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A CONTINUOUS-TIME MODEL OF STOCHASTIC GRADIENT DESCENT:
CONVERGENCE RATES AND COMPLEXITIES UNDER ŁOJASIEWICZ

INEQUALITY

In this thesis we study the convergence rates and complexities of a continuous model of
the Stochastic Gradient Descent (SGD) under convexity, strong convexity and Łojasiewicz
assumptions, the latter being a way to generalize the concept of strong convexity. In the
first chapter, the concept of Łojasiewicz inequality is introduced and results of the Gradi-
ent Descent method in its discrete and continuous version are shown for this case, together
with the convex and strongly convex cases. In the second chapter, the SGD method is
introduced, results are shown under convex and strongly convex assumptions, and new re-
sults are obtained under the Łojasiewicz Inequality. Then it is shown how to construct a
continuous-time model of SGD under a Gaussian variance assumption and, at last, the nec-
essary concepts of Stochastic Analysis are introduced to understand this model. Finally, in
the third chapter this model is analyzed and its upper bounds and complexities are obtained,
where it is deduced that if the variance is sufficiently small, then the complexity of the model
matches that of the Gradient Descent for the cases: convex, strongly convex and Łojasiewicz.

En esta tesis se estudian las tasas de convergencia y complejidades de un modelo continuo
del método del Gradiente Estocástico (SGD) bajo supuestos de convexidad, fuerte convexidad
y Łojasiewicz, siendo este último una forma de generalizar el concepto de fuerte convexidad.
En el primer capítulo se introduce el concepto de desigualdad de Łojasiewicz y se muestran
resultados del método del Gradiente Descendente en su versión discreta y continua para este
caso, junto con los casos convexo y fuertemente convexo. En el segundo capítulo se introduce
el método de SGD, se muestran resultados bajo suposiciones de convexidad y fuerte convex-
idad, y se obtienen nuevos resultados bajo la desigualdad de Łojasiewicz. Luego se muestra
como construir un modelo continuo de SGD bajo una suposición de varianza Gaussiana y
por último se introducen los conceptos necesarios de Análisis Estocástico para comprender
este modelo. Finalmente, en el tercer capítulo se analiza este modelo y se obtienen sus cotas
superiores y complejidades, donde se deduce que si la varianza es suficientemente pequeña,
entonces la complejidad del modelo coincide la del método del Gradiente Descendente para
los casos: convexo, fuertemente convexo y Łojasiewicz.
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Notations

Let n,m ∈ N.

• [n] := {1, . . . , n}.

• Rn×m is the set of the real matrices of size n×m.

• Let M ∈ Rn×n and M = (mij)i,j∈[n], then tr(M) =
∑n

i=1mii.

• Let M ∈ Rn×m, M t ∈ Rm×n is the transpose of the matrix M .

• If M ∈ Rn×m, ‖M‖F is the Frobenius norm defined as
√
tr(MM t).

• Rn
+ is the positive orthant in Rn.

• If (xk)k∈N is a sequence, then x̄k is the average sequence 1
k

∑k
i=1 xi.

Let Ω be a probability space.

• Let (ik)k∈N a sequence of random variables and D a distribution, (ik)k∈N
iid∼ D if each ik

is drawn independently and identically according to the law of D.

• If X : Ω → Rd is a random variable, E[X] is the expectation of X and V[X] is the
variance of X. If D is a distribution such that X ∼ D and f : Rd → Rp a function,
then the expectation and variance of f(X) are denoted by ED(f(X)) and VD(f(X)),
respectively.

• If X : Ω × R+ → Rd is a stochastic process, then X̄(ω, t) is the average process
t−1
∫ t

0
X(ω, s)ds.

Let H be a real Hilbert space.

• Let c ∈ R and f ∈ H → R, [f < c] = {x ∈ H : f(x) < c}.

• For x ∈ H, ‖x‖ =
√
〈x, x〉.

• For x0 ∈ H, r > 0, then B(x0; r) := {x ∈ H : ‖x− x0‖ < r}.

• Let (xk)k∈N ⊂ H, x ∈ H, then xk ⇀ x if 〈xk, y〉 → 〈x, y〉 for all y ∈ H.
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• If A,B ⊆ H, then d(A,B) is the distance between A and B.

• If A ⊆ H, then cl(A), int(A) is the closure and the interior of A, respectively.

Let B a finite set and |B| its cardinality.

• For b ∈ [|B|],
(
B
b

)
:= {X ⊆ B : |X| = b}.

• Unif(B) is the uniform law on the set B.

Let f, g : R+ → R be functions.

• f(x) = O(g(x)) if there exists C > 0, x0 > 0 such that f(x) ≤ Cg(x) for all x ≥ x0.

• f(x) = Ω(g(x)) if there exists C > 0, x0 > 0 such that f(x) ≥ Cg(x) for all x ≥ x0.

• f(x) = Ω0(g(x)) if there exists C > 0, x0 > 0 such that f(x) ≥ Cg(x) for all x ∈ (0, x0).

• Ω̃0(g(x)) := Ω0

(
g(x)ln

(
1
x

))
.
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Introduction

Optimization is the selection of the best element (under some criterion) from some set of
available alternatives. The applications of this principle can be found in all types of disci-
plines, such as: Computer Science, Operations Research, Economics, Machine Learning, etc..
An optimization problem can be represented (without loss of generality) as:

Given some set K, and a function f : K → R, find a x∗ such that f(x∗) ≤ f(x), for all x ∈ K.

In order to find a solution, optimization algorithms (methods) work as follows: given an
initial point x0 ∈ K, these algorithms will generate a sequence (xk)k∈N, such that, while k
grows, the sequence gets “closer” (in some sense) to a solution. In this Thesis we will distin-
guish two types of algorithms: Deterministic and Stochastic. For deterministic algorithms,
the calculations to generate a new element of the sequence are exact, i.e. given x0 ∈ K, the
same sequence will always be obtained each time the algorithm is run. Instead, for stochastic
algorithms, the calculations depend on random variables, so obviously, given x0 ∈ K, differ-
ent sequences will be obtained each time the algorithm is run. Nevertheless, we can often
deduce results in expectation.

We will assume that K = H is a real Hilbert space and that f : H → R is a differentiable
and convex function. In this context, a very popular deterministic algorithm is the Gradient
Descent (GD) method, which takes the following form: given any x0 ∈ H,

xk+1 = xk − γk∇f(xk), k ∈ N, (1)

where γk > 0. If ∇f is Lipschitz continuous and γk is sufficiently small, then f(xk) con-
verges to the minimum value of f .

The process of updating a sequence using an algorithm can be seen as a discrete dynamical
system. However, there are also continuous dynamics that can let us achieve the minimum
value of f . Although these two types of dynamics are a world unto themselves, they enjoy
remarkable connections between them. As an instance of these connections, (1) can be seen
as a first order discretization of a continuous dynamic, in effect, (1) can be rewritten as

xk+1 − xk
γk

= −∇f(xk), k ∈ N.

1



If we impose γ := supk∈N γk → 0, then we obtain its underlying continuous dynamic (CGD):

ẋ(t) = −∇f(x(t)), t > 0 (2)
x(0) = x0.

It is easy to see that f decreases along the trajectory x(t), since

d
dt

(f(x(t))) = −‖∇f(x(t))‖2 ≤ 0,

this fact inspires the analysis of first-order descent methods (for more details about the con-
vex case, see [1], for the non-convex case, see [2]). Besides, we obtain the same result as
before in this dynamic, this is, f(x(t)) converges to the minimum value of f .

For the remainder of this Introduction, we will suppose that ∇f is Lipschitz continuous.
A natural question is to wonder how “fast” a dynamic converges to the minimum, which
is called “convergence rate”. A classical result about this concept is that if the stepsize is
constant (i.e. γk ≡ γ) and sufficiently small, then Gradient Descent (1) satisfies:

f(xk)−min(f) = O
(

1

k

)
.

Interestingly, the continuous dynamic (2) satisfies:

f(x(t))−min(f) = O
(

1

t

)
.

Those results can be improved if we have more information about the properties or the
geometry of the function. For instance, if f is strongly convex, then (1) and (2) have linear
convergence rates i.e., there exist ρ, ρ̃ ∈ (0, 1) such that:

f(xk)−min(f) = O(ρk)

and
f(x(t))−min(f) = O

(
ρ̃t
)
.

respectively.

In practice, strong convexity is often too restrictive, so with the idea of relaxing it and
retaining fast convergence rates, an interesting property to delve into is the Łojasiewicz In-
equality with exponent q ∈ [0, 1). Roughly speaking, this property describes convex functions
that behave like

x 7→ d(x, argmin(f))
1

1−q

around its minimizers. An intuition of the functions that satisfy the Łojasiewicz Inequality is
the following: the bigger q is, the “flatter” the function is (around its minimizers), therefore,
a Gradient Descent algorithm will converge progressively slower as q grows. On the other
hand, a strongly convex function ({x∗} = argmin(f)) behaves like

x 7→ ‖x− x∗‖2

2



around x∗, which coincides with the behavior of functions that satisfy the Łojasiewicz In-
equality with q = 1

2
.

As we have said, the convergence rates of a Gradient Descent algorithm should get pro-
gressively worse as q grows (we will focus on the q ≥ 1

2
case). More precissely, if f satisfies

the Łojasiewicz Inequality with exponent q ∈ [1
2
, 1), then [3] ensures that a sequence (xk)k∈N

generated by (1) satisfies:{
f(xk)−min(f) = O

(
ρk
)
for ρ ∈ (0, 1) if q = 1

2
,

f(xk)−min(f) = O
(
k−

1
2q−1

)
if q ∈ (1

2
, 1).

And x(t) following the dynamic of (2) satisfies:{
f(x(t))−min(f) = O(ρt) for ρ ∈ (0, 1) if q = 1

2
,

f(x(t))−min(f) = O(t−
1

2q−1 ) if q ∈ (1
2
, 1).

Once again, we see that discrete and continuous dynamics share similar convergence rates
under Łojasiewicz assumptions, and that these convergence rates get worse as q grows, as
predicted.

Next, we will focus on the stochastic case and compare results.

If we want to implement the Gradient Descent Method (1) computationally, this algorithm
relies on the fact that the gradient of f is “cheap” to compute, but in Machine Learning and
Big Data optimization this is not the case. We will usually have a function of the form

f :=
1

n

n∑
i=1

fi. (3)

Where each fi corresponds to one data point, so computing ∇f(x) cost n data points (which
can be of the order of millions or bigger). In order to manage this structure, an idea would
be to estimate the gradient instead of calculating it. In this sense, one of the most popular
stochastic algorithms is the Stochastic Gradient Descent (SGD), which takes the following
form: given any x0 ∈ H,

xk+1 = xk − γk∇fik(xk), (4)

where (ik)k∈N
iid∼ Unif [n]. The key idea behind this algorithm, as previously said, is that ∇fj

(with j ∼ Unif [n]) is an unbiased estimator from the gradient of f , i.e. E[∇fj(·)] = ∇f(·).
As an initial result on their convergence rates, the following can be observed: if every fi has
Lipschitz continuous gradient and γk = C

k2/3
for some C > 0, then [4, Theorem 4] ensures

that a sequence (xk)k∈N generated by (4) satisfies:

E(f(xk))−min(f) = O
(

1

k1/3

)
.

3



If instead, we choose a constant stepsize in (4), then the algorithm in general does not
converge. Nevertheless, we can obtain upper bounds, for instance, if the constant stepsize γ
is sufficently small, then

E(f(x̄k))−min(f) = O
(

1

k

)
+O(σ2),

where σ2 := V [∇fj(x∗)] (with j ∼ Unif [n]).

Moreover, if f is strongly convex, then there exists ρ ∈ (0, 1) such that:

E(f(xk))−min(f) = O(ρk) +O(σ2).

These upper bounds are interesting because if we had the “interpolation property” (see
[5]), which implies that σ2 = 0, we could recover the convergence rates of (1) in the convex
and the strongly-convex case. This leads us to believe that the same thing (about upper
bounds and convergence rates) will hold for (SGD) under another properties, such as Ło-
jasiewicz Inequality. However, there are not many results in this case. Even so, we will
attempt to get some. In general, σ2 is strictly positive, so we cannot ensure a convergence
rate if this variance is constant. Nevertheless, as a comment (since no work was done on this
subject throughout this Thesis), there are stochastic algorithms, such as SVRG and SAGA
(see [6]) that use variance reduction techniques and obtain the same convergence rates as in
the deterministic case for convex and strongly convex functions.

A concept related to the velocity of convergence of an algorithm is the number of steps
we must take until we get a “good enough” solution, this will be called complexity. More
precissely, the complexity is a function u : R+ → R such that, if we take a particular
k = Ω0(u(ε)), then

f(xk)−min(f) ≤ ε.

Remark. The definition of the complexity for continuous dynamics is analogous if we replace
adequately k for t, it is also analogous in the stochastic case if we take a expectation over
f(xk). Additionally, we will use the averaged sequence (or the averaged process) in the
complexity for the convex case. Besides, in the stochastic case we will use the definition of
complexity with Ω̃0 (see Notations).

Another interesting aspect about the upper bounds previously shown is that, although in
general we will not have convergence rates if the stepsize is constant in the SGD case, we can
deduce complexities if we impose the stepsize to be sufficiently small.
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In the following table are gathered the complexities of the algorithms mentioned before.
The complexities of SGD under Łojasiewicz Inequality assumptions are demonstrated in this
Thesis (see Propositions 2.13 and 2.17), the rest of the complexities are shown throughout
this document and can be found in the literature.

Property Complexity GD Complexity CGD Complexity SGD
Convex ε−1 ε−1 ε−2

Strongly Convex ln(ε−1) ln(ε−1) ε−1

Łojasiewicz with q = 1/2 ln(ε−1) ln(ε−1) ε−1

Łojasiewicz with q ∈ (1/2, 1) ε−(2q−1) ε−(2q−1) ε−(4q−1)

We started this Introduction deriving a continuous dynamic from an algorithm in the
deterministic case. Now we want to do the same in the stochastic case, because by some
aspects it is easier to work with continuous dynamics rather than with discrete algortihms.
Although there is no unique way to do this, under some technical assumptions, we can model
a continuous version of SGD in the case of H = Rd. The modeled dynamic is called a
Stochastic Differential Equation (SDE) and has the following form: given any X0 ∈ Rd,

dX(t) = −∇f(X(t))dt + σ(t,X(t))dB(t), t ≥ 0 (5)
X(0) = X0,

where σ : R+×Rd → Rd×d and B(t) is a d−dimensional Brownian motion. We are interested
in finding upper bounds and complexities of (5) under the same previous properties of f , this
is: convexity, strong convexity and Łojasiewicz Inequality. In order to do so, we will use
Stochastic Analysis tools.

Indeed, let X(t) satisfying (5), ∇f be L−Lipschitz continuous and

σ2
∗ := sup

t≥0,x∈Rd

‖σ(t, x)‖2
F <∞.

Under some additional technical assumptions, the main results of this Thesis are:

• If f̄(t) = t−1
∫ t

0
f(X(s))ds, then

E
[
f̄(t)

]
−min(f) = O

(
1

t

)
+O(σ2

∗).

• If f is strongly convex ({x∗} = argmin(f)), then there exists ρ ∈ (0, 1) such that:

2

L
E[f(X(t)−min(f)] ≤ E

[
‖X(t)− x∗‖2

]
= O(ρt) +O(σ2

∗).

5



• If f satisfies the Łojasiewicz Inequality with q = 1
2
, then there exists ρ ∈ (0, 1) such

that:
E [f(X(t))]−min(f) = O(ρt) +O(σ2

∗).

• If f satisfies the Łojasiewicz Inequality with q ∈ (1
2
, 1), then

E [f(X(t))]−min(f) = O
(
e−O(σ2

∗)t
)

+O
(
σ2
∗
)
.

These upper bounds are interesting because if we allow σ2
∗ to be arbitrarily small (simu-

lating arbitrarily small stepsizes), then analogous to the SGD case, we can get complexities
of (5) even though its convergence with positive probability is not guaranteed. Below we
show the complexities of (5), just like in the previous table.

Property Complexity CSGD (with σ2
∗ = O(ε))

Convex ε−1

Strongly Convex ln(ε−1)
Łojasiewicz with q = 1/2 ln(ε−1)

Łojasiewicz with q ∈ (1/2, 1) ε−(2q−1)

Although that (5) is a continuous model of SGD and that the upper bounds between
these two dynamics is similar, it is direct to notice that the complexities of (5) are the same
as those in the previous table for GD and CGD. Therefore, we can see that the σ2

∗ = O(ε)
hypothesis is strong, nevertheless, it is the assumption we use to deduce complexities of (5).

6



Chapter 1

Preliminaries

In this Chapter, we are going to show the concepts and results necessary to handle in order
to understand the objectives of this Thesis.

Let H be a real Hilbert space and consider a function f : H → R. Throughout this Thesis,
consider S := argmin(f) = {x ∈ H : f(x) = min(f)} and assume that S 6= ∅.

1.1 Convexity and Strong Convexity
f is convex if,

∀λ ∈ [0, 1],∀x, y ∈ H, f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1.1)

And it will be denoted f ∈ Γ0(H).

Proposition 1.1 Let f : H → R be differentiable. The following are equivalent:

i) f is convex.

ii) ∀x, y ∈ H, f(y) ≥ f(x) + 〈∇f(x), y − x〉.

iii) ∀x, y ∈ H, 〈∇f(x)−∇f(y), x− y〉 ≥ 0.

If f is twice differentiable, then the previous conditions are equivalent to

iv) ∀x, d ∈ H, 〈∇2f(x)d, d〉 ≥ 0.

f is µ− strongly convex if,

∀λ ∈ [0, 1], ∀x, y ∈ H, f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2
λ(1− λ)‖x− y‖2. (1.2)

And it will be denoted f ∈ Γµ(H).

7



Proposition 1.2 Let f : H → R be differentiable. The following are equivalent:

i) f is µ−strongly convex.

ii) ∀x, y ∈ H, f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ
2
‖x− y‖2.

iii) ∀x, y ∈ H, 〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖2.

If f is twice differentiable, then the previous conditions are equivalent to

iv) ∀x, d ∈ H, 〈∇2f(x)d, d〉 ≥ µ‖d‖2.

Proposition 1.3 If f ∈ Γµ(H), then the set of minimizers is a singleton, i.e. there exists
x∗ ∈ H such that S = {x∗}.

Proposition 1.4 (see [7, Appendix A]) Assume that f ∈ Γµ(H) is differentiable, then f
satisfies the Polyak-Łojasiewicz inequality, this is

∀x ∈ H, 2µ(f(x)−min(f)) ≤ ‖∇f(x)‖2.

1.2 Lipschitz-Continuity of the Gradient
A function F : H → H is Lipschitz with constant L or L−Lipschitz if:

∀x, y ∈ H, ‖F (x)− F (y)‖ ≤ L‖x− y‖. (1.3)

A function F : H → H is cocoercive with constant β or β−cocoercive if:

∀x, y ∈ H, 〈F (x)− F (y), x− y〉 ≥ β‖F (x)− F (y)‖2. (1.4)

Proposition 1.5 If F : H → H is β−cocoercive, then F is 1
β
-Lipschitz.

Proof. Direct from the Cauchy-Schwarz inequality.

If f is differentiable and ∇f is L−Lipschitz Continuous, then it will be denoted f ∈
C1,1
L (H).

Proposition 1.6 Assume that f ∈ C1,1
L (H), then

∀x, y ∈ H, f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2
‖x− y‖2. (1.5)

Corollary 1.7 Assume that f ∈ C1,1
L (H), then

∀x ∈ H, f

(
x− 1

L
∇f(x)

)
− f(x) ≤ − 1

2L
‖∇f(x)‖2, (1.6)

8



and
∀x ∈ H, ‖∇f(x)‖2 ≤ 2L(f(x)−min(f)). (1.7)

Corollary 1.8 Assume that f ∈ C1,1
L (H) ∩ Γµ(H), then µ ≤ L.

Proof. Direct from combining the results of Propositions 1.4 and 1.7.

Proposition 1.9 Assume that f ∈ C1,1
L (H) ∩ Γ0(H), then

∀x, y ∈ H, f(y)− f(x)− 〈∇f(y), y − x〉 ≤ − 1

2L
‖∇f(y)−∇f(x)‖2.

We have seen in Proposition 1.5 that cocoercive implies Lipschitz, in order to get the
equivalence in the case F = ∇f , we will need f to be convex.

Theorem 1.10 (Baillon-Haddad Theorem) [8, Corollary 10] Assume that f ∈ Γ0(H) and
differentiable. Then f ∈ C1,1

L (H) if, and only if, ∇f is 1
L
-cocoercive.

1.3 Łojasiewicz Inequality
Let f : H → R be convex, S 6= ∅ and q ∈ [0, 1). f satisfies the Łojasiewicz Inequality with
exponent q on A ⊆ H if there exists a coefficient µA > 0 such that:

∀x ∈ A, µA(f(x)−min(f))q ≤ ‖∇f(x)‖, (1.8)

and it will be denoted f ∈ Łq(A). We will refer to this notion as Global if A = H. By
default its coefficient will be denoted by µ.

Definition. We say that f satisfies the Bounded Łojasiewicz Inequality with exponent q
if:

∃x∗ ∈ S,∀r > 0, such that f ∈ Łq(B(x∗; r)),

and it will be denoted f ∈ Łqb(H).

Definition. We say that f satisfies the Local Łojasiewicz Inequality if:

∀x∗ ∈ S,∃r > 0, such that f ∈ Łq(B(x∗; r))

and it will be denoted f ∈ Łqloc(H).

It is direct to notice that the Global Łojasiewicz Inequality implies the Bounded and Local
Łojasiewicz Inequalities.
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Moreover, under some assumptions, the Bounded and Local Łojasiewicz Inequalities are
equivalent.

Proposition 1.11 Suppose that dim(H) < ∞ and that S is compact. Then, the Local
Łojasiewicz Inequality is equivalent to the Bounded Łojasiewicz Inequality, in other words
Łqloc(H) = Łqb(H).

Proof. • Łqloc(H) ⊇ Łqb(H).

Let f ∈ Łqb(H), by the definition of Łqb(H) there exists x∗ ∈ S such that for all r > 0,
f ∈ Łq(B(x∗; r)). Let y∗ ∈ S, r0 > 0 arbitrary and x ∈ B(y∗; r0), then

‖x− x∗‖ ≤ ‖x− y∗‖+ ‖y∗ − x∗‖
≤ r0 +R,

where R > 0 exists because S is bounded. So we deduce that B(y∗; r0) ⊆ B(x∗; r0 +R)
and f ∈ Łq(B(x∗; r0 + R)) because f ∈ Łqb(H), this implies f ∈ Łq(B(y∗; r0)) for every
y∗ ∈ S, r0 > 0, then f ∈ Łqloc(H).

• Łqloc(H) ⊆ Łqb(H).

Let f ∈ Łqloc(H) and x∗ ∈ S arbitrary, there exists rx∗ > 0 such that f ∈ Łq(B(x∗; rx∗)).
We have S ⊂

⋃
x∗∈S B(x∗; rx∗), since S is compact, there exists finite points {x∗1, . . . , x∗n} ⊆

S such that S ⊂
⋃n

i=1 B(x∗i ; ri) =: B0. Let {µi}ni=1 such that µi > 0 is the coefficient of
the Łojasiewicz Inequality on B(x∗i ; ri), consider µB0 = mini∈[n] µi > 0, so f ∈ Łq(B0)
with coefficient µB0 .

Now we set x∗ ∈ S and letR > 0 arbitrary, we want to prove that f ∈ Łq(B(x∗;R)). IfR
is such that B(x∗;R) ⊆ B0 then the proof is trivial, so let R such that B(x∗;R)\B0 6= ∅.

Consider

µ̂ := inf
x∈cl(B(x∗;R))\B0

‖∇f(x)‖
(f(x)−min(f))q

,

since B0 is an open set (union of open sets), then cl(B(x∗;R)) \ B0 is a closed set.
Moreover, it is bounded, therefore, it is compact. On the other hand, since the de-
nominator of the fraction is non-zero (because S ⊂ B0), the function is continuous in
cl(B(x∗;R)) \B0, then by the Weierstrass Theorem, the infimum becomes a minimum
and µ̂ ≥ 0.

If µ̂ = 0, implies that there exists x̃ ∈ cl(B(x∗;R)) \B0, such that ‖∇f(x̃)‖ = 0. Since
f is convex, this implies that x̃ ∈ S ⊂ B0, a contradiction. We deduce that µ̂ > 0,
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so by letting µ := min{µB0 , µ̂}, we satisfy the Łojasiewicz Inequality on B(x∗;R) with
coefficient µ. Since R is arbitrary, we conclude that f ∈ Łqb(H).

Proposition 1.12 Let A ⊂ H such that A 6= ∅ and assume that f ∈ C1,1
L (H) ∩ Ł1/2(A).

Then µ2
A ≤ 2L.

Proof. Direct from using (1.7) and the definition of Ł1/2(A).

Proposition 1.13 Every µ−strongly convex function satisfies the Global Łojasiewicz In-
equality with coefficient

√
2µ and exponent 1

2
. In other words:

Γµ(H) ⊂ Ł1/2(H).

Proof. Direct from Proposition 1.4.

Another interesting aspect of the Łojasiewicz Inequality is that implies a Hölderian error
bound (see [1]), this is an inequality of the form

f(x)−min(f) ≥ µd(x, S)p.

This concept will be useful to find convergence rates and upper bounds of some algorithms
under Łojasiewicz assumptions.

Proposition 1.14 Let x∗ ∈ S, r > 0, f ∈ Łq(B(x∗; r)) and p := 1
1−q ≥ 1, then there exists

µ̃r such that:
f(x)−min(f) ≥ µ̃rd(x, S)p, ∀x ∈ B(x∗; r). (1.9)

Moreover, if f ∈ Łq(H), then (1.9) holds for every x ∈ H with a unique µ > 0.

Proof. From Proposition 1.23 with t = 0 and s → ∞, there exists µr > 0 such that, if we
define:

ϕr(y) =
y1−q

(1− q)µr
,

then
‖x− y∗‖ ≤ ϕr(f(x)−min(f)), ∀x ∈ B(x∗; r),

for some y∗ ∈ S. So

d(x, S) ≤ ‖x− y∗‖ ≤ (f(x)−min(f))1−q

(1− q)µr
, ∀x ∈ B(x∗; r).

By letting µ̃r = (µr(1− q))
1

1−q , we obtain

f(x)−min(f) ≥ µ̃rd(x, S)p, ∀x ∈ B(x∗; r),

and we conclude.
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We have seen that Łojasiewicz Inequality is a property about the geometry of the function,
in this sense, gradient Lipschitz fulfills the same role, since it is a property that controls the
growth of the function. We would like to know what is the resulting behavior if we combine
these properties in a function.

Proposition 1.15 Let x∗ ∈ S, r > 0 such that B(x∗; r)\S 6= ∅, f ∈ C1,1
L (H)∩Łq(B(x∗; r)),

then q ≥ 1
2
.

Proof. By definition of Łq(B(x∗; r)), there exists µr > 0 such that Łojasiewicz Inequality
holds on B(x∗; r). Squaring this inequality and using (1.7), we obtain

µ2
r(f(x))−min(f))2q ≤ ‖∇f(x)‖2 ≤ 2L(f(x)−min(f)), ∀x ∈ B(x∗; r).

Since we can divide by f(x)−min(f) for x /∈ S, we deduce that

µ2
r

2L
≤ (f(x)−min(f))1−2q, ∀x ∈ B(x∗; r) \ S. (1.10)

If 1 − 2q > 0, let x0 ∈ B(x∗; r) \ S and δ :=
(
µ2r
2L

) 1
1−2q

> 0, by (1.10), we have that
f(x0) ≥ min(f) + δ.

Let g : [0, 1]→ R be defined by

g(t) = f(tx∗ + (1− t)x0).

It is direct that g is continuous, on the other hand, g(0) = f(x0) > min(f) + δ
2
and g(1) =

f(x∗) = min(f) < min(f) + δ
2
, so by Bolzano’s Theorem, there exists t∗ ∈ (0, 1) such that

g(t∗) = f(t∗x∗ + (1− t∗)x0) = min(f) +
δ

2
,

so by letting x̄ := t∗x∗+(1−t∗)x0 ∈ B(x∗; r)\S, we conclude that there exists x̄ ∈ B(x∗; r)\S
such that f(x̄) < min(f) + δ, a contradiction with (1.10). Therefore, q ≥ 1

2
.

Proposition 1.16 If f ∈ C1,1
L (H) ∩ Łq(H) is not constant, then q = 1

2
.

Proof. Let x∗ ∈ S arbitrary, since f is non-constant, S 6= H, so consider r > 0 big enough
such that B(x∗; r) \ S 6= ∅. Since f ∈ Łq(H) we obtain that f ∈ Łq(B(x∗; r)), so by
Proposition 1.15, we deduce q ≥ 1

2
. Squaring the definition of Łq(H) and using (1.7), then

µ2(f(x))−min(f))2q ≤ ‖∇f(x)‖2 ≤ 2L(f(x)−min(f)), ∀x ∈ H.

If 2q − 1 > 0 and x /∈ S, then

f(x)−min(f) ≤
(

2L

µ2

) 1
2q−1

, ∀x ∈ H \ S.
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Thus f is bounded, so by Proposition 1.14, this implies that d(x, S) is bounded for all x ∈ H.
Since S 6= H, we have a contradicition. Hence q = 1

2
.

Remark. The previous Proposition tells us that asking for Gradient Lipschitz and Global
Łojasiewicz Inequality is very limiting and greatly reduces its applications. So, if we want
both properties in a function, we will ask for the Bounded Łojasiewicz Inequality instead.

Proposition 1.17 Let A ⊂ H, q > 1
2
and assume that f ∈ C1,1

L (H)∩Łq(A), then A ⊆ [f ≤ R]
for some R ∈ R.

Proof. Squaring the definition of Łq(A) and using (1.7), then there exists µA > 0 such that

µ2
A(f(x))−min(f))2q ≤ ‖∇f(x)‖2 ≤ 2L(f(x)−min(f)), ∀x ∈ A.

If x /∈ S, since q > 1
2
, we obtain

f(x)−min(f) ≤
(

2L

µ2
A

) 1
2q−1

, ∀x ∈ A \ S. (1.11)

But obviously (1.11) is satisfied if x ∈ S, so by letting R := min(f) +
(

2L
µ2A

) 1
2q−1 , we conclude

that
f(x) ≤ R, ∀x ∈ A.
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1.4 Discrete Deterministic Dynamics: Gradient Descent
Let f : H → R be convex and differentiable. We consider the general problem

min
x∈H

f(x).

The Gradient Descent method is defined as follows: given any x0 ∈ H,

xk+1 = xk − γk∇f(xk), k ∈ N. (GD)

1.4.1 Convergence of GD

Let us start by recalling classical results about Gradient Descent when f is convex and
strongly convex.

Proposition 1.18 (See [9, Theorem 2.2]) Assume that f ∈ C1,1
L (H) ∩ Γ0(H), let γk ≡ γ <

2/L and (xk)k∈N generated by (GD).

• Since f ∈ Γ0(H), then

– xk ⇀ x∗ ∈ S.

– For every x∗ ∈ S, the sequence (‖xk − x∗‖)k∈N is non-increasing.

– For every k ∈ N,

f(xk)−min(f) ≤ C
d(x0, S)2

2γk
. (1.12)

with

C =

{
1 if γ ≤ 1

L
,

1 + 2(γL− 1)(2− γL)−1 otherwise.

• If f ∈ Γµ(H) (S = {x∗}), then

‖xk − x∗‖2 ≤ θk‖x0 − x∗‖2, ∀k ∈ N, (1.13)

with

θ =

{
1− γµ if γ ≤ 2

µ+L
,

γL− 1 otherwise.

The minimal θ is obtained when γ = 2
µ+L

.

Moreover,

f(xk)−min(f) ≤ L

2
θk‖x0 − x∗‖2, ∀k ∈ N. (1.14)

One way to show results of (GD) under Łojasiewicz Inequality is to assume that f ∈
Łq(B(x∗; r)) for some x∗ ∈ S, r > 0 and ask x0 ∈ B(x∗; r), because due to the previous
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Proposition, the entire sequence will be contained in B(x∗; r), therefore the Łojasiewicz
Inequality will be satisfied in the whole sequence. Nevertheless, for reasons that will be
explained in section (2.1.2), in order to get results of (GD) in the Łojasiewicz case, we will
ask for the Bounded Łojasiewicz Inequality i.e. f ∈ Łqb(H).

Proposition 1.19 (see [3]) Assume that f ∈ C1,1
L (H)∩Łqb(H), let γk ≡ γ < 2/L and (xk)k∈N

generated by (GD), then:

• xk → x∗ ∈ S.

• If q = 1
2
, then there exists ρ ∈ (0, 1) such that:

f(xk)−min(f) ≤ [f(x0)−min(f)]ρk, ∀k ∈ N. (1.15)

• If q ∈ (1
2
, 1), then there exists C > 0 such that:

f(xk)−min(f) ≤ Ck−
1

2q−1 , ∀k ∈ N. (1.16)

Corollary 1.20 [Complexities of Proposition 1.19] Let ε > 0 arbitrary.

• If q = 1
2
and k = Ω0

(
ln
(

1
ε

))
. Then

f(xk)−min(f) ≤ ε.

• If q ∈ (1
2
, 1) and k = Ω0

(
1

ε2q−1

)
. Then

f(xk)−min(f) ≤ ε.

Corollary 1.21 Assume that f ∈ C1,1
L (H) ∩ Łqb(H), let γk ≡ γ < 2/L, (xk)k∈N generated by

(GD) and limk xk =: x∗ ∈ S.

• If q = 1
2
, then there exists C > 0, ρ ∈ (0, 1) such that:

‖xk − x∗‖ ≤ Cρk, ∀k ∈ N. (1.17)

• If q ∈ (1
2
, 1), then there exists C > 0 such that:

‖xk − x∗‖ ≤ Ck−
1−q
2q−1 , ∀k ∈ N. (1.18)

Proof. Let f ∈ C1,1
L (H) ∩ Łqb(H), [3] assures us that there exists C1, C2 > 0 such that

‖xk+1 − x∗‖ ≤ C1(f(xk)−min(f))1/2 + C2(f(xk)−min(f))1−q, ∀k ∈ N.

The result is direct from combining the previous inequality with the results of Proposition
1.19.
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1.5 Continuous Deterministic Dynamics: Continuous Gra-
dient Descent

Consider f ∈ Γ0(H). In order to minimize the function f over H, we can consider the
underlying continuous dynamic of Gradient Descent algorithm, which is, given a x0 ∈ H:

ẋ(t) = −∇f(x(t)), t > 0,

x(0) = x0.
(CGD)

1.5.1 Convergence of CGD

Let us recall classic results about Continuous Gradient Descent when f is convex and strongly
convex.

Proposition 1.22 Let x(t) be a solution of (CGD) and S 6= ∅.

• Then x(t) ⇀ x∗ ∈ S.

• For every x∗ ∈ S, the function t 7→ ‖x(t)− x∗‖ is non-increasing.

• Since f ∈ Γ0(H), then

f(x(t))−min(f) ≤ d(x0, S)2

2t
,∀t > 0. (1.19)

• If f ∈ Γµ(H) (S = {x∗}), then

‖x(t)− x∗‖2 ≤ ‖x0 − x∗‖2e−µt, ∀t ≥ 0. (1.20)

Proof. The proofs of the first two items can be found in [10]. The proofs of the last two can
be found in [11].

In the discrete case, Proposition 1.19 tells us that the hypothesis f ∈ Łqb(H) assures us
that the sequence (xk)k∈N converges strongly to a point in S. The following Proposition will
assure us the same in the continuous case.

Proposition 1.23 (see [1, Theorem 27]) Let x∗ ∈ S, r > 0 and assume that f ∈ Łq(B(x∗; r)).
Consider χx(t) a solution of (CGD) such that χx(0) = x and

ϕ(y) =
y1−q

(1− q)
.

Then there exists µr > 0, for every 0 ≤ t < s such that:

‖χx(t)− χx(s)‖ ≤
ϕ (f(χx(t))−min(f))− ϕ (f(χx(s)−min(f))

µr
, ∀x ∈ B(x∗; r). (1.21)

Moreover, if x ∈ B(x∗; r), then χx(t) converges strongly to a minimizer of f .
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Proof. (Proof adapted from [1, Theorem 27]). Take x ∈ B(x∗; r) and 0 ≤ t < s. Let µr > 0

the coefficient of the Łojasiewicz Inequality on B(x∗; r) and define ϕr(y) = ϕ(y)
µr

. Observe
that

ϕr ((f(χx(t))−min(f))− ϕr ((f(χx(s))−min(f)) =

∫ t

s

d
dτ
ϕr ((f(χx(τ)−min(f))))dτ

=

∫ s

t

ϕ′r (f(χx(τ)−min(f))) ‖χ̇x(τ)‖2dτ.

Since χx(τ) ∈ B(x∗; r) (see [10]), it follows that for all τ ≥ 0,

1 ≤ ϕ′r (f(χx(τ))) ‖∇f(χx(τ))‖ = ϕ′r (f(χx(τ))) ‖χ̇x(τ)‖,

where the first inequality is direct from the definition of Łq(B(x∗; r)). Thus, multiplying by
‖χ̇x(τ)‖, integrating from t to s and using the fact that

‖χx(t)− χx(s)‖ ≤
∫ s

t

‖χ̇x(τ)‖dτ,

we deduce that

‖χx(t)− χx(s)‖ ≤ ϕr (f(χx(t))−min(f))− ϕr (f(χx(s)−min(f)) , ∀x ∈ B(x∗; r).

Moreover, since f(χx(t)) → min(f), we conclude that for every x ∈ B(x∗; r), the function
t 7→ χx(t) has the Cauchy property as t→∞.

In addition, we will now show convergence rates for (CGD) in the Łojasiewicz case.

Proposition 1.24 (see [3]) Assume that f ∈ Łqb(H) and let x(t) be a solution of (CGD):

• If q ∈ [0, 1
2
), then there exists µ > 0 such that x(t) reaches S in at most

t∗ =
(f(x0)−min(f))1−2q

µ2(1− 2q)
. (1.22)

• If q = 1
2
, then there exists µ > 0 such that:

f(x(t))−min(f) ≤ (f(x0)−min(f))e−µ
2t, ∀t ≥ 0. (1.23)

• If q ∈ (1
2
, 1), then there exists µ > 0 and η = 2q − 1 such that:

f(x(t))−min(f) ≤ [(f(x0)−min(f))−η + µ2ηt]
−1
η , ∀t ≥ 0. (1.24)
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Corollary 1.25 (Complexities of Proposition 1.24) Let ε > 0 arbitrary.

• If q ∈ (0, 1
2
) and t = Ω0 (1). Then

f(x(t))−min(f) ≤ ε.

• If q = 1
2
and t = Ω0

(
ln
(

1
ε

))
. Then

f(x(t))−min(f) ≤ ε.

• If q ∈ (1
2
, 1) and k = Ω0

(
1

ε2q−1

)
. Then

f(x(t))−min(f) ≤ ε.
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Chapter 2

Stochastic Dynamics

In this chapter we will focus on two main topics: First, we will examine discrete dynamics,
studying different versions of Stochastic Gradient Descent. Then we will focus on continuous
dynamics, where inspired by a continuous-time model of Mini-Batch SGD, we will lay out
the necessary foundations of stochastic processes and Stochastic Differential Equations in
order to study a continuous-time model of SGD in the next chapter.

2.1 Discrete Stochastic Dynamics: Stochastic Gradient
Descent

We consider the following optimization problem

min
x∈H

[
f(x) =

1

n

n∑
i=1

fi(x)

]
, (2.1)

where f is convex, each fi : H → R is differentiable and ∇fi is Li−Lipschitz. There are
different algorithms to solve this problem, obviously we can use the Gradient Descent, but
the computational cost of calculating the gradient at each iteration grows with n (which
can be remarkably big). One of the most classical algorithm to manage this problem is the
Vanilla Stochastic Gradient Descent (V-SGD) (see [12]), which is: given x0 ∈ H,

xk+1 = xk − γk∇fik(xk), k ∈ N, (V-SGD)

where (ik)k∈N
iid∼ Unif [n]. The idea behind this algorithm is that the estimator is unbiased

from the gradient, i.e. E[∇fj(·)] = ∇f(·) (with j ∼ Unif [n]), so the computational cost
of calculating the gradient will not be a problem, naturally we omit a lot of information of
the function at every iteration, so the convergence to a minimum will be slower than the
Gradient Descent. For instance, if fi ∈ C1,1

Li
(H) for each i ∈ [n], γk = C

k2/3
, for some C > 0

(see [4, Theorem 4]) and let (xk)k∈N generated by (V-SGD), then

E[f(xk)]−min(f) = O
(

1

k1/3

)
.
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And we already know that if f ∈ C1,1
L (H) and γ < 2

L
, then by Proposition 1.18, (xk)k∈N

generated by (GD) satisfies

f(xk)−min(f) = O
(

1

k

)
.

So we want a trade-off between the convergence rate of Gradient Descent and the “cheap”
computational cost of Stochastic Gradient Descent, this can be achieved with the Mini-Batch
SGD, which is: given x0 ∈ H,

xk+1 = xk − γk

(
1

b

∑
i∈Ik

∇fi(xk)

)
, k ∈ N. (MB-SGD)

Where b ∈ [n] is fixed and it is called the batch size, (Ik)k∈N
iid∼
(

[n]
b

)
. If b = 1, we obtain

(V-SGD) and if b = n, we obtain (GD), so the choice of b is very important and we must
keep in mind the aforementioned trade-off. Usually the batch size satisfies b << n.

2.1.1 Stochastic Gradient Descent: Sampling Vectors

We can extend the previous ideas with the following approach (see [13]).

Definition. We say that a random vector s ∈ Rn
+ drawn from some distribution D is a

sampling vector if
ED[si] = 1, ∀i ∈ [n].

Let fs(x) := 1
n

∑n
i=1 sifi(x). It is clear that f(·) = ED[fs(·)] and ED[∇fs(·)] = ∇f(·). The

proposed algorithm, which we will call (SGD) from now on, is as follows: given any x0 ∈ H,

xk+1 = xk − γk∇fsk(xk), k ∈ N, (SGD)

where sk iid∼ D.

Example: Let (ei)
n
i=1 be the canonical basis of Rn. If we consider the random vector s

such that:

• P(s = nei) = 1
n
for every i ∈ [n], we can check that s is a sampling vector and fs ∼ fj

(with j ∼ Unif [n]), so we recover (V-SGD).

• P(s = n
b

∑
i∈I ei) = 1

(nb)
for every I ∈

(
[n]
b

)
, we can check that s is a sampling vector and

fs ∼
1

b

∑
i∈J

fi (with J ∼ Unif
(

[n]

b

)
),

so we recover (MB-SGD).
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Remark. Do not confuse
(

[n]
b

)
(subsets of [n] of length b) with

(
n
b

)
(a binomial coefficient).

In order to find some convergence rates or upper bounds of (SGD), we will need some
structure over the new function fs.

Definition. We say f is L−smooth (in expectation) with respect to (w.r.t.) distribution
D if there exists L > 0 such that for:

∀x, y ∈ H, 1

2L
ED
[
‖∇fs(x)−∇fs(y)‖2

]
≤ f(x)− f(y)− 〈∇f(y), x− y〉. (2.2)

This structure is very related with the hypothesis ∇f is Lipschitz continuous, in fact, the
following Proposition is analogous to Proposition 1.9.

Proposition 2.1 Assume that f is L − smooth w.r.t. D, then

∀x, y ∈ H, f(y)− f(x)− 〈∇f(y), y − x〉 ≤ − 1

2L
‖∇f(y)−∇f(x)‖2.

Proof. Direct from Jensen’s inequality and the definition of L − smooth.

Corollary 2.2 Assume that f is L− smooth w.r.t. D, then ∇f is L−Lipschitz continuous.

Proof. Consider the inequality of Proposition 2.1. Replacing x for y and vice versa, and
adding the two inequalities, we obtain that ∇f is 1

L -cocoercive, and this in turn implies that
∇f is L-Lipschitz continuous by Proposition 1.5 with F = ∇f .

Now we have proved that f is L − smooth w.r.t. D is a particular case of the condition
∇f is Lipschitz continuous.

Corollary 2.3 Assume that f ∈ C1,1
L (H) is L − smooth w.r.t. D, then L ≥ L.

Assumption: Let x∗ ∈ S. We assume that

σ2 := ED
[
‖∇fs(x∗)‖2

]
<∞.

Remark.
σ2 = VD[∇fs(x∗)],

since ED[∇fs(x∗)] = ∇f(x∗) = 0.

This is a weak assumption (see [13]) and should be seen as an assumption on D rather
than on f . For instance, if P(s ∈ Rn

+) = 1 and

ED

[
si

n∑
j=1

sj

]
<∞, ∀i ∈ [n].
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Then σ2 is finite.

Remark. In general σ2 > 0, nevertheless, we could have the “interpolation property”, i.e.
σ2 = 0 (see [5]), satisfied for instance, if each fi attains its minimum at x∗.

Lemma 2.4 Assume that f is L − smooth w.r.t. D. Then

∀x ∈ H, ED[‖∇fs(x)‖2] ≤ 4L(f(x)−min(f)) + 2σ2.

Proof. Let x ∈ H and x∗ ∈ S arbitrary, we have

‖∇fs(x)‖2 = ‖∇fs(x)−∇fs(x∗) +∇fs(x∗)‖2 ≤ 2‖∇fs(x)−∇fs(x∗)‖2 + 2‖∇fs(x∗)‖2.

Then taking expectation with respect to D on both sides of the inequality, we obtain

ED
[
‖∇fs(x)‖2

]
≤ 2ED

[
‖∇fs(x)−∇fs(x∗)‖2

]
+ 2ED

[
‖∇fs(x∗)‖2

]
≤ 4L [f(x)−min(f)] + 2σ2,

where the last inequality was obtained using the definition of L−smooth and the definition
of σ2.

2.1.2 Discrete Stochastic Results

In order to state results of (SGD), there will be cases when the assumption σ2 < ∞ will
not be enough (see Propositions 2.5,2.13 and 2.17), in this cases we will assume a stronger
assumption, this is

σ̄2 = sup
k

ED(‖∇fs(xk)‖2) <∞.

In fact, this assumption is so strong that we will not need the function to be L−smooth to
obtain results. Although this quantity is not easy to estimate in practice, it will be useful
theoretically.

Proposition 2.5 (see [4, Theorem 7]) Let γk = C
kα
, α ∈ (0, 1], (xk)k∈N generated by (SGD)

and assume that σ̄2 <∞, then

E(f(x̄k))−min(f) =


O
(

1
kα

)
if α ∈ (0, 1

2
),

O
(
log(k)√

k

)
if α = 1

2
,

O
(

1
k1−α

)
if α ∈ (1

2
, 1).

Proposition 2.6 (see [14],[15]) Assume that f ∈ Γµ(H) is L− smooth, x∗ ∈ S, let (xk)k∈N
generated by (SGD) and γk = C

k
, for some C > 1

2µ
. Then

E
(
‖xk − x∗‖2

)
= O

(
1

k

)
.
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In order to know the quality of these results, we need to know what are the minimum
convergence rates that (SGD) can get, for this we must take into account the following two
Propositions.

Proposition 2.7 (see [16]) Assume that f ∈ C1,1
L (H) ∩ Γ0(H), let (xk)k∈N generated by

(SGD). Then

E(f(xk))−min(f) = Ω

(
1√
k

)
.

Proposition 2.8 (see [17]) Assume that f ∈ C1,1
L (H)∩Γµ(H), S = {x∗}, let (xk)k∈N gener-

ated by (SGD). Then

E
(
‖xk − x∗‖2

)
= Ω

(
1

k

)
.

In conclusion, the convergence rate of Proposition 2.5 is optimal when α = 1
2
(up to a

logarithmic term) and the result of Proposition 2.6 is optimal as well.

In a different direction, in general if we choose a constant stepsize, the algorithm (SGD)
does not converge. Nevertheless, we can obtain remarkable upper bounds, this concept can
be interpreted as a guarantee that the sequence will end up in a ball centered on a point of
S and with some radius (which we will try to make small). Although an upper bound is not
a convergence rate, one of the interesting aspects behind this concept is that we can get a
complexity of the algorithm even though it does not converge.

Proposition 2.9 Assume that f ∈ Γ0(H) is L − smooth. Let γk ≡ γ ∈
(
0, 1

2L

)
, (xk)k∈N

generated by (SGD),

• Since f ∈ Γ0(H) then

E(f(x̄k))−min(f) ≤ d(x0, S)2

2γ(1− 2Lγ)k
+

σ2γ

1− 2Lγ
, ∀k ∈ N. (2.3)

• If f ∈ Γµ(H). Then

E
(
‖xk − x∗‖2

)
≤ (1− γµ)k‖x0 − x∗‖2 +

2γσ2

µ
, ∀k ∈ N. (2.4)

We can see that we obtain upper bounds which are of the form of the convergence rates
in the deterministic case (see Proposition 1.18) plus a constant depending on the variance
σ2 and the stepsize γ. So, with the purpose of making the constant term arbitrarily small
in order to recover convergence rates, one idea would be to decrease σ2 to zero. In this
sense, there are stochastic algorithms, such as SVRG and SAGA (see [6]) that use variance
reduction techniques and recover the same convergence rates as in Proposition 1.18. Other
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idea would be to make γ arbitrarily small, although this does not ensure us we will recover
the original convergence rates, it leads us to get complexities of Proposition 2.9.

In order to get their complexity rates, we will need a technical lemma.

Lemma 2.10 Let α > 0, then

ln(x)

ln(1− xα)
≤
ln
(

1
x

)
xα

, ∀x ∈ (0, 1).

Proof. Consider the function h : (0, 1) → R such that h(x) =
(
1 + x

1−x

)1/x. Taking deriva-
tive, it is direct to verify that h is increasing, moreover limx→0 h(x) = e due to the definition
of e. Therefore

h(x) ≥ e, ∀x ∈ (0, 1).

Let x ∈ (0, 1) arbitrary, then h(xα) ≥ e, i.e.

e ≤
(

1 +
xα

1− xα

)1/xα

.

Taking natural logarithm at both sides, we observe that

1 ≤ 1

xα
ln

(
1

1− xα

)
⇐⇒ 1 ≤ − 1

xα
ln(1− xα)

⇐⇒ 1

ln(1− xα)
≥ − 1

xα
.

Then multiplying at both sides by ln(x), we obtain

ln(x)

ln(1− xα)
≤
ln
(

1
x

)
xα

,

and we conclude.

Corollary 2.11 [Complexities of Proposition 2.9] Let ε ∈ (0, 1) arbitrary.

• Since f ∈ Γ0(H), if γ = O(ε) and k = Ω0

(
1
ε2

)
. Then

E(f(x̄k))−min(f) ≤ ε. (2.5)

• If f ∈ Γµ(H), γ = O(ε) and k = Ω̃0

(
1
ε

)
. Then

E
(
‖xk − x∗‖2

)
≤ ε. (2.6)
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Proof. • In order to guarantee E(f(x̄k))−min(f) ≤ ε, we will require that

d(x0, S)2

2γ(1− 2Lγ)k
≤ ε

2
and

σ2γ

1− 2Lγ
=
ε

2
.

The second condition imposes γ = ε
2(σ2+Lε) , moreover since σ2 > 0, then ε

2(σ2+Lε) <
1

2L .
Therefore we have

γ(1− 2Lγ) =
εσ2

2(σ2 + Lε)2
.

The first condition and the previous equation are equivalent to

d(x0, S)2

2γ(1− 2Lγ)k
≤ ε

2

⇐⇒ k ≥ d(x0, S)2

γ(1− 2Lγ)ε

⇐⇒ k ≥ 2(σ2 + Lε)2d(x0, S)2

ε2σ2
.

So, if we take a particular k = Ω0

(
1
ε2

)
, we can satisfy the last inequality and we

conclude.

• In order to guarantee E (‖xk − x∗‖2) ≤ ε, we will require that

(1− γµ)k‖x0 − x∗‖2 ≤ ε

2
and

2γσ2

µ
=
ε

2
.

The second condition imposes γ = µε
4σ2 , and we will assume that ε is small enough such

that µε
4σ2 <

1
2L . The first condition and the condition on γ are equivalent to

(1− γµ)k‖x0 − x∗‖2 ≤ ε

2

⇐⇒ k ln(1− γµ) ≤ ln

(
ε

2‖x0 − x∗‖2

)

⇐⇒ k ≥
ln
(

ε
2‖x0−x∗‖2

)
ln(1− γµ)

⇐⇒ k ≥
ln
(

ε
2‖x0−x∗‖2

)
ln(1− µ2

4σ2 ε)
.

And taking a particular k = Ω0

(
ln(ε)
ln(1−ε)

)
, we can satisfy the last inequality and we could

conclude a complexity rate. Nevertheless, since ε ∈ (0, 1), then considering Lemma 2.10
with α = 1, we have that

ln(ε)

ln(1− ε)
≤
ln
(

1
ε

)
ε

, ∀ε ∈ (0, 1).

So by taking a particular k = Ω0

(
ln( 1

ε)
ε

)
=: Ω̃0

(
1
ε

)
, we can conclude that

f(xk)−min(f) ≤ ε.
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Before we start getting results from (SGD) in the Łojasiewicz case, we will need the
following Lemma.

Lemma 2.12 Assume that f ∈ C1,1
L (H)∩Γ0(H), let γk ≡ γ and (xk)k∈N generated by (SGD).

Then

E(f(xk+1))− E(f(xk)) ≤ −γE(‖∇f(xk)‖2) +
L

2
γ2E(ED(‖∇fs(xk)‖2)), ∀k ∈ N.

Proof. Let k ∈ N arbitrary, using the Proposition 1.6 with y = xk+1 and x = xk, we obtain

f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2.

Recalling that xk+1 − xk = −γ∇fsk(xk), we have

f(xk+1)− f(xk) ≤ −γ〈∇f(xk),∇fsk(xk)〉+
Lγ2

2
‖∇fsk(xk)‖2.

Now we take conditional expectation at both sides, conditioning on xk (formally, on the
σ−algebra of the sequence until xk) which will be denoted E[·|xk]. Then

E[f(xk+1)− f(xk)|xk] ≤ −γE[〈∇f(xk),∇fsk(xk)〉|xk] +
Lγ2

2
E[‖∇fsk(xk)‖2|xk].

Since ∇f(xk) is constant under the conditional expectation

E[f(xk+1)− f(xk)|xk] ≤ −γ〈∇f(xk),E[∇fsk(xk)|xk]〉+
Lγ2

2
E[‖∇fsk(xk)‖2|xk].

And the conditional expectations of the right hand side coincide with ED since sk ∼ D is
the only stochastic term, therefore we can omit the dependence on k of this term, then using
that ED(∇fs(xk)) = ∇f(xk), we deduce that

E[f(xk+1)− f(xk)|xk] ≤ −γ‖∇f(xk)‖2 +
Lγ2

2
ED(‖∇fs(xk)‖2).

Then, taking expectation at both sides, by the law of total expectation, we conclude that

E(f(xk+1))− E(f(xk)) ≤ −γE(‖∇f(xk)‖2) +
L

2
γ2E(ED(‖∇fs(xk)‖2)).

In the discrete deterministic case, one way to show results under Łojasiewicz Inequality (as
said before) is to assume that f ∈ Łq(B(x∗; r)) for some x∗ ∈ S, r > 0 and x0 ∈ B(x∗; r), be-
cause due to Proposition 1.18, the entire sequence will be contained in B(x∗; r), therefore the
Łojasiewicz Inequality will be satisfied in the whole sequence. Nevertheless, in the discrete
stochastic case, the initial point does not necessarily localize the sequence. So we are going to
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assume that the sequence is bounded a.s. along with the Bounded Łojasiewicz Inequality in
order to get the Łojasiewicz Inequality satisfied in the whole sequence. In an attempt to unify
the hypotheses over the objective function between the Deterministic and Stochastic Case
we decided to opt for the approach of asking for the Bounded Łojasiewicz Inequality property.

Proposition 2.13 Assume that f ∈ C1,1
L (H) ∩ Ł1/2

b (H), let γk ≡ γ ∈
(
0, 1

2L

)
, (xk)k∈N

generated by (SGD), assume that:

• (xk)k∈N is bounded a.s..

• σ̄2 = supk ED(‖∇fs(xk)‖2) <∞.

Then there exists µ > 0 such that:

E(f(xk))−min(f) ≤ (1− γµ2)k[f(x0)−min(f)] +
Lσ̄2γ

2µ2
, ∀k ∈ N. (2.7)

Proof. Let ak := E(f(xk)) − min(f) and K a bounded set such that (xk)k∈N ⊆ K a.s., let
µ > 0 be the coefficient that exists because f satisfies the Łojasiewicz Inequality on K. Using
Lemma 2.12 and f ∈ Ł1/2

b (H), then

ak+1 − ak ≤ −γµ2ak +
L

2
γ2E(ED(‖∇fs(xk)‖2)).

Using the hypothesis of σ̄2, we obtain

ak+1 − ak ≤ −γµ2ak +
L

2
γ2σ̄2

⇐⇒ ak+1 ≤ (1− γµ2)ak +
L

2
γ2σ̄2.

Then, unrolling this recurrence, we deduce that

ak+1 ≤ (1− γµ2)k+1a0 +
Lσ̄2γ

2µ2
.

Corollary 2.14 (Complexity of Proposition 2.13) Let ε0 > 0 and ε ∈ (0, ε0) arbitrary. If
γ = O(ε) and k = Ω̃0

(
1
ε

)
. Then

E (f(xk))−min(f) ≤ ε. (2.8)

Proof. Analogous to the proof of the strongly convex case in Corollary 2.11.

The following Proposition shows a result of (SGD) in the Łojasiewicz case that just require
the assumption σ2 <∞ and not σ̄2 <∞.

27



Proposition 2.15 Assume that f ∈ C1,1
L (H) ∩ Ł1/2

b (H) and L−smooth, let γk ≡ γ, (xk)k∈N
generated by (SGD) and assume that:

• (xk)k∈N is bounded a.s..

• γ is small enough.

Then there exists µ > 0 such that, if we let r := γ(µ2 − 2γLL) ∈ (0, 1
2
], then

E(f(xk))−min(f) ≤ (1− r)k[f(x0)−min(f)] +
Lγσ2

µ2 − 2γLL
, ∀k ∈ N. (2.9)

Remark. The condition of “γ is small enough” is related to the coefficient of Łojasiewicz of
the set where the sequence is contained, explicitly if µ > 0 is the mentioned coefficient, then
γ < µ2

2LL . Since the coefficient depends on the sequence and this in turn depends on the
stepsize, we cannot put the condition of the stepsize directly in the statement.

Proof. Let ak := E(f(xk)) − min(f) and K a bounded set such that (xk)k∈N ⊆ K a.s., let
µ > 0 be the coefficient that exists because f satisfies the Łojasiewicz Inequality on K. Using
Lemma 2.12 and f ∈ Ł1/2

b (H), then

ak+1 − ak ≤ −γµ2ak +
L

2
γ2E(ED(‖∇fs(xk)‖2)).

Moreover, using Lemma 2.4, we obtain

ak+1 − ak ≤ −γµ2ak +
L

2
γ2(4Lak + 2σ2)

⇐⇒ ak+1 ≤ (1− r)ak + Lγ2σ2.

Then, unrolling this recurrence, we deduce that

ak+1 ≤ (1− r)k+1a0 +
Lγσ2

µ2 − 2γLL
.

Where r > 0 because γ is small enough and r ≤ 1
2
comes from the fact that µ4 ≤ 4LL (by

Proposition 1.12) and viewing r as a quadratic equation over γ.

We are going to consider (SGD) when the objetive function is in C1,1
L (H) ∩ Łqb(H) for

q ∈ (1
2
, 1), in order to get results in this case we will need the following Lemma.

Lemma 2.16 Consider the recurrence, given y0 > 0:

yk+1 ≤ yk − aybk + c,

where a, c > 0, b > 1 and ∆ := ab
(
c
a

)1− 1
b < 1. Then

yk ≤ (1−∆)k y0 +
( c
a

) 1
b
, ∀k ∈ N.
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Proof. Let φ(x) = axb − c, which is convex (since b > 1) and has one root x̄ =
(
c
a

) 1
b . The

recurrence could be rewritten as

yk+1 − yk ≤ −φ(yk).

On the other hand, the convexity of φ implies that

−φ(x) ≤ −φ′(x̄)(x− x̄).

Then
yk+1 − yk ≤ −φ′(x̄)(yk − x̄).

Using the change of variable zk = yk − x̄, we obtain

zk+1 ≤ (1− φ′(x̄))zk.

Since φ′(x̄) = ∆ < 1, we can conclude that

zk ≤ (1− φ′(x̄))kz0 ≤ (1− φ′(x̄))ky0.

Thus
yk ≤ (1− φ′(x̄))ky0 + x̄.

We now have the tools to be able to deduce results of (SGD) under functions satisfying
Łqb(H) with q ∈ (1

2
, 1). These types of functions are flatter around its minimizers as q grows,

so we expect that as q grows, the complexity will get worse. Moreover, this complexity should
be worse than that obtained for the Gradient Descent (and its continuous version) with this
same class of functions (see Corollaries 1.20 and 1.25). The following Proposition and its
corresponding Corollary are a result of this Thesis.

Proposition 2.17 Let q ∈ (1
2
, 1), assume f ∈ C1,1

L (H)∩Łqb(H), let γk ≡ γ, (xk)k∈N generated
by (SGD), assume that:

• (xk)k∈N is bounded a.s..

• σ̄2 = supk ED(‖∇fs(xk)‖2) <∞.

Then there exists µ > 0 such that ∆ := 2γµ2q
(
Lγσ̄2

2µ2

)1− 1
2q ∈ (0, 1) and

E(f(xk))−min(f) ≤ (1−∆)k (f(x0)−min(f)) +

(
Lγσ̄2

2µ2

) 1
2q

, ∀k ∈ N. (2.10)

Proof. Let ak := E(f(xk)) − min(f) and K a bounded set such that (xk)k∈N ⊆ K a.s., let
µ0 > 0 be the coefficient that exists because f satisfies the Łojasiewicz Inequality on K.
Using Lemma 2.12 and f ∈ Łqb(H), then

ak+1 − ak ≤ −γµ2
0E
[
(f(xk)−min(f))2q

]
+
L

2
γ2E(ED(‖∇fsk(xk)‖2)).
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By Jensen’s inequality and the definition of σ̄2, we obtain

ak+1 − ak ≤ −γµ2
0a

2q
k +

L

2
γ2σ̄2.

Let µ1 > 0 such that:

2γµ2
1q

(
Lγσ̄2

2µ2
1

)1− 1
2q

< 1.

And let µ = min{µ0, µ1}, we deduce that

ak+1 − ak ≤ −γµ2a2q
k +

L

2
γ2σ̄2.

So by Lemma 2.16 with a = γµ2, b = 2q, c = L
2
γ2σ̄2 and y0 = f(x0) − min(f), ∆ =

2γµ2q
(
Lγσ̄2

2µ2

)1− 1
2q ∈ (0, 1) by construction. Then ak satisfies:

ak ≤ (1−∆)k(f(x0)−min(f)) +

(
Lγσ̄2

2µ2

) 1
2q

, ∀k ∈ N.

Corollary 2.18 (Complexity of Proposition 2.17) Let ε ∈ (0, 1) arbitrary, if γ = O(ε2q) and
k = Ω̃0

(
1

ε4q−1

)
. Then

E(f(xk)−min(f)) ≤ ε.

Proof. Let us consider (2.10), let M > 0 and define µ̂ = min{µ,M}, then (2.10) still holds

if we change µ for µ̂, i.e., defining ∆̂ := 2γµ̂2q
(
Lγσ̄2

2µ̂2

)1− 1
2q ∈ (0, 1), we have that

E(f(xk))−min(f) ≤
(

1− ∆̂
)k

(f(x0)−min(f)) +

(
Lγσ̄2

2µ̂2

) 1
2q

, ∀k ∈ N. (2.11)

In order to guarantee E(f(xk)−min(f)) ≤ ε, we will require that

(1− ∆̂)k(f(x0)−min(f)) ≤ ε

2
and

(
Lγσ̄2

2µ̂2

) 1
2q

=
ε

2
.
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This implies that γ = µ̂2

22q−1Lσ̄2 ε
2q = O(ε2q) and

(1− ∆̂)k(f(x0)−min(f)) ≤ ε

2

⇐⇒ (1− ∆̂)k ≤ ε

2(f(x0)−min(f))

⇐⇒ k ln(1− ∆̂) ≤ ln

(
ε

2(f(x0)−min(f))

)

⇐⇒ k ≥
ln
(

ε
2(f(x0)−min(f))

)
ln(1− ∆̂)

⇐⇒ k ≥
ln
(

ε
2(f(x0)−min(f))

)
ln
(

1− 2µ̂4q
(
Lσ̄2

2

)1− 1
2q
(

1
2(2q−1)Lσ̄2

)2− 1
2q ε4q−1

) .
The coefficient µ̂ depends on γ (which depends on ε), but since µ̂ ≤ M , then taking a
particular k = Ω0

(
ln(ε)

ln(1−ε4q−1)

)
, we can satisfy the last inequality and we could conclude a

complexity rate. Nevertheless, since ε ∈ (0, 1), then considering Lemma 2.10 with α = 4q−1,
we have that

ln(ε)

ln(1− ε4q−1)
≤
ln
(

1
ε

)
ε4q−1

, ∀ε ∈ (0, 1).

So by taking a particular k = Ω0

(
ln( 1

ε)
ε4q−1

)
=: Ω̃0

(
1

ε4q−1

)
, we can conclude that

f(xk)−min(f) ≤ ε.

As we can notice, the closer q is to 1
2
, the better the complexity is, reaching the one ob-

tained for the strongly convex case when q = 1
2
(O(ε−1)). On the other hand, the closer q is

to 1, the worse the complexity is, reaching the worst case (O(ε−3)) in the limit (q = 1).

Besides, comparing the complexity of the Gradient Descent (and its continuous version)
with that of SGD, we conclude that in all the cases studied, the complexity of the Gradient
Descent is better than that of SGD, more precissely:

• In the convex case, the comparison is between ε−1 and ε−2, respectively.

• In the strongly convex and Łojasiewicz with exponent q = 1
2
case, the comparison is

between ln(ε−1) and ε−1, respectively.

• Now we can deduce that in the Łojasiewicz with exponent q ∈ (1
2
, 1) case, the compar-

ison is between ε−(2q−1) and ε−(4q−1), respectively.
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2.1.3 Mini-Batch SGD revisited

This section is going to be the link between the discrete and continuous stochastic dynamics,
where we will model the Mini-Batch SGD (MB-SGD) as a continuous process and we will
discuss the assumptions required to do so.

Consider the Mini-Batch SGD algorithm (MB-SGD) in H = Rd. In the sampling vectors
examples we commented that the estimator of the Mini-Batch is unbiased from the gradient
of f , i.e.

E

[
1

b

∑
i∈J

∇fi(·)

]
= ∇f(·), (with J ∼ Unif

(
[n]

b

)
).

Let us assume a constant stepsize γk ≡ γ, from this structure we can build a continuous-
time model of (MB-SGD). To do so, first we can rewrite the recurrence as

xk+1 = xk − γ(∇f(xk) + V (xk)), k ∈ N,

where V (x) = 1
b

∑
i∈I ∇fi(x) − ∇f(x) (with I ∼ Unif

(
[n]
b

)
) is a random variable with zero

mean and covariance Σ(x) = ΣMB(x)
b

, where

ΣMB(x) :=
1

n

n∑
i=1

(∇f(x)−∇fi(x))(∇f(x)−∇fi(x))t.

Let σMB be the positive square root of ΣMB and set (Zk)k∈N a sequence of random variables
with zero mean and unit covariance such that σMB(xk)√

b
Zk has the same distribution as V (xk)

(conditioned on xk), then we can write (MB-SGD) as

xk+1 = xk − γ∇f(xk)−
√
γ

b
σMB(xk)

√
γZk, k ∈ N. (2.12)

In order to build a continuous-time model of (MB-SGD), we will assume that each Zk is
Gaussian distributed i.e. Zk ∼ N (0d, Id). This assumption relies on the fact that if the size
of the mini-batch is large enough, then we can invoke the Central Limit Theorem and conclude
that the distribution of Zk is approximately Gaussian (see the Berry-Esseen Theorem, [18]).
If we further assume that γ is small enough, then we can notice that (2.12) is the first-order
discretization with stepsize γ of a SDE. Thus, its correspondent continuous-time model is

dX(t) = −∇f(X(t))dt +

√
γ

b
σMB(X(t))dB(t), t > 0, (2.13)

X(0) = x0,

where σMB : Rd → Rd×d, and B(t) is a d−dimensional Brownian motion.

The Gaussian assumption relies on the fact that σMB has finite variance. Even though this
assumption could be seen intuitive, it is not always true (see [19, Chapter 1.2]). If we do not
suppose the finite variance hypothesis, then we will not have a Brownian motion necessarily
but instead an α − stable Lévy motion (see [19]). Assuming the Gaussian assumption, we
will return to analyze the SDE (2.13) in Chapter 3: A Continuous-Time Model of Stochastic
Gradient Descent.
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2.2 Continuous Stochastic Dynamics: Ito processes and
SDE

In order to understand what it means equation (2.13) and more general continuous-time
models for stochastic optimization algorithms, we are going to consider F : R+ × Rd → Rd,
G : R+ × Rd → Rd×m and B(t) a m−dimensional Brownian motion, we want to formalize
and make sense of the following differential equation:

dX(t) = F (t,X(t))dt +G(t,X(t))dB(t).

To achieve this, we will need the following definitions, concepts and properties about
Stochastic Analysis:

Let (Ω,F ,P) be a probability space and {Ft|t ≥ 0} be a filtration of the σ−algebra F .
An event E ∈ F happens almost surely if P(E) = 1, and it will be denoted as “E, P− a.s.′′.

A stochastic process (Rd − valued) is a function X : Ω × R+ → Rd. It is said to be
continuous if X(ω, ·) ∈ C(R+;Rd) for almost all ω ∈ Ω, and it is said to be bounded (a.s.) if
there exists r > 0 such that X(ω, t) ⊆ B(0; r) for all t ≥ 0 and for almost all ω ∈ Ω. We will
denote X(t) := X(·, t). We will study dynamics whose solutions are stochastic processes (for
instance (2.13)). In order to ensure uniqueness of a solution, we will introduce a relation over
these processes. Two stochastic processes X, Y : Ω× [0, T ]→ Rd are said to be equivalent if

X(t) = Y (t), ∀t ∈ [0, T ], P− a.s..

This definition leads us to define the equivalence relation R, which associates the equivalent
stochastic processes in the same class (the definition of equivalent stochastic processes).

Furthermore, we will need some properties about the measurability of these processes. A
stochastic process X : Ω× R+ → Rd is progressively measurable if for every t ≥ 0, the map
Ω× [0, t]→ Rd defined by (ω, s)→ X(ω, s) is Ft

⊗
B([0, t])−measurable (where

⊗
is the

product σ−algebra and B is the Borel σ−algebra). On the other hand, X is Ft − adapted if
X(t) is Ft measurable for every t ≥ 0. It is direct from the definition that if X is progressively
measurable then X is Ft − adapted.

With these concepts, we can introduce some interesting spaces. We define the quotient
space:

S0
d[0, T ] :=

{
X : Ω× [0, T ]→ Rd|X is a progressively measurable continuous stochastic process

}/
R.

Furthermore, S0
d :=

⋂
T≥0 S

0
d[0, T ].
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For p > 0, we define Spd[0, T ] as the subset of the processes X(t) in S0
d[0, T ] such that

supt∈[0,T ] ‖X(t)‖p has finite first moment. In other words

Spd[0, T ] :=

{
X ∈ S0

d[0, T ]
∣∣∣E( sup

t∈[0,T ]

‖Xt‖p
)
<∞

}
.

Furthermore, Spd :=
⋂
T≥0 S

p
d[0, T ].

A useful definition will be the usual Lp definition, but in the stochastic case. We denote
Lp([0, T ];Rd), with p > 0, to the family of Rd−valued, Ft−adapted processes h : Ω× [0, T ]→
Rd such that: ∫ T

0

‖h(t)‖pdt <∞, P− a.s..

We will write h ∈ Lp(R+;Rd), with p > 0, if h ∈ Lp([0, T ];Rd) for every T > 0.

We will focus on a special case of Stochastic Processes, called Ito processes, because the
dynamics of the Continuous-Time Model of SGD (in which we are interested) will be this
type of process (see for instance (2.13)).

Definition. Assume that f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). X ∈ S0
d is an Ito

process if it takes the following form

X(t) = X0 +

∫ t

0

f(s)ds +

∫ t

0

g(s)dB(s), t ≥ 0,P− a.s.. (2.14)

or its differential form (which is an alternative way to express (2.14))

dX(t) = f(t)dt + g(t)dB(t), t ≥ 0,P− a.s. (2.15)
X(0) = X0,

where B is a Ft-adapted m−dimensional Brownian motion.

Now we are ready to describe and analyze the following Stochastic Differential Equation
(SDE).

Let F : R+ × Rd → Rd and G : R+ × Rd → Rd×m be measurable functions. Consider the
SDE:

dX(t) = F (t,X(t))dt +G(t,X(t))dB(t), t > 0,P− a.s.
X(0) = X0.

(2.16)

This SDE is diferent than the one presented in (2.15), since X appears on the right hand
side of the equation. So we will formalize what it means to solve (2.16).

34



X is called a solution of (2.16) if for every T > 0, F ∈ L1([0, T ];Rd), G ∈ L2([0, T ];Rd×m)
and

X(t) = X0 +

∫ t

0

F (s,X(s))ds +

∫ t

0

G(s,X(s))dB(s), t ∈ [0, T ],P− a.s.. (2.17)

Every solution of (2.16) is an Ito Process.

The following Theorem will ensure sufficient conditions for (2.16) to have a unique solution.

Theorem 2.19 (See [20, Theorem 5.2.1]) Let F : R+×Rd → Rd and G : R+×Rd → Rd×m

be measurable functions satisfying for every T > 0

‖F (t, x)‖+ ‖G(t, x)‖F ≤ C1(1 + ‖x‖), ∀x ∈ Rd,∀t ∈ [0, T ], (2.18)

for some constant C1, and such that for every T > 0:

‖F (t, x)− F (t, y)‖+ ‖G(t, x)−G(t, y)‖F ≤ C2‖x− y‖, ∀x, y ∈ Rd, ∀t ∈ [0, T ], (2.19)

for some constant C2. Then (2.16) has a unique solution X ∈ S2
d.

A difficulty we face in order to be able to analyze the behavior of a solution X of (2.16), is
that X itself usually does not provide us with much information. For instance, if we want to
know if X(t) is approaching to a set A ⊆ Rd, we need to know how d(X(t), A) behaves rather
than X(t). This is one of the reasons why we want to inquire into what happens with the Ito
processX when it is mapped via a function φ : R+×Rd → R such that (t,X(t)) 7→ φ(t,X(t)).

Theorem 2.20 (Ito’s Formula) Let X ∈ S0
d be a solution of (2.16) i.e. an Ito process and

let φ ∈ C2(R+ × Rd;R). Then the process

Y (t) = φ(t,X(t)), ∀t ≥ 0,P− a.s.,

is again an Ito process, such that

dY(t) =
∂φ

∂t
(t,X(t))dt +

∑
i

∂φ

∂xi

(t,X(t))dXi(t) +
1

2

∑
i,j

∂2φ

∂xi∂xj
(t,X(t))dXi(t)dXj(t), (2.20)

where dBidBj = δijdt, dBidt = dtdBi = 0 (δij is the Kronecker Delta).

Or equivalently

Y (t) =Y (0) +

∫ t

0

∂φ

∂t
(s,X(s))ds +

∫ t

0

〈∇φ(s,X(s)), F (s,X(s))〉ds

+
1

2

∫ t

0

tr[G(s,X(s))Gt(s,X(s))Hess(φ(s,X(s)))]ds +

∫ t

0

〈∇φ(s,X(s)), G(s,X(s))dB(s)〉.

(2.21)
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The following Corollary is crucial in this Thesis and describes the behavior in expectation
of the map (t,X(t)) 7→ φ(t,X(t)) (with X(t) ând φ as before).

Corollary 2.21 Let X ∈ S0
d be a solution of (2.16) i.e. an Ito Process, and

φ ∈ C2(R+ × Rd;R). Then the process

Y (t) = φ(t,X(t)),

is an Ito Process, such that

E[Y (t)] = Y (0) + E
[∫ t

0

∂φ

∂t
(s,X(s))ds +

∫ t

0

〈∇φ(s,X(s)), F (s,X(s))〉ds
]

+
1

2
E
[∫ t

0

tr[G(s,X(s))Gt(s,X(s))Hess(φ(s,X(s)))]ds
]
.

(2.22)

Proof. We just have to prove that

E
[∫ t

0

〈∇φ(s,X(s)), G(s,X(s))dB(s)〉
]

= 0.

And this is true since

E
[∫ T

0

|〈∇φ(s,X(s)), G(s,X(s))〉|2ds
]
<∞, ∀T > 0 (see [21, Theorem 1.5.8]).

Equipped with the results shown in this section, we are in a position to define the
continuous-time model of SGD on which we will work.
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Chapter 3

A Continuous-Time Model of Stochastic
Gradient Descent

Inspired by (2.13), we are going to define and analyze a Continuous-Time Model of SGD.

Consider f ∈ C1,1(Rd) ∩ Γ0(Rd) and the following dynamic:

dX = −∇f(X)dt + σ(t,X)dB (CSGD)
X(0) = X0,

where:

1. B is a Ft-adapted m−dimensional Brownian motion.

2. The d×m volatility matrix σik : R+ × Rd → R is measurable and

sup
t,x
|σik(t, x)| <∞ (H)

|σik(t, x
′)− σik(t, x)| ≤ l‖x′ − x‖,

for some l > 0 and for all t ≥ 0, x, x′ ∈ Rd

Also (H) implies the existence of σ∗ > 0 such that:

tr[Σ(t, x)] ≤ σ2
∗,

for all t ≥ 0, x ∈ Rd, where Σ = σσt.

This is the Continuous-Time Model of Stochastic Gradient Descent on which we will focus
in order to analyze its behavior and properties.
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Before stating the main propositions related to (CSGD), we will need some previous
definitions and technical results.

3.1 Technical results
Let A,B ∈ Rd×d symmetric matrices, we write A 4 B if B − A is a positive semi-definite
matrix, i.e.

xt(B − A)x ≥ 0, ∀x ∈ Rd.

Proposition 3.1 Let φ ∈ C1,1
L (Rd), then φ is almost everywhere twice differentiable and its

Hessian satisfies

Hess(φ(x)) 4 LI, for (Lebesgue) almost all x ∈ Rd.

Proof. Direct from Rademacher’s Theorem (see [22, Theorem 3.1.6]) and Proposition 1.6.

Corollary 3.2 Let φ ∈ C1,1
L (Rd), σ : R+ × Rd → Rd×m and Σ = σσt. Then

tr(Σ(t, x) ·Hess(φ(x))) ≤ L · tr(Σ(t, x)), ∀t ≥ 0, for (Lebesgue) almost all x ∈ Rd.

Proof. Let t ≥ 0, x ∈ Rd such that Hx := Hess(φ(x)) exists and σ := σ(t, x). Denote

Hx = (hij)d×d, and σ = (σij)d×m.

tr[HxΣ] =
d∑

i=1

d∑
k=1

m∑
j=1

σkjhikσij. (3.1)

On the other hand, by Proposition 3.1

utHxu ≤ Lutu, ∀u ∈ Rd.

Choosing u = σ:j (column j of σ) we have

d∑
k=1

d∑
i=1

σkjhikσij ≤ L
d∑

i=1

σ2
ij.

Adding up the previous equation over j ∈ [m]

m∑
j=1

d∑
k=1

d∑
i=1

σkjhikσij ≤ L

m∑
j=1

d∑
i=1

σ2
ij.

Rearranging terms
d∑

i=1

d∑
k=1

m∑
j=1

σkjhikσij ≤ L

d∑
i=1

m∑
j=1

σ2
ij.

38



Plugging the previous inequality in (3.1), we obtain

tr[Σ ·Hx] ≤ L

d∑
i=1

m∑
j=1

σ2
ij = L · tr[Σ],

and we conclude.

In order to find upper bounds of (CSGD), at some point we will need to exchange the
derivative with the expectation, the following Proposition will give us sufficient conditions to
ensure this exchange.

Proposition 3.3 Let D be an open subset of R. Suppose g : Ω × D → R satisfies the
following conditions:

1. E[g(ω, t)] <∞ for each t ∈ D.

2. For almost all ω ∈ Ω, ∂g
∂t

exists for all t ∈ D.

3. There is a function Z : Ω→ R such that E[Z] <∞ and∣∣∣∣ ∂∂tg(ω, t)

∣∣∣∣ ≤ Z(ω), ∀t ∈ D and almost every ω ∈ Ω.

Then
d
dt
E[g(ω, t)] = E

[
∂g(ω, t)

∂t

]
, ∀t ∈ D.

Proof.

d
dt
E[g(ω, t)] = lim

h→0

E[g(ω, t+ h)]− E[g(ω, t)]

h

= lim
h→0

E
[
g(ω, t+ h)− g(ω, t)

h

]
= lim

h→0
E
[
∂

∂t
g(ω, τ(h))

]
.

where τ(h) ∈ (t, t+ h) exists by the mean value Theorem. On the other hand, we suppose∣∣∣∣ ∂∂tg(ω, τ(h))

∣∣∣∣ ≤ Z(ω).

By the Dominated Convergence Theorem, we conclude that

d
dt
E[g(ω, t)] = E

[
lim
h→0

∂

∂t
g(ω, τ(h))

]
= E

[
∂g(ω, t)

∂t

]
.
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To get results of (CSGD) when the objetive function is in C1,1
L (Rd)∩Łqb(Rd) for q ∈ (1

2
, 1),

we will need a continuous version of Lemma 2.16.

Proposition 3.4 Consider the differential inequation

y′(t) + ay(t)b ≤ c, y(0) = y0, (3.2)

where a, b, c > 0 and b > 1, y0 > 0. Then

y(t) ≤
( c
a

) 1
b

+ y0e−∆t,∀t ≥ 0,

where ∆ = ab
(
c
a

)1− 1
b .

Proof. Let φ(y) = ayb − c and ȳ :=
(
c
a

) 1
b be the root of φ. Also

• φ′(y) = abyb−1, which is positive when y > 0.

• φ′′(y) = ab(b− 1)yb−2, which is positive when y > 0.

Then φ is increasing and convex on (0,∞); it is negative before ȳ, and it is positive after.
We can rewrite (3.2) as

y′(t) + φ(y(t)) ≤ 0.

By the convexity of φ we have

φ(y(t))− φ(ȳ)− φ′(ȳ)(y(t)− ȳ) ≥ 0.

Then
y′(t) ≤ −φ(y(t)) ≤ −φ′(ȳ)(y(t)− ȳ).

Introducing the change of variable z(t) := y(t)− ȳ we obtain

z′(t) ≤ −φ′(ȳ)z(t).

This differential inequality implies that

y(t)− ȳ = z(t) ≤ z(0)e−φ
′(ȳ)t ≤ y0e−φ

′(ȳ)t,

and since φ′(ȳ) = ∆, we conclude.
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3.2 Main Results: Upper bounds and complexity rates
for (CSGD)

In this section we will discuss the existence and uniqueness of a solution for (CSGD), show
upper bounds of this dynamic and obtain remarkable complexity rates.

Proposition 3.5 Assume that f ∈ C1,1
L (Rd) ∩ Γ0(Rd). If we consider the dynamic (CSGD)

under the hypothesis (H), then (CSGD) has a unique solution X ∈ S2
d.

Proof. Direct from checking the conditions of Theorem 2.19.

Remark. There are other hypotheses like [23, Section 2.2] that allow us to deduce the existence
and uniqueness of a solution for (2.13), which is a particular case of (CSGD).

Assume that f ∈ C1,1(Rd) ∩ Γ0(Rd) and set x∗ ∈ S. In the following Propositions we will
show upper bounds for different terms, in particular of quantities like:

i) E [‖x− x∗‖2] (Squared distance to a particular solution).

ii) E[f(x)]−min(f).

iii) E [d(x, S)2].

In order to relate these quantities, we are going to recall Lemma 1.6 and Proposition 1.14.

To switch from an upper bound of the term:

• i) to ii), we will use Lemma 1.6 if f ∈ C1,1
L (Rd).

• ii) to iii), we will use Proposition 1.14 if f satisfies the Łojasiewicz Inequality on a
particular set.

• i) to iii), we will use the definition of distance to a set.

The main results of this Thesis related to the upper bounds and complexities of (CSGD)
are presented in the following Propositions:
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Proposition 3.6 Assume that f ∈ C1,1
L (Rd) ∩ Γ0(Rd), let x∗ ∈ S. If we consider the

dynamic (CSGD) under the hypothesis (H) and X ∈ S2
d its unique solution, then the following

statements holds:

(i) Let fmin(t) := mins∈[0,t] f(X(s)), X̄(t) = t−1
∫ t

0
X(s)ds and f̄(t) := t−1

∫ t
0
f(X(s))ds.

Since f ∈ Γ0(Rd) then

E [fmin(t)]−min(f) ≤ E
[
f(X̄(t))

]
−min(f) ≤ E

[
f̄(t)

]
−min(f) ≤ d(X0, S)2

2t
+
σ2
∗

2
, ∀t > 0.

(3.3)

(ii) If f ∈ Γµ(Rd), then

E
(
‖X(t)− x∗‖2

2

)
≤ ‖X0 − x∗‖2

2
e−µt +

σ2
∗

2µ
, ∀t ≥ 0. (3.4)

Proof. (i) Let g(t) = φ(t,X(t)) = ‖X(t)−x∗‖2
2

and G(t) = E(g(t)). Using Corollary 2.21, we
obtain

G(t)−G(0) = E
[∫ t

0

〈∇f(X(s)), x∗ −X(s)〉ds
]

+
1

2
E
[∫ t

0

tr[Σ(s,X(s))]ds
]

≤ −E
[∫ t

0

f(X(s))−min(f)ds
]

+
1

2
E
[∫ t

0

tr[Σ(s,X(s))]ds
]

≤ −E
[∫ t

0

f(X(s))−min(f)ds
]

+
σ2
∗t

2
,

(3.5)

where the first inequality is given by the fact that f ∈ Γ0(Rd). Then rearranging terms,
using G(t) ≥ 0 and dividing by t, we obtain

1

t
E
[∫ t

0

f(X(s))−min(f)ds
]
≤ ‖X0 − x∗‖2

2t
+
σ2
∗

2
, ∀t > 0. (3.6)

And using that x∗ is arbitrary, we can make the inequality of (3.7) tighter and get

1

t
E
[∫ t

0

f(X(s))−min(f)ds
]
≤ d(X0, S)2

2t
+
σ2
∗

2
, ∀t > 0. (3.7)

(ii) Let g(t) = φ(t,X(t)) = ‖X(t)−x∗‖2
2

, G(t) = E(g(t)). Using Corollary (2.21), we obtain

G(t)− g(0) = E
[∫ t

0

〈−∇f(X(s)), X(s)− x∗〉ds
]

+
1

2
E
[∫ t

0

tr[Σ(s,X(s))]ds
]
. (3.8)

Let T > 0, t ∈ [0, T ]. Analyzing the right hand side of (3.8), we conclude that is
differentiable in (0, T ), to see this, we must look at the following term

d
dt
E
[∫ t

0

〈−∇f(X(s)), X(s)− x∗〉ds
]

+
1

2

d
dt
E
[∫ t

0

tr[Σ(s,X(s))]ds
]
. (3.9)
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We have∣∣∣∣ ddt
∫ t

0

〈−∇f(X(s)), X(s)− x∗〉ds
∣∣∣∣ = |〈−∇f(X(t)), X(t)− x∗〉| ≤ L sup

t∈[0,T ]

‖X(t)− x∗‖2.

Where the equality is given by [24, Theorem 4.10] and the inequality is given by Cauchy-
Schwarz Inequality. Also,

E

(
L sup
t∈[0,T ]

‖X(t)− x∗‖2

)
= LE

(
sup
t∈[0,T ]

‖X(t)− x∗‖2

)
<∞,

because X ∈ S2
d.

Similarly, ∣∣∣∣ ddt
∫ t

0

tr[Σ(s,X(s))]ds
∣∣∣∣ = tr[Σ(t,X(t))] ≤ σ2

∗

and
E(σ2

∗) = σ2
∗ <∞.

Thus, applying Proposition 3.3 twice, with

D = (0, T ), g1(ω, t) =
∫ t

0
〈−∇f(X(ω, s)), X(ω, s)− x∗〉ds and g2(ω, t) =

∫ t
0
tr[Σ(s,X(ω, s))]ds,

we obtain (3.9) is equal to

E(〈−∇f(X(t)), X(t)− x∗〉) +
1

2
E(tr[Σ(t,X(t))]).

So the right hand side of (3.8) is differentiable in (0,T), then we can derivate both sides

Ġ(t) = E(〈−∇f(X(t)), X(t)− x∗〉) +
1

2
E(tr[Σ(t,X(t))]), ∀t ∈ (0, T ). (3.10)

Using f ∈ Γµ(Rd), then

Ġ(t) ≤ −µG(t) +
σ2
∗

2
, ∀t ∈ (0, T ).

Now we can solve the ordinary differential inequality by using the integrating factor
method and obtain

G(t) ≤ ‖X0 − x∗‖2

2
e−µt +

σ2
∗

2µ
, ∀t ∈ [0, T ].

Using that T > 0 is arbitrary, we conclude the inequality holds for all t ≥ 0.

Moreover, by Proposition 1.6

E[f(X(t))−min(f)] ≤ L

(
‖X0 − x∗‖2

2
e−µt +

σ2
∗

2µ

)
, ∀t ≥ 0, (3.11)

and we get another upper bound.
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Proposition 3.7 Consider the dynamic (CSGD), assume that there exists σ2
∗ > 0 such that

sup
t≥0,x∈Rd

‖σ(t, x)‖2
F ≤ σ2

∗.

Let X be a solution of (CSGD), x∗ ∈ S and suppose that X is bounded, then the following
statements holds:

(i) If f ∈ Ł1/2
b (Rd), then there exists µ > 0 such that:

E
(
d(X(t), S)2

2

)
≤ d(X0, S)2

2
e−

µ2

2
t +

2σ2
∗

µ2
, ∀t ≥ 0. (3.12)

(ii) If f ∈ Łqb(Rd), q ∈ (1
2
, 1), there exists µ̃ > 0 such that

E
(
d(X(t), S)2

2

)
≤ d(X0, S)2

2
e
−
(
µ̃2−2q

1−q

)
(σ2
∗)

2q−1
t
+

1

2

(
σ2
∗
µ̃

)2(1−q)

, ∀t ≥ 0. (3.13)

Moreover, if f ∈ C1,1
L (Rd) then

iii) For f ∈ Ł1/2
b (Rd), there exists µ > 0 such that:

E [f(X(t))]−min(f) ≤ (f(X0)−min(f))e−µ
2t +

σ2
∗L

2µ2
, ∀t ≥ 0. (3.14)

iv) For f ∈ Łqb(Rd), q ∈ (1
2
, 1), there exists µ > 0 such that:

E [f(X(t))]−min(f) ≤ (f(X0)−min(f))e
−2µ2q

(
σ2∗L
2µ2

)1−1/2q

t
+

(
σ2
∗L

2µ2

)1/2q

, ∀t ≥ 0. (3.15)

Proof. (i) Let ĝ(t) = φ̂(t,X(t)) = d(X(t),S)2

2
, Ĝ(t) = E(ĝ(t)), K a bounded set such that

X ⊆ K a.s. and µ > 0 be the coefficient that exists because f satisfies the Łojasiewicz
Inequality on K. We have

∇φ̂(t,X(t)) = X(t)− PS(X(t)),

where PS(x) is the projection of x in S and Hess(φ̂(t,X(t))) 4 2I. Using Corollary
2.21, we obtain

Ĝ(t)− ĝ(0) =E
[∫ t

0

〈−∇f(X(s), X(s)− PS(X(s))〉ds
]

(3.16)

+
1

2
E
[∫ t

0

tr[Σ(s,X(s))Hess(φ̂(s,X(s)))]ds
]
.

44



The right hand side of (3.16) is differentiable, to see this, we must look at the following
term

d
dtE
[∫ t

0
〈−∇f(X(s), X(s)− PS(X(s))〉ds

]
+ 1

2
d
dtE
[∫ t

0
tr[Σ(s,X(s))Hess(φ̂(s,X(s)))]ds

]
.

(3.17)
We have for almost all ω ∈ Ω that∣∣∣∣ ddt

∫ t

0

〈−∇f(X(s), X(s)− PS(X(s))〉ds
∣∣∣∣ = |〈−∇f(X(t), X(t)− PS(X(t))〉|

≤ ‖∇f(X(t))‖‖X(t)− x∗‖ ≤ R,

for some R > 0 since X is bounded and ∇f is continuous. The first equality is given
by [24, Theorem 4.10]. Similarly, for almost all ω ∈ Ω we have∣∣∣∣ ddt

∫ t

0

tr[Σ(s,X(s))Hess(φ̂(s,X(s)))]ds
∣∣∣∣ = tr[Σ(t,X(t))Hess(φ̂(t,X(t)))] ≤ 2σ2

∗.

Where the inequality is given by Corollary 3.2. Thus, applying Proposition 3.3 twice,
with

D = R+, g1(ω, t) =
∫ t

0
〈−∇f(X(s), X(s)− PS(X(s))〉ds and g2(ω, t) =

∫ t
0
tr[Σ(s,X(ω, s))Hess(φ̂(s,X(ω, s)))]ds,

we obtain that (3.17) is equal to

E [〈−∇f(X(t), X(t)− PS(X(t))〉] +
1

2
E
[
tr[Σ(t,X(t))Hess(φ̂(t,X(t)))]

]
.

Now we can derivate both sides of (3.16) and get

˙̂
G(t) = E [〈−∇f(X(t), X(t)− PS(X(t))〉] +

1

2
E
[
tr[Σ(t,X(t))Hess(φ̂(t,X(t)))]

]
≤ −E(f(X(t))−min(f)) + σ2

∗, ∀t ≥ 0. (3.18)

Where it has been used f ∈ Γ0(Rd) and Corollary 3.2. Using f ∈ Ł1/2
b (Rd) and plugging

the inequality of Proposition 1.14 in (3.18), we obtain

˙̂
G(t) ≤ −µ

2

2
Ĝ(t) + σ2

∗, ∀t ≥ 0.

Now we can solve the ordinary differential inequality by using the integrating factor
method and obtain

Ĝ(t) ≤ d(X0, S)

2
e−

µ2

2
t +

2σ2
∗

µ2
, ∀t ≥ 0.

(ii) Let p = 1
1−q . Inequality (3.18) still holds in this case because f ∈ Ł1/2

b (Rd) it is not
used yet, using that f ∈ Łqb(Rd), q ∈ (1

2
, 1) (µ as in i)) and plugging the inequality of

Proposition 1.14 in (3.18), we obtain that there exists µ̃ > 0 such that

˙̂
G(t) ≤ −µ̃E (d(X(t), S)p) + σ2

∗

≤ −2p/2µ̃Ĝ(t)p/2 + σ2
∗, ∀t ≥ 0.

(3.19)
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Where the second inequality comes from p > 2 and Jensen’s inequality.

Then by Proposition 3.4 with a = 2p/2µ̃, b = p
2
, c = σ2

∗, y(0) = d(X0,S)2

2
, we have that Ĝ

satisfies

Ĝ(t) ≤ 1

2

(
σ2
∗
µ̃

)2/p

+
d(X0, S)2

2
e
−µ̃p

(
σ2∗
µ̃

)1−2/p

t
, ∀t ≥ 0.

This is

E
(
d(X(t), S)2

2

)
≤ d(X0, S)2

2
e
−µ̃p

(
σ2∗
µ̃

)1−2/p

t
+

1

2

(
σ2
∗
µ̃

)2/p

, ∀t ≥ 0. (3.20)

(iii) Let g̃(t) = φ̃(t,X(t)) = f(X(t)) − min(f), G̃(t) = E(g̃(t)), K a bounded set such that
X ⊆ K a.s. and µ > 0 be the coefficient that exists because f satisfies the Łojasiewicz
Inequality on K. Using Corollary 2.21, we obtain

G̃(t)− g̃(0) = −E
[∫ t

0

‖∇f(X(s))‖2ds
]

+
1

2
E
[∫ t

0

tr[Σ(s,X(s))Hess(f(X(s)))]ds
]
.

(3.21)
Analyzing the right hand side of (3.21), we conclude that is differentiable, to see this,
we must look at the following term

− d
dt
E
[∫ t

0

‖∇f(X(s))‖2ds
]

+
1

2

d
dt
E
[∫ t

0

tr[Σ(s,X(s))Hess(f(X(s)))]ds
]
. (3.22)

We have for almost all ω ∈ Ω that

for some R2 > 0 since X is bounded. The equality is given by [24, Theorem 4.10] and
the inequality is given by the fact that ∇f is L − Lipschitz. Similarly, for almost all
ω ∈ Ω we have∣∣∣∣ ddt

∫ t

0

tr[Σ(s,X(s))Hess(f(X(s)))]ds
∣∣∣∣ = tr[Σ(t,X(t))Hess(f(X(t)))] ≤ σ2

∗L.

Where the inequality is given by Corollary 3.2. Thus, applying Proposition 3.3 twice,
with

D = R+, g1(ω, t) =
∫ t

0
‖∇f(X(ω, s))‖2ds and g2(ω, t) =

∫ t
0
tr[Σ(s,X(ω, s))Hess(f(X(ω, s)))]ds,

we obtain that (3.22) is equal to

−E
[
‖∇f(X(t))‖2

]
+

1

2
E [tr[Σ(t,X(t))Hess(f(X(t)))]] .

So the right hand side of (3.21) is differentiable, then we can derivate both sides

˙̃G(t) = −E
[
‖∇f(X(t))‖2

]
+

1

2
E [tr[Σ(t,X(t))Hess(f(X(s)))]]

≤ −E
[
‖∇f(X(t))‖2

]
+
σ2
∗L

2
, ∀t ≥ 0.

(3.23)
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Where the inequality comes from Corollary 3.2. Then using that f ∈ Ł1/2
b (Rd) we have

˙̃G(t) ≤ −µ2G̃(t) +
σ2
∗L

2
, ∀t ≥ 0.

Now we can solve the ordinary differential inequality by using the integrating factor
method and obtain

G̃(t) ≤ (f(X0)−min(f))e−µ
2t +

σ2
∗L

2µ2
, ∀t ≥ 0. (3.24)

Moreover, since f ∈ Ł1/2
b (Rd) we can use the inequality of Proposition 1.14 in (3.24)

and obtain

E
(
d(X(t), S)2

2

)
≤ 2(f(X0)−min(f))e−µ2t

µ2
+
σ2
∗L

µ4
, ∀t ≥ 0, (3.25)

which is another upper bound.

(iv) Inequality (3.23) still holds in this case because f ∈ Ł1/2
b (Rd) it is not used yet, using

f ∈ Łqb(Rd), q ∈ (1
2
, 1) (and µ as in iii)) we obtain

˙̃G(t) ≤ −µ2E(g̃(t)2q) +
σ2
∗L

2
, ∀t ≥ 0.

Using q > 1
2
, by Jensen’s inequality we have G̃(t)2q ≤ E(g̃(t)2q), then

˙̃G(t) ≤ −µ2G̃(t)2q +
σ2
∗L

2
, ∀t ≥ 0. (3.26)

By Proposition 3.4 with a = µ2, b = 2q, c = σ2
∗L
2
, y(0) = f(X0) − min(f) we have that

G̃ satisfies

G̃(t) ≤
(
σ2
∗L

2µ2

)1/2q

+ (f(X0)−min(f))e
−2µ2q

(
σ2∗L
2µ2

)1−1/2q

t
, ∀t ≥ 0.

This is

E[f(X(t))−min(f)] ≤ (f(X0)−min(f))e
−2µ2q

(
σ2∗L
2µ2

)1−1/2q

t
+

(
σ2
∗L

2µ2

)1/2q

, ∀t ≥ 0.

(3.27)

Moreover, since f ∈ Γ0(Rd) ∩ Łqb(Rd) we can use the inequality of Proposition 1.14 in
(3.27) and obtain that there exists µ̃ > 0 such that

E
(

d(X(t),S)2

2

)
≤ 1

2µ̃2/p

(
(f(X0)−min(f))e

−2µ2q

(
σ2∗L
2µ2

)1−1/2q

t
+
(
σ2
∗L

2µ2

)1/2q
)2/p

, ∀t ≥ 0,

(3.28)
and we get another upper bound.
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Finally, we are ready to deduce the complexities associated with the upper bounds shown
in the previous Propositions.

Corollary 3.8 (Complexities of Proposition 3.6) Let ε0 > 0 and ε ∈ (0, ε0) arbitrary.

(i) If σ2
∗ = O(ε), t = Ω0

(
1
ε

)
. Since f ∈ Γ0(H) then

E
[
f̄(t)

]
−min(f) ≤ ε.

(ii) If f ∈ Γµ(Rd), σ2
∗ = O(ε), t = Ω0

(
ln
(

1
ε

))
. Then

E
(
‖X(t)− x∗‖2

2

)
≤ ε.

Proof. (i) In order to guarantee E
[
f̄(t)

]
−min(f) ≤ ε, we will require that:

σ2
∗

2
≤ ε

2
and

‖X0 − x∗‖2

2t
≤ ε

2
.

Then σ2
∗ ≤ ε and

‖X0 − x∗‖2

2t
≤ ε

2

⇐⇒ 1

t
≤ ε

‖X0 − x∗‖2

⇐⇒ t ≥ ‖X0 − x∗‖2

ε
.

So by taking a particular t = Ω0

(
1
ε

)
, we can satisfy the last inequality and we conclude.

(ii) In order to guarantee E
(
‖X(t)−x∗‖2

2

)
≤ ε, we will require that:

σ2
∗

2µ
≤ ε

2
and

‖X0 − x∗‖2

2
e−µt ≤ ε

2
.

Then σ2
∗ ≤ µε and

‖X0 − x∗‖2

2
e−µt ≤ ε

2

⇐⇒ e−µt ≤ ε

‖X0 − x∗‖2

⇐⇒ −µt ≤ ln

(
ε

‖X0 − x∗‖2

)
⇐⇒ t ≥ 1

µ
ln

(
‖X0 − x∗‖2

ε

)
.

So by taking a particular t = Ω0

(
ln
(

1
ε

))
, we can satisfy the last inequality and we

conclude.
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Corollary 3.9 (Complexities of Proposition 3.7) Let ε0 > 0 and ε ∈ (0, ε0) arbitrary.

(i) If f ∈ Ł1/2
b (Rd), σ2

∗ = O(ε) and t = Ω0

(
ln
(

1
ε

))
. Then

E
(
d(X(t), S)2

2

)
≤ ε.

(ii) If f ∈ Łqb(Rd), q ∈ (1
2
, 1) , σ2

∗ = O(ε
1

2(1−q) ), t = Ω̃0

(
1

ε
2q−1
2(1−q)

)
. Then

E
(
d(X(t), S)2

2

)
≤ ε.

(iii) If f ∈ C1.1
L (Rd) ∩ Ł1/2

b (Rd), σ2
∗ = O(ε), t = Ω0

(
ln
(

1
ε

))
. Then

E [f(X(t))−min(f)] ≤ ε.

(iv) If f ∈ C1.1
L (Rd) ∩ Łqb(Rd), q ∈ (1

2
, 1), σ2

∗ = O(ε2q), t = Ω̃0

(
1

ε2q−1

)
. Then

E [f(X(t))−min(f)] ≤ ε.

Proof. (i) In order to guarantee E
(

d(X(t),S)2

2

)
≤ ε, we will require that:

2σ2
∗

µ2
≤ ε

2
and

d(X0, S)2

2
e−µ

2t ≤ ε

2
.

Then σ2
∗ ≤

µ2ε
4

and

d(X0, S)2

2
e−µ

2t ≤ ε

2

⇐⇒ e−µ
2t ≤ ε

d(X0, S)2

⇐⇒ −µ2t ≤ ln

(
ε

d(X0, S)2

)
⇐⇒ t ≥ 1

µ2
ln

(
d(X0, S)2

ε

)
.

So by taking a particular t = Ω0

(
ln
(

1
ε

))
, we can satisfy the last inequality and we

conclude.

(ii) Recall that p = 1
1−q ≥ 1, in order to guarantee E

(
d(X(t),S)2

2

)
≤ ε, we will require that:

1

2

(
σ2
∗
µ̃

)2/p

=
ε

2
and

d(X0, S)2

2
e
−µ̃p

(
σ2∗
µ̃

)1−2/p

t
≤ ε

2
.
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Then σ2
∗ = µ̃ε

p
2 and

d(X0, S)2

2
e
−µ̃p

(
σ2∗
µ̃

)1−2/p

t
≤ ε

2

⇐⇒ e
−µ̃p

(
σ2∗
µ̃

)1−2/p

t
≤ ε

d(X0, S)2

⇐⇒ −µ̃p
(
σ2
∗
µ̃

)1−2/p

t ≤ ln

(
ε

d(X0, S)2

)
⇐⇒ −µ̃pε

p
2
−1t ≤ ln

(
ε

d(X0, S)2

)

⇐⇒ t ≥ 1

µ̃p

ln
(

d(X0,S)2

ε

)
ε
p
2
−1

.

So by taking a particular t = Ω0

(
ln( 1

ε)
ε
p
2−1

)
, we can satisfy the last inequality and we

conclude.

(iii) In order to guarantee E [f(X(t))−min(f)] ≤ ε, we will require that:

σ2
∗L

µ2
≤ ε

2
and

‖X0 − x∗‖2

2
e−µt ≤ ε

2
.

Then σ2
∗ ≤

µ2ε
2L

and

(f(X0)−min(f))e−µ
2t ≤ ε

2

⇐⇒ e−µ
2t ≤ ε

2(f(X0)−min(f))

⇐⇒ −µ2t ≤ ln

(
ε

2(f(X0)−min(f))

)
⇐⇒ t ≥ 1

µ2
ln

(
2(f(X0)−min(f))

ε

)
.

So by taking a particular t = Ω0

(
ln
(

1
ε

))
, we can satisfy the last inequality and we

conclude.

(iv) In order to guarantee E [f(X(t))−min(f)] ≤ ε, we will require that:

(
σ2
∗L

2µ2

) 1
2q

=
ε

2
and (f(X0)−min(f))e

−2µ2q

(
σ2∗L
2µ2

)1− 1
2q
t
≤ ε

2
.
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Then σ2
∗ = 21−2qµ2

L
ε2q and

(f(X0)−min(f))e
−2µ2q

(
σ2∗L
2µ2

)1− 1
2q
t
≤ ε

2

⇐⇒ e
−2µ2q

(
σ2∗L
2µ2

)1− 1
2q
t
≤ ε

2(f(X0)−min(f))

⇐⇒ −2µ2q

(
σ2
∗L

2µ2

)1− 1
2q

t ≤ ln

(
ε

2(f(X0)−min(f)

)
⇐⇒ −2µ2q

(ε
2

)2q−1

t ≤ ln

(
ε

2(f(X0)−min(f)

)

⇐⇒ t ≥ 22(q−1)

µ2q

ln
(

2(f(X0)−min(f)
ε

)
ε2q−1

.

So by taking a particular t = Ω0

(
ln( 1

ε)
ε2q−1

)
, we can satisfy the last inequality and we

conclude.

In this Chapter, we have shown and proved remarkable results about upper bounds and
complexities of (CSGD). As some final observations we can mention the following: Firstly,
the forms of the upper bounds are similar to the ones shown for (SGD) (see Propositions
2.9,2.13,2.17). Moreover, Corollary 3.8 ensures us that the same complexity rates as in (GD)
and (CGD) will be obtained for the convex and strongly convex case. Furthermore, Corollary
3.9 ensures us the same holds for the Łojasiewicz case with q ∈ [1

2
, 1).

With these results we conclude the proposed framework of this Thesis, after having stud-
ied convergences rates, upper bounds and complexities of algorithms such as: Gradient De-
scent (GD), Continuous Gradient Descent (CGD), Stochastic Gradient Descent (SGD) and
a Continuous-time model of SGD (CSGD). The contributions of this Thesis were the upper
bounds and complexities of (SGD) under Łojasiewicz assumptions, and all results on upper
bounds and complexities related to (CSGD).
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Conclusions and Future Work

3.3 Conclusions

Convergence rates and complexities of Gradient Descent were recalled under different prop-
erties of the objetive function such as: convexity, strong convexity and Bounded Łojasiewicz
Inequality. It can be seen that the strong convexity and the Bounded Łojasiewicz Inequal-
ity with q = 1

2
case, share the same convergence rates. On the other hand, if f satisfies

the Bounded Łojasiewicz Inequality with q ∈ (1
2
, 1), the closer q is to 1

2
, the better is the

complexity, and as q is closer to 1, the complexity worsens until the limit (q = 1), where is
obtained the result of the convex case (ε−1), which is the worse case for our deterministic
algorithms.

The connection of Gradient Descent with its continuous version and its properties was
made clear, displaying that they share the same convergence rates and complexities under
convexity, strong convexity and Bounded Łojasiewicz Inequality. Stochastic algorithms such
as (SGD) were studied, showing classic results in the convex and strongly convex case, and
providing new results in the Łojasiewicz case. In the table below are shown the complexities
of the algorithms already mentioned.

Property Complexity GD Complexity CGD Complexity SGD
Γ0 ε−1 ε−1 ε−2

Γµ ln(ε−1) ln(ε−1) ε−1

Ł1/2
b ln(ε−1) ln(ε−1) ε−1

Łqb, q ∈ (1/2, 1) ε−(2q−1) ε−(2q−1) ε−(4q−1)

The following comments and observations can be made about this table: in (SGD) the
σ2 < ∞ hypothesis (finite variance of ∇fs at x∗ ∈ S) was assumed for the convex and
strongly convex case. Nevertheless, for the Łojasiewicz case the σ̄2 < ∞ hypothesis (finite
second moment of ∇fs in the entire sequence) was assumed. The complexity of (SGD) for
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the Łojasiewicz case when q ∈ (1
2
, 1), gets progressively worse as q grows and ranges from

ε−1 to ε−3. The column of complexities of (SGD) looks different than the others columns
because there is a constant that depends on a fixed variance (σ2 or σ̄2) and on a stepsize γ,
which appears as a sum in the upper bounds. So, in order to make the constant term small
enough to obtain a complexity, we have to impose a small stepsize, this makes the algorithm
go slower and this effect is reflected in their complexities, which are worse in this case rather
than the others ((GD) and (CGD)) and they cannot be improved (see Propositions 2.7 and
2.8).

Inspired by [19], [23], [25] and [26] we showed a Continuous-Time Model of SGD (CSGD)
and we calculated interesting upper bounds, noticing that we had to use similar propositions
to those in the (SGD) case (see Lemma 2.16 and Proposition 3.4). Although at first glance
these results are not easy to interpret, if we assume that we can make the term σ2

∗ arbitrarily
small, then we can obtain the following complexities:

Property Complexity CSGD (with σ2
∗ = O(ε))

Γ0 ε−1

Γµ ln(ε−1)

Ł1/2
b ln(ε−1)

Łqb, q ∈ (1/2, 1) ε−(2q−1)

The first thing we can notice is that this complexities match when comparing the results of
Gradient Descent (GD) or Continuous Gradient Descent (CGD) presented in the first table.
However, they do not match the results of Stochastic Gradient Descent (SGD) because, for
the Continuous SGD (CSGD) we assumed that we could make σ2

∗ arbitrarily small and that
in (SGD), σ̄2 was fixed. The assumption about σ2

∗ was made in order to get a complexity
(analogous to asking for the stepsize to be small enough in the (SGD) case).

We can also notice that the upper bounds of (CSGD) in the Łojasiewicz case seem like
a linear convergence rate plus a constant depending on σ2

∗ which needs to be small enough,
since the involved exponential also depends on σ2

∗, it makes the dynamic move much slower
than linear. This is clearly seen when viewing the complexity in the table. So, on one hand,
the mechanics used to obtain complexities of (CSGD) are similar to the ones used in (SGD)
in terms of upper bounds and getting worse complexities, but on the other, these complexities
coincide with those obtained in the classic cases ((GD) and (CGD)).
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3.4 Future Work
There are a lot of ways to improve or extend the results of this Thesis, or to ask other inter-
esting questions that are not solved yet.

A first step would be to find upper bounds and complexities for Proposition 2.17 without
the hypothesis σ̄2 <∞ and only with the hypothesis σ2 <∞ and L−smooth.

In a different direction, if we consider X a solution of (CSGD), then the assumption that
X is bounded is strong. For instance, if we consider that f is constant, then the solution
of (CSGD) is “proportional” to the Brownian motion, which is not bounded. So, we should
be able to find sufficient conditions on f which ensure that the solutions of (CSGD) are
bounded a.s. or such that they are bounded with high probability. This is hard, and so
far, most people just make this assumption (see [27],[28]). On the other hand, up until now
we only have results in expectation, so one path to explore would be to look for results in
probability and in a.s. context.

A concept that does not appear in this Thesis is the KŁ property, which is a generalization
of the Łojasiewicz Inequality. Convergence rates under KŁ property can be seen in [1],[2].
It might be interesting to find upper bounds or complexities of (CSGD) under KŁ property
(and convexity), since this property is usually sufficient to ensure better convergence rates
results in the deterministic case. Also, in this case, KŁ property implies that the sequence
(trajectory) has finite length, this is useful to not just have convergence on the objectives
but also on the iterates (trajectories). So in (CSGD) under this property, we should look for
convergence rates/upper bounds results of the trajectories and not just on the objectives.

We must keep in mind that (CSGD) is just a continuous-time model of (MB-SGD) under
a Gaussian assumption. It could be interesting to get more results of the obtained SDE
without the Gaussian assumption. In this scenario, (CSGD) is driven not by a Brownian
motion but by an α−stable Lévy motion, a result about this can be seen in [19, Theorem 3].

Finally, a topic that is briefly mentioned in this Thesis is the variance reduction technique,
applied in algorithms such as SVRG and SAGA. They can reach the same convergence rates
as the classic deterministic algorithms in the convex and the strongly convex case. An open
problem would be to describe their convergence rates under assumptions as Łojasiewicz In-
equality, expecting a convergence rate of the order of O(k−

1
2q−1 ) for an exponent q > 1

2
. The

next step after that would be to describe their convergence rates under the KŁ property in
general. An interesting approach to solve this problem would be to try to adapt the Lya-
punov functions that are used in [6].
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