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Little is known about the economic sources that may generate the abnormal returns observed in put index
options. We show that the learning process followed by investors may be one such source. We develop
an equilibrium model under partial information in which a rational Bayesian learner prices put option
contracts. Our model generates put option returns similar to the empirical returns of S&P 500 put index
options. This result is not obtained when we analyze alternative setups of the model in which no learning
process exists.

KEY WORDS: Put option returns; Equilibrium model; Partial information; Learning; Structural breaks.

1. INTRODUCTION

An important goal of financial economics research is to
explain anomalies observed in asset prices. One such anomaly is
related to the fact that the returns of put index options have been
too high relative to their risk (e.g., Coval and Shumway 2001;
Bondarenko 2014; Jones 2006; and Constantinides et al. 2013).
To date, the economic sources driving this abnormal behaviour
have remained unexplored by the literature.
In this article, we provide one potential explanation for

the high abnormal returns observed in put index option
contracts: the learning process followed by investors. The
intuition behind this hypothesis is simple. The expected put
option return of a hold-to-maturity naked strategy, RPutt+τ ,
is defined as RPutt+τ = EP

t [max(K − St+τ , 0)]/Pt (K, τ ) − 1,
where EPt [·] is the expectation operator under the P (real-
world) probability measure at time t, Pt (K, τ ) is the price
of a put option contract, St+τ is the underlying asset at time
t + τ , K is the strike price, and τ is the option’s time to
maturity. Thus, the value of RPutt+τ can also be written as
RPutt+τ = EP

t [max(K − St+τ , 0)]/EQ
t [max(K − St+τ , 0)] − 1,

with EQ
t [·] denoting the expectation operator under the Q (risk-

neutral) probability measure, which implies that the potential
differences between the P and Q probability measures deter-
mineRPutt+τ . Moreover, there is evidence that the process followed
by investors to learn about unknownmarket variables can induce
differences between the P and Q probability measures (e.g.,
David and Veronesi, 2002; Guidolin and Timmermann, 2003).
Thus, this learning process is a natural candidate to explain the
abnormal returns observed in put index option contracts.
We develop a simple equilibrium model under partial infor-

mation, in which a rational Bayesian learner prices a set of put

option contracts. Our model extends Timmermann (2001) by
including put options in the market. Similarly to Timmermann
(2001), our model reflects a Lucas (1978) discrete-time endow-
ment economy with a representative agent. In the model, there
is partial information because the mean dividend growth rate,
gt , is unknown. However, the agent recursively learns about gt
through a Bayesian updating procedure as new signals arrive.
In the model, learning does not disappear asymptotically

because the number of signals cannot increase infinitely. This is
because the mean dividend growth rate gt is subject to structural
breaks. After each structural break, a new value for gt is drawn
from a uniform density and kept constant until the next break.
Therefore, the new value of gt after a break must be learned by
using only post-break information.
We find that our model generates abnormal put option returns

for a naked option strategy, as well as for a straddle option port-
folio (which is not affected by changes in the underlying stock).
The put option returns generated by our model exhibit the same
behaviour as the corresponding returns from actual S&P 500
index option data. Conversely, we cannot obtain similar results
when we analyse alternative scenarios that do not include a
learning process.
We also show that the put option returns generated by our

modelling setup under learning can be described by a linear
factor model that includes the volatility risk premium (i.e., the
difference between the volatilities under the Q and P proba-
bility measures) as a factor. This result is also observed in put
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option returns obtained from S&P 500 index option contracts.
This finding is consistent with our argument that learning gen-
erates differences between the Q and P probability measures,
which may be one of the economic explanations for the abnor-
mal returns observed in put index options.
The findings drawn from our theoretical model are related

to the empirical literature that provides evidence of abnormal
returns on put index option contracts. For example, Coval and
Shumway (2001), who pioneer a focus on option returns rather
than on implied volatilities or option prices, document strong
negative average returns on zero-beta at-the-money straddles.
Bondarenko (2014) shows that naked puts yield large returns for
option sellers. In a multifactor analysis, Jones (2006) and Con-
stantinides et al. (2013) find high abnormal returns associated
with short-term out-of-the-money puts.
Our model is closely related to Broadie et al. (2009), who

show that option returns can be explained by models that incor-
porate a jump risk premium and estimation risk (Chambers
et al., 2014, replicate the analysis of Broadie et al., 2009, and
find similar results). In particular, Broadie et al.’s (2009) esti-
mation risk argument is closely linked to our model. Estima-
tion risk appears when the true parameter values used in pricing
models cannot be accurately estimated from short time series.
Broadie et al. (2009) take a reduced-form approach to analyse
the impact of estimation risk on put option returns by increas-
ing/decreasing the parameters of the Q probability measure by
one standard deviation compared to the P-parameters. How-
ever, they state in their conclusion, “Our results are silent on
the actual economic sources of the gaps between the P and
Q measures. It is important to test potential explanations that
incorporate investor heterogeneity, discrete trading, model mis-
specification, or learning”. Therefore, our study complements
Broadie et al. (2009), since our model micro-founds the possi-
bility of estimation risk through learning, which endogenously
induces differences between the P and Q probability measures
and yields abnormally high put option returns.
Our article is also related to theoretical studies in which

stock returns are explained by the learning process followed
by a representative agent (e.g., Timmermann 1993, 1996, 2001;
Veronesi 1999, 2000; Brandt et al. 2004; Guidolin 2006; and
Guidolin and Timmermann 2007). In particular, our paper is
closely related to the model developed in Timmermann (2001).
His model is based on a Lucas (1978) economy where the mean
dividend growth rate has breaks and is not known by a represen-
tative agent. He shows that learning generates volatility cluster-
ing and serial correlation in stock returns, in combination with
an increase in their skewness and kurtosis. Departing from Tim-
mermann (2001), we analyse whether learning can explain put
option returns rather than stock returns. Therefore, we present
an extended model that contains put option contracts in addition
to the bonds and stocks present in a Lucas (1978) economy.

Our study is also associatedwith equilibriummodels inwhich
learning is used to explain the implied volatility surface (e.g.,
David and Veronesi 2002; Guidolin and Timmermann 2003;
Shaliastovich 2015; and Benzoni et al. 2011). The observable
implied volatility surface (hereafter IVS) is the variation of the
implied volatility of option contracts written on the same under-
lying asset as a function of the option’s strike price and time to
maturity. The IVS should not be observed under the assumption
of Black and Scholes’ (1973) model, which is that the volatility

of the returns of the underlying asset is constant. For example,
David and Veronesi (2002) proposed a model where the divi-
dend drift follows a two-state stochastic process, and a represen-
tative agent is uncertain about which state is currently governing
the economy. Guidolin and Timmermann (2003) presented an
equilibrium model based on a Lucas (1978) economy, which is
closer to our modelling setup. In their model, dividends evolve
based on a binomial path with unknown state probability, which
is recursively updated. Notably, in Guidolin and Timmermann
(2003), the impact of rational Bayesian learning on option prices
asymptotically disappears as the number of signals increases,
which does not occur in our model due to structural breaks
in the unknown parameter. Shaliastovich (2015) also offered a
model in which the consumption growth rate is uncertain and
investors learn about its value. Benzoni et al. (2011) extended a
general equilibrium setting with an Epstein-Zin representative
agent by including jumps and a Bayesian updating process for
learning the unknown probability of future jumps in the growth
and volatility of consumption.
Our article differs in two ways from the above studies that

use learning to explain the IVS. First, rather than explaining
the variation in implied volatilities of option contracts across
strike prices and times to maturity, our objective is to pro-
vide an economic explanation for the anomalous behaviour of
put option returns. Second, from a modelling perspective, our
unknown parameter is simply the mean dividend growth rate,
rather than the current state of the economy, the state proba-
bility, the consumption growth rate, or the probability of future
jumps in consumption growth and volatility. This is important
since our objective is to show that learning can induce abnormal
put option returns even in a simple model, where the unknown
parameter is the mean dividend growth rate in a Lucas (1978)
economy (despite the fact that similar results may be obtained
with more sophisticated models, such as the ones described
above).
The remainder of this article is structured as follows. Section

2 presents the model, Section 3 describes its implementation,
Section 4 analyses the theoretical results, and Section 5 con-
cludes.

2. THE MODEL

2.1 An Economy Under Full Information

We first consider an economy under full information about eco-
nomic fundamentals, wherein a representative agent prices four
asset types: a bond, a stock, put option contracts, and change-
of-state (hereafter COS) securities. Thus, there is a one-period
zero-coupon default-free bond, Bt , in zero net supply at any time
t. There is also a stock, St , with net supply normalized at one. In
each period, the stock pays a real dividend, Dt , which follows a
geometric random-walk process with driftμt and volatility σ :

ln

(
Dt

Dt−1

)
= μt + σεt, εt ∼ IIN(0, 1) (1)

where the mean dividend growth rate, gt (and thus, μt , given
that μt = ln(1 + gt ) − σ 2/2 ), is subject to breaks. Time peri-
ods between breaks follow a geometric distribution with param-
eter π . Therefore, gt changes over time, but its value remains
constant between breaks. We assume that as soon as a break
occurs, a new value for the mean dividend growth rate, gt , is
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drawn from a uniform distribution, gt+m ∼G (�), with lower and
upper bounds of gd and gu, respectively.
In Internet Appendix A, we examine the time series of daily

dividends for the S&P 500 index to assess the validity of the
assumption of breaks in the mean dividend growth rate. The
results reported in Internet Appendix A (based on the Chu et al.
1996, and Bai and Perron 1998, tests) show evidence of breaks.
In addition, we choose a geometric distribution to characterise
the time between breaks because it is a memoryless stochastic
process. We assume a memoryless process in order to be con-
sistent with the assumption that agents cannot predict the future
and are thus unable to predict future breaks in gt . The previous
literature has also used a memoryless process to characterise
periods between breaks (e.g., Pesaran et al. 2006; Koop and Pot-
ter 2007).

At time t, there is a set of European put option contracts with
price Pt (K, τ ) written on the stock, where K is the strike price
and τ is the time to maturity. There is also a COS security with
priceAt at any time t, which pays one unit in any period in which
there is a break in gt . COS securities make the market dynam-
ically complete, as they are used to hedge the uncertainty gen-
erated by the breaks in the mean dividend growth rate, because
the uncertainty generated by the breaks in gt and the term εt in
Equation (1) cannot be dynamically hedged with the stock and
the bond alone (Harrison and Pliska, 1981; Duffie and Huang,
1985). The use of COS securities to complete markets has been
considered by Guo (2001), Mamon and Rodrigo (2005), and
Yuen and Yang (2010).
We define the break indicator bt , which indicates the occur-

rence of a break in gt at time t; bt equals 1 if there is a break
at t and zero otherwise. Since periods between breaks follow a
geometric distribution with parameter π , bt follows a Bernoulli
distribution with parameter π , where Pr( bt = 0) = (1 − π )
and Pr( bt = 1) = π . Thus, we assume that the COS security
At pays one unit at t + m if m = in f {m ≥ 0 : bt+m = 1}. The
COS security is analogous to an insurance policy that pays out in
the case of a particular event. The COS security becomes worth-
less after a break, and a newCOS security is issued that pays one
unit in the period following the next break.
We assume a perfect capital market in which there are no

taxes or transaction costs, unlimited short-sale possibilities, per-
fect liquidity, and a lack of borrowing or lending constraints.We
assume that the representative agent has preferences described
by a power utility function:

u (Ct ) =
{
C1−η
t −1
1−η η ≥ 0, η �= 1

lnCt η = 1,
(2)

where Ct is the real consumption at time t and η is the coeffi-
cient of relative risk aversion. We assume that dividends are the
economy’s single source of income and that they are consumed
as soon as they are received (i.e., Ct = Dt ). The representative
agent chooses asset holdings in order to maximize her lifetime
expected utility:

max{wS
t+k,w

B
t+k,w

A
t+k}

Et

[ ∞∑
k=0

βku (Dt+k )

]
(3)

in which β = 1/(1 + ρ), ρ is the rate of impatience and wS
t+k,

wB
t+k, and wA

t+k are the shares of assets St , Bt , and At in the

agent’s portfolio, respectively. Note that put option contracts are
not considered in the agent’s maximisation problem described in
equation (3), because markets are complete due to the existence
of COS securities; thus, options are redundant. Prices St , Bt and
At can be calculated by solving the respective Euler equations:

St = Et [mt+1 (St+1 + Dt+1)] (4)

Bt = Et [mt+1] (5)

At = Et [mt+1bt+1] , (6)

where mt+1 = β(Dt+1/Dt )−η is the stochastic discount factor.
In the case of full information, Proposition I provides expres-
sions for the equilibrium prices St , Bt , and At , which are deter-
mined by solving equations (4)-(6).

Proposition 1. Under full information and breaks in the div-
idend process, the equilibrium prices St , Bt, and At are given
by

St = Dt

1 + ρ − (1 − π ) (1 + gt )
1−η

×
{
(1 − π ) (1 + gt )

1−η + π

(
I1 + (1 − π ) I2

1 − π I3

)}
= Dt ψ (gt )

(7)

Bt = 1

(1 + ρ )

{
(1 − π ) (1 + gt )

−η + π

∫ gu

gd

(1 + gt )
−ηdG (gt )

}

(8)

At = 1

(1 + ρ )
π

∫ gu

gd

(1 + gt )
−ηdG (gt ) (9)

where I1 = ∫ gu
gd

(1 + gt )1−ηdG(gt ) , I2 = ∫ gu
gd

(1+gt )2−2η

1+ρ−(1−π )(1+gt )1−η
dG(gt ) ,

I3 =
∫ gu

gd

(1 + gt )1−η

1 + ρ − (1 − π ) (1 + gt )1−η
dG (gt ) ,

with 1 + ρ > (1 + gu)1−η to obtain positive stock prices.
Proof: Timmermann (2001).
Proposition 1 shows that the price-dividend ratio and the

bond price are time varying, since they depend on gt . Note
that the one-period interest rate is given by 1 + rt = 1/Bt ;
thus, the interest rate is also time varying. When there are
no breaks in the economy (i.e., π = 0), stock and bond
prices are St = Dt (1 + gt )1−η/{1 + ρ − (1 + gt )1−η} and
Bt = (1 + gt )−η /(1 + ρ ), whereas the COS security is priced
at zero (i.e., At = 0). In relation to option contracts, Proposition
2 provides the put option price when there are breaks in the
mean dividend growth rate and full information (i.e., the agent
knows the true mean dividend growth rate).

Proposition 2. Under full information and breaks, the price
Pfull
t (K, τ ) of a European put option issued on the stock at time
t with strike price K and time to maturity τ is given by

Pt (K, τ ) =
∫ ∞

0

1

1 + rt,t+τ
max {K − St+τ , 0} f Q (St+τ ) dSt+τ

(10)
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with

f Qt (St+τ ) = mt+τ f P (St+τ )
Et [mt+τ ]

= φQ (εt+τ )

×
τ∏
i=1

PrQ (bt+i) �Q(gt+i| bt+i = 1) (11)

where f Q(St+τ ) is the risk-neutral density under full infor-
mation and St+τ is defined in Equation (7), while Dt+τ =
Dt exp(

√
τσεt+τ − τσ 2/2)

∏τ
i=1(1 + rt+i), with 1 + rt+i =

1/Bt+i−1, where Bt+i−1 is the price of the risk-free one-period
bond in period t + i− 1 (as defined in Equation (8)). In addi-
tion, 1 + rt,t+τ = ∏τ

j=1(1 + r j−1, j ) . In Equation (11),φQ(εt+τ )
is a normal density with mean zero and volatility σQ = √

τ σ ;
PrQ(bt+i) is the probability function of a break in the mean divi-
dend growth rate, which is a Bernoulli distribution with parame-
ter πQt+i = At+i /Bt+i (where At+i is defined in Equation (9)); and
�Q(gt+i| bt+i = 1) is a uniform density with lower and upper
bounds gl and gu, respectively, which is used to obtain a new
value of gt+i in the case of a break.

Proof: Internet Appendix B.
Equation (10) shows that the option price is obtained

by integrating the option’s payoff over risk-neutral density
f Q(St+τ ). The prices of the stock, the bond, and the COS
security are explicitly considered in Equation (10), either in
the option’s payoff or in the risk-neutral density. Notably, the
market is incomplete without COS securities in the economy,
as mentioned earlier. In an incomplete market, the no-arbitrage
conditions do not pin down a unique state price density (here-
after referred to as SPD), which can take infinite forms. In this
case, the SPD is not unique, which also implies that there are
multiple risk-neutral (Q) probability measures. For example,
the exclusion of COS securities from our model would cause
the probability of a break under the risk-neutral measure, πQt ,
to take an infinite number of values.
The potential set of forms of the SPD can be reduced in an

incomplete market by imposing bounds to rule out “good deals”
(i.e., by reducing the profitability of investments) based on either
the Sharpe ratio (see Cochrane and Saa-Requejo 2000) or the
gain-loss ratio (see Bernardo and Ledoit 2000). However, the
SPD is still defined in a continuum set under bounds to rule out
“good deals”. For instance, the price bounds of a European put
option contract are given by (infQ∈Q∗ E[mX], supQ∈Q∗ E[mX]),
where X reflects the future option’s payoff andQ∗ is a subset of
risk-neutral probability measures in a setup where “good deals”
are ruled out.
In contrast, in a complete market, there exists a unique

SPD (and thus, a unique Q probability measure), which
means that the price bounds mentioned above coincide (i.e.,
infQ∈Q∗ E[mX] = supQ∈Q∗ E[mX] ), since Q∗ is a singleton.
Thus, in our model, where markets are complete (thanks to
COS securities), the probability of a break under the risk-neutral
measure is defined by πQt = At /Bt , where At and Bt are the
prices of the COS security and the bond, respectively, defined
in Proposition I, because the expected value of the COS security
is the same under both the P and Q probability measures (i.e.,
APt = AQt ). Under the P probability measure, At is defined by

Equation (6) in Proposition I, whereas under the Q probability
measure, AQt = π

Q
t /(1 + rt ); thus, π

Q
t = At /Bt .

We cannot obtain a closed-form solution to equation (10) in
Proposition II to calculate the prices of put options, since there
are breaks in the economy. In the special case of no breaks and
full information, option prices can be obtained through Rubin-
stein’s (1976) discretized version of the Black-Scholes formula.
However, when breaks are present, the underlying process of the
dividends is nonstationary (i.e., the drift in Equation (1) changes
over time), and the interest rate is not constant. Thus, we use a
numerical method, which we explain in Section 3. Moreover, in
Section 3, we describe the additional complexity that the numer-
ical method faces in an economy with partial information and
Bayesian learning, which we develop in Section 2.2.

2.2 An Economy Under Partial Information and Rational
Bayesian Learning

We now relax the full information assumption by assuming that
gt is unknown. Nevertheless, the agent observes the dividends
paid by the stock and uses them to learn about the new value of
gt after a break. Note that historical information (before a break)
does not help the agent to learn the new post-break value of gt .
In particular, the signals used to learn gt are the n historical div-
idend returns, {Di/Di−1}ti=t−n, assuming that n+ 1 periods have
passed since the most recent break. Moreover, the agent knows
that dividends follow a geometric random walk, as in Equation
(1); thus, she knows that signals are noisy and only partially
reveal the true value of gt . Consequently, after each break, the
agent has access to a short historical dataset that does not allow
her to accurately estimate the unknown parameter. As more sig-
nals are received, the learning process increases the accuracy of
the parameter estimation.
Similarly to Timmermann (2001), we assume that the agent

does not know the future dates of breaks ex ante but recognizes
breaks as soon as they occur (the agent recognises the timing of
the breaks), which allows us to isolate the impact of one source
of learning (i.e., the process of learning gt) on the put option
return, rather than considering simultaneous learning about both
the timing of the break and the value of gt . Nevertheless, as a
robustness check, in Internet Appendix C, we present an exten-
sion of the model where the representative agent knows neither
the timing of the breaks nor the value of gt . We find that the
presence of both effects yields qualitatively similar results to
the case where the agent learns only about gt .
We assume that the representative agent uses the available

information efficiently by updating her beliefs through a ratio-
nal Bayesian updating procedure. We express the Bayesian
updating process in terms of μt rather than gt (given the rela-
tion between μt and gt : 1 + gt = exp(μt + σ 2/2)). We do so
because the signals used to learn about this parameter are the
log returns of dividends, {ln(Di/Di−1)}ti=t−n, which are normally
distributed (see Equation (1)); thus, using μt makes the model
mathematically simpler.
Under Bayesian learning, the representative agent views the

unknown parameter μt as a random variable. The learning pro-
cess starts with a prior belief about the density of μt , f P(μt ),
in the physical world P. The prior density f P(μt ) is the den-
sity function of μt, from which its new value is drawn after a
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break. Given that the new post-break value of gt is drawn from
a uniform density �P (gt ) = 1/(gu − gd ), the new post-break
value of μt has the following probability density: f P (μt ) =
exp(μt + σ 2/2) /(gu − gd ), where μd = ln(1 + gd ) − σ 2/2
and μu = ln(1 + gu) − σ 2/2.
The Bayesian agent recursively updates her prior belief as

new information is received, thus obtaining a posterior belief
regarding the density of μt , f P(μt |ξt ), through Bayes’ rule:

f P
(
μt |ξt

) = f P(ξt |μt ) f P (μt )
f P
(
ξt
) (12)

where ξt = [ln(Dt/Dt−1) . . . ln(Dt−n/Dt−n−1)] is the vector of
n historical signals used to learn about μt from the most recent
break, and f P(ξt |μt ) is the sample likelihood function:

f P
(
ξt |μt

) = 1√
2π
(
σ 2/n

) exp
(

−(ξ̄t − μt
)2

2
(
σ 2/n

)
)

(13)

which is a normal probability density function with mean ξ̄t =
(1/n)

∑t
i=t−n+1 ξi and variance σ 2/n, since the agent knows

that historical signals follow the geometric random walk as
described in equation (1), where themost recent break happened
n+ 1 periods ago. Thus, we can rewrite Equation (12) as:

f P
(
μt |ξt

) = f P
(
ξt |μt

)
f P (μt )

∫μuμd f P
(
ξt |μt

)
f P (μt ) dμt

(14)

given that f P(ξt ) = ∫ μu
μd

f P(ξt |μt ) f P(μt )dμt . Let λBLt (μt ) be
the price of any asset under partial information and Bayesian
learning (e.g., λBLt (μt ) can be the Bayesian value of the stock
price, SBLt (μt ), the bond price, BBL

t (μt ), or the price of put
option contracts, PBL

t (K, τ )). Then, by using Equation (14), the
expected value of λBLt (μt ) can be obtained as follows:

λBLt =
∫ μu

μd

λ
f ull
t (μt ) f

P(μt |ξt )dμt

= ∫μuμd λ f ullt (μt ) f P(ξt |μt ) f P (μt ) dμt
∫μuμd f P

(
ξt |μt

)
f P (μt ) dμt

(15)

where λfullt (μt ) represents the value of the asset under full infor-
mation (i.e., the asset prices under full information as defined
in Proposition I and Proposition II), which depends on the
unknown parameter μt .

2.3 Option Returns Under Bayesian Learning

The expected hold-to-maturity return of a put option contract
under full information is:

Rpt+τ = EPt [max (K − St+τ , 0)]
Pt (K, τ )

− 1

= EPt [max (K − St+τ , 0)]

EQt [e−rτ max (K − St+τ , 0)]
− 1 (16)

Under Bayesian learning, the expected hold-to-maturity put
option return is:

Rp,BLt+τ = EP,BLt [max (K − St+τ , 0) |ξt]
EQ,BLt [e−rτmax (K − St+τ , 0) |ξt]

− 1 (17)

The numerators of Equation (16) and Equation (17) are
obtained under the physical probability measure P, whereas
their denominators are obtained under risk-neutral probability
measure Q. Consequently, differences between the P and Q

probability measures affect the level of the expected hold-
to-maturity put option returns. Under full information, the
risk-neutral probability measure fQ(St+1) is obtained from the
physical probability measure f P(St+1) as follows:

fQ (St+1) = mt+1 f P (St+1)

Et [mt+1]
, (18)

where mt+1 is the stochastic discount factor. However, under
partial information and Bayesian learning, the P probability
measure is conditional on the information received after each
break. Hence, f P,BL(St+1|ξt ) can be written as:

f P,BL
(
St+1|ξt

) =
∫ μu

μd

f P
(
St+1|ξt, μt

)
f P
(
μt |ξt

)
dμt . (19)

Here, f P(μt |ξt ) is the posterior belief of the Bayesian agent
defined in Equation (14). Equation (19) shows that in a learning
environment, the conditional distribution of potential estimated
values of the unknown parameter, given the information set ξt ,
affects the P probability measure of the future stock price.
The risk-neutral probability measure is also affected by the

Bayesian learning process, as it is also conditional on the signals
received. Accordingly, in the case of Bayesian learning, the risk-
neutral probability measure fQ,BL(St+1) is calculated as

fQ,BL
(
St+1|ξt

) =
∫ μu

μd

fQ
(
St+1|ξt, μt

)
f P
(
μt |ξt

)
d μt

=
∫ μu

μd

mt+1 f P
(
St+1|ξt, μt

)
Et [mt+1]

f P
(
μt |ξt

)
dμt

(20)

Equation (20) shows that learning can generate a gap
between the P and Q probability measures when changes in
the parameter estimations (given the information available at
t) are statistically associated with the agent’s opinion regard-
ing the dynamics of the stochastic discount factor. In fact, this
is the case in our model because a change in the perception of
the dividend drift induces a change in the agent’s view about
how the future stochastic discount factor evolves over time.
Moreover, the gap between the P and Q probability measures
is dynamic and depends on the number of signals received after
each break. Consequently, learning should affect option returns
(see Equation (17)), given that the Bayesian learning process
modifies the wedge between the P and Q probability measures,
as described by Equations (19) and (20).

2.4 Properties of the Model that Affect the Learning
Process

In terms of the properties of the model, we analyze three
key elements that affect the agent’s learning process: (i) the
presence of breaks in the mean dividend growth rate, (ii) the
noise in the signals, and (iii) the representative agent’s relative
risk aversion. First, in terms of the presence of breaks, suppose
that there are no breaks in the mean dividend growth rate
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(i.e., π = 0). In this case, as t → ∞, the agent can use an
infinite number of observations to learn about the unknown
parameter (i.e., n → ∞, since the value of n is never reset);
thus, the estimated parameter value converges towards the true
value. In this case, learning effects on option pricing vanish
asymptotically, as in Guidolin and Timmermann (2003), and
asset prices gradually converge towards those obtained under
full information (as in Propositions I and II).
Conversely, when 0 < π < 1, learning never ends, even

asymptotically, because the learning process is reinitiated after a
break in gt , which can be seen in Equation (13), where the num-
ber of signals n is immediately reset to zero after a break. Under
the learning process in our model, the estimation error of the
unknown parameter is proportional to 1/n (see Equation (13)).
Thus, the inaccuracy of the parameter estimation is reduced as
more information is received (i.e., when the number of signals n
increases). Note that the market is complete under partial infor-
mation and learning, just as it is under full information, because
the inaccuracy of the parameter estimation decreases following
a deterministic path with a reduction factor of order 1/n, as more
signals are observed and processed via the learning mechanism.
Second, the signals used to learn the unknown parameter (i.e.,

log dividend returns) are noisy. The accuracy of the param-
eter estimation depends on the number of signals n as well
as on the variance σ 2 of the dividend process (i.e., historical
signals, {ln(Di/Di−1)}ti=t−n, are normally distributed with vari-
ance σ 2). Thus, the value of σ controls the level of noise con-
tained in the historical information used by the agent to learn
about the unknown parameter and, consequently, the speed at
which the agent learns. For instance, suppose that σ → ∞. In
this case, the agent cannot learn from the information received

(even asymptotically), since the signals are excessively noisy.
Thus, the agent can use only the expected value of the param-
eter based on her prior belief. In contrast, when σ = 0 (i.e.,
the signals are not noisy at all), learning stops after the first
signal is received, since signals are constant over time. Thus,
μt equals any element of the vector of historical signals ξt =
[ln(Dt/Dt−1) . . . ln(Dt−n/Dt−n−1)]. In this article, we assume a
value of σ based on market data (which is explained in the fol-
lowing section). As a robustness check, we use a different level
of σ in the Internet Appendix C to analyze the effect of a change
in this parameter on put option returns.
The coefficient of relative risk aversion, η, also plays an

important role in the learning process. For example, learn-
ing does not affect the value of the stock price when η = 1,
as documented in Guidolin and Timmermann (2003), because
the expression (1 + gt )1−η in the stock price equals one (see
Equation (7)). Thus, in this case, when the Bayesian updating
process is used (i.e., through Equation (15)), learning has no
effect on the stock price because its value no longer depends
on gt (i.e., the unknown parameter). However, learning is still
present in the bond price, thus affecting the price and the return
of put option contracts. In the implementation of the model, we
use different levels of relative risk aversion to evaluate the effect
of a change in the level of η on put option returns.

3. IMPLEMENTATION OF THE MODEL

We use a simulation analysis based on the model presented
in Section 2, with different parameter setups, to analyse the
effects of learning on put option returns. We perform 10,000
simulations per combination of parameters. In each of these
simulations, we generate 12 years (3024 trading days) of daily
dividends, which are the signals that the representative agent
observes and uses to learn about gt . Thus, our simulation set
represents 10,000�3024 = 30,240,000 simulated trading days
for any given choice of parameter values.
We simulate daily dividends using two nested stochastic pro-

cesses. First, we use the dividends’ geometric random-walk pro-
cess, ln (Dt+1/Dt ) = μt + σεt , to simulate the time series of
12 years of daily dividends. Second, in each 12-year time series,
we generate random breaks in gt (and thus breaks in μt), which
affect the simulation of dividends by the random-walk process.
In the generation of breaks, the times between breaks follow a
geometric distribution with parameter π , and when each break
occurs, a new value for gt is drawn from a uniform distribution
gt ∼ G(·).
Prices St and Bt on each of the 3024 trading days (and in

each of the 10,000 simulations) are obtained using Equation
(15), calculated by means of numerical integration through the
adaptive Simpson quadrature. Between breaks, At is calculated
using Equation (9), since the COS security’s price does not
depend on gt and thus is not affected by learning. When there
is a break in the economy, At is equal to one (as defined in the
model). European put option prices are also calculated using
Equation (15). Thus, we can write the following equation for
the price of a put option contract:

PBL
t (K, τ ) =

∫ μu
μd

[∫∞
0

1
1+rt,t+τ max {K − St+τ , 0} fQ (St+τ ) dSt+τ

]
f P
(
ξt |μt

)
f P (μt ) dμt∫ μu

μd
f P
(
ξt |μt

)
f P (μt ) dμt

(21)

European put option prices are calculated using equation (21)
on a monthly basis to obtain nonoverlapping one-month option
returns. In each month of the 12-year simulated period (and
for each of the 10,000 simulations), Equation (21) is solved
through a two-step procedure. As a first step, we address the
internal integral in Equation (21), which contains the max(·)
function. This integral is solved by Monte Carlo simulation, in
which j ∈ {1, 2, . . . , J) is a simulated independent path of the
stock price, where J = 20,000.
Each of the 20,000 paths in the Monte Carlo simulation is

generated using the risk-neutral density, which is decomposed
into a sequence of one-period risk-neutral probabilities. Thus,
each path is generated through the repetition of several single-
period steps. Suppose that we generate path j, in which the first
break (after current time t) occurs in period t + m, wherem ≤ τ .
Thus, between periods t and t + m− 1, the dividend drift is
equal to the current unknown value at time t, μt . In this path
j, the Bayesian agent learns about μt from the set of signals ξt .
Since we also have to integrate with respect to μt in the exterior
integral (due to the Bayesian learning process used to learn μt)
in Equation (21), we leave the expression generated in path j as
a symbolic expression that depends onμt between periods t and
t + m− 1. After period t + m, the new value of the dividend
drift does not depend on the set of signals ξt (which is also the
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case if there are new breaks between periods t + m and τ ). Thus,
we obtain an analytical expression for the option payoff, which
depends on μt in each path of the Monte Carlo simulation.
In the second step, we integrate the analytical expression

for the option payoff with respect to μt (which is obtained in
each path in the first step of the procedure) using numerical
integration through the adaptive Simpson quadrature. Thus, in
this second step, we solve the exterior integral that depends
on μt in each of the Monte Carlo paths. We then average the
outcomes from the 20,000 paths, thereby obtaining the put
option price for a given simulated month. The denominator
of Equation (21) is also solved through numerical integration
using the adaptive Simpson quadrature.
Notably, in a model under full information (i.e., when there

is no learning, as in Section 2.1), the two-step procedure is
not required to solve Equation (10). Under full information,
the integral in Equation (10) is solved on a monthly basis
using standard Monte Carlo simulation, again with 20,000
independent paths. Each of the 20,000 paths in this Monte
Carlo simulation is generated by means of the risk-neutral
density. Then, we average the outcomes from the 20,000 paths
to obtain the simulated put option price for a given month.
In terms of the parameterization of the model, we consider

the following parameter setup. Since the new post-break mean
dividend growth rate is taken from uniform distribution G(·),
we assume that its lower and upper bounds are gl = −0.126%
and gu = 0.705%, respectively, on a monthly basis. The values
of gl and gu are consistent with the real dividend growth rate of
the S&P 500 index during the period of our empirical analysis.
For example, the annual dividend log returns of the S&P 500
index in real terms between 1996 and 2007 (taken from Robert
Shiller’s database) have a mean and standard deviation of
3.39% and 5.27%, respectively. Thus, the interval with centre
3.39%, plus and minus 5.27%, is [−1.88%, 8.66%] on an
annual basis, which is equivalent to the interval [−0.16%,
0.69%] on a monthly basis. This interval, based on market data,
is close to the assumed lower and upper bounds of the uniform
distribution G(·).
We set the rate of impatience, ρ, at 0.713% on a monthly

basis or, equivalently, 8.900% on a yearly basis, because
the rate of impatience is constrained in the model by
1 + ρ > (1 − π )(1 + gu)1−α in order to obtain positive stock
prices (see Equation (7)), where the value of gu was set in the
previous paragraph. The rate of impatience is high in relation
to the real interest rates observed during the period 1996–2007,
but as mentioned above, we need this level of ρ to obtain pos-
itive stock prices. We could calibrate ρ using market data and
then adjust gu using 1 + ρ > (1 − π )(1 + gu)1−α . However,
we prefer to select gu and then adjust ρ (thus sacrificing the
accuracy of its calibration to some degree), since gt is the vari-
able that must be learned by the Bayesian agent in our model.
While our model does not match real interest rates closely, it is
important to note that our focus is on providing a simple model
of a learning environment, with the objective of offering a
potential explanation for the abnormal put option returns rather
than perfectly calibrating all variables in the economy.
The volatility of the geometric random walk is set at 1.44%

on a monthly basis (i.e., 5.00% on an annual basis), which is
also consistent withmarket data (the standard deviation between

1996 and 2007 of real dividend log returns on the S&P 500 index
was 5.27%). For the coefficient of relative risk aversion, η, we
use levels of 0.2, 0.5, and 5.0. In an attempt to reproduce reality,
we obtain the probability of breaks, π , using a dynamic test for
structural breaks as proposed by Chu et al. (1996) with data on
daily real dividends from the S&P 500 index during the period
1996–2007 (see Internet Appendix A).We detect eight breaks in
the mean dividend growth rate over the 3024 trading days of the
12 years analysed; thus, we set π at 0.056 (on a monthly basis).

4. RESULTS

4.1 Index Put Option Returns

We calculate returns obtained from a hold-to-maturity naked
trading strategy. In each 12-year simulation, following Broadie
et al. (2009) and Chambers et al. (2014), we generate time
series of one-month nonoverlapping put option returns, rpτ+T ,
given by

rpt+τ = max (K − St+τ , 0)
Pt (K, τ )

− 1, (22)

where Pt (K, τ ) is the put option price. Figure 1 presents the
results of one such 12-year simulation under three scenarios:
full information with no breaks, full information with breaks,
and partial information with breaks and learning. The first two
scenarios are special cases of the model presented in Section
2. In the scenario under full information with no breaks, our
model is equivalent to Rubinstein’s (1976) discrete version of
the Black-Scholes model. In the scenario under full information
with breaks, we calculate put option prices using Proposition
II. The third scenario is the full model presented in Section 2,
which represents an economy with breaks, partial information
and learning.
Figure 1 reports option returns with a strike-to-price ratio of

1.00. In this simulation, the coefficient of relative risk aversion
is set at 0.5. Figure 1 shows that in all three scenarios, a naked
investment strategy generates put option returns that are far from
normal, reflecting high levels of skewness and kurtosis. Interest-
ingly, under partial information and learning, put option returns
take negative values more frequently than they do under full
information (with and without breaks).
Table 1 reports summary statistics of empirical and simulated

put option returns. This table reports the average values of one-
month hold-to-maturity put option returns for different money-
ness levels (ranging from 0.96 to 1.02). We focus on this partic-
ular range of moneyness levels because most options’ trading
activity occurs within that range (see Broadie et al. 2009).

Empirical put option returns, presented in Panel A of Table
1, are calculated using S&P 500 European put index options
obtained from the OptionMetrics Ivy DB database spanning
1996–2007. We exclude option prices that violate arbitrage
conditions, have an ask price that is lower than the bid price,
have a bid price of zero, and/or have no option open interest (see
Bernales andGuidolin, 2014).We obtain option returns for fixed
moneyness and time-to-maturity levels by interpolating linearly
across the returns of the four S&P 500 put option contracts that
surround the required values of moneyness and time to maturity.
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Figure 1. Dynamics of put option returns under three scenarios:
full information with no breaks, full information with breaks, and
partial information with breaks and learning. This figure presents the
time series of simulated put option returns (with a naked investment
strategy) for one 12-year simulation under three scenarios: full
information with no breaks, full information with breaks, and partial
information with breaks and learning. The figure reports one-month
hold-to-maturity returns with a strike-to-price ratio of 1.00. In this
simulation, the coefficient of relative risk aversion is set at 0.5.

In Panels B-D of Table 1, as in Figure 1, simulations are
based on an economy under three scenarios: full information
with no breaks, full information with breaks, and partial infor-
mation with breaks and learning. We use three values for the
coefficient of relative risk aversion (η = 0.2, 0.5, and 5.0 in
Panels B, C, and D, respectively).
Panel A of Table 1 shows that empirical put option returns

are negative and significantly different from zero. In addition,
the absolute values of empirical option returns decrease as the
moneyness level increases, which is in line with the behaviour

of put option returns derived in Coval and Shumway (2001). For
instance, an S&P 500 put option contract with a ratio of K/S =
0.96 (K/S = 1.00) has an average return of −0.69 (−0.27).
Panels B-D of Table 1 report that simulated put option returns

are also negative and that their absolute values decrease as the
moneyness level increases, which is observed for all scenarios
and coefficients of relative risk aversion. However, the simu-
lated results obtained under the two scenarios without learning
(i.e., full information with no breaks and full information with
breaks) stand in sharp contrast to the empirical results presented
in Panel A. The simulated put option returns with no learning
are smaller (and in general not significant) than the empirical
put option returns (which are significant with t-statistics of at
least −4.27).
In contrast to the scenarios without learning, simulated put

option returns are large in absolute value when there is learn-
ing in the economy (i.e., the last four columns on the right-
hand side of Table 1). For example, a one-month-to-maturity
put option with K/S = 1.00 has an average monthly return of
−0.55, −0.38, and −0. 93 for coefficients of relative risk aver-
sion 0.2, 0.5, and 5.0, respectively. In addition, the simulated put
option returns under learning are generally significant, similar
to the observed put option returns of S&P 500 option contracts
presented in Panel A.
Importantly, the difference in the levels and t-statistics of sim-

ulated put option returns marginally increases from the “full
information, no breaks” scenario to the “full information with
breaks” scenario (signaling a small effect of breaks on the
returns on put option contracts). However, very few of the sim-
ulations for these first two scenarios have significant values in
relation to the simulations under information with breaks and
learning, which suggests that learning matters more than breaks
in generating large returns on put option contracts.

4.2 Abnormal Put Option Returns Under the CAPM

There is empirical evidence that put option returns are too high
to be explained by the capital asset pricing model (CAPM)—
see, for example, Bondarenko 2014. Thus, we analyze whether
our model generates put option returns that are also too high
relative to the CAPM. In particular, we estimate the CAPM α,
which reflects whether the expected return of an investment is
abnormal relative to the expected return obtained by the CAPM.
To this end, we run the following regression:

(rOpt − rF ) = α + β (rm − rF ) + ε, (23)

where rOpt is the return on put option contracts, rm is the
return of the market portfolio, and rF is the risk-free rate. Table
2 reports the average values of the CAPM α estimated from
the empirical and simulated put option returns. Panel A reports
the estimates of the CAPM α obtained from empirical option
data. In this case, rOpt is obtained from the S&P 500 put option
contracts, rF is the one-month LIBOR rate, and rm is the S&P
500 index return.
Panels B-D of Table 2 report the estimated values of the

CAPM α from simulated put option returns under the same
three scenarios used in Figure 1 and Table 1 (i.e., full infor-
mation with no breaks, full information with breaks, and
partial information with breaks and learning). In the simu-
lations generated by our model, rOpt is calculated through

Journal of Business & Economic Statistics, April 2020334



Table 1. Summary statistics of empirical and simulated put option returns. This table reports summary statistics of empirical and simulated
returns on put option contracts using a naked investment strategy, Rput. The table reports average one-month hold-to-maturity option returns for

non-overlapping intervals, with strike-to-price ratios ranging from 0.96 to 1.02 (with an increment of 0.02). Empirical option returns are
obtained from S&P 500 option contracts between 1996 and 2007. Simulated option returns are obtained from simulations of the model under
three scenarios: full information with no breaks, full information with breaks, and partial information with breaks and learning. Simulations of
the model are performed using three coefficients of relative risk aversion (η = 0.2, η = 0.5, and η = 5.0). The values for the simulated option
returns are the averages over 10,000 simulations of 12 years each. The percentage of simulations with a significant mean return is reported in
parentheses at 5% significance (since there is only one time series for empirical S&P 500 option returns, the value in parentheses can only be

0% or 100%)

K/S 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02

Panel A. Empirical Rput (with S&P 500 Options)

Mean − 0.69 − 0.36 − 0.27 − 0.22
t-stat − 10.64 − 4.61 − 4.59 − 4.27
p-value 0.00 0.00 0.00 0.00

(100%) (100%) (100%) (100%)
Volatility 1.39 1.74 1.36 1.08
Skewness 6.01 4.04 2.79 1.83
Kurtosis 45.80 22.59 13.71 7.69

Panel B. Simulated Rput with η = 0.2
No Breaks – Full Inf. (No Learning) Breaks – Full Inf. (No Learning) Breaks – Partial Inf. (Learning)

Mean − 0.23 − 0.13 − 0.09 − 0.05 − 0.29 − 0.22 − 0.14 − 0.07 − 0.96 − 0.84 − 0.55 − 0.23
t-stat − 0.59 − 0.62 − 1.30 − 1.27 − 0.64 − 0.81 − 1.34 − 1.41 − 182.77 − 18.73 − 8.48 − 3.85
p-value 0.59 0.57 0.26 0.21 0.51 0.39 0.18 0.17 0.00 0.00 0.00 0.01

(11%) (11%) (34%) (36%) (11%) (16%) (35%) (38%) (100%) (99%) (99%) (96%)
Volatility 8.90 4.95 1.62 0.79 11.56 6.56 2.30 1.10 1.03 0.84 0.76 0.63
Skewness 10.36 7.14 2.11 0.49 14.62 9.18 3.29 0.67 10.85 4.99 2.03 0.64
Kurtosis 65.61 56.64 4.48 − 0.32 86.06 76.55 6.90 − 0.47 107.26 31.11 7.88 2.88

Panel C. Simulated Rput with η = 0.5
No Breaks – Full Inf. (No Learning) Breaks – Full Inf. (No Learning) Breaks – Partial Inf. (Learning)

Mean − 0.21 − 0.11 − 0.08 − 0.04 − 0.25 − 0.15 − 0.11 − 0.04 − 0.97 − 0.73 − 0.38 − 0.10
t-stat − 0.57 − 0.59 − 1.15 − 1.25 − 0.64 − 0.70 − 1.18 − 1.34 − 110.70 − 9.95 − 4.45 − 1.51
p-value 0.60 0.58 0.30 0.27 0.57 0.50 0.29 0.15 0.02 0.01 0.02 0.02

(10%) (11%) (27%) (31%) (10%) (15%) (31%) (36%) (100%) (99%) (99%) (96%)
Volatility 8.56 4.89 1.61 0.77 9.50 5.54 2.26 0.78 0.93 0.73 1.03 0.54
Skewness 9.82 6.90 2.20 0.50 11.94 8.09 2.63 0.65 10.61 5.55 1.95 0.57
Kurtosis 70.28 59.76 4.61 − 0.28 82.90 65.01 5.27 − 0.37 116.46 37.38 6.91 2.74

Panel D. Simulated Rput with η = 5.0
No Breaks – Full Inf. (No Learning) Breaks – Full Inf. (No Learning) Breaks – Partial Inf. (Learning)

Mean − 0.25 − 0.14 − 0.10 − 0.05 − 0.42 − 0.30 − 0.16 − 0.07 − 1.00 − 0.96 − 0.93 − 0.65
t-stat − 0.61 − 0.72 − 1.37 − 1.43 − 0.70 − 0.78 − 1.46 − 1.49 − 142.91 − 146.08 − 59.71− 32.16
p-value 0.49 0.54 0.19 0.16 0.47 0.55 0.16 0.13 0.00 0.00 0.01 0.00

(12%) (12%) (37%) (43%) (10%) (15%) (39%) (46%) (100%) (99%) (99%) (96%)
Volatility 9.13 4.98 1.62 0.73 13.05 8.43 2.65 1.14 0.81 0.61 0.30 0.22
Skewness 11.30 7.25 2.17 0.52 17.05 12.29 3.43 0.93 9.41 9.33 7.20 4.18
Kurtosis 69.45 58.34 4.94 − 0.24 104.17 89.00 8.30 − 0.37 97.92 93.45 64.64 33.09

option prices obtained from our model using Equation (22).
The risk-free rate, rF , is obtained from the bond price (i.e.,
rF = 1/B− 1). In the scenario without breaks, rm is the market
portfolio formed by the stock. In the scenarios with breaks,
the market portfolio is formed by the stock and the COS
security, in which the weight of the stock, ωS, and the weight
of the COS security, ωA, are given by the tangency portfolio
lying on the efficient frontier. Thus, ωS = (σ 2

AE(rS − rF ) −

σS,AE(rA − rF )/(σ 2
AE(rS − rF ) − σS,AE(rA − rF ) + σ 2

S E(rA−
rF ) − σS,AE(rS − rF )) and ωA = 1 − ωS, where E(rS) and
E(rA) are the expected returns of the stock and the COS secu-
rity, respectively. The values of σ 2

S and σ 2
A are the variances

of the returns on the stock and the COS security, respectively,
while σS,A is the covariance between these two assets. Expected
returns, variances and the covariance are calculated in each
simulation using daily simulated data. In Internet Appendix
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Table 2. Simulated and empirical values of the CAPM α of put option returns. This table displays the CAPM α values of empirical and
simulated returns on put option contracts using a naked investment strategy, Rput. The table reports average one-month hold-to-maturity option
returns for non-overlapping intervals, with strike-to-price ratios ranging from 0.96 to 1.02 (with an increment of 0.02). Empirical option returns
are obtained from S&P 500 option contracts between 1996 and 2007. Simulated option returns are obtained from simulations of the model

under three scenarios: full information with no breaks, full information with breaks, and partial information with breaks and learning.
Simulations of the model are performed using three coefficients of relative risk aversion (η = 0.2, η = 0.5, and η = 5.0). The values for the
simulated option returns are the averages over 10,000 simulations of 12 years each. This table presents averages of the alpha’s t-statistics
computed using Newey-West standard errors to correct for heteroscedasticity and serial correlation. The percentage of simulations with a

significant CAPM α is reported in parentheses at 5% significance (since there is only one time series for the empirical S&P 500 option returns,
the value in parentheses can only be 0% or 100%)

K/S 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02

Panel A. Dependent Variable: Empirical Rput (with S&P 500 Options)

CAPM α − 0.59 − 0.28 − 0.15 − 0.09
t-stat − 10.78 − 4.90 − 4.28 − 3.66
p-value 0.00 0.00 0.00 0.00

(100%) (100%) (100%) (100%)

Panel B. Dependent Variable: Simulated Rput with η = 0.2
No Breaks – Full Inf. (No Learning) Breaks – Full Inf. (No Learning) Breaks – Partial Inf. (Learning)

CAPM α − 0.13 − 0.03 − 0.02 − 0.01 − 0.20 − 0.09 − 0.03 0.00 − 0.97 − 0.95 − 0.54 − 0.24
t-stat − 0.89 − 0.77 − 0.52 − 0.41 − 0.96 − 0.90 − 0.65 − 0.47 − 116.31 − 21.79 − 14.37 − 15.18
p-value 0.34 0.44 0.47 0.53 0.23 0.34 0.45 0.52 0.00 0.00 0.00 0.00

(32%) (23%) (14%) (11%) (43%) (26%) (17%) (11%) (100%) (100%) (100%) (100%)

Panel C. Dependent Variable: Simulated Rput with η = 0.5
No Breaks – Full Inf. (No Learning) Breaks – Full Inf. (No Learning) Breaks – Partial Inf. (Learning)

CAPM α − 0.11 − 0.02 − 0.02 − 0.01 − 0.19 − 0.07 − 0.03 0.00 − 0.95 − 0.72 − 0.42 − 0.12
t-stat − 0.60 − 0.59 − 0.36 − 0.32 − 0.77 − 0.68 − 0.55 − 0.34 − 89.43 − 12.23 − 8.50 − 8.00
p-value 0.27 0.48 0.57 0.64 0.32 0.38 0.45 0.70 0.01 0.00 0.00 0.00

(29%) (23%) (10%) (9%) (37%) (22%) (14%) (11%) (99%) (99%) (99%) (97%)

Panel D. Dependent Variable: Simulated Rput and η = 5.0
No Breaks – Full Inf. (No Learning) Breaks – Full Inf. (No Learning) Breaks – Partial Inf. (Learning)

CAPM α − 0.21 − 0.03 − 0.04 − 0.01 − 0.29 − 0.17 − 0.06 0.00 − 1.08 − 0.99 − 0.96 − 0.63
t-stat − 1.34 − 1.13 − 0.70 − 0.61 − 1.62 − 1.53 − 1.14 − 0.92 − 109.38 − 91.44 − 79.42 − 53.82
p-value 0.17 0.23 0.41 0.24 0.11 0.10 0.41 0.24 0.00 0.00 0.00 0.00

(42%) (32%) (26%) (15%) (54%) (29%) (19%) (22%) (100%) (100%) (100%) (100%)

C, we also consider a scenario under partial information with
breaks and learning in which the COS security is not included
in the market portfolio when calculating the value of the CAPM
α (despite the fact that COS security is part of the economy).
Our results scarcely change when we omit the COS security
because its weight is low in the market portfolio.
Panel A of Table 2 shows that the estimated CAPM α values

from the empirical data are negative, with large and statistically
significant absolute values. The absolute values of the CAPM α

decrease as the moneyness level increases. In terms of simulated
option returns, Panels B-D of Table 2 report that in an environ-
ment without learning (under full information with no breaks
and full information with breaks), the simulated results of the
CAPMα are negative but lower in absolute value than the empir-
ical results presented in Panel A of Table 2. Most importantly, in
the scenarios without learning (see Panels B-D), the simulated
put option returns are generally not abnormal, since few of the
simulations for either scenario have significant CAPM α values.

Thus, these results suggest that the abnormal put option returns
observed in S&P 500 option contracts cannot be explained by
models in which no learning process exists.
Panels B-D of Table 2 show that in the scenario with learning,

the simulated values of the CAPM α are negative and larger in
absolute value than those in the other two simulated scenarios,
where there is no learning in the economy. In addition, in the
scenario with learning, the simulated values of the CAPM α are
abnormal since their values are in most cases significant, similar
to the empirical results of the CAPM α reported in Panel A.
We can observe in Table 2 that the simulated results of the

CAPM α generated by our model in the scenario with learning
are not exactly the same as those empirically observed in the
S&P 500 option contracts. However, it is important to note that
the main purpose of our study is to provide a potential explana-
tion for the abnormal returns observed on put option contracts
by using a simple model under a learning environment. We do
not seek to fully describe all features of the option market, since
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Table 3. Relation between option returns and different factors (based on empirical and simulated option data). This table reports the
coefficients of factors (in addition to the market factor from the CAPM) that may explain empirical and simulated returns on put option

contracts using a naked investment strategy, Rput , and a straddle investment strategy, RStrdl. In this table, Rm is the excess market return, and
IV − RV is the volatility risk premium where IV is the volatility under the Q probability measure and RV is the volatility under the P

probability measure. S/D is the price-to-dividend ratio. Empirical option returns are obtained from S&P 500 option contracts between 1996
and 2007. Simulated option returns are obtained from simulations of the model under partial information with breaks and learning, since

IV − RV is only different from zero in this scenario. Simulations of the model are performed using three coefficients of η = 5.0 relative risk
aversion (η = 0.2, η = 0.5, and ). The values for the simulated option returns are the averages over 10,000 simulations of 12 years each. This
table presents averages of the alpha’s t-statistics computed using Newey-West standard errors. The percentage of simulations with a significant

factor is reported in parentheses at 5% significance. For S&P 500 options, we report t-statistics in square brackets

Dependent Variable Rput Dependent Variable RStrdl

Panel A. Empirical Results (with S&P 500 Options)

Constant − 0.15 − 0.08 − 0.15 − 0.08 − 0.08 − 0.02 − 0.08 − 0.02
[4.28] [1.83] [4.26] [1.81] [2.64] [0.61] [2.64] [0.62]

Rm − 26.90 − 25.29 − 26.89 − 25.28 0.06 1.25 0.05 1.25
[30.33] [25.70] [30.29] [25.66] [0.08] [1.59] 0.07 [1.58]

IV – RV − 3.62 − 3.63 − 2.70 − 2.70
[3.61] [3.61] [3.36] [3.35]

S/D 0.00 0.00 0.00 0.00
[0.31] [0.33] [0.31] [0.30]

Adj. R2 (%) 0.64 0.64 0.63 0.64 0.00 0.02 0.00 0.02

Panel B. Simulated Results with η = 0.2

Constant − 0.54 − 0.07 − 0.53 − 0.16 − 0.47 − 0.06 − 0.55 0.10
(100%) (19%) (99%) (6%) (100%) (18%) (97%) (8%)

Rm − 33.07 − 34.34 − 28.47 − 31.68 4.46 4.61 4.68 4.72
(100%) (100%) (100%) (100%) (60%) (67%) (65%) (70%)

IV – RV − 6.76 − 7.60 − 7.07 − 7.10
(82%) (82%) (83%) (87%)

S/D − 0.62 − 3.41 0.06 − 2.95
(7%) (7%) (7%) (8%)

Adj. R2 (%) 0.65 0.66 0.65 0.71 0.06 0.13 0.07 0.14

Panel C. Simulated Results with η = 0.5

Constant − 0.42 − 0.02 − 0.43 − 0.39 − 0.33 − 0.01 − 0.33 − 0.26
(99%) (13%) (97%) (8%) (100%) (10%) (86%) (7%)

Rm − 51.16 − 42.50 − 49.17 − 47.80 1.08 1.16 1.16 1.30
(100%) (100%) (100%) (100%) (69%) (72%) (66%) (71%)

IV – RV − 13.32 − 11.59 − 10.12 − 10.13
(71%) (72%) (76%) (76%)

S/D − 3.78 − 6.16 2.28 3.89
(8%) (7%) (6%) (7%)

Adj. R2 (%) 0.62 0.63 0.60 0.66 0.07 0.12 0.07 0.12

Panel D. Simulated Results with η = 5.0

Constant − 0.96 − 0.41 − 0.83 − 0.33 − 0.91 − 0.47 − 0.84 − 0.31
(100%) (46%) (82%) (43%) (100%) (55%) (83%) (52%)

Rm − 11.34 − 12.47 − 12.66 − 12.03 5.04 5.45 5.38 5.41
(98%) (98%) (98%) (98%) (88%) (92%) (79%) (83%)

IV – RV − 1.25 − 1.04 − 1.19 − 1.29
(87%) (84%) (89%) (84%)

S/D − 2.42 − 3.60 1.50 0.64
(30%) (32%) (28%) (23%)

Adj. R2 (%) 0.33 0.45 0.40 0.48 0.30 0.39 0.32 0.40
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the option pricing process could be affected by elements outside
the scope of our model, such as jump risk (e.g., Broadie et al.
2009; Constantinides et al. 2013) and individual investors’ net
option demand (e.g., Bollen and Whaley 2004; Gârleanu et al.
2009). Therefore, the objective of our study is not to propose a
better model for option pricing but to suggest that the learning
process followed by investors may be one of the reasons for the
anomalous high returns of put option contracts.

4.3 A Multifactor Analysis of Option Returns

In this section, we analyze whether put option returns are
related to other factors in addition to the market factor from the
CAPM. In particular, we use the volatility risk premium and the
price-to-dividend ratio (S/D). The volatility risk premium is the
difference between the volatilities of the Q and P probability
measures. As explained in Equation (17), the volatility risk
premium is a natural factor for describing option returns in
an economy with learning, as it is a proxy for the differences
between the Q and P probability measures. Regarding the use
of the price-to-dividend ratio, there is theoretical evidence that
this measure can explain stock returns when agents follow a
learning process, which may also affect option returns (for
an overview of the literature on the effect of learning on the
relation between the price-to-dividend ratio and stock returns,
see Pastor and Veronesi 2009).

In line with Bollerslev et al. (2009), we calculate the volatil-
ity risk premium as the difference between the option’s implied
volatility (IV) and the realised volatility (RV). In the case
of the empirical analysis using S&P 500 option contracts,
we calculate the IV through the Black-Scholes model with
at-the-money one-month-to-maturity put option contracts. We
use linear interpolation based on the IV’s of the four contracts
around the moneyness and the time to maturity required.
In the case of the simulated results, we obtain the IV (i.e., the

volatility under theQ probabilitymeasure) numerically from the
Monte Carlo simulation used to obtain the option prices each
month (as explained in Section 3). Thus, the option’s implied
volatility is calculated as the annualised standard deviation of
the simulated one-month stock returns under Q (namely, from
the 20,000 Monte Carlo paths generated by the two-step proce-
dure explained below Equation (21)).
We calculate the RV as the annualised standard deviation of

the daily stock log returns over each month to avoid overlap-
ping periods. For the empirical results, we use daily S&P 500
index data; for the theoretical results, we calculate the RV using
simulated daily stock log returns.
We explore whether the computed factors explain the empir-

ical and simulated option returns by using a naked strategy (as
in Tables 1 and 2) and a straddle portfolio. We also include the
straddle portfolio because it is not affected by price changes
in the underlying stock. The analysis of option returns using
the straddle strategy is important as a robustness check, since
the agent’s learning process simultaneously affects the option
contracts and the stock prices. Thus, one may conjecture that
the effect of learning on option returns is mainly driven by
changes in the underlying stock. However, the straddle portfo-
lio allows us to isolate the impact of learning on option returns

because this portfolio is free of risk derived from changes in
the underlying stock price.
The straddle portfolio is formed by buying one European put

option contract and one European call option contract with the
same moneyness and time to maturity. The call option price
is calculated using the same procedure that is used for the put
option price (as explained in Equation (21)); however, the call
option payoff is used this time. We calculate only straddle port-
folios with at-the-money contracts because no other straddle
position represents a market-neutral strategy.
Table 3 presents results for the empirical and simulated option

returns from the multifactor analysis. In our model, we use
three coefficients of relative risk aversion (η = 0.2, η = 0.5,
and η = 5.0 in Panels B, C, and D, respectively). Unlike Tables
1 and 2, Table 3 reports only the results for the scenario under
partial information with breaks and learning, since the volatil-
ity risk premium (IV − RVs) is equal to zero in the scenarios
without learning. It is important to mention that the difference
in volatility between the Q and P probability measures gener-
ated by our model is, on average, 6.9%, 3.4%, and 34.0% when
the coefficient of relative risk aversion is set at 0.2, 0.5, and 5.0,
respectively (see Internet Appendix D).
Table 3 reports that empirical and simulated straddle port-

folios are abnormal under the CAPM (see the fifth column of
results in the table), similar to the ones reported in Table 2
for a naked investment strategy under a learning environment.
For example, the value of the CAPM α of the straddle portfo-
lio using S&P 500 contracts (using our model with η = 0.5) is
−0.08 (−0.33).
Most importantly, Table 3 shows that the volatility risk

premium is a significant factor in explaining the empirical and
simulated returns of both the naked investment strategy and
the straddle portfolio. In addition, the values of the CAPM α

estimated from empirical and simulated option returns, as well
as their levels of significance, are strongly reduced in absolute
value once a factor model that incorporates the volatility risk
premium is used. This result further supports our study, as it
highlights that learning generates differences between the P and
Q probability measures, which affects put option returns (as
explained in Section 2.3). Note that we show only the results of
the volatility risk premium as a proxy for differences between
the P and Q probability measures. However, learning generates
differences in the entire distribution of the P and Q probability
measures, including differences in volatility, skewness and
kurtosis (see, e.g., David and Veronesi, 2002; Guidolin and
Timmermann, 2003).

5. CONCLUSION

The economic sources that generate the empirically observed
excessive put index option returns have not been studied
extensively. We suggest that the learning process followed by
investors may be one potential source. We present an equilib-
rium model under partial information about the mean dividend
growth rate, in which a rational Bayesian learner prices put
option contracts. We show that our model generates abnormal
put option returns similar to those we compute from actual S&P
500 index option data. In addition, we document that this result
is not obtained in an economy without learning. Our model is
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simple and intuitive and opens a number of potential avenues
for future research. For instance, future research may address
the impact of learning on the returns of other derivative securi-
ties, the effect of learning in a setup with asymmetric informa-
tion where informed agents reveal information to other market
participants via their trading strategies, and the role of learn-
ing in an environment with liquidity shocks that also need to be
learned.
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