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Migration‑induced transition 
in social structures: a view 
through the Sakoda model of social 
interactions
Eric Goles1, Aldo Mascareño2, Pablo Medina  3,4 & Sergio Rica1*

We study the dynamics of three populations evolving in a two-dimensional discrete grid according 
to rules of attraction, rejection, or indifference following the framework of the seminal model by 
Sakoda and we apply it to migration phenomena. An interesting feature of the Sakoda model is the 
existence of a Potts-like energy which, as a common principle, decreases as time passes by. Here we 
consider the evolution of two populations until stabilization, then, we perturb this attractor by the 
inclusion of a third arrival: the immigrants. We show the conditions under which this irruption does not 
alter significantly the previous attractor (a sociological morphostatic behaviour) or it is dramatically 
changed (morphogenetic behaviour). We observe empirically that for a morphostatic behaviour the 
energy decreases while for morphogenesis this energy increases, revealing an escalation of social 
tension.

In 2015, near to one million migrants and refugees crossed into Europe, mostly coming from Syria, Afghanistan 
and Iraq. Less massive yet relevant, in 2018 thousands of people literally walked through Central America from 
Honduras to USA in a series of migration flows. Similar situations took place in Colombia and Chile. Drifting 
apart from war zones or failed States with limited opportunities for social inclusion (access to work, education, 
health care, among others), migratory flows have increased in the last years, posing relevant challenges for social 
structures and institutions in the host countries1–3. Societies can react to these flows through a number of peculiar 
behaviors like, segregation, inclusion, or exclusion. As often happens in complex systems, these social struc-
tures produce a collective order that arise from simple local interactions. Despite the intricate nature of social 
interactions, it is remarkable that social behaviors and structures share many common features with a variety of 
physical systems, in particular, with magnetic systems, kinetic ordering, and surface tension phenomena4,5. In 
this article, we assess the impact of immigration flows on pre-existing social structures by using Sakoda’s model 
of social interactions.

After World War II, James Sakoda published his Ph.D. dissertation on the social structures emerging from 
the basic social interactions among individuals6. Only 20 years later, in 1971, by adding a numerical simulation 
in FORTRAN, this work was published in the Journal of Mathematical Sociology7. The main goal of Sakoda’s 
work was to provide a concrete means of portraying social interaction as an ongoing process among members of 
groups. The resulting patterns of distances among individuals can be interpreted as the social structure resulting 
from the interacting process. Mainly on the basis of the conceptual work of the mid-twentieth-century social 
psychologist Kurt Lewin8, Sakoda aimed at formalizing social interactions between two groups to identify emer-
gent patterns that he called social structures9,10. The principles of the seminal model are simple: two groups with 
positive, neutral or negative attitudes to one another moving in an 8× 8 chessboard (the space of interaction), 
trying to improve their position according to the value of a field that takes into account the social preferences 
of the two populations as well as the distance between individuals. Sakoda identified and described eight self-
organized social structures (for example, segregation), which was also considered in the seventies by Thomas 
Schelling in a series of renowned articles11–13. While Schelling’s contribution was successful, Sakoda’s contribution 
was rather forgotten14. However, first, the underlying richness of the Sakoda model offers more analytical options 
than just the dynamics of segregation, thereby opening possibilities to identify new social structures arising 
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from interaction, as recently done by Medina et al.15. Second, Sakoda’s aim of connecting psychology’s interest 
in micro phenomena and sociology’s focus on macro levels corresponds with a key distinction in sociological 
analysis, that between agency and structure, and subsequently, with the discussion whether agency or structure 
should be the point of departure for theory building16. Third, since Sakoda’s model was practically unattended 
for about 45 years, a set of technical and theoretical developments in computer sciences, physical modeling, and 
sociological theory can be applied to explore the possibilities of a generalized Sakoda’s model.

Originally, Sakoda considered only two types of individuals belonging to a network, for simplicity, a square 
and periodic lattice in two dimensions. Any site in the lattice may be occupied by a state; or it could be empty. 
These populations interact according to specific attitudes of attraction, repulsion, or neutrality and with a strength 
that depends on the Euclidean distance among sites in the lattice. In general, the interaction may be of a long or 
short-range type, but, usually, this strength decreases as the separation distance increases. The basic rule of the 
model consists of the following steps: first, to take a random individual; next, to evaluate its social expectation at 
all possible empty sites, finally, the individual moves to the position giving the highest “potential” expectation. 
This procedure is repeated randomly among all possible individuals.

In Ref.15, we have characterized the social structures appearing as a result of the evolution of the original 
Sakoda model of general social interaction. More important, we quantified the evolution of the 45 different 
interaction rules via a Potts-like energy function17 which drives the system irreversibly to equilibrium or a steady 
state. From the 45 possible interactions, we have identified 10 basic social structures, the previous seven structures 
already identified by Sakoda in his Thesis6: crossroads, mutual suspicion, segregation, social workers, boys and 
girls, couples, and husband and wife; and we added in our work three new social behaviors: inclusion, repul-
sion, and exclusion, which complete the picture. We refer the reader to Ref.15 for more detailed description of all 
social structures. Here we mention a couple of them that we will use explicitly in the developments of our results:

•	 (S1) Segregation, which typifies attraction among individuals of the same group and repulsion among mem-
bers of the other group. In this case, the system minimizes the interface perimeter inducing segregation (see 
the forthcoming Fig. 1b).

•	 (S5) Social-workers. In this case, one group feels attraction by everybody while the other group feels repulsion 
for everybody (see the forthcoming Fig. 2b).

In this article, we apply Sakoda’s social structures model to better understand the dynamics and social conse-
quences of immigration phenomena. Particularly, we aim at identifying the consequences for established social 
structures when a third immigrant population is introduced in a given social context. This study aims to reflect 
on these consequences. In order to do this, we develop a three population model following Sakoda’s formulation7, 
evolving on a L× L board according to a finite set of rules. Then, we study some final social structures for three 
population obtained through perturbing attractors reached in the Sakoda’s model for two populations; that is, we 
introduce a third one and let them evolve considering the Sakoda’s approach. We interpret our findings accord-
ing to Margaret Archer’s sociological approach. In this sense, a society is a continuous interplay between two 
autonomous levels, agency and structure (as said, the level of interactions among individuals and the macro level 
of established institutions), whose dynamics evolve in morphostatic/morphogenetic cycles. Roughly speaking, a 
morphostatic cycle takes place when interactions do not significantly change the functioning of social structures, 
i.e., when constraints and enablements that social institutions exert upon individuals remain the same—a failed 
political revolution, for example, does not change and rather reinforce old social structures. On the contrary, 
in a morphogenetic cycle interaction succeeds in modifying social structures—e.g., passing a new law after a 
protest movement, the emergence of a new organization after engaged collective action, or a successful political 
revolution. Applied to our case, a morphostatic transition occurs when the third population (the immigrants) 
adapts to the previous stabilized situation. On the other hand, morphogenesis appears when the new structure, 
after the introduction of the third population, is dramatically different from the original stabilization between 
the two populations. In this article, we are particularly interested in this case.

Results
The three individual based Sakoda model.  The Sakoda model consists of a two-dimensional lattice 
with N = L× L sites. Each site is characterized by a discrete variable, xk , that may take a “colored” value in 
the set: empty, red, blue, and green, i.e.,  . When a node k is empty (xk = 0) and only in this situation, 
another individual  , or  , or  may occupy the empty site and re-assign its own value. The lattice occupancy 
is arbitrarily provided initially with N1 individuals of the type 1 (e.g., the “reds”  ) , N2 individuals of the type 
2 (the “blues”  ) and N3 individual of type 3 (the “greens”  ). Finally, there are N0 empty sites which we plot 
with a white empty space. Naturally, the sum of each occupancy states are the total available number of sites 
N =

∑3
σ=0 Nσ.

The social interaction is mainly characterized by the possible attitudes among individuals which are sum-
marized in a 3× 3 matrix, that we call the “S-matrix”, which has the form:

The entries sαβ of the S-matrix take three possible values: {+1, 0,−1} . These indicate, respectively, an attractive 
(+1) , a neutral (0), or a repulsive (−1) attitude from members of the type α to the individuals of the type β.
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In the original Sakoda model7, the preferences of an individual over a particular place in the lattice is based 
on the spatial locations of all other individuals and the attitudes among them. Following the original ideas of 
Sakoda, we propose a function that quantifies the social expectations of the individual i:

where Jik ≥ 0 denotes a symmetric ( Jik = Jki ) interaction strength. We avoid self-interactions by taking Jii = 0 . 
On the other hand, the sign (repulsive, attractive or neutral) of the interaction is given by:

(1)fi(xi) =

N
∑

k=1

JikδS(xi , xk),

(2)δS(xi , xk) =

{

sαβ for xi = α �= 0 & xk = β �= 0

0 otherwise
.
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Figure 1.   Snapshots of the segregation social structure (S1) process in presence of a third new population. 
The interaction reads: (  ). (a) Shows the initial state with two different 
populations of (  ,  ) that are randomly and uniformly distributed in the lattice with a concentration 

 . (b) After running or 105 steps the system reaches a stationary state. In (c) we add a randomly 
distributed a “green” population with the same concentration  . Next snapshots (d–g) show the 
morphogenesis vs. morphostasis after the inclusion of the third population depending on the respective 
interaction matrix. One notices that the primary segregation structure is not destroyed in the cases (d,g); 
however, there are major modifications of the original social structures in the cases (e,f). We underline the 
interactions of the case (g) corresponds to the three individuals Schelling model: different individuals repel 
each other but they attract themselves. The simulations evolved in a lattice of N = 128× 128 sites and after the 
inclusion of the “green” individuals the simulation runs for 105 more steps.
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We underline that, though Jik is symmetric, the full interaction JikδS(xi , xk) is not necessarily symmetric, because 
δS(xi , xk) is not symmetric, i.e., δS(xi , xk)  = δS(xk , xi) . The coefficients Jik may include short and long range 
interactions. The mobility of an individual could be also of long or short-range movement.

An individual located at the node i would move towards an empty node j, if fi(xi) < fj(xi) . Here fj(xi) 
represents the potential value (1) at the empty node, j, occupied by the individual xi . As a general rule, an 
individual chooses, everywhere in the lattice, a place j that represents the highest possible value of the 
social expectation function fj(xi) . In case of degeneracy, that is, if there are n nodes, j1, j2, . . . jn , such that 
fj1(xi) = fj2(xi) = · · · = fjn(xi) , then, one of these is selected randomly with the same probability. In a short 
movement case, the mobility of the individual is restricted to its Moore neighborhood (the eight closest 
neighbors).

Summarizing, the movement of individuals occur as follows: During an iteration step, an individual is selected 
randomly. Then, she or he (hereafter, we refer to an individual by female gender) evaluates the potential function 
at every available empty site in her range of movement for a potential new location. Next, the individual selects 
the site with the highest potential expectation value (1) and then she moves to this site. If no site improves the 
potential function, then the individual holds on in place. Lastly, the algorithm is iterated until the system reaches 
a fixed point; otherwise, it runs indefinitely.

In Ref. 15, we have demonstrated an energy theorem, namely if the S-matrix is symmetric, then, the Potts-like 
energy function17:

)c()b()a(
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Figure 2.   Snapshots of the Social-workers social structure (S5) process in presence of a third new population. 
(a) Shows the same initial state as in Fig. 1a. (b) After running with the corresponding interaction: 

 , for 105 steps reaching a stationary state that consists in a coherent 
aggregation of red individuals together with a fluctuating populations of “blues” moving eternally. In (c) we add 
a randomly distributed “green” population with the same concentration  . As in Fig. 1, next figures (d–
g) show the morphogenesis vs. morphostasis. One notices that only (d,g) preserve the primary social structure 
while other interactions modify substantially the patterns. The simulations evolved in a lattice of N = 128× 128 
sites.
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is a non increasing function after a movement resulting from the Sakoda algorithm, i.e., E[x] is a non-strict 
Lyapunov function, Eafter ≤ Ebefore . This result is important because it restricts the time evolution of a configura-
tion. In other words, if the interaction S is a symmetric matrix, then, because E[x] cannot increase, the dynamics 
should stop in finite time.

Besides the energy theorem, we underline that the Sakoda rule preserves the initial number of individuals 
of all types. Therefore, all N0 , N1 , N2 , and N3 keep their initial value during the evolution. Hereafter, we quantify 
the occupancy via the fractions: φσ = Nσ /N.

Finally, for the sake of simplicity, as in Ref.15, we restrict our central results only to the case of short-range 
interactions and long-range movements: An individual evaluates her preferences considering the Moore neigh-
borhood, that is Jik = 1 if k is in the eight closest neighbors of the site i, and Jik = 0 elsewhere. Then, the indi-
vidual may look forward to the highest expectation at an empty node in the lattice.

Migration induced social morphostasis–morphogenesis transition.  We aim to study the robust-
ness of the social structures under perturbation induced by a third population. As mentioned, we are interested 
in a manifestation of the Archer’s morphogenetic scheme16 under conditions of a sudden immigration of a third 
population into stabilized social structures. We analyze this by using computational simulations based on the 
Sakoda model of social interactions.

To study a morphogenetic transition we assume the existence of a stable social structure, then we add a frac-
tion of immigrants with given attitudes or interactions. The further evolution would eventually determine if the 
new social structure is dramatically different from the original one, that is, if we either observe a morphogenetic 
cycle or we are in presence of a morphostatic cycle where immigrants adapt to the prevailing social structure.

We proceed as follows: we start with an initial state with two different populations of ( , ) with  
that are randomly and uniformly distributed in the lattice (see Fig. 1a). Next, we run the Sakoda algorithm 
described in the previous section.

Figure  1b presents a Segregation social structure (S1), obtained for the the following interactions: 
 . After about 105 steps the system reaches a stationary state (an 

attractor) (see Fig. 1b). Similarly, Fig. 2b shows the same protocol for the Social workers (S5) social struc-
ture (  ). The same procedure can be repeated for other social structures, 
however, in this paper we present the morphostasis-morphogenesis transition in the cases of these two social 
structures: S1 and S5. We select Sakoda’s segregation and social workers structures since they are relevant start-
ing points for considering immigration effects. Segregation means attraction among individuals of the same 
group and repulsion to members of other groups; social workers, on the other hand, resembles a situation in 
which one group have a positive attitude toward others who in turn reject interaction. In this sense, immigrants 
arrive either to a rather hostile society in which segregation attitudes prevail, or to a society in which one group 
could be a friendly host (the social workers). Assuming these initial situations, we observe our results. Notice 
that S1 and S5 are different in one aspect in the segregation pattern, both the blue and red populations interact 
symmetrically reaching stable red and blue domains (see Fig. 1b). On the other hand, the case of S5 does not 
represent a symmetric interaction, thus the system does not reach an attractor, and more important, the final 
structure is not symmetric. Indeed, as it can be seen in Fig. 2b, the “red” individuals present a cohesive and stable 
community, but the “blue” ones do not form a coherent structure, because they are delocalized and moving all 
time around the empty sites.

At this point the immigration starts, we model it by adding by hand a randomly distributed “green” popula-
tion with the same concentration as the blues, and reds (in the simulations ). This can be seen in Fig. 1c. 
Then we define the interactions among the reds and the greens, as well as among the green with the blues, and 
the greens with themselves. From the35 possible cases, we restrict our work to 4 different cases that may be sum-
marized with the following particular interaction matrix:

The  take the values of the desired social structure, and bothσ1 = ±1 and σ2 = ±1 accept posi-
tively an immigrant ( σ1 = σ2 = 1 ), and the case of a rejected one ( σ1 = σ2 = −1 ). The other two cases corre-
spond to mixed situations. Notice that we have restricted our numerical analysis to the situation in which the 
immigrants attract themselves, that is .

Figures 1 and 2 show evidence of the morphogenesis/morphostasis behavior of two well established social 
structures (S1 and S5). In particular, Figs. 1d,g exhibit two examples of the morphostasis process in which the 
immigrants,  , are forced to adapt to the previous structure (formed by  and  ). One notices that the blue and 
red structures are both stable and their original shape does not change its main characteristic. Figure 1e,f show 
examples of morphogenesis in which a third population  modifies the previous well established social structure 
of Segregation (S1).

One notices that in the case of symmetric interactions (Fig. 1d,g) the “greens” interact in two distinct man-
ners: though, in Fig. 1d he “greens” are accepted by the “blues” and “reds”, they are not able to migrate inside the 
close domains of occupied by the “blues” and the “reds”. Hence, the most expected location for them is at the 
“blues”–“reds” interface domains. This is, for example, the case when immigrants occupy job positions that locals 

(3)E[x] = −
1

2

∑

i,k

Jik δS(xi , xk),

(4)
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do not want to execute anymore—mostly low-income jobs. Immigrants are accepted as long as they accomplish 
a role which is hardly covered (or not covered at all) in society. This could be the situation in affluent societies in 
which locals ascend in social stratification, thereby rejecting unattractive jobs which are accepted by immigrants. 
To that extent, social structure remains the same (morphostasis), as the lower positions in social stratification 
do not disappear but are occupied by the newcomers. On the other hand, in Fig. 1g, the “greens” are rejected by 
the “blues” and the “reds”, therefore the most favorable configuration is total segregation, that is no one overlap 
the others, as seen in Fig. 1g. In this case, immigrants develop ‘their own world’—as it were. They do not change 
the fundamental structure of segregation in society, but add another layer to it. This is similar to a situation of 
immigration in the 19th century, as Europeans are invited by Latin American governments to colonize virgin 
territories where a segregation prevails between national locals and indigenous people. Immigrants do not 
change segregation between them (morphostasis) but rather fill empty spaces, developing their own schools, 
churches, and alike.

From a more analytic point of view, one notices that in these cases the dynamics stop in finite time, because 
the interactions are symmetric. Accordingly, the “green” immigrants have no time to modify the original social 
structure. On the contrary, the cases of Fig. 1e,f correspond to asymmetric interactions, hence the dynamics 
never stops, allowing time to the immigrants for changes in the original social structure. Here we speak of 
morphogenesis. These are cases in which immigrants play either a bridging or and intervening role between 
segregated people, thereby dissolving old social relations and recomposing it into new ones. This could be the 
case of a humanitarian intervention into a country affected by civil war, for example, or the allied intervention 
in Germany after World War II to deconstruct the segregation between German people and Jews.

For the case in Fig. 2, the interaction is never symmetric, hence the dynamics never stops and all individuals 
play forever in the social checkerboard, therefore, the pattern robustness may be tested in the long run. Notably, 
as before, the Fig. 2g shows a morphostasis behavior, while Fig. 2e,f reveal a morphogenetic behavior of the afore-
established social structure of Social-workers (S5), thereby transforming the previous coherent society installed 
by the reds. In these cases, immigrants interact so strongly with the friendly hosts (the “reds”), that they become 
intertwined with them, allowing for morphogenesis. This is, for example, the case of “mestizo”-like structures. 
Additionally, though the patterns of Fig. 2d,g do not appear as the original structure Fig. 2b, the red structure 
mainly survives immigration in both cases. The non-coherent delocalized dynamics of the blue individuals is 
not transformed either. This could be the case in which immigrants relate to a particular stratum of the “reds”, 
commonly the lower stratum, while the upper red stratum remains immune to crossbreeding. Depending on the 
interactions, the green individuals may set-up a structure, as in Fig. 2g, even in the case whenever the greens are 
rejected by the two other populations. In the case that the greens are accepted, nor the greens neither the blues 
are allowed to set up a coherent structure, hence their population fluctuate around the red structure. Therefore, 
in both situations, we obtain a morphostasis.

A similar analysis may be pursed to all other social structures. Other cases reveal a similar behavior. A robust 
situation occurs whenever the immigrants are rejected by the former populations (the “blues” and “reds” individ-
uals), that is whenever the interaction matrix correspond to σ1 = σ2 = −1 in the interaction S-matrix (4). In all 
these cases, the immigrants form coherent green structures inside the former structure already discussed in Ref.15. 
Essentially, the final configurations keep the green individuals separated from reds and blues. Moreover, there 
is a tendency of the “greens” to form closed domains. In the opposite case, wherever the immigrants are liked 
by the former structure, that is, for the following interaction: σ1 = σ2 = 1 in (4), one has a different structural 
attractors. Generally speaking, the immigrants are placed on the boundaries of the pre-established structures. The 
inclusion of the “greens” does not modify dramatically the pre-established attractors. Therefore, these situations 
present a morphostatic behaviour. The general observed principle the morphostatic behaviour is observed in 
the case of symmetric interactions of the included immigrant respect to the former two individuals (Fig. 1d,g.

On the contrary, in the case whenever the interactions are not symmetric one observes in most cases that a 
morphogenetic phase dominates—as in the case of Fig. 2e,f. The exceptions are the social structures S7, S9 and 
S10, which correspond to a situation where the interactions are:

Here one notices at least in S9 and S10 an essential repulsive (negative) interaction. In these cases, the original 
structure, at least in S9 and S10, is mostly a random field with blues and reds separated by as much distance as 
possible between them. The inclusion of the greens does not really modify this pattern, displaying a random 
distribution of “reds”, “blues” and “greens”.

As we shall see next, a quantitative description of a morphostasis-morphogenesis transition can be done by 
using the Potts-like energy (3). An interesting open question concerns the relation of this “energy” with real 
social parameters obtained by social scientist with the methods of questionaries, surveys, and field measurements.

Energy criteria for morphostasis–morphogenesis transition.  Qualitatively, we notice that mor-
phostasis occurs for symmetric interactions of the migration population, while morphogenesis happens for non-
symmetric interactions of the third population. A more quantitative approach can be done on the basis of the 
energy (3). As shown in Ref.15, the energy mainly decreases (and necessarily decreases if the interaction S-matrix 
is symmetric) as time passes by. Hence, it provides an excellent tool for the study of the “potential” evolution of 
the system. The evolution of the energy (3) is plotted in the next Fig. 3 for the previous two cases (S1) and (S5) 
already shown in Figs. 1 and 2.

S7 =

(

−1 1 σ1
1 − 1 σ1

−σ1 − σ1 1

)

, S9 =

(

−1 − 1 σ1
−1 − 1 σ1
−σ1 − σ1 1

)

, & S10 =

(

−1 1 σ1
−1 − 1 σ1
−σ1 − σ1 1

)

.
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In both plots for t ∈ [0, 105] , the Sakoda algorithm runs only with the “blue” and “red” individuals. Although 
the case of (S5) does not have a symmetric interaction, as it can be readily seen in Fig. 3, both energies decrease 
mainly in time, independently of the symmetry of the interactions. This has been often observed in Sakoda’s15 
and Schelling’s18 models as well as. At t = 105 , the “greens” are added randomly, then for t ∈ [105, 2× 105] the 
algorithm runs with the three distinct populations. One notices that the observed energy decreasing principle 
does not hold anymore.

This landmark peculiarity indicates a probable criterion for the morphogenesis/morphostasis transition. 
Indeed, the energy decreases for the four cases of morphostasis (Figs. 1d,g, 2d,g), while the energy increases 
in three of the four cases of morphogenesis (Figs. 1f, 2e,f) The case of Fig. 1e presents a peculiarity: the energy 
decreases as the third population is included, however one notices apparent major changes in the new social 
structure. In conclusion, we may conjecture that, in most cases, for morphostasis the Sakoda energy decreases, 
while morphogenesis correlates with an anomalous increasing energy. Sociologically speaking, more effort is 
required from agents to change social structures than to maintain them.

Discussion
In this paper, we develop a generalization of Sakoda’s model for three populations to study the dynamics and 
social consequences of immigration phenomena on social structures. The main tenet of Sakoda’s approach is to 
reproduce agent dynamics according to a finite set of rules of repulsion, attraction, or indifference. In particular, 
we approach migrations from a perturbative point of view: given an established social structure, we studied what 
happens when a third population is introduced into an artificial society, in this case, into an in silico simple 
society.

The most important finding of this work is the interpretation of immigration dynamics from Archer’s socio-
logical approach in connection with Sakoda’s social structures. In this sense, the third population either dra-
matically modifies the previous society (morphogenesis), or new individuals adapt to the previously established 
social structure (morphostasis). Even several new social structures may appear because of the vast number 
of possibilities given by the multiple configurations of the Sakoda interactions. We notice that morphostasis 
occurs for symmetric interactions of the migration population, while morphogenesis appears for non-symmetric 
interactions of the third population. This is an important finding, for sociologically symmetric interactions take 
place mostly among people who consider themselves as equals (similar consideration regarding social positions, 
e.g. professionals, scholars); while asymmetric interactions unfold in hierarchical or confrontational contexts 
(people with different educational background or from different social positions or ethnic groups). This means 
that the social structures in host society are most likely to change (morphogenesis) when dissimilar social groups 
meet; while society structurally remains (morphostasis) when groups are rather similar in social composition.

This seems to be described quantitatively by the energy principle shown in equation (3), providing a descrip-
tor of the evolution of the system, at least, for the two representative cases studied in this work: segregation (S1) 
and social workers (S5). We also note that, in a general manner, the energy decreases for morphostasis cases 
(Figs. 1d,g, 2d,g), while the energy increases for morphogenesis cases (Figs. 1e,f, 2e,f), which drives us to make 
a conjecture of the morphostasis/morphogenesis anomalous decreasing/increasing energy relation, respectively. 
This could be a general sociological measure of the effort that society devotes to maintain or change its structures.

A natural question that arises from this work is the variation of the network topology. Changing the grid 
configuration and neighborhood relations range might be explored, for example, a most general framework that 
opens the possibility of the use of complex networks. There are several works that consider segregation dynamics 
in complex networks19–22. However, in the context of migrations, Sakoda’s model may bring a wider perspective 
that may be considered in urban planning and policy interventions23. Moreover, a generalization of the energy 
principle in complex networks, where the connectivity varies for each node may bring interesting insights from 
the study of physical systems.

The approach we present in this article might be used in a variety of social research fields. For example, 
in recent years, increasing interest arises in the field of pre-historic and native human interactions, where 

Figure 3.   Evolution of the energy as function of time for previous simulations: (a) Fig. 1 and (b) Fig. 2. The 
initial time ( t = 0 ) corresponds to the step (a) in previous figures. The “blues” and “reds” individuals interact 
up to time t = 10

5 , as it can be seen, the energy (blacks points) decreases. The “greens” migrate randomly at 105 , 
and then we run the four different interactions (d–g) to establish a new social structure.
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breakthroughs related to social interactions among different human species and native populations have brought 
diverse interesting results24–27. In this sense, simulating the morphogenetic dynamics of different populations may 
shed light on many hypotheses regarding pre-historic migrations or social events with morphogenetic dynamics 
information. Other extended additions of this model, like considering violent acts, casualties, etc., in the simu-
lations like decreasing-increasing populations sizes may help complement different studies in social sciences.

Methods
Proof of the energy principle.  Consider the Potts-like energy (3), with a symmetric S-matrix. Therefore, 
δS(xj , xk) = δS(xk , xj) for two arbitrary sites j and k in the lattice. Then, consider the exchange of sites l (occu-
pied) and q (empty), i.e., xl = ±1 and xq = 0 . Hence, the initial configuration and the subsequent configuration 
after swap between the sites q and l are:

Next, if the S-matrix is symmetric, then the energy difference between the initial and the actual configuration 
becomes

Here we have used JjjδS(xj , xj) = 0 , because we imposed that Jjj = 0 and δS(xq, xj) = 0 for all j, since the δS 
function evaluated at a vacancy state xq = 0 vanishes. Next, the intrinsic mechanism of Sakoda’s rule imposes 
that the local value of (1), fl , of the individual xl , is smaller than the interaction at the site q, i.e., fq(xl) > fl(xl) :

Therefore, re-writing the r.h.s. of (5) in terms of the expressions fq and fl , previously defined in Eqs. (6) and (1) 
respectively, one obtains:

In conclusion, if S is a symmetric matrix, then after a swap between the configurations x and x′ , 
�E ≡ E[x′] − E[x] ≤ 0 , that is, the energy (3) is a decreasing quantity after a movement.
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