmentation,
applied for both research [Mischler et al., 2006, Bourgine et al., 2010, Mikula et al., 2011] and
medical imaging [McInerney and Terzopoulos, 1995aMontagnat and Delingette, 2005, Jaouen
et al., 2014]. For time-lapse fluorescence microscopy of living cells, Melani et al. combined
motion estimation with level sets segmentation, in order to identify and describe structural
changes in embryonic brain cells of zebrafish [Melani et al., 2007]. In [Zanella et al., 2010],
a variation of the subjective surfaces method [Sarti et al., 2000} Sarti et al., 2002] was used
to segment cell membranes in 3D confocal image stacks. In order to properly initialize the
subjective surface method, ellipsoidal template matching was used to detect cell nuclei (one
inside each cell membrane, excepting special cases such as cell divisions).

When it comes to physical contact between cell membranes, the adjacency of neighboring
membrane contours needs to be detected and quantified. This task is subject of ongoing
research [Dufour et al., 2017], yet the segmentation of adjacent membranes in cell aggre-
gates such as multicellular samples, tissue, organs, or whole organisms from fluorescence
microscopy images remains a challenging task. Table presents an overview of the main
approaches reviewed. Other approaches applied to fluorescence microscopy have been pre-
sented for handling occlusions in 2D |Bergeest and Rohr, 2012], and resolving contiguous
ROIs in medical images from CT or MRI |Chan and Vese, 2001} Lucas et al., 2012, Bogovic
et al., 2013]. High-throughput and in toto imaging have been recently addressed, for nuclei
segmentation and tracking, and taking into account fast computation schemes such as parallel
processing [Keller, 2013/ Mikula et al., 2012|. So far, only an implicit approach for multiple
objects [Bogovic et al., 2013] yields a contact-preserving segmentation, but depending on the
strength of ROI boundary (intensity gradient) or interior (intensity homogeneity) features.
In this case, direct access to ROI morphology depends on constructing an additional model of
the ROIs, either adding computation times to the segmentation or requiring post-processing
to detect and correct possible errors. The “active meshes” approach [Dufour et al., 2011]
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has been used in ROIs with homogeneous interior labeling, penalizing the overlap between
ROIs that may occur since the deformation of each ROI is computed without explicit con-
tact rules, either due to the adjustment itself or by moving/deforming each ROI when using
motion estimation in time series (as initialization to further adjustment steps). Hence, con-
tact becomes an indirect constraint in the final segmentation, with no quantitative guarantee
or measurement for parameter estimations. Simpler approaches such as computing straight
lines (planes in 3D) have also been proposed [Dzyubachyk et al., 2010].

More recent approaches on shared boundaries for membrane segmentation |[Mosaliganti
et al., 2012, Michelin et al., 2014] address multiple-object junction points by membrane-
enhancement image filters, but without ROI boundary models, and rely on basic approaches
such as watershed methods or circular shape detection [Stegmaier et al., 2016, Chang et al.,
2015]. Some authors even suggested the need for a dedicated approach, such as the proposed
in this work. A similar work on parametric contours reaches the adjacency detection, but
no action is taken besides stopping the contour evolution [Namias et al., 2016] (see also [4.4)).
Interpolation techniques have also been used to improve upon roughly segmented ROIs, for
detecting junction points and estimating interaction forces [Brodland et al., 2014} Veldhuis
et al., 2017], and 2D lattices of convex polygons have been used for dense epithelia [Farrell
et al., 2017].

Computational Complexity

Adjustment approaches for multiple adjacent ROIs add distance and intersection computa-
tions that require a significant number of floating-point operations which are individually
slow to perform.The problem has been addressed in separate tasks:

1. Calculating the distance between two ROls, i and j. It becomes an O(D(i, j)) =
O(n; + n;) operation for implicit models, since they are implemented by computing
distance functions (level sets) which are directly accessible, and for each element of one
ROI, the distance from the other is accessible in O(1) operations. Parametric models
such as polygons or spline curves require calculating distances between all the possible
pairs of elements from each ROL. It becomes an O(D(i, j)) = O(n; X n; operation, where
n; and n; are the number of elements of the ROIs i and j, respectively. A reduction
in the number of operations can be attained if the elements of the ROIs are sorted or
indexed (see item 3 below).

2. Determining the intersection of two ROIs. To date, implicit approaches do not
require computing ROI-ROI intersections. MGDM and Active Meshes define repulsive
forces over each element of overlapping ROIs (with the overlap determined from their
respective level sets). Parametric approaches such as the T-snakes |[McInerney and
Terzopoulos, 1995b] project the ROI boundaries to a grid which is checked in a given
sequence. The Active Meshes hybrid model [Dufour et al., 2011] detects intersecting
ROI elements by using a parametric data structure (surface mesh).

3. Efficiently computing distance and intersection for multiple ROIs. A broad
spectrum of collision detection approaches (see surveys in [Lin and Gottschalk, 1998|
Teschner et al., 2005,|Kockara et al., 2007]) has been developed in past years, and some
of them have been combined with parametric models as noted below. For a set of N
ROIs, two main scenarios can be defined for both parametric and implicit models:
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(a)

(b)

In absence of auxiliary information, each ROI needs to be checked against the
other N — 1 ROIs for adjacency /intersection (worst-case scenario), which adds up
to O(N?) detailed calculations D(i, j) over the entire set.

If the set is spatially sorted or indexed, the number of detailed calculations can
be reduced to a subset of ROIs within a threshold distance, or only the ROIs ad-
jacent in the sorted set [Lin and Gottschalk, 1998 Teschner et al., 2005]. Sorting
algorithms like Sweep-and-Prune |Cohen et al., 1995 are common choices, but
also space partitioning structures such as quadtrees/octrees (2D/3D) |Finkel and
Bentley, 1974] and k-d trees (non-overlapping) [Bentley, 1975, or R* trees (over-
lapping) [Beckmann et al., 1990| can be used. Reductions to O(N log, N) detailed
calculations are expected. Further reductions can be obtained with the addition
of:

e simpler bounding shapes such as rectangles, circles or convex polygons that
can be computed for each ROI, in order to simplify distance calculations
during the sorting step and avoid complex calculations of non-adjacent ROIs
[Lin and Gottschalk, 1998]; and

e data structures for spatial indexing/sorting of subsets of ROI elements can
reduce the number of operations to determine adjacency or intersection.

When the complexity in determining adjacency becomes constant (O(1)), and
the spatial indexing/sorting is used, a lower bound can be defined for the total
number of operations in determining adjacency. Let g the average number of
neighbors for any ROl in the set, the total number of operations for checking the N
ROIs becomes O(N log, g), with an additional number of O(N log, N) operations
required for pre-processing.
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Chapter 3

ALPACA: ALgorithm for Piecewise
Adjacent Contour Adjustment

3.1 Overview

Active contours allow the segmentation of ROIs with possibly different shapes and/or sizes,
but sharing common properties related to their geometry, which condition their adjustment
over a given image. However, for multiple adjacent objects such as compact membrane ag-
gregates with touching boundaries, object-to-object interaction becomes an important mor-
phological feature that needs to be taken into account for accurate segmentation and quan-
tification. As discussed previously, a proper scheme for shared boundary adjustment and
quantification has been unaddressed, motivating the present work. Hence, the ALPACA ap-
proach is proposed: first, adjacent sections are detected for ROI contour sections that either
overlap or lie within a proximity threshold; then, shared sections are calculated pairwise for
ROIs with adjacent sections; finally, an piecewise contour reconstruction takes place connect
shared (or adjacent) and non-shared (or non-adjacent) sections. An example of the detection
of adjacent sections in PpO cell membranes is shown in Fig. 3.1}

This chapter starts with the depiction of the main algorithm (Fig. , together with
the description of required inputs, produced outputs. Next , algorithm step descriptions
are presented, followed by implementation details and optimizations (3.4). Last, a
computational complexity analysis is presented .

3.1.1 Input Parameters

e Fluorescent intensity Image I(x,y).
e Generalized Gradient Vector Flow field GGV F(I(x,y)) = [u(z,y), v(x,y)] (optional).

e Adjacency Distance threshold d set by an expert considering the spatial resolution limit
of the specific microscopic setting and the image quality.

e Set of parametric contours Cj(x,y) from an active contour approach (see [Kass et al.,
1988, [Fanani et al., 2010}, [3.2.2]), optimized to represent the morphology of the subjacent
ROIs by a ground truth (if available) or by an expert. The contours can be obtained on
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Figure 3.1: Membrane segmentation and definition of overlapping, adjacent and non-adjacent
contour sections in neighboring cells. Spinning-disk microscopy image of cell membranes of
the pineal complex of a zebrafish (Danio rerio) flh::GAP43-EGFP transgenic embryo at 38
hours post fertilization. Fluorescence intensities are shown as inverted grey-scale in all panels.
A: 2D slice taken from a 3D stack (69 slices with 500 nm z-spacing, z position 32x0.5 pm
= 16pum). Bottom right: scheme of the embryo head with the Left-Right (L-R) orientation
and the pineal complex marked by a black square. B: Detail of the fluorescence intensities of
PpO cell membranes (from the dashed red square in A). C-D: Manually Outlined Contours
(C) and optimized parametric active contours (D) with color coded for overlapping (red),
adjacent (green) and non-adjacent (blue) contour sections, defined by an Adjacency Distance
d = 86nm. The insert in D shows the shortest segment-segment distance from neighboring
contours from the dashed rectangle (see section . Scale bars in A/B: ~10pum, insert
(D): ~332nm. Published in |Jara-Wilde et al., 2020)]
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Figure 3.2: Flowchart - ALgorithm for Piecewise Adjacent Contour Adjustment ALPACA.

the basis of either automatic or manual segmentation (see |[Hartel et al., 2007, Fanani

et al., 2010], Fig. /D) and also, with methods alternative to active contours.

On the basis of the set of Ci(z,y) and d, ALPACA calculates the distance between neigh-
boring contour sections based on the Segment-Segment Distance, and classifies non-adjacent,
adjacent, and overlapping contour sections (see and Fig. /D). If no adjacent or
overlapping sections exist for a given contour Ci(x,y), it is returned with no changes as out-
put. If adjacent or overlapping sections do exist, a calculation of a correspondence vertex
mapping based on normalized lengths is performed (see and Shared Contour Sections
are calculated by averaging the (x,y) positions of corresponding vertices. Next, the algo-
rithm checks if non-adjacent contour sections exist (a ROI might consist of adjacent contour
sections only). If not, a contour formed by shared sections Cf(z,y) is output returned. If
non-adjacent contour sections do exist, Piecewise Parametric Contours C;*(x,y) are calcu-
lated to connect non-adjacent and shared sections. For the data presented in this thesis,
vertices of the shared sections were fixed, and non-adjacent sections readjusted under the
initial active contours constraints that respect morphological features of the subjacent ROIs
(see [1.1.1] Fig. /H). The use of GGVF is optional, and was not applied for the final

relaxation in our examples. Finally, C;*(z,y) are returned for further analysis.
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In summary, ALPACA returns one of three possible outputs:

e Parametric Contours Ci(x,y) without adjacent sections.
e Parametric Contours Cf(x,y) where all sections fulfill the adjacency criteria.

e Piecewise Parametric Contours C;*(x, y) with sections that fulfill the adjacency criteria
and sections that do not.

The artifact of overlapping sections is corrected in C;(z,y) and C;*(z,y), and the results
fit the morphological constraints of the microscopic sample.

The main algorithm is depicted in Fig. [3.2] It comprises two main stages:

1. Detection and adjustment of shared contour sections, defined by two or more ROIs
that overlap or lie within the Adjacency Distance d.

2. Adjustment of non-adjacent contour sections, or entire ROI contours with no influence
of any adjacent ROL.

3.2 Algorithm Steps

3.2.1 Gradient Vector Flow Image Force Computation

The basic image force field implemented is the intensity gradient, VI = VI(x,y) = [, ],
which is a vector field that points in the direction of the highest intensity change at each
image pixel. Using forward finite differences, it is computed at each pixel position [i, j]:

Il ] = I[i, j + 1] — I3, j] (3.2)

A general description and implementation of intensity gradients in digital images can be
found in the works of [Marr, 1982,|Sponton and Cardelino, 2015]. In the case of fluorescence
microscopy imaging, the implementation and comparison of different numerical schemes for
motion estimation with optical flow algorithms were addressed [Delpiano et al., 2012,/ Jara-
Wilde et al., 2015].

To regularize the fluorescence intensity gradients, Gradient Vector Flow approaches (GVF,
and its generalized model GGVF) [Xu and Prince, 1997, Xu and Prince, 1998 were imple-
mented. Here, the image gradient V1 is taken as a starting solution for an advection/diffusion
equation which is defined to produce a smooth vector field oriented towards image zones with
the highest gradient magnitude. Fig. show the resulting GGVF field for fluorescent cell
membranes acquired with in vivo microscopy imaging.

The vector field V' = V(x,y) = [u(z,y),v(x,y)] is computed by an iterative scheme, by
making V' = [u(x,y,t),v(x,y,t)] and solving the following equation:

Vi = g(VI)V*V — h(VI)(V — VI) (3.3)

g(VI)=1—h(VI) is an edge indicator function, with ¢g(VI) — 1 in low or null gradient
zones, and g(VI) — 0 in high-gradient zones. A negative exponential function was used, as
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(A)

(D)

Figure 3.3: Intensity gradients and edgemap in fluorescent PpO cell membranes. A: Zoomed
region from the sample z-slice image I of PpO cell membranes from Fig. m (intensities
inverted). B: z-gradient image I,,. C: y-gradient image [,. D: Edgemap image e = |I,,| +|1,]
(intensities inverted). E: Edgemap z-gradient image, e,. F: Edgemap y-gradient image, e,
. In B/C/E/F, the dark (bright) zones correspond to negative (positive) intensity gradients,
while the grey zones correspond to homogeneous intensities that make gradient magnitudes
approach zero.
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‘Yactor Direction

Figure 3.4: GGVF field in fluorescent PpO cell membranes. Top: Color-coded Generalized
Gradient Vector Flow vector field, computed for the sample image of the PpO cell membranes.

Bottom left: GGV F x-component image. Bottom right: GGV F' y-component image.
1|
Computed with g =e~ » , u = 0.05, 100 iterations.
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in the original GGVF model [Xu and Prince, 199§]:

vi|

g(VI)=¢e "n (3.4)

The time constant p acts as a regularization coefficient to control how pronounced the
rise/decay of the vector field will be. This coefficient can be adjusted by the user according
to the image residual noise/intensity homogeneity (high values yield more regularization).

The initial condition is set as V' = VI at t = t; = 0 and the boundary conditions are
I, =0 and I, = 0 at the image boundaries (first and last pixel rows/columns). The vector
field is then computed by a gradient-descent approach, with successive discrete values of
t € {t; = 1,1 > 0} and updating until convergence is reached:

ult + 1] = g(VI)V?ult] — h(VI)(ult] — L,) (3.5)
o[t + 1] = g(VI)V*[t] — (V) (v]t] — 1)

Since g(VI) =1 — h(VI), the system is rewritten to avoid redundant calculations as

uft + 1] = g(VI)(ult] + VZult]) + by

vt + 1] = g(VI)(v[t] + V20[t]) + by (3.8)
with constant terms
b=1+1; (3.9)
by = bI? (3.10)
by = bI; (3.11)

The equations above are solved until convergence, determined when each vector component
reaches a given threshold of magnitude variation considered small enough, and/or when a
given limit for the number of iterations has been reached.

An additional step of Gaussian smoothing over the input image is suggested by the authors
in order to further reduce spurious gradient zones of small magnitude, to be applied before
computing the gradient and GVF/GGVF fields. An optional smoothing step with an isotropic
Gaussian filter was implemented, implemented with matrix convolution and parametrized by

the standard deviation o (see review and examples of the smoothing process in [Spontén and
Cardelino, 2015]).

As a preliminary work with regards to this thesis, GVF/GGVF approaches were imple-

mented and applied for 2D segmentation in fluorescence microscopy imaging of lipid mono-
layers [Fanani et al., 2009,[Fanani et al., 2010].

38



3.2.2 Free Parametric Active Contour Deformation

The contour deformation algorithm follows the original parametric active contour model [Kass
et al., 1988|. It solved by a gradient-descent algorithm, applied to the set of contour points,
and based on an energy minimization functional (see Fig. [2.7). The minimization is
achieved by solving an Euler-Lagrange system of partial differential equations (see mathemat-
ical background in [Aubert and Kornprobst, 2006]). Let C; = Ci(s), s € [0, 1] a parametric
curve:

8201(8) 84Ci(5)

—a—s + st + &V (|VI(Ci(s)))(Ci(s)) = 0 (3.12)

The parametric contour C; of a given ROI i,1 € [1, N], is represented by an ordered set of
vertices that defines a polygon or closed polyline, C; = [z, ¥i x|, with & = 0...n; — 1. Each
consecutive pair of vertices defines a segment which is the basis for adjacency detection and
contour adjustment.

Using centered differences as discrete approximations of the derivatives, the Euler-Lagrange
equations take the form:

a(=Cijr1+Cig — Cig—1) + BCi k2 — 4BC; i1 +65C; p —ABC, ko1 + BCij—2 + K EFert (Ci k) = 0
(3.13)

The equation above can be used to assemble a linear equation system for all the points
xz and y [Kass et al., 1988|, in the form of a 5-diagonal matrix A where in each row i,
the elements of the non-null diagonals hold respective coefficients in terms of o and 3 as

Ci,k—27 Ci,k—17 Ci,k7 Ci,k—i-h Ci,k+2'

Let z,y the lists of contour positions, the iterative scheme makes z = x(t),y = y(t), for
successive discrete values of ¢ > 0. Starting from an initial contour estimation z(0 ,4(0), the
equations to solve at each iteration are written as

[t +1] = (A+ D) (vzft] + K Fear, (z[t], y[1])) (3.14)
ylt +1] = (A+ D)7 (vylt] + s Fear, (2[t], y[t])) (3.15)

where I denotes the identity matrix.

Equations and for free deformation were implemented as shown in the algorithm
of Fig. An example of the contour evolution is shown in Fig.

The contour resampling was introduced to maintain the regular spacing between con-
tour vertices, avoiding sparse or dense zones. A cubic spline interpolation method was
implemented, with the number of vertices as input parameter. The number of vertices is
determined in each case as a the quotient between the estimated contour perimeter and the
sampling distance parameter (average segment length ASL, see .
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Input Parametric Active Contour Adjustment Algorithm Output

* Imagel(x y) x[0] — x
- GGVF Field - yi0] - y

VI p)=Tuxy), vixy) ] 3
» Parametric Active Contour

Cxy)=(xy) el
* Force weight coefficients

a, B Ky
« Iteration Limit /L .'
. jﬁrage Segment Length A — diagonalMatrix( B, -a-48, o+68, -o-45, B ) Do while t < /L

inverseAl —invertMatrix(A + diagonalMatrix(y ))
. « The matrix inverseAl
n_eeds_ to be recomputed
X[t] < inverseAl - ( x[t-1] - ku( x[t-1], M[t']-] D) since its size has to match

the number of contour

M8 < inverseAl - (y[t-1] - kv(x(t-1], Y{t-11)) vertices in each iteration.

‘ « The GGVF vectors (u, v)
are interpolated at each
ASL[t] < perimeter( x[t], yit] ) / vertexCount( x[t], vIt] ) contour vertex position.
I
— At+1] - x4
™= Y+ 1] = 1]
Yes ‘ ‘
x[t+1] < interpolate( x[t], ASL[t]) _ -
ylt+1] « interpolate( y[t], ASL[t]) g tet+l g [ Gl y) (8], vt]) ]

Figure 3.5: Algorithm flowchart - Parametric Active Contour Adjustment. The depicted
algorithm is a variant of the classical snakes algorithm: it uses the GGVF vector field as
image force, and includes a sampling distance parameter (ASL) to keep a regular vertex
spacing during the adjustment.
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Figure 3.6: Parametric active contour deformation over the fluorescence image of a culture
HeLa cell nucleus, shown at different iterations ().




3.2.3 Detection of Adjacent, Overlapping, and Non-Adjacent Con-
tour Sections

Once the distances between all the segments from two ROI contours have been computed,
the nearest segments are checked for adjacency and overlapping:

e Adjacent contour sections of neighboring ROI contours are sets of one or more
consecutive segments (polylines) that lie at a distance equal or lower than the Adjacency
Distance d. The minimum distance between each segment of a first contour and all the
segments of a second is calculated by a Segment-Segment distance algorithm [de Berg
et al., 2008|. The shortest Euclidean distance is taken from each of the two vertices of
the first segment to the second segment line, and from each of the two vertices of the
second to the first segment line (see example in inset if Fig. [3.1D).

e Overlapping contour sections of neighboring ROI contours are sets of one or more
consecutive segments that lie within each other, regardless of the Adjacency Distance
d. Overlapping segments are detected upon the Boost implementation of the Weiler-
Atherton algorithm [Weiler and Atherton, 1977,[Boost, 2017]. The algorithm returns
polygons that result from the intersection of two contours. Contour segments that
belong to the intersections are labeled as overlapping segments and connected to define
the adjacent sections.

e Non-Adjacent contour sections are sets of the remaining vertices which are neither
adjacent nor overlapping.

3.2.4 Shared Contour Section Computation

Shared contour sections are defined for adjacent contour sections, overlapping contour sec-
tions, or sections of consecutive adjacent and overlapping segments. Each shared contour
sections is a polyline that is calculated by mapping the vertices of the adjacent contour sec-
tions using the Correspondence Vertex Mapping (see , and averaging the position of
each pair of vertices. The result is a common shared contour section (Fig. /F/H) which
depends on the selected mapping approach, and substitutes the adjacent and/or overlapping
contour sections of the corresponding ROI contours.
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(F)

0s 02

Figure 3.7: Normalized length based correspondence vertex mapping in combination with
piecewise active contours lead to morphology preserving shared sections and cell contours.
Scale bars for A: 10pum, B/D/F/H: 2pm, C/E/G: 332nm. Arrows in D/F mark the start
vertices of each section. A: Two neighboring PpO cells (red, green). Detail of the adjacent
contour section within the dashed red rectangle is shown in B-H. B: Detail of adjacent
(green), non-adjacent (blue), and overlapping (red) contour sections defined by d = 332 nm.
C-D: Shared contour section (C*(x,y), yellow) calculated with the Euclidean distance for
correspondence vertex mapping of the contour sections. C: Detail of adjacent, non-adjacent,
and overlapping contour sections from the dashed rectangle in B. The vertex mapping leads
to undulating extremes in the shared section. E-F: Shared contour section (C*(x,y), yellow)
calculated with the normalized length for correspondence vertex mapping of the contour
sections. The vertex mapping leads to smooth extremes in the shared section. E: Detail
of adjacent, non-adjacent, and overlapping contour sections from the dashed rectangle in
B. G-H: Piecewise active contours (C**(x,y), yellow triangles and blue squares and circles)
guarantee smooth transitions between adjacent and non-adjacent contours, and preserve
cell morphology of the two neighboring PpO cells. Angles of the triplet vertices and the
corresponding cell contours can be calculated by fitting straight lines to a selected number
of contour vertices next to the tip (see representative line segments for angles ¢1, @s, ©3,)
and 0y, 6, 05. G: Detail of adjacent, non-adjacent, and overlapping contour sections from the
dashed rectangle in B. Published in |Jara-Wilde et al., 2020].
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Correspondence Vertex Mapping

The correspondence vertex mapping for two contour sections returns a list of paired vertices
for each contour. Two approaches were tested.

A. Euclidean Distance Correspondence Vertex Mapping The correspondence list is
constructed by the following sequence:

1. The contour section with the higher number of vertices is selected as reference. If the
numbers are equal, the result is independent of the selection.

2. The first two vertices of the polylines are connected, becoming the first pair of the
correspondence list. The result is independent of the selection of the first or the last
vertex.

3. For each following vertex of the reference polyline, the closest vertex of the second poly-
line is detected. The paired vertices are added to the correspondence list consecutively.

4. The last two vertices of the polylines are connected, becoming the last pair to the
correspondence list.

B. Normalized Length Correspondence Vertex Mapping The correspondence list is
constructed by the following sequence:

1. The length of each contour section is calculated by the sum of the length of its segments.
The length of a segment is the Euclidean distance between its vertices.

2. Each segment is normalized by the total length of its section, in order produce 1-
dimensional normalized vertex positions. The vertices of each section have a normalized
length [0,1], with vertices at length 0 and 1 as start and end, respectively.

3. One of the sections is taken as reference list to start the correspondence list. For
sections with unequal numbers of vertices, the polyline with more vertices is used. The
correspondence list is generated by advancing vertex by vertex from the reference list,
matching with the closest vertex in the second list. The matching is made by comparing
the normalized lengths of the vertices. The result is independent of the starting vertex.

3.2.5 Piecewise Active Contours Reconstruction

As described before, the algorithm returns one of three possible outputs: (i) Parametric
Contours Ci(z,y) without adjacent sections, (ii) Parametric Contours Cf(x,y) where all
sections fulfill the adjacency criteria, and (iii) Piecewise Parametric Contours C;{*(z,y) with
sections that fulfill the adjacency criteria and sections that do not. For (i) and (ii), there is
no need for further adjustment of the ROI contours. For (iii), the shared contour sections
(see[3.2.4) are connected to the non-adjacent contour sections and form a new, adjusted ROI
contour. To obtain smooth contours, a piecewise active contour algorithm was applied to
adjust non-adjacent contour sections under the constraints of the active contour approach,
while keeping the vertices of shared contour sections at fixed positions. The result of this
piecewise approach is shown in Fig. [3.7H.
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3.3 Implementation Language and Libraries

The main algorithms were implemented in IDL 7.1.2 (ITT/Harris Geospatial, Boulder, CO),
a scientific programming language with native support for matrix and vector operations,
object orientation, and 2D /3D interactive visualization functions. Further, the algorithms
were integrated within the software toolbox SCIAN-Soft from the host laboratoryf] to pro-
vide functions for 2D /3D image manipulation, filtering, segmentation; ROI reconstruction,
morpho-topology descriptions, tracking; and interactive analysis and visualization. Selected
utility algorithms were implemented as dynamic link libraries for improved execution time:

e Polygon intersection computations, implemented in C++ using the geometry package
from the Boost library, version 1.71.0 [Boost, 2017].

e Sweep-and-Prune algorithm for 2D axis-aligned bounding boxes, implemented in C++.

The utility algorithms were encapsulated in custom functions, and compiled/built as dynamic
link libraries using Visual Studio 2010 version 10.0.40219 SP1Rel (Microsoft, Redmond, WA),
in order to be integrated with SCIAN-Soft. The developed code is currently being published
at GitHub at https://github.com/scianlab/sciansoftl

Experiments (Chapter {4)) were performed in a custom built computer, with Core i7 3930K
CPU (Intel Corp., Santa Clara, CA), 64GB RAM, 64-bit Windows 7 SP1 Operating System
(Microsoft, Redmond, VA).

3.4 Implemented Optimizations

3.4.1 Neighbor ROI/Shared Section Computations

e Axis-aligned bounding boxes. When the ROI contours are initialized, the maximum
and minimum x and y coordinate values of each contour are stored. They define N
rectangles which enclose the ROI contours, and can be checked with a fixed number
(O(1)) of simple and fast operations to avoid unnecessary detailed comparisons for non-
adjacent ROIs. Still, some non-adjacent ROIs can have their overlapping AABBs, but
in practice the ratio between the total number of ROIs N and the average of neighbors
Navg (for a given ROI) can go from 2 to 20, favoring the use of AABBs. The comparison
algorithm is shown in Figure[3.8] In a similar way, when a shared section is constructed,
a corresponding AABB is created. In order to account for the proximity distance, the
AABBs for the ROI contours are expanded in each direction (with half the specified
distance).

e Sweep-and-Prune |Cohen et al., 1995]. The N — 1 AABBs are sorted along the «
and y axes in average O(N log N) operations each (quicksort algorithm), and stored in
a heap array. The array is traversed to find pairs of possibly adjacent ROIs or shared
sections, whose AABBs lie within the proximity threshold distance, adding N look-up
operations (one for each ROI/shared section) to check the distance between adjacent
AABBs in the array. The average number of adjacent ROIs in the observed images
ranges from 1 to 6, bounding the number of comparisons per look-up operation.

"http://www.scian.cl
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3.5 Computational Complexity

3.5.1 Operations

The main contributing factor to the computation time is the number of ROIs, N in the input
image. Coupled to it, the number of points of each ROI contour, including the interpolation
factor or point density, factors into the number of operations. Let ¢; = {[z,, yp]}.p = 1.1y
a single ROI contour, the main tasks and their computation costs are:

Contour deformation, O(n;) for computing the deformation vector over each point and
O(5n;) = O(n;) for the 5-diagonal matrix inversion, if a restricted Gaussian elimination
is implemented to take advantage of the matrix sparsity and diagonal symmetry.

Bounding geometry construction, O(n;) for AABBs.

Contour resampling, O(n;) for linear interpolation.

Broadband adjacency checking, O(1) against each other ROIs (pairwise), which totals
O(N log, N) for all other ROIs, when using the Sweep-and-Prune algorithm.

Narrowband adjacency checking against ROI contour ¢; = {[z4,y,]},¢ = 1..n;, is
the most expensive task which takes O(n;n;) operations, accounting for the intersec-
tion and proximity computations, and the subsequent scanning for vertex runs, and
totaling O(c1navgNavg) With ¢1,ng., the average number of ROI neighbors and points,
respectively.

Broadband checking for corners (more than two ROIs), has a theoretical cost equivalent
to the ROI broadband checking for shared sections, with the addition of one intersection
computation for each pair of ROI sections with intersecting AABBs.

Narrowband checking for corner merging adds the intersection computation for each
candidate shared section to be included in a corner.

Separation computation, dependent on the method of choice (see [3.2.4]).

[teration convergence update, O(n;) for each ROL.

3.5.2 Memory

The required memory depends linearly on the input size for most of the data structures.
Namely:

The list of N AABBs for each ROI contour.
The N lists of n; vertices that defines each ROI contour.

The list of AABBs/bounding polygons and image patches for each of the N shared
sections.

The N; lists of vertices of the adjacent ROIs and their adjusted shared sections.
The image I, gradients and vector field GGV F.

The main non-linear memory data structure is the correspondence vertex matrix that

needs to be computed for each ROI pair. It takes O(n:

) memory space since it is a square

1

array that stores the distance between each possible pair of segments from neighboring ROI
contours.
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Input Axis-Aligned Bounding Boxes Intersection Algorithm Output

* Axis-Aligned Bounding Box 1
coordinates:

Xmin1r Xmax1r Ymin2e Ymax2 ‘ .isX'intersect'ion - ((Xma)& 2 sz'nl) A (XminZ < Xminl)) \ ((Xmin2 < Xmuxl) A (Xmax2 2 Xm[nl))
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coordinates:
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—
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—
Yes

Figure 3.8: Algorithm flowchart - Axis-Aligned Bounding Boxes Intersection. Each bounding
box is a rectangle that can be entirely defined by the zy coordinates of two of its opposing
corners. The intersection of two bounding boxes occurs if and only if they intersect along
both the x and y axes.

{

boundingBoxesintersect
?
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Chapter 4

Validation and Application

This section presents the evaluation of the developed ALPACA method in selected synthetic
and real microscopy images. The chapter is organized as follows: first, quality indicators for
contour and shared sections are presented ; next, test cases and algorithm parameters are
presented , followed by the results and discussion . Finally, a qualitative comparison
between ALPACA and alternative approaches is presented .

4.1 Quality Indicators

Since ground truth cannot be defined for real images, test scenarios and contour similarity
indicators were defined to assess the performance of ALPACA. This kind of approach has
been previously used in biological image analysis for fluorescent signals such as co-localization
[Ramirez et al., 2010], motion estimation |[Baker et al., 2011},|Zimmer et al., 2011,|Delpiano
et al., 2012, and segmentation [Coelho et al., 2009, Castaneda et al., 2014]. Quality criteria
and tests were selected by considering expert knowledge about adjacent cell membranes
in 2D /3D fluorescence microscopy with weak fluorescence intensity gradients to assess the
shared section between cell membranes.

4.1.1 Morphological Indices

Seven indices were defined to quantify the difference of the morphology of the ROIs before
and after ALPACA, and the characteristics of the shared contour sections: Relative Area
Variation (RAV), Relative Perimeter Variation (RPV), Relative Adjacent Length Variation
(RALV), Relative Non-Adjacent Length Variation (RNALV), Section Distance Simp, Sec-
tion Curvature Simpg, Section Length Simp, and Average Segment Length Simasy. The
indices were calculated using n; corresponding to the number of shared contour sections, no
corresponding to: (i) each pair of cells adjacent in each shared contour section (ng = 2n;)
for Relative Area & Perimeter Variation, (ii) each ROI of the slice (n3 = 17) for Relative
Adjacent and Non-Adjacent Length Variation, and (iii) each shared contour section (n,) for
the rest.
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Relative Area & Perimeter Variation

The basic morphological descriptors area and perimeter are used to quantify the relative
variation of the adjusted contours C;*(z,y) with respect to the original contour Ci(z,y):

e The Perimeter of a contour Ci(z,y) is determined by the sum of the length of its
segments.

e The area of a contour Cj(x,y) is calculated with the shoelace algorithm for polygons
[Braden, 1986).

e The Relative Perimeter Variation is calculated by

Perimeter(C;*(z,y))
Perimeter(Ci(z,y))

(4.1)

e Relative Area Variation RALV is calculated by

Area(C*(z,y))
Area(Ci(z,y))

(4.2)

e The Normalized Perimeter Difference is calculated by

| Perimeter(Chi(x,y)) — Perimeter(Cai(z,y))|
max { Perimeter(C i(x,y)), Perimeter(Ca;i(x,y))}

(4.3)

e The Normalized Area Difference is calculated by

|Area(Chi(z,y)) — Area(Cyi(z,y))|
max {Area(Cy;(z,y)), Area(Cay(x,y))}

(4.4)

Relative Adjacent & Non-Adjacent Length Variation

For each ROI contour, the relative length of the adjacent and non-adjacent sections is calcu-
lated as the sum of their segment lengths, and divided by the total contour perimeter. The
variation is then calculated as the ratio between the relative lengths of the adjusted contours
with respect to their original lengths In order to consider sections with only one vertex the
half-length of extreme segments were also summed.

Section Distance

The similarity indicator Section Distance (Simp) is defined from the area ratio between
contour sections as

|Ac(SC, ACY) — Ac(SC, AC,)|
Ac(SO, ACl) + AC(Scy AO2)

Simp =1 — (4.5)

The Contour Area (A¢) defines the area between the Shared Contour (SC') sections and
the Adjacent Contour (AC') sections of the first and the second contour (AC; and ACs)
section. The area between the contour sections Aq(SC, AC, /) is calculated also by the
shoelace algorithm as in [4.1.1]
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Section Curvature

The similarity indicator Section Curvature (Simy) is defined by the following steps:

1. First, correspondence lists v; = 0...N; — 1 between contour sections are defined as in
to allow vertex by vertex comparisons.

2. The Curvature (K) of contour sections is calculated for all of its vertices v; = 0...N; — 1
using the differential curvature approximation [Yates, 1974], considering their neighbors
U141 and v;_y. For the first vy and the last vertex vy,_; of a contour section, the curvature
cannot be determined due to missing neighbors.

3. Simp is calculated as

|57, AK(SC, ACY) — 32, AK(SC, AGY))|
S, AK(SC,ACY) + 3, AK(SC, AC,)

Sim;c =1- (46)

4. The difference of curvature (AKj;) is calculated as the sum of differences of curvature
between the Shared Contour (SC') section and the Adjacent Contour sections (AC
and ACs).

5. The difference is summed over all the vertices to obtain the value of Simg.

Section Length

The similarity indicator Section Length (Simy) is defined as

[L(SC)/L(ACy) — L(SC)/L(ACS)|
~ L(SC)/L(AC,) + L(SC)/L(AC,)

The Length (L) of contour sections L(SC'), L(AC}) and L(AC,) is calculated as the sum
of the length of the contour segments (as in {4.1.1)).
Average Segment Length

The similarity indicator Average Segment Length (Simasy) of a section is defined as

|ASL(SC)/ASL(AC,) — ASL(SC)/ASL(AC,)|
- ASL(SC)/ASL(AC,) + ASL(SC)/ASL(AC,)

SimAgc =1 (48)

ASL(Contour) is calculated by dividing the contour total length by the number of its
segments. ASL(AC,) and ASL(AC,) are averaged and compared to ASL(SC).

4.1.2 Similarity Indices

This section provides the quantitative error metrics for comparing experimental results of
ALPACA against a reference or ground truth segmentation, which in this case corresponds
to the manual drawings made by an expert in the test cases.

For a common notation regarding a given segmentation of a single ROIs and its corre-
sponding ground truth, let
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GT: the ground truth contour polygon of a given ROI,

S: the segmented ROI contour polygon (to be evaluated against GT),
e TP: the number of true ROI pixels (true positives),

T'N: the number of true background pixels (true negatives),
FP: the number of false ROI pixels (false positives), and
e F'N: the number of false background pixels (false negatives).

Intersection-based Indices

The Dice Coefficient DC(CY 3, Cq;) |Dice, 1945, Sprensen, 1948] and the Jaccard Similarity
Index JC(Ch 4, Cy;) [Coelho et al., 2009] for two contours Cj;(x,y), were implemented on
the basis of the Area definition and polygon intersection and union (see |4.1.1]).

e Dice Coefficient

21SNGT| 2T P 2TpP
D T)= = -
C(S,GT) S|+ |GT| ~ (FP+TP)+ (IP+FN) 2TP+FP+FN

(4.9)

For a polygon-based representation of each ROI between any pair of segmented contours
(14, Cy;, the Dice coefficient is defined as:

_ 2[C1,N Gy

DO(Cy s, C) = A1 0 Cail
ClCu: Cot) = e o

(4.10)

Here, the polygon intersection and union areas between C1 ; and Cy; are used to compute
the coefficient value.

e Jaccard Similarity Index/Tanimoto Coefficient

_|SNGT| TP
ICS,6T) = ISUGT| TP+ FP+FN

(4.11)

In the same way as with the Dice coefficient, this index is defined to account for a
polygon-based computation of the similarity between any pair of contours obtained for
a given ROI:

G N Gy

JC(Cl,i; 02,1) = m

(4.12)

For both Similarity Indices, Dice and Jaccard, the value 1 indicates perfect match between
the compared contours, and the value 0, null match.

Boundary-based Indices

e Hausdorff Distance HD [Atallah, 1983]. Defined for two contours Ci/s(z,y), it was
calculated based on the distance algorithm for the line segments that form each contour

polygon (see B23).

Let Dy, the distance from element & € C; to Cy;, HD is defined first by
hd(CLi, 0271) = max {D(l{?) . Olvik 7& CQvik} (413)
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Considering that both object boundaries are represented by polygons, HD can be ex-
pressed in terms of the euclidean distance between segments as:

HD(CU, ng) = max(hd(CLi, CQJ), hd(CQ’i, Cl,i)) (414)

with hd defined for any pair of polygons C' ;, Cy; that represent the ROI i.

1
hd(Clji, CQJ) = 5 Z 77’L1’I’L52€CQ)i S1k — SQH (415)

k=1

Normalized Sum of Distances NSD [Coelho et al., 2009]. It accounts for the ac-
cumulated differences (distance) from the pixels of the resulting ROI contours to the
reference ones.

Let Dy, the distance from pixel £ € C; to Cy;, NSD is defined as:

2 lCuy, # Cay ] x Dy

NSD(Ch;, Cay) = > 4.16
SD(C1 4, Ca3) o ( )
or, equivalently |[Bergeest and Rohr, 2012],
UG, \Cy iy D
NSD(Cy;, Cs;) = Zkecl”ucz‘\cl"mcm (4.17)

ZkECLiUCz’i Dk

with values ranging from 0 (perfect match) to 1 (no overlap). As stated by the au-
thors, NSD is not a metric because it is not symmetric nor does it satisfy the triangle
inequality. However, NSD reflects the cumulative sum of contour misalignment, unlike
any of the previous indicators. In order to be consistent with the Hausdorff Distance
computation, distance between polygon segments (instead of points/vertices) was used

(see [3.2.3).
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4.2 Test and Validation Cases

ALPACA was tested on cell aggregates from spinning-disk confocal microscopy images of
a fluorescent zebrafish embryo [Waters and Wittman, 2014, Pawley, 2006]. The sequence
is part of a routine experiment in brain asymmetry studies within developmental biology
[Lemus et al., 2021], and as such it provides a representative case of in vivo experiments
with 3D multi-cellular samples, regarding 3D live imaging acquisition settings and image
characteristics. In addition, a simpler, synthetic test case in 2D was defined with cells of
regular shape, size, and neighbor distances.

4.2.1 Microscopy Image Acquisition of PpO Cells

Zebrafish (Danio rerio) embryos were obtained by natural spawning from a fih:GAP43-
EGFP transgenic zebrafish line [Concha et al., 2003|. The sample embryo was anesthetized
(Tricain 0.003%) and mounted in 1% low melting point agarose. The PpO morphogenesis
was observed using a spinning disk confocal microscope (ZEISS; Jena, Germany /PerkinEl-
mer; Waltham, MA) under controlled temperature conditions (28° C). 3D Image stacks (8-bit
single channel intensity I € [0, 255]) of 768 x 768 x 69 voxels xyz and 166 x 166 x 500 nm voxel
size were captured with a 40x (NA 1.2) water-immersion objective, and excitation/emission
wavelength at 488/505-560 nm. Raw images were deconvolved with Huygens Software (SVI,
Hilversum, The Netherlands). Sampling distances were calculated with Nyquist rate and
PSF calculatoifl

4.2.2 Synthetic Image with Hexagon Cells of Defined Adjacency

A 2D vector image for 88 hexagons was generated with Adobe Illustrator software (Adobe;
San Jose, CA), and rasterized to 768 x 768 pixels. Horizontal edges of the hexagons were
43 pixels long, diagonal edge length and pixel representation varied slightly due to the ras-
terization algorithm. The membrane adjacency between hexagons was defined as follows: 11
hexagons with 6 Adjacent Edges (AE), 17 with 5 AE, 13 with 4 AE, 12 with 3 AE, 13 with
2 AE, 11 with 1 AE, and 11 hexagons without AE (0 AE). The distances for hexagons with
0 AE to the next hexagon varied from 3 to 12 pixels. Edge/background intensity was set to
255/0 (8 bit). The image was convolved with the theoretical PSF calculated with Huygens
Software for a pixel size identical to the xy microscope settings (166 x 166 nm?), and re-scaled

to 8-bit (Fig. [.5A).

4.2.3 Manually Outlined Contours (MOC)

Membrane segmentation was performed by three independent experts with 2-15 years of
training in n vivo microscopy and manual segmentation of diverse cell structures. The
contour of each object was outlined as a closed polygon using a digital Pen CTE-440 tablet
(Wacom; Saitama, Japan). Binary ROIs were generated with a custom-made macro written
for the Image SXM software [Barrett, 2015].

e PpO cells 17 Cells, totaling 51 MOC in consecutive xy planes along the z axis.
e Synthetic cells 88 Synthetic hexagons |4.2.2]

"https://svi.nl/NyquistCalculator
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4.2.4 Algorithm Settings
Parametric Active Contours (PAC)

The iterative solving scheme from for energy minimization of each contour was modified in
order to allow fixed contour vertices from shared sections.

e PpO cells The following energy weight coefficient values were used:
— elasticity a = 0.0002,
— rigidity 8 = 0.003,
— image force field (GGVF) xk = 0.0015.

The following contour parameter values were used:

— viscosity v = 1.0,
— average segment length ASL = 1 (equivalent to the pixel length of 166 nm),
— maximum deformation iterations = 1000,

— convergence threshold = 2 x 1079 The measurement used for evaluating the
convergence is the ratio between the maximum vertex displacement and the ROI
perimeter.

GGVF field coefficient values:
— regularization pu = 0.5,
— iterations = 100.
e Synthetic cells The same parameter values used for the PpO cells were used, except:
— elasticity a = 0.0001,
— rigidity 8 = 0.5,
— image force field (GGVF) k = 0.5.

ALPACA

The Adjacency Distance d was set to 83, 166, 332,498 nm, equivalent to 0.5, 1.0, 2.0, 3.0 pixel
length for the PpO cells, and 0.5 for the synthetic cells.
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Figure 4.1: Distance and curvature of a sample shared section calculated by ALPACA are
balanced with respect to the original ROI contour sections. Distance and curvature of the
shared contour section and the adjacent contour sections are plotted as a function of the vertex
index for the green and red cell contours shown in Fig. [3.7] The vertex index 0 is indicated
by the arrows in Fig. [3.7F. A: Distances between the shared contour section and the adjacent
and overlapping contour sections of the red and the green cell are plotted as red squares and
green dots. A maximum difference of 485 nm was detected for the first vertex (index 0). B:
Curvature plot of the shared contour section (yellow line) and the adjacent and overlapping
contour sections of the red and the green cell are plotted (red squares and green dots). The
curvature of each section is calculated using a differential-derived formulation [Yates, 1974).
Positive and negative curvature signs correspond to clockwise and anti-clockwise section
turns, respectively. Published in [Jara-Wilde et al., 2020].
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Figure 4.2: Morphological Indices for increasing Adjacency Distance d = 83,166,332, and
498 nm (from left to right and top to bottom) of PpO cell contours after the application
of ALPACA. Three morphological indices (Relative Area, Perimeter, and Adjacent Length
Variation) quantify the deviation of the adjusted contours C;*(z,y) relative to the initial
contours Cj(x,y). Four similarity indices (Simp, Simy, Simg, Simasy) compare shared sec-
tions with their respective adjacent/overlapping sections (see description in ndices were
normalized with respect to the initial ROI contours Ci(z,y) which are set to 1. Aligned
scatter plots contain data for each of the 17 cells with respect to each of the corresponding
neighbors (see for definition), and section similarity indices were computed from the
detected shared sections. Published in |Jara-Wilde et al., 2020].
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4.3 Results and Discussion

Figure 4.3: Optimized detection and adjustment of adjacent and non-adjacent PpO cell
membrane contour sections with an Adjacency Distance d = 83nm. Scale bar: 10 pm.
A: Adjacent (green), non-adjacent (blue), and overlapping (red) contour sections Ci(z,y)
detected by ALPACA are plotted on top of the corresponding intensity image I(z,y). B:
Final adjustment of non-adjacent (blue) and shared (yellow) contour sections C;*(x,y) are
plotted after application of ALPACA. Published in [Jara-Wilde et al., 2020].

Figure shows imaging data and cell membrane segmentations acquired to study the
dynamics of PpO morphogenesis (see also [4.2.1). During PpO morphogenesis, 12-18 neu-
roepithelial adjacent cells form a rosette-like structure and detach from the pineal complex
to form a small nuclei on the left side of embryonic zebrafish brain (see |[Concha et al.,
2003, Hartel et al., 2007,|Regan et al., 2009], Fig. ) Imaging characteristics and quality
shown in Fig. [3.]] represent typical scenarios for in vivo experiments that focus on group
cell migration or tissue development and the use of fluorescent membrane proteins to outline
the living form of cells and tissue |[Lecaudey et al., 2008, Richardson et al., 2016, Reig et al.,
2017, Sanchez-Corrales et al., 2018]. The selected pixel size (166 x 166 nm) is about 3 times
the suggested Nyquist rate of 50nm (see Section . However, fast in vivo imaging is
a trade-off between maximizing resolution, the field of view, and fluorescence intensity, and
minimizing photon damage, bleaching, and signal noise. For experimental conditions such as
the one presented here, the Nyquist rate cannot be kept. In this case, a rate of 166 nm was
selected.

Figure |3.1B shows membrane signals that vary in peak intensity and the width of the
Gaussian intensity profile of the xy plane. The variations can be explained by the different
orientations of the membrane sheets with respect to the microscopic PSF:

1. membrane sheets oriented vertically to the focal xy plane lead to relatively thin mem-
brane profiles with high intensities, since fluorescence signals are integrated along the
membrane sheet, collinear to the elongated z axis of the PSF;

2. membrane sheets oriented horizontally to the focal plane lead to thick membrane profiles
with relatively low intensities, since the intersection between the membrane sheet and
PSF reaches a minimum,;

3. membrane sheets oriented diagonally to the xy plane of the PSF, lead to the acquisition
of intermediate membrane profiles and signal intensities [Fidorra et al., 2009).
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In addition to the geometric constraints, membrane undulations and the dynamic organi-
zation of blebs or protrusions add different intensity patterns to the image, and the direct,
automated segmentation of cell membranes within the described conditions has not been
solved so far [Mosaliganti et al., 2012, Dufour et al., 2017]. For image data shown in Fig.
, Manually Outlined Contours (MOC) are the only choice to obtain a first, rough approx-
imation of cells membranes, especially when the confluence and morphological complexity of
the cells prevents the success of automated segmentation (Fig. —C). Cell borders cannot
be identified unequivocally in all parts of the image, so the definition of a unique ground
truth is not possible. The formation of protrusions in different directions, in addition to
heterogeneous and weak membrane signals, presents a scenario where only an experienced
investigator can take decisions to manually outline the best possible contours (see Section
. Naturally, human bias and errors are intrinsically included. In scenarios with missing
intensity information, MOC present a possible approximation. In Table [4.2] similarities and
differences generated by the three experts are shown for 17 PpO cell contours along 3 z-slice
images, producing a total of 153 cell contours. The experts identified an equal number of
cells with very similar organization and morphology overall (see for detailed compari-
son). The average difference measured for the cell area is below 10%, and for the perimeter,
below 8%, from the pairwise comparisons performed upon MOC, Parametric Active Con-
tours (PAC), and ALPACA. The Dice, Jaccard, and NSD indices indicate an equivalent of
similarity above 90%, 80%, and 90%, respectively. A Hausdorff Distance of ~7 pixels (11m)
also supports a high similarity between MOC, PAC, and ALPACA. In a different scenario,
the Expert/Expert variation of MOC was tested, and also the deviation of expert drawings
with PAC, and ALPACA within a synthetic, PSF-convolved ground truth image .
Figure shows 88 hexagons with well-defined areas, edge length and Adjacent Edges (AE
= 0,1,...6); both, MOC and ALPACA contours exhibit almost perfect alignment with the
subjacent hexagon borders for all experts (Fig. ,C). Figure shows a nearly perfect
correlation of the AE values calculated from ALPACA contours with the ground truth AE
values. Morphological and Similarity Indices shown in Supplementary Tables 2/3 indicate
nearly perfect match with the ground truth hexagons, and a very low Expert/Expert vari-
ation for MOC, PAC, and ALPACA (see| A .1Jand | A .2)). The mean differences for area
and perimeter are below or equal to 1% for pairwise comparison of expert MOC with the
ground truth data. For the Expert/Expert variation of MOC, the mean difference for the
quantification of cell area is below 1.5%, and for the perimeter, below 1%. After ALPACA,
the mean variations remain similar, but increased standard deviation values are observed in
the morphological indices.

For all experts, MOC deviate from the predominantly smooth, curved membrane pattern
in different parts of the image (Fig. /C,[A.4A/D/G), and overlapping contours cannot
be avoided. PAC are a powerful tool for correcting deviations and undulations of manually
drawn contours. Well applied GGVF attracts contour vertices towards the intensity profile
of the membranes, and contour smoothness is balanced by physical contour properties like
elasticity or rigidity. PAC have shown excellent results for the segmentation of contours in
different experimental systems and settings [Hartel et al., 2007, Fidorra et al., 2009, Chang
et al., 2014, Bustos et al., 2017]. For PpO cells, Figs. and /D/G show the results of
optimized PAC for membrane segmentation [3.2.2] together with the detection of overlapping,
adjacent, and non-adjacent sections within the range determined by the selected Adjacency
Distance d. The Dice, Jaccard, and NSD values between expert MOC are all within the ~90%
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similarity range for the E1/E2 comparison; 82%, 81% and 92% for the E1/E3 comparison,
and 89%, 81% and 93% for the E2/E3 comparison. The measured distance lies below 7 pixels
(~1pum) for E1/E2, ~8 pixels (1.1 pm) for E1/E3 and ~6 pixels (0.9 um) for the E2/E3. The
measured morphological indices for PAC were above 80% for the three comparisons. The
measured Similarity Indices lie within 80% and 90%, and the Hausdorff Distance is below
7 pixels (~1pm). The rest of the measurements in Table show that both PAC and
ALPACA preserve this highly small variability between experts within the same range.

The results of ALPACA (Cap. , Figs. are shown for two neighboring PpO cells
in Fig. (3.7 For adjacent (green), non-adjacent (blue), and overlapping (red) membrane
sections, ALPACA calculates a solution for a common shared contour section on the basis of
Euclidean distance correspondence vertex mapping (see , Fig. /D) and normalized
length correspondence vertex mapping (see [3.2.4] Fig. B.7E/F). As Figs. B.7E/F show, only
the normalized length based correspondence vertex mapping leads to smooth common shared
contour sections for adjacent and overlapping membrane sections, and avoids undulations that
can be observed at the tips of the sections in selected cases (see representative example in
Fig. /D). Finally, ALPACA connects the tips of the non-adjacent contour sections to the
common shared contour section, and applies piecewise parametric active contour relaxation
exclusively to the non-adjacent contours to optimize for smooth transitions between adjacent
and non-adjacent contours (Fig. / F). From the new contour solution presented in Fig.
/H, the section length of adjacent vs. non-adjacent membrane sections can be calculated
together with morphological descriptors. Angles of the triplet vertices and the corresponding
cell contours can be determined by standard fitting of straight lines or circular arcs to a
number of contour vertices in proximity to tips (Fig. |3.7H). The improved cell-cell and cell-
medium contours also improve the estimation of angles between adjacent cells in 2D and
should provide a more solid basis for force inference techniques that allow the estimation of
tension maps in 2D and 3D [Veldhuis et al., 2017].

The free parameters of the active contour approach permit to optimize contours for a
plurality of shapes, and could be trained to fit in vivo imaging data of cellular membranes.
However, there is no available ground truth for the exact localization of the membrane sheets
that would allow to define unique performance indicators, such as the Hausdorff distance or
the Dice coefficient |Chang et al., 2014] for the contours or the segmented ROIs. The proposed
series of quality indicators aims to characterize shared and final cell contour sections (Fig.
4.2)). Fig. shows that distance (£.1A) and curvature (4.1B) of the shared contour
section are balanced with respect to the adjacent and overlapping contour sections. The
differences of the distance indicators that compare the shared contour section to each of the
original contour sections are within the size of the symbols used in the plot except for the
first two vertex positions (compare Fig. with Fig. /F). The curvature plot of the
shared contour section calculated with the normalized length based correspondence vertex
mapping with respect to each of the original contour sections (Fig. 4.1B) shows that the
curvature of the shared contour section remains within the curvature limits of the original
contour sections. A bias towards either one of the original contour section curvatures cannot
be observed. It is impossible, however, to provide a perfect match of the shared contour
section with respect to the distance and the curvature, since position and curvature are not
independent parameters. However, the visual impression of the position of the vertices (Fig.
—H) combined with the subjective quality indicators for distance and curvature (Fig. [4.1])
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satisfy the expectations within this test for shared cell contours in general. The variation of
morphological indices was measured for the ROI contours with dependence of the Adjacency
Distance d. Figure and Table present the deviations of a total of seven morphological
features of PpO cells after the application of ALPACA with selected Adjacency Distance
values d = 83,166,332, and 498 nm, relative to the features of the cell contours before the
adjacency correction (see .

The relative area and perimeter variations start below 1, which is expected for ROIs with
highly overlapping contours (red contour sections in Fig. , and tend to rise slightly with
increasing d. This can be explained by the adjacency condition established by ALPACA at
the interface of adjacent and non-adjacent contour sections. First, the adjacency condition
forces the shared contour to balance the positions of both adjacent contour sections (Fig.
B.7E-H). This leads to shorter shared contour sections relative to both adjacent contour
sections (compare Fig. —H to Fig. and Table. When d increases, the smoothness
condition for the non-adjacent contours at the tips of the shared sections starts to add
length to the contours. However, the increase is marginal within the tested range for d with
respect to the overall contour morphology (Fig. , Table . The relative increase in
ROIs with short non-adjacent sections is higher, up to ~ 20% (data not shown). All further
morphological indices: Section Distance (Simp), Section Length (Simp), Average Segment
Length (Simasr), and Section Curvature (Simy) show deviations from the mean values
below 10% with respect to the original contour sections (Fig. [4.2). The indices increment
with increasing d, which does not surprise, since the adjacent contour sections enlarge with d.
A small number of outliers appear for the Section Curvature index, for short contour sections
of dissimilar shapes whose adjusted shared section is not always able to compensate equally
(not shown).

Apart from the parameters of the active contour approach (see , the Adjacency
Distance d is the only free parameter within ALPACA. Considering the varying conditions
for in wvivo experiments with cells, tissue, or organisms, and the heterogeneous geometries
of membrane sheets and the PSFs of different microscopy techniques, there is no unique
recommendation for the selection of d: its value needs to respond to the acquisition limits
and the quality of the ROI contours of an automated or manually approach for Ci(z,y).
Fig. [£.3] shows the detection of adjacent and non-adjacent cellular membranes within an
Adjacency Distance d = 83 nm, and the solution calculated by the algorithm. This condition
for d corresponds to ~1.66x the recommended sampling distance for the image acquisition
in the zy plane (d = 50nm). The visual perception of the solution for the cell contours
Ci*(x,y) is convincing and does not rise additional questions beyond the responses to the
initial experimental challenge. Since variations of the morphological features in response to
ALPACA are relatively small within the tested range for d, the researcher has to take a
decision based on the visual perception and the tolerated variation of morphological features
in response to the specific scientific question. In the absence of ground truth for adjacency,
different solutions for d near the resolution limit should be tested and analyzed, and results
can be reported for a single d value or a range to evidence the robustness of the calculated
data for adjacent and non-adjacent sections.
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Figure 4.4: Expert/Expert variations (Experts E1,E2,E3) of Manually Outlined Contours
(MOCs, panels A/D/G), optimized Parametric Active Contours (PACs, panels B/E/H), and
ALPACA (panels C/F/I) of 17 PpO cells from Fig. [3.1] A representative z-slice from a 3D
stack is shown. For MOC/PAC overlapping (red), adjacent (green), and non-adjacent (blue)
contour sections are shown for an Adjacency Distance d = 83 nm. For ALPACA, adjacent
(yellow) and non-adjacent (blue) contour sections are shown. Scale bar is 10 pm.Published

in [Jara-Wilde et al., 2020].
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Figure 4.5: Adjacent and non-adjacent sections calculated by ALPACA for manually out-
lined ROI contours in synthetic test. (A) Synthetic image with 88 hexagons ; intensities
are shown in inverted grey scale. The number of Adjacent Edges (AE = 0 — 6) is indicated
for each hexagon. (B/C) Detail of the hexagons from the dashed square in (A). (B) Manu-
ally Outlined Contours (MOC) of one representative expert with overlapping (red), adjacent
(green), and non-adjacent (blue) contour sections for an Adjacency Distance d = 1 pixel.
(C) ALPACA defines adjacent (yellow) and non-adjacent (blue) contour sections. All ex-
perts yield similar contour quality. (D) Aligned scatter plot of AE calculated by ALPACA
vs. Ground Truth AE. Open circles represent data adjusted from three expert MOC for
each hexagon. AE values (y axis) were calculated as the ratio between the adjacent contour
length and the total contour length, multiplied by 6. The grey lines indicate mean values.
Calculated mean + standard deviation values: 0+ 0 (0 AE); 1.09 £ 0.04 (1 AE); 2.12 £ 0.08
(2 AE); 3.12 £0.05 (3 AE); 4.07 £ 0.12 (4 AE); 5.09 + 0.07 (5 AE); 5.98 £ 0.02 (6 AE).
Published in [Jara-Wilde et al., 2020].
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Table 4.1: Variations of Morphological Indices for increasing Adjacency Distance d. 17 PpO
cell membrane contours along three z-slices were measured from ALPACA, upon the MOC
of three independent experts, totaling n; = 153 contours. The number of shared sections
(ng) varies according to the Adjacency Distance d (see . Mean 4+ Standard Devi-
ation/Standard Error values are shown, with the maximum and minimum values highlighted
in dark and light grey, respectively. RAV: Relative Area Variation, RPV: Relative Perime-
ter Variation, RALV: Relative Adjacent Length Variation, RNALV: Relative Non-Adjacent
Length Variation.

Index d = 83 nm d = 166 nm d = 332 nm d =498 nm
ny =3 x 51 ny =3 x 51 ny =3 x 51 ny =3 x 51
ng = 294 ng = 265 ny = 281 ng = 152
RAV (n,) 0.969 0.978 0.994
+ 0.0031/0.003 | £+ 0.032/0.003 + 0.039/0.003
RPV (n) 0.924 0.936 0.960
+ 0.028/0.002 | £+ 0.028/0.002 + 0.039/0.003
RALV (ny) 0.882 0.941 0.952
+ 0.058/0.005 | £+ 0.017/0.004 + 0.049/0.004
RNALV (n,) 0.969 0.923 1.034
+ 0.031/0.003 | £ 0.143/0.012 + 0.217/0.018
Simp (ns9) 0.962 0.952 0.958
+ 0.057/0.003 | & 0.044/0.003 | £+ 0.043/0.004
Simy, (ng) 0.993 0.993 0.995
+ 0.024/0.001 | £+ 0.031/0.002 + 0.024/0.002
Simgq (n2) 0.914 0.916
+ 0.095/0.006 | + 0.096,/0.008
Simas (n2) 0.989 0.972 0.971
+ 0.017/0.001 | + 0.041/0.003 | £ 0.039/0.003
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Table 4.2: Morphological Indices for cell area and perimeter (NAD: Normalized Area
Difference, NPD: Normalized Perimeter Difference) and Similarity Indices (Dice, Jaccard,
NSD: Normalized Sum of Distances, HD: Hausdorff Distance) for three independent experts
(E1/E2/E3) for n = 51 PpO cells from a complete 3D stack. Indices were calculated pairwise
for E1, E2, and E3, for Manually Outlined Contours (MOC), Parametric Active Contours
(PAC), and ALPACA. Mean + Standard Deviation values are shown, with the maximum
and minimum values highlighted in dark and light grey, respectively. Morphological Indices

were calculated as described in Similarity Indices were calculated as described in [4.1.2

MOC PAC ALPACA
E1/E2 | E1/E3 | E2/E3 | E1/E2 E2/E3 | E1/E2 | E1/E3 | E2/E3
NAD | 0.082 | 0.098 | 0.090 | 0.084 0.091 | 0.075 | 0.095 | 0.086
+£0.060 | +0.080 | 40.084 | £0.061 +0.086 | £0.054 | +0.082 | £0.083
NPD | 0.065 | 0.077 | 0.064 | 0.060 0.066 | 0.062 | 0.078 | 0.066
+£0.049 | +0.053 | 40.049 £0.049 | +£0.048 | +0.054 | £0.048
Dice | 0.903 | 0.895 | 0.897 0.897 | 0.898 | 0.896 | 0.885
£0.041 | £0.052 | 40.055 +0.056 | £0.120
Jaccard | 0.825 | 0.814 | 0.817 0.816 | 0.823
+0.065 | £0.079 | 0.080 | £0.062 +0.083
NSD | 0.066 0.069 | 0.063
+0.059 +0.074 | £0.056
HD 6.345 5962 | 6.096 | 6.558 | 5.729 | 6.053 | 6.501 | 5.748
+4.051 +2.609 | +4.061 | +4.196 | +2.631 | +4.085 | +£4.141 | £2.631
HD [nm] | 1053 989.6 | 1012 | 1089 | 951.1 | 1048.8 | 1079.2 | 954.1
+672.5 +£433.0 | £674.1 | £696.5 | £436.8 | £678.1 | £687.4 | +436.9
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Table 4.3: Morphological Indices for cell area and perimeter (NAD, NPD) and Similarity
Indices for three independent experts (E1/E2/E3) against Ground Truth (GT) for n = 88
synthetic hexagonal cells. Indices were calculated pairwise for GT against E1, E2, and E3,
for Manually Outlined Contours (MOC), Parametric Active Contours (PAC), and ALPACA.
Mean + Standard Deviation values are shown, with the maximum and minimum values
highlighted in dark and light grey, respectively.

MOC PAC ALPACA
GT/E1| GT/E2 | GT/E3 | GT/E1 | GT/E2 | GT/E3 | GT/E1 | GT/E2 | GT/E3
NAD | 0.006 | 0.010 | 0.010 | 0.014 | 0.023 | 0.026 | 0027 | 0.032
£0.006 | +£0.007 | +0.008 | +0.013 | £0.011 | £0.012 | £0.107 | +0.110
NPD | 0.005 | 0.007 | 0.006 | 0.005 | 0.011 | 0.010 | 0.049 | 0.058
+0.004 | £0.005 | +0.004 | £0.007 | £0.006 | +0.006 | +£0.103 | +0.113
Dice | 0.991 | 0.988 | 0.986 0.988 | 0987 | 0987 | 0974 | 0.984
+£0.004 | £0.003 | +0.004 +0.006 | £0.006 | £0.004 | £0.104 | +0.003
Jaccard | 0.982 | 0.976 | 0.972 0.977 0.974 | 0970 | 0.968
+0.007 | 40.006 | +0.007 +0.011 +0.007 | 40.007 | +0.006
NSD | 0.00I | 0.00L | 0.001 0.0009 | 0.001 | 0.001
+£0.000 | £0.000 | £0.000 £0.0005 | 40.0005 | +0.0004
HD | 1497 | 1673 | 1811 1.882 | 1.948 | 2.087
+£0.425 | +£0.371 | +0.408 +0.445 | +£0.334 | +0.427

Table 4.4: Morphological Indices for cell area and perimeter (NAD, NPD) and Similarity In-
dices for three independent experts (E1/E2/E3) for n = 88 synthetic hexagonal cells. Indices
were calculated pairwise for the experts, for Manually Outlined Contours (MOC), Parametric
Active Contours (PAC), and ALPACA. Mean + Standard Deviation values are shown, with

the maximum and minimum values highlighted in dark and light grey, respectively.

MOC PAC ALPACA
E1/E2 | E1/E3 | E2/E3 | EI1/E2 E2/E3 | E1/E2 | E1/E3 | E2/E3
NAD | 0.010 0.011 0.012 0.015 0.013 0.010 0.009 0.010
+£0.008 | +£0.007 | +0.008 | =0.010 +0.007
NPD | 0.009 0.007 0.008 0.009
4£0.006 | +£0.006 | +0.007 | =0.006
Dice 0.986 0.986 0.986 0.973 0.972 0.974
+£0.003 | £0.004 | =£0.003 +0.116 | +0.227 | +0.116
Jaccard | 0.973 0.972 0.972 0.974 0.978 0.960 0.959 0.961
+£0.006 | +£0.007 | =£0.006 4£0.010 | £0.009 | +0.116 | +£0.120 | +0.119
NSD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
+3.8E-04 | +4.8E-04 | +3.9E-04 +6.2E-04 | +£5.95-04 | £2.9E-04 | +£4.0E-04 | +4.0E-04
HD 1.893 1.885 2.037 2.125 1.986 2.098 1.866
+£0417 | +£0.393 | +0.368 +£0.281 | £0.341 | £0.550 +0.606
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4.4 Alternative Approaches

In this section, a qualitative comparison is provided for approaches that can be regarded as
similar or alternatives to ALPACA.

The ALPACA approach combines parametric contours with algorithms for detection, ad-
justment and connection of shared/non shared contour sections, and relies on polygon in-
terpolation, proximity and intersection computations. In consequence, there are manifold
possible ways to evaluate its final or intermediate results against alternative approaches. In
addition, a proper comparison between ALPACA and other approaches requires implementa-
tions over the same (or at least equivalent) numerical and algorithm basic functions, in terms
of numerical schemes, data structures, algorithm optimizations, programming languages,
code libraries, and parameter settings, which would add an amount of coding and testing far
beyond the scope of this work?l An example of such complexity can be found in our com-
parison of discrete differential operators for an established optical flow algorithm |Delpiano
et al., 2012], together with numerical solvers, test data sets, and other algorithms available
with our open-access implementation |Jara-Wilde et al., 2015]).

Among the surveyed approaches (see , , Table , the ones selected as suitable
to compare address the detection and/or adjustment of adjacent ROI contours, although
they do not necessarily with the same or equivalent steps defined in ALPACA. The selected
approaches are:

e T-snakes |[McInerney and Terzopoulos, 1995b]. The T-snakes approach provides a
parametric contour model with image vector fields, together with algorithms for contour
interpolation, and adjacency detection (intersections only), which makes it similar to
ALPACA. There is no published implementation of the authors’ method, although two
versions have been developed by others:

— A custom prototype that combines T-snakes with gradient vector flow fields has
been published |Olmos, 2009|. Its implementation written in C could be extended
and adapted, but the implemented active contour coefficient values are not directly
comparable with the conventional snakes model.

— A C++ implementation within an open-source framework |[Namias et al., 2016]@
(see the Deformable Model Array below).

Within the T-snake approach, however, here is no definition of shared sections, yet the
rules to merge or split ROI contours could be expanded to include it.

e 3D Active Meshes |[Dufour et al., 2011]. Available in 3D as a plug-in for the Icy
bioimaging software [de Chaumont et al., 2012]@, written in Java language. Defines
parametric ROI contour models as 3D surface meshes (not directly comparable with 2D
polygons) within an active contour approach that includes contour and image intensity
features (requires adaptation to be compared with ALPACA), and the contours are
checked for intersections (similar to the detection of shared sections in ALPACA).

20nly the ALPACA implementation, which is mostly written in a high-level programming language, has
about fifteen thousand lines of source code, not counting the active contour approach and post-processing
data collection scripts. Other software packages such as RACE have a code base of similar size.

3https://www.cifasis-conicet.gov.ar/namias/Files/Filters/T-Snake.tar.gz

“http://icy.bioimageanalysis.org/plugin/3d-active-meshes/
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However, instead of defining shared sections, this approach defines a repulsion force
that separates the adjacent ROI contour sections which have no influence/dependency
on each other for adjusting their shape. Nevertheless, a modified algorithm could be
defined to quantify and adjust them, by specifically addressing the optimization and
contour models.

e ACME |Mosaliganti et al., 2012]. Implemented as open-source, available in C—H—E].
It detects membrane sheets over the input image using membrane intensity models
(instead of the gradient vector fields used in ALPACA) and without needing contour
models of each ROI, no difference in the detection of adjacent and non-adjacent con-
tours (other than the intrinsic fluorescence signal changes that can be expected). This
approach avoids the issue of adjacency detection and correction, but the ROI contours
have to be retrieved and quantified with additional, separate steps.

e CellFit/CellFit-3D |Brodland et al., 2014, Veldhuis et al., 2017]. Source code and
implementation details were not published, but a Windows executable application is
available for downloadﬂ These approaches define parametric contour models which
detect adjacency and shared sections between two or more ROIs, and dedicated in-
teraction rules for them. To be comparable with ALPACA, they require the addition
of intensity gradient vector fields, which appears to be straightforward given the data
structures and algorithm steps defined.

e Deformable Model Array [Namias et al., 2016]. Implementation availabld’|in C++
source code, relying on the ITK library [Yoo et al., 2002, McCormick et al., 2014]@
for standard image processing functions. Highly similar approach in terms of contour
model and adjustment steps (T-snakes and GVF snakes), which could be adapted to
include or implement ALPACA for comparison, but does not include a shared section
definition and posterior steps.

e RACE (2D/3D) [Stegmaier et al., 2016]. Implemented as open-source in C++ and
CUDA, with ITK library functions. A combined use of image filters and watershed
transforms (instead of intensity gradient vector fields) enhance the membrane signals
(including adjacent membranes) for segmentation before the detection of ROI contours.
To compare it with ALPACA, the quantification of shared sections needs to be added.

Shttps://github.com/krm15/ACME
Shttp://www.civil.uwaterloo.ca/brodland/cellFIT.html
"https://www.cifasis-conicet.gov.ar/namias/Files/Filters/DMA_Framework_Qt5.tar.gz
Shttps://itk.org
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Overall, the presented alternatives and ALPACA are conceived within a similar context of
biomedical imaging (and fluorescence microscopy for many of them), and address the prob-
lem of segmenting ROIs with shared boundaries. However, they do it by defining different
contour models and constraints for the solution. Also, they are defined with different steps
and parameters, in addition to several implementation and optimization choices that, de-
spite being justifiable, prevent or hinder an experimental and direct comparison experiment
between the models and constraints of each approach in addition to their quality and effi-
ciency indices. Nevertheless, the main distinctive features of ALPACA can be stated from a
qualitative perspective as:

e Explicitly defined shared contour sections. Shared sections are parametric con-
tours too, suitable for adjustment and connection steps, which were defined to preserve
shape and/or image features of the ROIs that originate them.

e Connection rules for shared and non-shared contour sections. Each adjusted
shared section becomes part of the final contour of two ROIs, each of them subject to
further adjustment and connection rules for shared and non-shared contour sections.
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Chapter 5

Conclusion

5.1 General Remarks

In this work, a 2D parametric contour model was used as the basis for the pairwise detec-
tion and adjustment of shared contour sections of neighboring ROIs. The ALgorithm for
Piecewise Adjacent Contour Adjustment ALPACA receives an Adjacency Distance d as in-
put parameter, in order to use it as a threshold for detecting adjacent ROI contour sections.
ALPACA also detects overlapping contour sections, and merges them with existing adjacent
sections in order to define shared contour sections that set a common boundary for neigh-
boring ROIs. Finally, the shared sections are connected to the non-adjacent sections which
are adjusted to ensure morphological consistency of the final contour by applying a piecewise
parametric active contour optimization.

The parametric active contour model allows to reduce pixel-level shape irregularities, as
well as contour undulations that can naturally occur in manual outlines. ALPACA introduces
the handling of proximal and overlapping contour sections from different ROIs: it detects
adjacent, non-adjacent, and overlapping 2D sections within a selected Adjacency Distance
d, calculates shared sections in replacement to adjacent and overlapping contour sections of
neighboring ROIs with minimum shape alterations, and presents piecewise active contour so-
lutions for each pair of ROIs which share one or more sections with shape preserving contour
properties at the tips of the shared sections and the overall cell morphology. ALPACA can
be integrated with different methods for contour adjustment to handle non-adjacent sections,
either as pre- or post-processing stages, or within a mixed approach of non-adjacent /adjacent
contour adjustment, allowing, for example, the appearance or disappearance of shared sec-
tions (as in the case of motion estimation or simulations for time-lapse experiments).

The presented approach presents a solution to correct and quantify adjacent contours in
the xy plane, the optimized 2D contours can set the basis to improve the representation of
cells as 3D surfaces, the determination of forces, or the tracking of contours in combination
with (or in parallel to) previously published approaches (see [3.3 [Mosaliganti et al.,
2012, Mashburn et al., 2012,[Veldhuis et al., 2017]).
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5.2 Future Work

Detection and Handling of Corner/Junction Points for Three or More ROIs In-
tersecting shared sections from more than two ROI contours can appear due to natural
arrangements of cell aggregates that produce junction points, and/or shared sections that
could be determined by more than two adjacent contour sections. This can also occur due to
large values of d that further extend the adjacency range, potentially covering several junc-
tion points. While the detection of such points can be achieved with a procedure equivalent
to the pairwise ROI adjacency detection, the replacement of one or more contour sections
from a single ROI containing a variable number of corners results in a non-trivial connectivity
problem for piecewise contours. In addition, the estimation of junction points needs to take
into account image and contour shape features that ensure consistency with the parametric
active contour approach, in order to yield morphologically consistent ROI contours. Estab-
lished approaches [Brodland et al., 2014}Veldhuis et al., 2017| can serve as a basis for defining
an extended version of the correspondence vertex list approach presented in this thesis.

Extension to 3D A natural extension for real experiments and data sets is to extend
the ALPACA approach to 3D segmentation and quantification. To this end, at least two
different strategies can be perused: (i) segmenting 2D image slices from a 3D stack, and then
merge the obtained ROIs in order to generate a final 3D segmentation, as in some state of
the art software tools such as RACE [Stegmaier et al., 2016]; or (ii) to directly extend the
boundary models and detection algorithms for 3D geometries, by using surface boundary
models such as polygon meshes, akin to the active meshes approach [Dufour et al., 2011].
We already implemented and started to apply 3D descriptors to neurons in developing fish
embryos [Lemus et al., 2017, Lemus et al., 2021], and also 3D optimization algorithms for
quantifying the localization of DNA replication sites within culture cells [Liddle et al., 2014].

Segmentation in Time Series Live imaging experiments often require the analysis of
dynamic events of change form and organization changes at different levels, in processes
involving cell (e.g. migration in tissue development or wound healing) or intracellular dy-
namics of organelles. To this end, tracking and motion estimation approaches have been
developed |[Rabut and Ellenberg, 2004, Dufour et al., 2005, Nath et al., 2006, Wang et al.,
2007, Dzyubachyk et al., 2007,[Meijering et al., 2009,|/Chowdhury et al., 2010, Mikula et al.,
2011, Meijering et al., 2012, Sacan et al., 2008,/ Amat et al., 2014]. In particular, contributions
in proper implementation and parameter settings of optical flow have been made in parallel to
this work by the author [Delpiano et al., 2012, Jara-Wilde et al., 2015| Their integration with
a segmentation approach like ALPACA will provide the necessary image tools that, combined
with those from biomedical sciences, will deepen the understanding of the interplay between
form and function at different levels, in scenarios of physiology, disease/healing, and others.

Computation Enhancements The ALPACA computation time depends mainly on the
exhaustive segment-segment distance computation between ROI contours; it scales in quadratic
proportion with respect to the average segment (or vertex) count of the input ROI set. Mem-
ory usage scales linearly with respect to the image and contour size. The use of adaptive algo-
rithm design and analysis techniques for ALPACA can lead to better performing algorithms
both in sequential and concurrent computing schemes, regarding specific problem instances
with particular features of the input and/or output (e.g. output-sensitive algorithms).
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Possible approaches to consider for computation improvements in ALPACA include:

e Time and memory efficient linear algebraic equation solvers for the parametric active
contour adjustment based on n-diagonal matrices, avoiding complete matrix decompo-
sition operations.

e Broadband adjacency checking using adaptive convex hull algorithms (output-depend-
ent complexity) can lower the theoretical bounds of computation time in algorithms
with input-dependent complexity; also narrow band and compression approaches for
distance computations and/or level set methods (see can be regarded as
adaptive, since computations and storage are performed selectively according to the
solution at a given iteration, instead of the whole image, reducing the computation
times for the level set function adjustment.
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Appendices

A Statistical Analysis of Similarity Indices

This section presents the tests performed to find statistically significant differences in the
morphological Similarity Indices (Dice, Jaccard, Hausdorff Distance HD, and Normalized
Sum of Distances NSD) obtained with MOC, PAC, and ALPACA contours from Expert (E1,
E2, E3) and Ground Truth (GT) segmentations of synthetic and PpO cells (see [4.1] [4.3)).
Measurements of the Similarity Indices for Expert/Ground Truth (E1/GT, E2/GT, E3/GT)
and Expert/Expert (E1/E2, E1/E3, E2/E3) contours were tested with the procedures de-
scribed below. All tests were performed with the GraphPad Prism 8.0.1 software (GraphPad
Software; San Diego, California, USA).
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A .1 Similarity Indices across Algorithm Steps in Synthetic Cells

The first set of tests aims to detect significant differences in the Similarity Indices from

Experts/Ground Truth contour measurements, that could be attributed to the steps of the
ALPACA approach.

In order to select the comparison test for the Similarity Indices, it was necessary to de-
termine first if the measured data can be treated as normally distributed. To this end, the
Kolmogorov—Smirnov test [Massey Jr., 1951] was applied for each set of measurements, with

significance level a = 0.05. The obtained p values (Table indicate that:

e for GT/E2, measurements for MOC (Dice and Jaccard) and PAC (Dice, Jaccard and
NSD) are rejected as normally distributed; and

e for GT/E3, measurements for MOC (Dice, Jaccard and NSD) and ALPACA (HD and
NSD) are rejected as normally distributed.

Comparison of Algorithm Steps

The changes in the Similarity Indices between MOC, PAC, and ALPACA steps were tested for
the measurements data of Expert/Ground Truth. Since some data sets could not be treated
as normally distributed, the comparisons were performed with the non-parametric Friedman
test |Friedman, 1937] (Table rows 2-3), followed by a post hoc Dunn test [Dunn, 1964]
(Table[A2] rows 4-8). The Friedman test is used to detect differences in the Similarity Indices
measured at each algorithm step across Expert/Ground Truth combinations. The obtained
p values indicate that a difference was detected in all cases; however, a complementary test
was needed to determine which pairs of data sets present a significant difference. To this
end, the non-parametric post hoc Dunn test was applied for the Similarity Indices from pairs
of algorithm steps for each Expert/Ground Truth measurement set. The results from Table
[A2] are summarized as follows:

e Overall, the test results show that in every Expert/Ground Truth measurement
set, significant differences were found for all Similarity Indices between
MOC and ALPACA (first and last steps), suggesting that the Similarity
Indices for the synthetic cell contours changed after the application of the
ALPACA approach.

e The Friedman found a significant difference in all of the Indices, i.e. at least one data
set does not appear to have the same distribution.

e For the Dice coefficient, the post hoc Dunn test found:

— in MOC/PAC, significant differences for E1/GT only; and

— in MOC/ALPACA and PAC/ALPACA, significant differences for every Expert/GT.
e For the Jaccard index, the post hoc Dunn test found:

— in MOC/PAC, significant differences for E1/GT only;

— in PAC/ALPACA, significant differences for E2/GT and E3/GT; and

— in MOC/ALPACA, significant differences for every Expert/GT.
e For the Hausdorff Distance, the post hoc Dunn test found:

— in MOC/PAC, significant differences for every Expert/GT;
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— in PAC/ALPACA, significant differences for E2/GT only; and
— in MOC/ALPACA, significant differences for every Expert/GT.
e For the Normalized Sum of Distances, the post hoc Dunn test found:
— in MOC/PAC, significant differences for E2/GT and E3/GT;
— in PAC/ALPACA, significant differences for every Expert/GT; and
— in MOC/ALPACA, significant differences for every Expert/GT.

A .2 Similarity Indices for Expert/Expert in Synthetic Cells

Complementary to the previous comparison, tests for detecting significant differences in the
measured indices among Expert/Expert contours were applied. A test for normality was
applied to find significant differences between experts using the Similarity Indices. Table
shows the results of the Kolmogorov-Smirmov test, applied with significance level o = 0.5.
In summary:

e Measurements of Dice and Jaccard indices are rejected as normally distributed across
all steps and experts, except PAC for E1/E3.

e Measurements of NSD in all steps for E1/E2 are rejected as normally distributed,
together with the ALPACA step for E1/E3.

e Measurements of HD are accepted as normally distributed for all pairs of experts.

Comparison of Experts

In order to find significant differences between measurements, the Friedman test was applied
for the data sets that were rejected as normally distributed, and the ANOVA test, for the ac-
cepted. Significance level a = 0.5 was used. Results are shown in Table [A4] and summarized
as:

e Significant differences were found for most of the Expert/Expert and Ex-
pert/Ground Truth measurements.

e For E1/E2, no significant differences found in HD across all steps.

e For E1/E3, no significant differences found in Dice and Jaccard across all steps.

e For E1/E3, no significant differences found in HD in PAC/ALPACA.

e For E1/E3, no significant differences found in NSD in MOC/ALPACA.

e For E2/E3, no significant differences found in HD in MOC/PAC and MOC/ALPACA.
e For E2/E3, no significant differences found in NSD in MOC/PAC.
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Table Al: Normality Test of Experts/Ground Truth Similarity Indices obtained for MOC/PAC/ALPACA steps in synthetic cells.
Kolmogorov-Smirnov test p values are shown. Significance level o = 0.05. Similarity Indices: Dice, Jaccard, NSD (Normalized Sum
of Distances), HD (Hausdorff Distance).

E1/GT E2/GT E3/GT
MOC | PAC |ALPACA| MOC | PAC |ALPACA | MOC | PAC | ALPACA
Dice | 0.0327 | 0.0001 | <0.0001 | >0.1000 | >0.1000 | 0.04 | >0.1000 | 0.0032 | <0.0001
Jaccard | 0.0337 | <0.0001 | <0.0001 | >0.1000 | >0.1000 | 0.0378 | >0.1000 | 0.0027 | <0.0001
HD [px] | <0.0001 | <0.0001 | 0.0029 | <0.0001 | 0.0009 | 0.0298 | <0.0001 | 0.0003 | >0.1000
NSD | 0.0314 | <0.0001 | 0.0128 | 0.0449 | 0.0551 | 0.0128 | >0.1000 | 0.0161 | 0.0844

¢6

Table A2: Friedman and post hoc Dunn tests applied to the Experts/Ground Truth Similarity Indices obtained for MOC/PAC/AL-
PACA steps in synthetic cells. p values are shown (significant values in grey cells). Significance level aw = 0.5.

Dice Jaccard Hausdorff Distance [px] Normalized Sum of Distances
Friedman Test Friedman Test Friedman Test Friedman Test
All <0.0001 <0.0001 <0.0001 <0.0001
E1/GT | E2/GT | E3/GT | E1/GT | E2/GT | E3/GT | E1/GT | E2/GT | E3/GT | E1/GT | E2/GT | E3/GT
MOC/PAC 0.0421 | 0.7705 | 0.1763 | <0.0001 | 0.7705 | 0.1763 | <0.0001 | <0.0001 | <0.0001 | 0.0055 | <0.0001 | <0.0001
PAC/ALPACA | <0.0001 | <0.0001 | <0.0001 | >0.9999 | <0.0001 | 0.0010 | >0.9999 | 0.0102 | >0.1763 | 0.0138 | 0.0075 | 0.0005
MOC/ALPACA | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0039




€6

Table A3: Normality test of Expert/Expert Similarity Indices obtained for MOC/PAC/ALPACA steps in synthetic cells. Kolmogorov-
Smirnov test p values are shown (significant values in grey cells). Significance level a = 0.05. Similarity Indices: Dice, Jaccard, NSD
(Normalized Sum of Distances), HD (Hausdorff Distance).

MOC PAC ALPACA
E1/E2 | E1/E3 | E2/E3 | EI/E2 | E1/E3 | E2/E3 | E1/E2 | E1/E3 | E2/E3
Dice | 0.2502 | 0.4891 | 0.2674 | 0.817 | 0.0003 | 0.5191 | 0.1349 | 0.1527 | <0.1437
Jaccard | 0.2496 | 0.5082 | 0.2997 | 0.8265 | 0.0003 | 0.5687 | 0.1268 | 0.1482 | 0.1497
HD [px] | 0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0003 | 0.0001 | 0.0355 | 0.0297 | <0.0001
NSD | 0.1796 | 0.0024 | 0.0023 | 0.499 | 0.0125 | 0.0739 | 0.5253 | 0.1525 | <0.0001

Table A4: Friedman and ANOVA /Tukey tests applied to the Expert/Expert Similarity Indices for MOC/PAC/ALPACA steps in
synthetic cells. p values are shown (significant values in grey cells). Significance level a = 0.5.

Dice Jaccard Hausdorff Distance [px] Normalized Sum of Distances
ANOVA | Friedman | ANOVA | ANOVA | Friedman | Friedman | Friedman | Friedman | Friedman | ANOVA | Friedman | Friedman
E1/E2 E1/E3 E2/E3 E1/E2 E1/E3 E2/E3 E1/E2 E1/E3 E2/E3 E1/E2 E1/E3 E2/E3
<0.0001 0.9775 <0.0001 | <0.0001 0.9775 <0.0001 0.0597 0.0011 0.0028 <0.0001 | <0.0001 | <0.0001
MOC/PAC 0.0014 >0.9999 | <0.0001 | 0.0013 >0.9999 | <0.0001 0.057 0.0009 0.4974 0.0189 0.0019 0.099
PAC/ALPACA | <0.0001 | >0.9999 | <0.0001 | <0.0001 | >0.9999 | <0.0001 0.4068 0.7229 <0.0019 <0.0001 0.0002 <0.0001
MOC/ALPACA | <0.0001 | >0.9999 | <0.0001 | <0.0001 | >0.9999 | <0.0001 | >0.9999 0.0426 0.1285 <0.0001 | >0.9999 | <0.0001




A .3 Comparison of Experts and ALPACA Steps in PpO Cells

First, a test for normality was applied to the measured Similarity Indices. Since the number
of PpO cells is lower than the number of synthetic cells, the Shapiro-Wilk test [Shapiro and
Wilk, 1965] was applied. Table presents the p values obtained with significance level
a = 0.5 for the index measurements between each pair of experts: E1/E2; E2/E3, E1/E3,
given the absence of Ground Truth data. As the table shows, only measurements for
E1/E2 were rejected as normally distributed: the Dice coefficient in ALPACA,
and the Jaccard index in all steps. In accordance with the Shapiro-Wilk findings, the
ANOVA and Tukey range tests [Tukey, 1949] were applied to the Jaccard index measurements
between E1/E2, and the Friedman’s test, to the remaining data sets. Results from Table
are summarized as:

Overall, in PAC/ALPACA almost all of the significant differences appear in
intersection-based indices (Dice, Jaccard); while in MOC/ALPACA they
appear almost exclusively for E1/E2 in all Similarity Indices.

In MOC/PAC, no significant differences were found for all expert pairs and Similarity
Indices.

In PAC/ALPACA for Dice and Jaccard, significant differences were found for all expert
pairs.

In PAC/ALPACA for HD and NSD, no significant differences were found for all expert
pairs, except NSD for E3/E1.

In MOC/ALPACA

— significant differences were found for all Similarity Indices between E1/E2, and
HD for E2/E3; and

— no significant differences were found for the rest.
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Table A5: Normality test of Expert/Expert Similarity Indices obtained from MOC/PAC/ALPACA steps between Experts in PpO
cells. Shapiro-Wilk test p values are shown (significant values in grey cells). Significance level @ = 0.05. Similarity Indices: Dice,
Jaccard, NSD (Normalized Sum of Distances), HD (Hausdorff Distance).

G6

Dice Jaccard Hausdorff Distance [nm] Normalized Sum of Distances

E2/E3 | E1/E2 | E3/E1 | E2/E3 | E1/E2 | E3/E1 | E2/E3 | E1/E2 | E3/E1 | E2/E3 | E1/E2 | E3/El

MOC <0.0001 | 0.0172 | <0.0001 | <0.0001 | 0.1302 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001
PAC <0.0001 | 0.0437 | <0.0001 | <0.0001 | 0.2364 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001
ALPACA | <0.0001 | 0.6539 | <0.0001 | <0.0001 | 0.8568 | <0.0001 | <0.0001 | <0.0001 | <0.0046 | <0.0001 | <0.0001 | <0.0001

Table A6: Friedman and ANOVA /Tukey tests applied to the Expert/Expert Similarity Indices obtained for MOC/PAC/ALPACA
steps in PpO cells. p values are shown (significant values in grey cells). Significance level o = 0.5.

Dice Jaccard Hausdorff Distance [nm| | Normalized Sum of Distances
Friedman Test Friedman Test | ANOVA | Friedman Test Friedman Test Friedman Test
F2/E3 | B1/E2 | E3/E1 F2/E3 E1/E2 E3/E1 F2/E3 | E1/E2 | E3/El | E2/E3 | BI/E2| E3/El
0.0321 | 0.0340 | 0.0022 0.0321 0.0093 0.0022 0.0130 | 0.0031 | 0.3535 0.0529 | 0.0014 0.0488
MOC/PAC 0.9519 | 0.9203 | 0.1723 0.9519 0.3055 0.1723 0.1723 | 0.2674 | 0.9519 0.4008 | 0.4008 0.6892
PAC/ALPACA | 0.0280 | 0.0214 | 0.0014 0.0280 0.0280 0.0014 0.9519 | 0.2674 | >0.9999 | 0.0492 | 0.1072 0.0214
MOC/ALPACA | 0.3288 | 0.0278 | 0.3288 0.3288 0.0280 0.3288 0.0112 | 0.0020 | 0.4845 | >0.9999 | 0.0010 0.0574
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