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PROF. GUIA: CLAUDIO MUNOZ CERON

DESCRIPTION OF DYNAMICS FOR THREE BOUSSINESQ MODELS AND TWO
HIGH-ENERGY PHYSICS MODELS

This thesis is devoted to the study of long-time asymptotic properties of five models appearing
in Physics. These are the Improved, Good, and abcd Boussinesq models, and the
Skyrme and Adkins-Nappi models. The first part of this thesis deals with the Boussinesq
models, and the second one with the remaining equations.

After a brief introduction, in Chapter 2| we consider the decay problem for the generalized
improved (or regularized) Boussinesq model with power type nonlinearity, a modification
of the originally ill-posed shallow water waves model derived by Boussinesq. The associated
decay problem has been studied by Liu, and more recently by Cho-Ozawa, showing scattering
in weighted spaces provided the power of the nonlinearity p is sufficiently large. We remove
that condition on the power p and prove decay to zero in terms of the energy space norm
L? x H', for any p > 1, in two almost complementary regimes: (i) outside the light cone for
all small, bounded in time H' x H? solutions, and (ii) decay on compact sets of arbitrarily
large bounded in time H' x H? solutions.

In Chapter |3| we consider the Cauchy problem for (abed)-Boussinesq system posed on one-
and two-dimensional Euclidean spaces. This model, initially introduced by Bona, Chen, and
Saut, describes a small-amplitude waves on the surface of an inviscid fluid, and is derived as a
first order approximation of incompressible, irrotational Euler equations. We mainly establish
the ill-posedness of the system under various parameter regimes, which generalize the result
of one-dimensional BBM-BBM case by Chen-Liu. The proof follows from an observation of
the high to low frequency cascade present in nonlinearity, motivated by Bejenaru and Tao.

In Chapter 4| we consider the generalized Good-Boussinesq model in one dimension, with
power nonlinearity and data in the energy space H! x L2. This model has solitary waves
with speeds —1 < ¢ < 1. When |¢| approaches 1, Bona and Sachs showed orbital stability
of such waves. It is well-known from a work of Liu that for small speeds solitary waves are
unstable. We consider in more detail the long time behavior of zero speed solitary waves, or
standing waves. By using virial identities, in the spirit of Kowalczyk, Martel and Munoz, we
construct and characterize a manifold of even-odd initial data around the standing wave for
which there is asymptotic stability in the energy space.

In Chapter 5| we consider the decay problem for the Skyrme and Adkins-Nappi equations.
We prove that the energy associated to any bounded energy solution of the Skyrme (or
Adkins-Nappi) equation decays to zero outside the light cone (in the radial coordinate).
Furthermore, we prove that suitable polynomial weighted energies of any small solution
decays to zero when these energies are bounded. The proof consists of finding three new
virial type estimates, one for the exterior of the light cone, based on the energy of the
solution, and a more subtle virial identity for the weighted energies, based on a modification
of momentum type quantities.

Finally, in Chapter [6] we conclude with some open problems to be considered in the future.



ii



RESUMEN DE LA MEMORIA PARA OPTAR

AL TITULO DE DOCTOR EN CIENCIAS DE LA INGENIERIA,
MENCION MODELACION MATEMATICA

POR: CHRISTOPHER HUMBERTO MAULEN MARCHANT
FECHA: 2021

PROF. GUIA: CLAUDIO MUNOZ CERON

DESCRIPTION OF DYNAMICS FOR THREE BOUSSINESQ MODELS AND TWO
HIGH-ENERGY PHYSICS MODELS

Esta tesis estd dedicada al estudio de las propiedades asintoéticas de cinco modelos que
aparecen en Fisica. Estos son los modelos Improved, Good y abcd Boussinesq, y los
modelos de Skyrme y Adkins-Nappi. La primera parte de esta tesis trata los modelos de
Boussinesq y la segunda el resto de las ecuaciones.

Después de una breve introducciéon, en el Capitulo [2| consideramos el problema de de-
caimiento para el modelo generalizado Improved B con no linealidad del tipo de potencia,
una modificacion del modelo de ondas de aguas poco profundas originalmente mal planteado
derivado por Boussinesq. El problema de decaimiento asociado ha sido estudiado por Liu, y
maés recientemente por Cho-Ozawa, mostrando scattering en espacios con peso siempre que
la potencia p de la no linealidad sea suficientemente grande. Eliminamos esa condicién en la
potencia p y probamos decaimiento a cero en el espacio de energia L? x H', para cualquier
p > 1, en dos regimenes casi complementarios: (i) fuera del cono de luz para todas las
soluciones pequenas, acotadas en tiempo en H' x H? y (ii) en conjuntos compactos para
soluciones arbitrariamente grandes acotadas en tiempo en tiempo H' x H?.

En el Capitulo 3| consideramos el problema de Cauchy para el sistema (abed)-Boussinesq
planteado en R! y R?. Este modelo, introducido inicialmente por Bona, Chen y Saut, de-
scribe ondas de pequena amplitud en la superficie de un fluido no viscoso y se deriva como
una aproximacion de primer orden de ecuaciones de Euler irrotacionales e incompresibles. Es-
tablecemos el mal posicionamiento del sistema en varios regimenes, generalizando el resultado
del caso unidimensional BBM-BBM de Chen-Liu.

En el Capitulo 4| consideramos el modelo generalizado de Good-Boussinesq en una dimen-
si6n, con no linealidad del tipo de potencia y datos en el espacio de energia H' x L?. Este
modelo tiene ondas solitarias con velocidades |c¢| < 1. Cuando |c| se acerca a 1, Bona y Sachs
probaron la estabilidad orbital de tales ondas. Liu demuestra que para velocidades pequenas,
las ondas solitarias son inestables. Consideramos con més detalle el comportamiento a largo
plazo de las ondas solitarias de velocidad cero. Mediante el uso de identidades viriales, en el
espiritu de Kowalczyk, Martel y Munoz, construimos una variedad de datos iniciales alrededor
de la onda estacionaria para los cuales hay estabilidad asintoética en el espacio de energia.

En el Capitulo [5| consideramos el problema de decaimiento para las ecuaciones de Skyrme
y Adkins-Nappi. Demostramos que la energia asociada a cualquier solucién de energia aco-
tada de la ecuacion de Skyrme (o Adkins-Nappi) decae a cero fuera del cono de luz (en la
coordenadas radiales). Ademés, demostramos que las energias con pesos polinomiales de
cualquier soluciéon pequena decaen a cero cuando estas energias son acostadas. La prueba
consiste en encontrar tres nuevas estimaciones del tipo virial, una para el exterior del cono
de luz, basada en la energia de la solucién, y una identidad virial mas sutil para las energias
ponderadas, basada en una modificaciéon del momentum.

Concluimos en el Capitulo [f] con algunos problemas abiertos para ser considerados en el
futuro.
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Chapter 1

Introduction

1.1 Preliminaries

Physics is an essential ingredient in sciences and has a key role in explaining and describing
natural phenomena. When the phenomenon to explain is highly complex, a strong back-
ground in advanced mathematics is needed. For example, partial differential equations have
often been used to describe the dissipation of heat or the behavior of waves in several media,
which originated the heat equation, the Schrodinger equation, the Eulerian formulation for
fluids, among other models. On the other side, there is a wide range of phenomena without
satisfactory explanations, requiring an equilibrium between assumptions and the precision of
the measurements, for a suitable description.

One of these challenging phenomena is to describe the behavior of a fluid under
certain conditions, called the water wave problem, first introduced by Lagrange.
Some basic assumptions are the following: the fluid is delimited below by a flat bottom and
above by a free surface; it is homogeneous, inviscid, incompressible and irrotational. These
assumptions imply that the incompressible Euler equations govern the fluid.

The understanding of the dynamics in the water waves model is a hard mathematical
problem. It consists of a quasilinear system of equations (in the Zakharov-Craig-Sulem
formulation) that contains several canonical simpler models as representatives in certain
asymptotic regimes.

Among these models, those of dispersive type (i.e., those in which waves of different
wavelength propagate at different speeds) are of great relevance, for instance: Korteweg-
de Vries, Benjamin-Bona-Mahony, Benjamin-Ono, and the family of Boussinesq equations.
These models have different properties: some are integrable, others are Hamiltonian, and
others are not. This makes the water waves problem very interesting from the point of view
of modelling.

The first aim of this thesis is to study differences between a family of Boussinesq equations,
which are obtained under similar hypotheses, despite the substantial contrast between the
properties and the dynamics. These are the Good, Improved and abcd Boussinesq



systems. Secondly, we want to understand the long-time behavior in Skyrme and Adkins-
Nappi models, which are high-energy equations intended to describe interactions between
nucleons and 7 mesons. More details on these models will be given in next sections. The
following table summarizes the models that will be studied in this thesis:

Model Equation
Good R B
Boussinesq P?u + Ot — %u — 2(|ulP~tu) = 0.
Improved 3
Boussinesq Ofu — 070¢u — Oqu — 03 (|ufP~u) = 0.
abed (1-=bA)om+ V- (a AU+ 4+ un) =0,
Boussinesq (1 —-dA)od+ V(cAn+n+ 3|@?) = 0.

2

Skyrme (1 + 2a2j;n u)(utt N Uw) . %Ur + si1;22u [1 + a2 (ut2 . uf + bllrlzu)] —0.
Adkins-

Nappi

+ sin22u + (u—sinucosu)(1—cos2u) __ 0.

2
Ut — Upyr — ;ur o)

Table 1.1: Models & equations

What is the relationship between these five models? Precisely, their wave-like character,
with more influence of the Korteweg-de Vries dynamics in the Boussinesq case, and from
Klein-Gordon in the case of Skyrme and Adkins-Nappi. Each model will have a different
nature, but, as we shall see in this thesis, the techniques used here will be transversal to all
these models and produce interesting results.

This thesis was made with important collaborations and research visits. A great part was
developed in three long visits that I did during past years. I acknowledge professors Didier
Pilod, Juan Soler, and Francisco Gancedo for their help making these travels possible.

Visit Professor
Francisco Gancedo (Sevilla)
Miguel Angel Alejo (Cordoba)
Universidad de Granada (1 month, 2019) Juan Soler (Granada)
University of Bergen (1 month, 2019) Didier Pilod (Bergen)

Universidad de Sevilla (4 months, 2020)

Table 1.2: Research visits during this PhD thesis.

Before describing the models considered in this thesis, we shortly recall some important
notions. We concentrate ourselves in the notion of dispersion and decay.

1.1.1 Dispersion and Decay

As said before, models in Table are essentially of dispersive type. We cannot understand
the notion of dispersion without understanding the notion of decay.

The most classical example to describe the interconnection between dispersion and decay
of solutions is the linear Schrodinger equation (see [44], 52]). Recall that this equation is

3



given by
idu+Au=0, (t,r)eRxRY wueC.

It is well-known that, by applying the Fourier transform, if the initial data ug lies in some
Sobolev space, the corresponding solution has the form wu(t) = S(t)up, where S(t) is the
Schrédinger group given by S(t) = ¢!, Furthermore, the operator S(t) is unitary (in L?),
and if the initial data uo belongs to the Sobolev space H*(RY) then S(t)ug lies in C(R; H*(RY)).

One can observe, using the Young inequality and the properties of semigroups, that

Julle < Juol o [Sel = < 181742 uo 1,
which means that our solutions decay in time at a rate |t|~%/? as ¢ tends to infinity, and in low-
dimension the weaker the rate of decay. This type of estimate is called decay or dispersive
estimate, key in the analysis of dispersive PDEs. On the other hand, by applying the
Plancherel Theorem, one has

lullze = Juol 2

However, the mass is locally dispersed: for any R > 0,
Rd
J |S(t)uo(2)Pde < RYS(t)uol2e < ~5.
i< w

Then, the localized mass tends to zero as t tends to infinity. One says then that the mass is
dispersed to infinity.

In nonlinear physical models, this apparently simple property is far from trivial since there
are many possible behaviors for general nonlinear solutions. Even worse, this estimate could
be false because of the existence of nondecaying solutions such as solitons, multi-solitons,
or the presence of even stranger objects called breathers, kinks, or lumps.

In this thesis, by using the Virial technique, we will overcome these difficulties and prove
decay properties in four of five models mentioned before.

Now we start by describing the models considered in this thesis. First we consider the
Boussinesq family.

1.2 Three Boussinesq Models

In the 1870’s, J. Boussinesq [§] deduced a system of equations to describe two-dimensional
irrotational and inviscid fluids in a uniform rectangular channel with flat bottom. He was
the first to give a favorable explanation to the traveling-waves, solitons, or solitary waves
solutions discovered by Scott Rusell thirty years earlier [49], which remained in their form
and travelled with constant velocity. He made an approximation of the Eulerian problem
to describe the two-way propagation of small amplitude gravity waves on the surface of the
water in a canal, and obtained the following simplified equation:

26— o — 29— X(¢?) = 0, (tz)eRxR (L1)

4



However, this equation is strongly linearly ill-posed; it is called the Bad—Boussinesq equa-
tion. This bad behavior is not present when the plus sign is considered in the approximation,
obtaining

which is called Good—Boussinesq.

Another way to overcome the unpleasant character of Bad-Boussinesq was proposed by
V. G. Makhankov [54], who followed the Boussinesq procedure, and used the wave-like zeroth
order fluid relation 0, ~ J; to deduce the model

0pp — 02070 — 03¢ — 03(|¢lP ') = 0, forp>1, (t,2) e R xR,

which is no longer strongly ill-posed as ((1.1)). This is the so-called Improved—Boussinesq
equation.

A third option to regularize Bad-Boussinesq is to change the scalar character of the
equation. This method was proposed by Bona, Chen and Saut [111, 12] (see also Bona, Colins
and Lannes [I3] for the two-dimsensional case). They introduced the (abcd)-Boussinesq
equation:

(1-0A)om+ V- (a AU+ ud+ un) =0,

(abcd) (t,x)eRxRY d=1,2, (1.3)

1
(1-dA)oi+V (mmm §|ﬁ|2> —0.

where 7 is the elevation from the equilibrium position of the fluid, and u = wjy is the
horizontal velocity of the flow at height 6k, where h is the undisturbed depth of the fluid.

The parameters (a,b,c,d) in are not arbitrary and follow the condition a + b +
c+d = % — 7, where 7 > 0 is the surface tension. This three-degree freedom in the
parameters makes the (abcd)-Boussinesq to contain a wide variety of regimes, for example:
the Classical Boussinesq system, the Kaup system, the Bona—Smith, BBM-BBM, KdV-
KdV, coupled KdV-BBM, coupled BBM-KdV system. Therefore, one can expect that the

dispersive properties of these models will vary depending on the choice of parameters.

The deductions above mentioned are summarized in Table [[.3l

In this thesis, my main focus is the well-understanding of small solutions, solitary waves (or
traveling waves) and the inherent properties of these equations (well- and ill-posedness). In
the history of the water waves problem, solitary waves have a long history, started with Scott
Rusell’s horseback observation [49]. Solitary waves are solutions of type Q.(x — ct) € H'(R),
c € R, that maintain their form and travel at a constant velocity. They are essential for the
well-understanding the coherent wave structures. Also, their properties change depending
on the model to be studied. In particular, their stability properties have been extensively
studied sometimes, but some questions have remained open for a long time.

The first model that we will describe is the Improved Boussinesq model.
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Model Equation Origin
Bad Original model
2, A, A2, 22(]p—1,)
Boussinesq Oru = gt — Ou — O (|ufP ™ u) = 0 deduced by Boussinesq
Good
2 M, 22, A2 p—1 _ . . .
Boussinesq Ofu+0yu — 05u — o (JulP~ u) = 0 Considering the plus sign
Improved
24 4279240 A2 A2 ip—1 )y _ : -
Boussinesq Orp— 03070 — 02 — 05(|p|P~ 1) = 0 Using 0, ~ 0y
(abcd) (1-b6A)om+V - (a AU+ u + un) = 0, First order approximation
Boussinesq (1 —dA)o,i + V(c An+n+ %m?) =0. a la Boussinesq

Table 1.3: List of deductions of the equations in this work.

1.2.1 Basic properties of the Improved Boussinesq model

Chapter [2] is concerned with the so-called generalized Improved Boussinesq equation (gIB)
[63, 22]
O2u — 020%u — Ou — 2(Jul'u) =0, (t,r) e R xR, (1.4)

where u = u(t, x) is a real-valued function, and p > 1. Sometimes referred as the Pochhammer-
Chree equation [47], this model was first introduced by Pochhammer [63] in its linear version
in 1876, and in its complete nonlinear form by Chree [22], in 1886. It was derived as a model
of the longitudinal vibration of an elastic rod, as well as a model of nonlinear waves in weakly
dispersive media, and shallow water waves.

Although ([1.4) is no longer strongly ill-posed as bad Boussinesq ([1.1)), it is still shares
some of its unpleasant behavior, but also some nice surprising properties. In order to explain
this in detail, we write ([1.4) as the system

(7tu = (9;5’0
IB 1.5
(61B) {(%U = (1 =030, (u~+ |ulP~ u). (15)

This 2 x 2 system is Hamiltonian, but as far as we understand, not integrable. Its Hamiltonian
character leads to the conservation of energy and momentum, given by

_ 1 2 2 2 1 J p+l
H(u,v) = QJR(U + 0% + (0v) )dx+p+1 R\u| dz, (1.6)
P(u,v) = f (uv + dyud,v)de. (1.7)
R

Note in particular the complex character of energy and momentum for gIB: the energy is
always nonnegative, and makes sense e.g. for u € L? n LP*' and v € H'. On the other
hand, the momentum needs even more regularity than expected, and it is only well-defined
for (u,v) € H' x H' (or L? x H?). Given this lack of concordance, completely contrary to
classical linear waves, understanding the well-posedness problem in gIB is far from trivial.

The pioneering work by Liu [48] showed local and global well-posedness for (|1.4)) for data
(ug,v9) € H* x H**! and s > 1. In addition, the energy and momentum ([1.6)-(1.7) are
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conserved by the flow, or in other words, the L? x H! norm of the solution remains bounded
in time. Note however that the H' x H? norm of the solution need not be globally bounded
in time. The method employed by Liu was essentially based in the Sobolev inclusion H! into
L* in one dimension, since no useful dispersive decay estimates are available for gIB. The fact
that the solvability space differs from the energy space is a property standard in quasilinear
models, and gIB has the flavor of a standard one. Consequently, we believe that this weakly
ill-posed behavior in gIB is deeply motivated and inherited by the original strongly ill-posed
bad Boussinesq equation . Additionally, Liu also showed blow up of negative energy
solutions of but with focusing nonlinearities (minus sign in |u|P~'u instead of plus sign).
Finally, the controllability problem for gIB in a finite interval has been recently studied
by Cerpa and Crépeau [18].

However, the gIB system ([1.5)) also enjoys some nice properties. Indeed, this model is also
characterized by the existence of super-luminal solitary waves, or just naively solitons, of the
form

(u,v) = (Qe, —cQe)(x — ct — x0), o €R, |c|> 1. (1.8)

The super-luminal character is represented by the condition |¢| > 1 on the speed. Here,
the scaled soliton is slightly different from generalized Korteweg-de Vries (gKdV): Q.(s) =

(2 —1)Ve-DQ <4 / ci—?s), and

Qs) = prl

= >0 (1.9)
2 cosh <pT)S>

is the soliton that solves Q" —Q + QP = 0, Q € H'(R). Note that Q. must solve the modified
elliptic equation
Q! — (- 1)Q. + QP = 0. (1.10)

Since the speed of solitons can be arbitrarily large, it clearly implies that possesses
infinite speed of propagation, a fact not present in standard wave-like equations. Note also
that solitons with speeds |c| | 1 are small in L® n H!, but they do not decay to zero as time
evolves, in any standard norm.

1.2.2 Basic properties of the (abcd)-Boussinesq system

As a rigorous derivation from the free Eulerian formulation of water waves, Bona, Chen, and
Saut [12] proposed the model called one-dimensional (abed)-Boussinesq, as

(1 —002)0m + 0x(ad?u + u + un) = 0,

1D (abed 1 t,r) e R x R. 1.11
(abed) (1 —dd2)owu + 0. (cd2n +n + §u2) =0, (t.2) (L11)

As two-dimensional model, Bona, Colin and Lannes [13], formulated 2D (abed) as

(1-0A)0m+ V- (aAd+ d+un) =0,

2D (abed) (t,x) e R x R% (1.12)

1
(1-dA)Qui+V (cAn+n+ 5\612) =0
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Here, the unknowns 7 and u (also «) describe the free surface and the horizontal velocity of
fluid, respectively. Both systems (|1.11)) and (1.12)) are all first-order approximations of the
incompressible and irrotational Euler equations assuming the small parameters defined by

A h?

a=— <1, = =<1, a~p,

h p 2 p
where A and ¢ are typical wave amplitude and wavelength, and h is the constant depth.
Such assumptions sometimes referred to as small-amplitude long waves or Boussinesq or
simply shallow water waves regimes (see [§]). In the two-dimensional case, the irrotational
hypothesis can be (mathematically) characterized as

V Ail=0, (1.13)

which is preserved by the evolution. Note that the condition ([1.13)) is not necessary in the
one-dimensional case since there is a single horizontal direction. See also [4] for relevant
result.

As said before, the parameters (a,b,c,d) in both (1.11)) and (1.12]) are not arbitrary.
Specifically, they holds the relations (see [12])

1 1 1 1
a=—-(0*—=)v, b==(6—=)(1—-v),
2 3 2 3

1 1
c=-(1-F)v—1, d==(1-6*)(1—p),
2 2
where 6 € [0, 1] appears in the change of scaled horizontal velocity corresponding to the
depth (1 — #)h below the undisturbed surface, 7 is the surface tension (7 = 0), and v, u are
arbitrary real numbers ensuring

1 1 1 1
a+b=§<92—§), C+d=§(1—02)—7', a+b+c+d=§—7'

The dispersive properties of the systems depend on the choice of the parameters. Precisely,
the pair (a,c) enhances the dispersion, while the pair (b,d) weakens it (see [17]). This
versatility makes the (abed)-Boussinesq model interesting and challenging.

Two systems 1D (abed) and 2D(abed) allow the following energies

1
Bulu,lt) = 5 [ (o - e + w2(1 4 ) + 1)t 2)d
R
and )
Eyplit,n](t) = Qf (—a|Va]* = ¢|Vn|* + [@*(1 + 1) + 7°) (¢, z)dz,
RQ

respectively, that both are conserved in time when b = d and a,c¢ < 0. Thus local well-
posedness in H'-level space is immediately extended to the global one at least for small data.
Note that Sobolev embedding in two-dimensional case is not enough to control L* norm of
n, but Gagliardo-Nirenberg interpolation inequality can control n|u]?.



1.2.3 Basic properties of the Good-Boussinesq equation

Recall that the Good Boussinesq model, in its simplified form, is given by:

0{¢ + Ozd — 050 + 02(f(9)) = 0, (1.14)

and if formally u = ¢ and v = 0, '0;¢, has the following representation as 2 x 2 system:

Ot = Oyv

O = 0p(—0%u + u— f(u)). (1.15)

(9GB) {

This will be the exact model worked in this chapter, which is Hamiltonian, and has the
following associated conserved quantities:

Elu,v] = 1 f [v* + u® + (0u)® — 2F (u)] (Energy),
2 (1.16)
Plu,v] = Juv (Momentum).

(Here { means SR dz.) These laws define a standard energy space (u,v) € H! x L?. As well as
the Korteweg-de Vries (KdV) equation, (¢GB) is considered as a canonical model of shallow
water waves, see [71]. In addition, (¢GB) arises in the so-called "nonlinear string equation"
describing small nonlinear oscillations in an elastic beam (see [25]).

The study of the Boussinesq-type equations has increased recently, mainly due to the
versatility of these models when describing nonlinear phenomena. There are several authors
that focus on the good Boussinesq equation. The fundamental works Bona and Sachs [15],
using abstract techniques of Kato, proved that the Cauchy problem is locally and globally
well-posed for small data, and showed the existence of solitary waves for velocities ¢? < 1.
Linares [43] [45], using Stricharz estimates, proved that the Cauchy problem is globally well-
posed in the energy space in the case of small data. Kishimoto [32], in the case of a quadratic
nonlinearity, proved that the Cauchy problem is globally well-posed in H*(R), for s > —1/2,
and ill-posed for s < —1/2. In [62], it was proved that small solutions in the energy space
must decay to zero as time tends to infinity in proper subsets of space. Recently, Charlier
and Lenells [I9] developed the inverse scattering transform and a Riemann-Hilbert approach
for the quadratic (¢GB), which is integrable.

A solitary wave is a solution to ([1.14]) of the form
(u,v) = (Qe, —cQe)(x — ct — xg), || <1, xzoeR,
with Q. solving (¢ — 1)Q. + Q! + f(Q.) = 0 in H(R)

In the case that f is a pure power nonlinearity of the form f(s) = |s[P~1s for p > 1, it is
well-known that (up to shifts) standing solitary waves have the form

1/(p—1)
u(t,z) = Q) — ( pl )> u(t,x) =0, (1.17)

2 cosh? ( ’%lx
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Here, () satisfies the equation

Q"(x) = Qz) + f(Q(z)) = 0. (1.18)

In general, solitons (solitary waves in integrable equations) are stable objects. However, this
is not the case of good Boussinesq (similar to Klein-Gordon). Indeed, small perturbations of
solitons may decay or form singularities in finite time, see [25, [47] 9] [72].

1.3 The Adkins-Nappi and Skyrme models

Now we consider two nonlinear quantum field models, known in the literature as Skyrme and
Adkins-Nappi equations. Physically these models intend to describe interactions between
nucleons and 7 mesons. Classical nonlinear field theories played an important role in the
description of particles as solitonic objects. A well known example of these nonlinear theories
is the SU(2) sigma model [27], obtained as a formal critical point from the action

S(y) = le ) " (V0 g = JRM 0" 0,100, gap o . (1.19)

Here 1 is a map from a (1 + d)-dimensional Minkowski space (R4 7)) to a Riemannian
manifold (M, g) with metric g. From a geometrical point of view, the associated Lagrangian
is the trace of the pull-back of the metric ¢ under the map 1. A current choice is M = S¢
with ¢ the associated metric and for d = 3, one obtains the classical SU(2) sigma model.
The Euler-Lagrange equation corresponding to the action S is called the wave maps equation.
Unfortunately, the SU(2) sigma model does not admit solitons and it develops singularities in
finite time |7, 23], [50]. To avoid these inconveniences and to prevent the possible breakdown
of the system in finite time, Skyrme [5I] modified the associated Lagrangian to by
adding higher-order terms such that breaks the scaling invariance of the initial model (making
it more rigid), which in spherical coordinates (¢,7,6,¢) on R and co-rotational maps
W(t,r, 0,p) = (u(t,r),0,p), the Skyrme model leads to the scalar quasilinear wave equation
satisfied by the angular variable u, asit will be shown in ((1.20)).

This equation has a unique static solution with boundary values u(0) = 0 and lim, o u(r) =
7, and which is currently known as Skyrmion [53]. This existence was proved in [4I] and
[53] by using variational methods and ODE techniques respectively. As far as we know, the
Skyrmion is not known in a closed form.

In this paper, we are interested in the long time asymptotics of two relevant mathematical
physics models. Firstly, as we already mentioned above for the Skyrme model is

202 sin® u 2 sin 2u sin?u
(1 + —2) (g — Upy) — St — [1 +a? (uf —u + = )] =0, (1.20)

T r

and the second model is a short of generalization of supercritical wave maps as it was pre-
sented by Adkins and Nappi [1]. This is a simplified version of the Skyrme model ((1.20)) and
it is currently known as Adkins-Nappi model

2 sin 2u u —sinucosu) (1 — cos2u
Ut — Upp — —Uyp + 2 + ( 4) ( ) = 0 (121)
T T T
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These two models have the following low order conserved quantities (subindices "S" and
"AN" for Skyrme and Adkins-Nappi models respectively)

0 2 2 oin2 2 2 a4
Es[u](t) :J r? l<1+—o‘ - “) (W2 +u2) + 20— 4 200 u]dr, (1.22)

0 r2 r2 ré

0 2

sin®u  (u — sinucosu)’
+ dr.

(1.23)

2 4

Banful(t) = |

r? [uf+u§—|—2
0

T T

Respecting to the Cauchy problem, is globally well-posed for small data in H5/ 2(R3)
(see [26]), and the corresponding global result for the Adkins-Nappi equation holds in
H?(R?). For large-data global well-posedness results, [40] showed that it holds in H*(R?) for
Skyrme (|1.20]).

1.4 The Virial Technique

We describe here one of the main techniques that we will use in this thesis, the Virial
technique.

The virial identities are somehow related with Noether’s Theorem [52]. In Physics, the
Virial Theorem gives a relation between the average total kinetic energy and the total po-
tential energy of the system. Moreover, in elliptic PDEs it is known as the Pokhozhaev’s
identity, which is applicable to localized solutions to the stationary nonlinear Schrodinger
equation.

The Virial identities in its modern form were introduced by Glassey [30] to show blow up
for certain focusing nonlinear Schrodinger equation (NLS). In general, these identities are
used to show that a positive quantity involving the solution u has a monotonic behavior in
time.

Monotonic quantities recently have been used in a powerful way in the context of dispersive
equations, see [2} 3], 20, [30} B3], 134 [35], 57, 58], 56], 62]. It has allowed to describe the behavior of
several equations in a wide variety of properties, from decay to blow-up, and asymptotically
stability.

We describe in simple words how Virial works. The base of the argument is the election of
a conserved quantity. A modification of this conservation law is likely to give a virial identity
via monotonicity. This monotonicity relation is narrowly related to the behavior in time of
some particular norm of the solution. For example, for the Improved Boussinesq equation

020 — 2320 — 26 — (|6l '9) = 0, forp> 1, (fa) eR xR, (1.24)

one has the equivalent system

O = Oxv
IB 1.25
(61B) {(ng =(1—032)"10,(u+ [uP~tu), (1.25)
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which is Hamiltonian. Its Hamiltonian character leads to the conservation of energy and
momentum, given by

H(u,v) = 5 JR (v +v* + (0,0)?) da + lﬁ JR lu[Pttdz,
P(u,v) = f (uv + Opud,v)de,
R

which, are well defined in L? x H! and L? x H?, respectively. Now, let the following functional

T+ ot

I(t: L, o) = Z(1) :%ngp( a ) <u2 0+ (00) + Z%WH) (t, 2)da,

where ¢ is a weight function, which is measuring a particular dynamics in our system. For
example, the localization of the mass. Then, for (u,v) global solutions of the equation (|1.25]),
in Chapter [2| we will prove that the following relation is satisfied:

d o
T4 = —
dt (*) 2L

1
— —f ©v(1 — %) (u + |ulf~tu)de.
R

2
J ¢’ <u2 + 02 + (0,v)* + ]u|p+1) dx
R p+ 1

L

This identity has the good sign property (for small solutions), and will be useful in our proof.
The election of the functional is not an easy task, as we will see in Chapter [2| [ and
However, the technique is very powerful and adaptable.

1.5 Results in this thesis

This thesis contains essentially four results, which are part of the following four articles:

1. C. Maulén, and C. Munoz, Decay in the one dimensional generalized Improved Boussi-
nesq equation, published in SN Partial Differential Equations and Applications (Chapter

2.

2. C. Kwak, and C. Maulén, Ill-posedness issues on the (abed)-Boussinesq system, preprint
arXiv:2102.01248, (Chapter |3)).

3. C. Maulén, Asymptotic stability manifolds for solitons in the generalized Good- Boussi-
nesq equation, preprint arXiv:2102.01151, (Chapter [4)).

4. M. A. Alejo, and C. Maulén, Decay properties in the Skyrme and Adkins-Nappi equa-
tions, preprint (Chapter [5)).

1.5.1 Asymptotic dynamics of small solutions in Improved- Boussi-
nesq

In Chapter [2] we are motivated by the decay problem of solutions to gIB (1.5]). This inter-
esting question has attracted the attention of several people before us. Liu [47] showed decay

12


https://link.springer.com/article/10.1007/s42985-019-0002-0?shared-article-renderer
https://arxiv.org/abs/2102.01248
https://arxiv.org/abs/2102.01151

of solutions to (1.5)) obtained from initial data satisfying e.g. (ug,vo) in H' x H? ug € L*
and (1 — 0%)"%¢y € L', all of them small enough. In particular, he showed that for p > 12,

1
sup (14 65 Ju(t) e + 0 0)(0) o) < o0,
t=

He also showed that p can be taken greater than 8 if s > 2 and (uo,vy) in H* x H**!. Next,
in [70], Wang and Chen extended this result to higher dimensions.

The exponent p in (1.5 was recently improved by Cho and Ozawa [21], who showed using
modified scattering techniques that p can be taken greater than 9/2 if ug € H®, s > %. The
solution global in this case satisfies |[u(t)|zc = O(t=%°) as t — +oo. Additionally, the same
authors showed that the asymptotics as ¢ — 400 cannot be the linear one if 1 < p < 2 and
near zero frequencies vanish at infinity.

Lowering the exponent p for which there is decay seems a complicated problem, due to
the quasilinear behavior of gIB. Since there should be modified dynamics, we believe that we
need different tools to attack this problem.

Our first result deals with the exterior light-cone decay problem. More precisely, we
consider the interval depending on time

It)= (-, —(1+a)t) u ((L+b)t,0), t>0, (1.26)

where a, b > 0 are arbitrary positive numbers. Now, we show that, regardless the power p > 1,
any global solution (u,v) to (1.5)) which is sufficiently small and regular must concentrate
inside the light cone.

Theorem 1.1 (Decay in exterior light cones). Let (u,v) € C(R, H' x H?) be a global small
solution of (1.5]) such that, for some €(a,b) > 0 small, one has

sup | (u(t), v(E)) 2 < € (1.27)

Then, for I(t) as in (1.26)), there is strong decay to zero in the energy space:

lim | (u(t), v(t))|(z2xm1)a@)) = 0 (1.28)

t—00

Additionally, one has the mild rate of decay for |o] > 1:

Q0
f f et (42 1 4% 4+ (0,0)%)dadt <., €2. (1.29)
2 JR

Having described the small data behavior in exterior light cones, we concentrate now in
the interior light cone behavior. Here things are much more complicated, since the energy
is no more useful to describe the dynamics. Instead, we shall use a suitable modification
of the momentum ({1.7)).
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Theorem 1.2 (Full decay in interior regions). Let (u,v) be a global solution of (1.5) in the
class C(R, H' x H?*) n L*(R, H* x H?), not necessarily small in norm. Then for any L » 1
we have

w L
J f (0* + uw(l =32+ [uf™) (¢, z)dedt < 1. (1.30)
2 J-L

Moreover, we have strong decay to zero in the energy space (L* x HY)(I), for any I bounded
interval in space:

Tim [ (w, v) ()] 22 )1y = 0. (1.31)

Estimate shows that the local L? norm of v is integrable in time, and some mixed
norms of u. Note that u seems not locally L? integrable in time. However, shows that
this norm indeed decays to zero in time (even if it is not integrable in time). Also, Theorem
can be read as “boundedness in time in H* x H? implies L? x H! time decay in compact
sets of space”.

The proof of Theorem follows the introduction of a new virial identity, in the spirit of
the previous results by Martel and Merle [55, 56] in the gKdV case, and [38, 2] in the BBM
case. Note however that in those cases the functional involved is related to the mass (L2
norm) of the solution. Here, we use instead a modification of the energy of the solution.

The techniques that we use to prove Theorem are not new, and have been used to
show decay for the Born-Infeld equation [3], the good Boussinesq system [62], the Benjamin-
Bona-Mahony (BBM) equation [38], and more recently in the more complex abed Boussinesq
system [39, [37]. In all these works, suitable virial functionals were constructed to show decay
to zero in compact/not compact regions of space.

1.5.2 Ill-posedness in abcd—Boussinesq model

In Chapter , we are motivated by the ill-posedness of Cauchy problem for . To
describe the ill-posedness it is necessary to understand the previous well-posedness results
to the Cauchy problem. But before presenting our results, we clarify what we mean “ill-
posedness". To do this, we first define “well-posedness". As the author’s best knowledge,
the French mathematician Jacques Hadamard initially proposed the concept of well-posed
problems as

Definition 1.3 (Well-posedness). We say that a time-dependent PDE problem is well-posed
of

e there exists a solution,
e the solution is unique,

e the solution behaves continuously with the initial condition.

Obviously, problems that are not well-posed in the sense of Hadamard are termed ill-posed,
in other words, the invalidity of one of above properties makes the problem to be ill-posed.
In this work, in order to obtain ill-posedness results, we will attack the third property in
Definition [L3]
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Some words about the Caucht theory of abed systems. These models have been extensively
studied (in various perspective) in the literature, see e.g. |11, 12} [16} 24} [46] 66 64, 17, 10
65, 139, 60], 37, 67, 68]. Among other them, we focus on Cauchy problems for these systems.
In [I1), 12], Bona, Chen and Saut first studied local and global well-posedness of linear and
nonlinear problems, and established the following results (the following results only exhibit
the case when H (see (3.12))) has order 0):

1. the generic regime in H*(R) x H*(R), for s > 0.
2. the BBM-BBM regime in H*(R) x H*(R), for s > 0.
3. the KdV-KdV regime in H*(R) x H*(R), for s > 3/4.

In [24], Dougalis, Mitsotakis, and Saut proved that two-dimensional (abed)-Boussinesq sys-
tem under the generic regime is locally well-posed in H*(R?) x H*(R?) for s > 0. Note
that this local result is indeed valid in L*(R?) x L?(R?) by improving Grisvard’s bilinear
estimate [29], see Appendix (Lemma [3.16). In [46], Linares, Pilod, and Saut focused
on the strongly dispersive (KdV-KdV system) regime, and established local well-posedness
result in H*(R?) x H*(R?) for s > 3/2. Previously, Schonbek [69] and Amick [6] considered
a version of the original Boussinesq system (a = ¢ = b = 0,b = 1/3), and proved global well-
posedness under a non-cavitation condition via parabolic regularization. Later, Burteau [16]
improved it without a non-cavitation condition. Studies on long time existence of solutions
have been done in, for instance, [66], 61 [65 67, 68]. In these works, the authors established
the well-posedness for large time with appropriate time scales.

As far as we know, there is only few results for ill-posedness issues. Chen and Liu [I7]
established the (mild) ill-posedness result for one-dimensional system under the weakly dis-
persive regime (1D BBM-BBM system) below L?. The main idea follows the abstract theory
developed by Bejenaru-Tao [I4]. The authors also discussed the formation of singularities
and provided blow-up criteria. Recently, [5] Ambrose, Bona and Milgrom have established
the ill-posedness of the one-dimensional periodic Kaup system (¢ = 1/3 and b = ¢ = d = 0)
is ill-posed in any positive regularity Sobolev space, in the sense that the flow map is discon-
tinuous at the origin. They also concerned with the case that the generic condition is
negated.

In contrast with results mentioned above, Chapter 3| concerns with the ill-posed issues on
one- and two-dimensional (abed)-Boussinesq systems in the following cases:

1. Generic regime

a,c<0, bd>0, (1.32)
2. KdV-KdV regime
1
a=c=g, b=d=0, (1.33)
3. BBM-BBM regime
1
a=c=0, bzdzé. (1.34)



Now, we are ready to present our main theorem.

Theorem 1.4 ([36]). The 1D- and 2D-abcd system (1.12)) are ill-posed in H*(R)? or H*(R)3,
respectively, for

1

1. s < —3 1in the generic regime.

2. s < —% in the KdV-KdV regime.
In addition, the 2D-(abed)-Boussinesq system (1.12)) is ill-posed in H*(R)? for s < 0 in the
BBM-BBM regime.

The BBM-BMM case of the one-dimensional (abcd)-Boussinesq system has been dealt with
by Chen and Liu [I7]. However, the two-dimensional BBM-BBM system is considered here
for the first time, and together with Appendix [3.A] we completely resolve Cauchy problem
for it.

The proof of above results follows the same idea developed by Bejenaru and Tao [I4], and
motivated by an observation as follows: All nonlinear interactions are quadratic, thus high
x high interaction components over an appropriate short time depending on the frequency
cause resonances near the origin of the resulting frequency. For this reason, the flow cannot
disperse the high-frequency energy for this time so that the smoothness of the flow breaks
below certain regularity. Note that this observation is simply applied to a one-dimensional
problem, but it is non-trivial to construct initial data that can cause resonance in two-
dimensional case.

1.5.3 Asymptotic manifolds around the good-Boussinesq standing
wave

In Chapter [4], we are motivated by the long time behavior problem for solitary waves of the
gGB in the case where f(s) = |s|P~'s for p > 1. This interesting question has attracted
the attention of several authors before us, showing that the behavior of solitary waves in the
standard energy space H' x L? is not an easy problem. Bona and Sachs [15], applying the
theory developed by Grillakis, Shatath and Strauss (see [28]), proved that solitary waves are
stable if the speed c obeys the condition (p—1)/4 < ¢ < 1 and p > 4. Li, Ohta, Wu and Xue
[42] proved the orbital instability in the degenerate case 1 < p < 5 and speed ¢ = (p — 1)/4.
Additionally, Kalantarov and Ladyzhenkaya in [31] proved that solutions associated to initial
data with nonpositive energy may blow up in some sense. Inspired by this work, Liu [4§]
showed that there are solutions with initial data arbitrarily near the ground state (¢ = 0)
that blow up in finite time.

It is not difficult to realize that preserves the even-odd parity in its variables (u, v).
In this Chapter, we will prove that any even-odd small perturbation of the static soliton
(¢ = 0) in the energy space, under certain orthogonality condition, is orbitally stable and
in fact, it is (locally) asymptotically stable. Furthermore, we will construct a manifold of
initial data such that the associated solutions are orbitally stable in H! x L2, and locally
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asymptotically stable in the space L? n L®. Our first result is:

Theorem 1.5. Let p > 2. There exists 6 > 0 such that if a global even-odd solution
(¢, 0007 ) of (1.15) satisfies for all t = 0,

[(¢, 00,1 0)(t) — (Q, 0) | 1 ) x L2(m) < 6, (1.35)
then, for any v > 0 small enough and any compact interval I of R,

Jim (16(t) = Qlzaeneiry + 1(1 = 722) " 20(0)] 20s) = 0. (1.36)

This is, as far as we understand, the first description of the standing wave dynamics in the
Good Boussinesq model, which is unstable by nature. Clearly the data under which is
satisfied is not empty, the soliton (Q,0) being its most important representative. However,
(1.35) cannot define an open set in the energy space as simple as in some stable, subcritical
dynamics, such as KdV. Our second result will describe the manifold of initial data leading
to . The following result provides a description of the manifold of initial data leading
to global solutions for which holds.

Let 99 > 0, and let Ay be the manifold given by
Ao = {ee H'(R) x L*(R)]| € is even-odd , |€| 1«12 < & and (€, Z,) = 0}. (1.37)
Theorem 1.6. Let p = 2. There exist C,0y > 0 and a Lipschitz function h : Ay — R with
h(0) = 0 and |h(e)| < CHEHZ?XH such that, denoting
M ={(Q,0) + e+ h(e)Y} with e e Ay}, (1.38)
the following holds:

1. If ¢y € M then the solution of (1.15)) with initial data ¢ is global and satisfies, for all
t=>0,

lp(t) — (Q,0)|mr(m)x 2y < Clldg — (Q,0)| 51 (r)x £2(R)- (1.39)
2. If a global even-odd solution ¢ of (1.15)) satisfies, for allt =0,

1
lp(t) — (Q,0)|m(myxL2(®R) < 550, (1.40)
then for allt =0, ¢(t) € M.
The proofs of this results follow the lines of the ideas used recently by Kowalczyk, Martel
and Munoz in [34] to understand the unstable soliton dynamics in the nonlinear Klein-Gordon

equation, and by Kowalczyk, Martel, Munoz and Van Den Bosch [35] to study the stability
properties of kinks for (1+1)-dimensional nonlinear scalar field theories.
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More precisely, the proofs are based in a series of localized virial type arguments, similar
to the ones used in [2} 8], 34], 35, B3, 58, 56]. In our case, we will use a combination of virials
to obtain the integrability in time of the L? x L?-norm of (¢(t) — @, (1 — vd%)~',é(t)), for
any v > 0 small enough, and in any compact interval I, i.e.,

f@ (190 = QU + 11 = 782) 063y ) dt < 0.

1.5.4 Decay in Skyrme and Adkin-Nappi field theories

In Chapter [5], we were interested in the long time asymptotics of two relevant mathematical
physics models.

Before introducing the main results of this chapter, it is needed to introduce some nota-
tions. In that follows, we use the subindices and the superindexes "S" and "AN" to reference
the Skyrme and Adkins-Nappi models respectively. Firstly, we defined the main spaces where
the energies are bounded. Let £X the space of all finite energy data of degree n, namely

&x = { ()

Ex[u](t) < o0, u0(0) = 0, lim uo(r) = mr} , (1.41)
r7—00

where here X = S refers to the Skyrme model or when X = AN to the Adkins-Nappi model.

In what follows, we consider (u,u;) € & and such that is a solution of (1.20) or (1.21]),

respectively.

The main goal of this work is to prove that small global solutions with enough regularity
of Skyrme and Adkins-Nappi equations decay to zero in a certain region of the
light cone. Furthermore, we also study the decay of an associated weighted energy for both
equations, and which we need them for analyzing their corresponding long time behavior.

More precisely let b > 0 and consider the following subset depending on time

R(t)={reR®||z| > (1 +b)t} c R’ (1.42)

We will show that any global solution u to (1.20]) (or (1.21))), which is sufficiently regular and
without a previous smallness condition, must be concentrated inside the light cone.

Theorem 1.7 (Decay in exterior light cones for the Skyrme and Adkins-Nappi models).
Let (ug,uy) € &L, defined in (1.41)), such that u is a global solution, for (1.20) when X = S,
or (L.21) when X = AN, respectively. Then, for R(t) as in , there is strong decay to

zero of the energy Ex, in particular:
Tim | (ue (2), ur(8) | 22 x 2@ ~R(eY) = O- (1.43)

Additionally, one has the mild rate of decay for |o] > 1:

o0 MO0
f f emolrratly2 (2 4 o2)drdt <, 1. (1.44)
2 Jo

T
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For the next results, we have to introduce a weighted version of the spaces (1.41]). Let
EX:? the space of all finite ¢-weighted energy data of degree n

EXP = {(u,uy) |Ex ¢|u](t) < o0,up(0) =0, up(c0) =nm}, (1.45)

where Ex 4 is written for the Skyrme model as

202 sin sin?(u a?sint(u
Es 4[u] J o(r K — (s )>(u§+u$)+2 7’2( )+ T4( >], (1.46)
and for the Adkins-Nappi model as
in?(u u — sin(u) cos(u))?
EAN¢> f o(r [ut +u +2 r2( )+( (r4) (u)) . (1.47)

In fact, one can sce, that if Ex2[u](t) = Ex[u](t), then £X7° = £X, for X € {S, AN}.

Our second result shows that the energy Ex associated to any global solution (u,u;) €

EX N ES T of (1.20]) or (1.21)), decays to zero when ¢ goes to infinity. This means that for
any global solution u which is sufficiently regular and it satisfies a weighted integrability on
r, its energy Ex,» decays to zero when ¢ goes to infinity for both X = S or X = AN cases.

Theorem 1.8 (Decay of weighted energies). Let § > 0 small enough. Let (u,u;) € £
55(’7’”_1 a global solution of (1.20) or (1.21) such that

sup Ex[u](t) <6, for X = AN,S. (1.48)

teR

Then, the modified energy Ex ,[ul(t) with ¢(r) = r™ decays to zero, forn >7 (X =S case)
or forn € [%ﬁ, 10] (X = AN case), respectively. In particular,

: n=2 :
lim 772 (ug, uy) (1) | L2k 22(r3) = tli)rgj Ex.n(t) =0. (1.49)

t—00

In order to prove Theorem , we follow some ideas appeared in |2, B, [59], where decay
for Camassa-Holm, Born-Infeld and Improved-Boussinesq models were considered. The main
tool in these works was a suitable virial functional for which the dynamic of solutions is
converging to zero when it is integrated in time.

In Chapter 5], the new virial functionals give us relevant information about the dynamics
of global solutions of Skyrme and Adkins-Nappi equations. Using a proper virial estimate,
we prove that the corresponding energies associated to Skyrme and Adkins-Nappi equations
decay to zero in the subset R(t)

R(t) = {r e Rz > (1 + b)t} = R?,
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which is the complement of the ball of radius (1 + b)¢, for b > 0.

Furthermore, to prove Theorem we will study the growth rate of polynomial weight
energies of the Skyrme and Adkins-Nappi equations. After that, assuming that their growth
is bounded, we will prove that this growth decays zero as t tends to infinity. To prove this
result, we introduce a functional associated with a sort of weighted momentum. It happens
that the virial identity associated to this functional shows no evidence of good sign conditions,
i.e. that the derivative of the functional be negative. Therefore, we have to introduce a new
functional as a linear combination of these two viral identities and for which there is a good
sign property. This ensures the integrability in time of polynomial weighted energies of degree
n. Moreover, it also guarantees the decay of polynomial weighted energy of degree n+1 over a
subsequence of times. Combining these two facts, we conclude that the polynomial weighted
energies, which are bounded, decay to zero as t tends to infinity (over R?).
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Chapter 2

Decay in the one dimensional generalized
Improved Boussinesq equation

Abstract. We consider the decay problem for the generalized improved (or regularized) Boussinesq model
with power type nonlinearity, a modification of the originally ill-posed shallow water waves model derived
by Boussinesq. This equation has been extensively studied in the literature, describing plenty of interesting
behavior, such as global existence in the space H' x H?, existence of super luminal solitons, and lack of
a standard stability method to describe perturbations of solitons. The associated decay problem has been
studied by Liu, and more recently by Cho-Ozawa, showing scattering in weighted spaces provided the power
of the nonlinearity p is sufficiently large. In this paper we remove that condition on the power p and prove
decay to zero in terms of the energy space norm L2 x H', for any p > 1, in two almost complementary regimes:
(i) outside the light cone for all small, bounded in time H! x H? solutions, and (ii) decay on compact sets
of arbitrarily large bounded in time H' x H? solutions. The proof consists in finding two new virial type
estimates, one for the exterior cone problem based in the energy of the solution, and a more subtle virial

identity for the interior cone problem, based in a modification of the momentum.
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2.1 Introduction

2.1.1 Setting

This paper is concerned with the so-called generalized Improved Boussinesq equation (gIB)
25, 6]
O2u — 202 — O%u — 2 (|ulPtu) =0, (t,z) e R x R, (2.1)

where u = u(t, x) is a real-valued function, and p > 1. Sometimes referred as the Pochhammer-
Chree equation [19], this model was first introduced by Pochhammer [25] in its linear version
in 1876, and in its complete nonlinear form by Chree [6], in 1886. It was derived as a model
of the longitudinal vibration of an elastic rod, as well as a model of nonlinear waves in weakly
dispersive media, and shallow water waves.

The model gIB ({2.1)) shares plenty of similarities with the so called generalized good and
bad Boussinesq models [4]

OPut Otu— Pu— 2(Jultu) =0, (t,7) e R x R, (2.2)

Here the plus sign denotes the good Boussinesq system, which is locally and globally well-
posed in standard Sobolev spaces [8, 9], and the minus sign represents the “bad” equation
originally derived by Boussinesq [4], which is strongly linearly ill-posed. Precisely, motivated
by the similar order of magnitude of 0, and ¢J; in shallow water waves, the linearized gIB model
(2.1) was discussed by Whitham [29, p. 462|. By doing the “Boussinesq trick” (changing two
0. by two ¢;) in the bad Boussinesq equation, one arrives to (2.1)) and ill-posedness is no
longer present. This regularization process leads to gIB (2.1)), also known as the regularized
Boussinesq equation.

Although ({2.1)) is no longer strongly ill-posed as bad Boussinesq ([2.2)), it is still shares
some of its unpleasant behavior, but also some nice surprising properties. In order to explain
this in detail, we write (2.1 as the system

Oi = Oyv
IB 2.3
(61B) {atv = (1= )0, (u + |uft). (2:3)

This 2 x 2 system is Hamiltonian, but as far as we understand, not integrable. Its Hamiltonian
character leads to the conservation of energy and momentum, given by

1 1
H == 2 40?4+ (0,0)%)d —J Prdy, 2.4
(u,v) QJR(U + 07 + (0,v)?) x+p+1 R|u| x (2.4)
P(u,v) = J (uwv + dyud,v)de. (2.5)
R

Note in particular the complex character of energy and momentum for gIB: the energy is
always nonnegative, and makes sense e.g. for u € L? n LP*' and v € H'. On the other
hand, the momentum needs even more regularity than expected, and it is only well-defined
for (u,v) € H' x H' (or L? x H?). Given this lack of concordance, completely contrary to
classical linear waves, understanding the well-posedness problem in gIB is far from trivial.
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Indeed, it turns out that L? x H' seems not well suited to have a well-defined energy, so in
this work we shall work in the proper subspace H' x H?, for the reasons explained below.

The pioneering work by Liu [19] showed local and global well-posedness for for data
(uo,v0) € H* x H*' and s > 1. In addition, the energy and momentum (2.4)-(2.5) are
conserved by the flow, or in other words, the L? x H! norm of the solution remains bounded
in time. Note however that the H' x H? norm of the solution need not be globally bounded
in time. The method employed by Liu was essentially based in the Sobolev inclusion H! into
L* in one dimension, since no useful dispersive decay estimates are available for gIB. The fact
that the solvability space differs from the energy space is a property standard in quasilinear
models, and gIB has the flavor of a standard one. Consequently, we believe that this weakly
ill-posed behavior in gIB is deeply motivated and inherited by the original strongly ill-posed
bad Boussinesq equation . Additionally, Liu also showed blow up of negative energy
solutions of but with focusing nonlinearities (minus sign in |u|?~'u instead of plus sign).
Finally, the controllability problem for gIB in a finite interval has been recently studied
by Cerpa and Crépeau [5].

However, the gIB system ([2.3]) also enjoys some nice properties. Indeed, this model is also
characterized by the existence of super-luminal solitary waves, or just naively solitons, of the
form

(u,v) = (Qe, —cQe)(x — ct — x9), xR, |c|> 1. (2.6)

The super-luminal character is represented by the condition |¢| > 1 on the speed. Here,
the scaled soliton is slightly different from generalized Korteweg-de Vries (gKdV): Q.(s) =

(2 —1)Ve-DQ <4/CQC—§1$>, and

B p+1
Q(s) = - <M> >0 (2.7)

2

is the soliton that solves Q" —Q + QP = 0, Q € H'(R). Note that Q. must solve the modified
elliptic equation

Q! — (- 1)Q. + QP = 0. (2.8)

Since the speed of solitons can be arbitrarily large, it clearly implies that possesses
infinite speed of propagation, a fact not present in standard wave-like equations. Note also
that solitons with speeds |c| | 1 are small in L® n H', but they do not decay to zero as time
evolves, in any standard norm.

In this paper, we are motivated by the decay problem of solutions to gIB (2.3). This
interesting question has attracted the attention of several people before us. Liu [19] showed
decay of solutions to obtained from initial data satisfying e.g. (ug,vo) in H' x H?,
ug € L' and (1 — 0%)Y/2vy € L', all of them small enough. In particular, he showed that for
p> 12,
sup (1 4+ )% [u(t) o + | (w, 0) (8) a2 ) < o0

t=0
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He also showed that p can be taken greater than 8 if s > 2 and (u,vy) in H* x H**!. Next,
in [10], Wang and Chen extended this result to higher dimensions.

The exponent p in ([2.3]) was recently improved by Cho and Ozawa [I1], who showed using
modified scattering techniques that p can be taken greater than 9/2 if ug € H®, s > g. The
solution global in this case satisfies |u(t)||z» = O(t~%°) as t — +oo. Additionally, the same
authors showed that the asymptotics as t — 400 cannot be the linear one if 1 < p < 2 and
near zero frequencies vanish at infinity. Lowering the exponent p for which there is decay
seems a complicated problem, due to the quasilinear behavior of gIB.

2.1.2 Main results

In this paper, we are interested in the asymptotics of gIB solutions in the lower p case,
namely any possible p > 1. Since there should be modified dynamics, we believe that we
need different tools to attack this problem.

Our first result deals with the exterior light-cone decay problem. More precisely let a,b > 0
be arbitrary positive numbers. We consider the interval depending on time

I(t) = (— o0, —(1+a)t) u ((1+b)t,0), t > 0. (2.9)

Our first result shows that, regardless the power p > 1, any global solution (u,v) to ({2.3))
which is sufficiently small and regular must concentrate inside the light cone.

Theorem 2.1 (Decay in exterior light cones). Let (u,v) € C(R, H' x H?) be a global small
solution of (2.3)) such that, for some €(a,b) > 0 small, one has

sup ||(w(t),v(t)) | g x gz < €. (2.10)

teR

Then, for I(t) as in (2.9), there is strong decay to zero in the energy space:

lim ”(u(t)»U(t))H(LQXHl)(I(t)) =0. (2.11)

t—0

Additionally, one has the mild rate of decay for |o] > 1:

Q0
f J e—co|x+at|(u2+v2 + (8xv)2)dxdt $CO 62. (212)
2 JR

Remark 2.1. Note that Theorem is sharp, since it does not persist in the large data
case. Indeed, solitons (2.6)) can be arbitrarily large and do not decay in the energy norm
inside I(t) as time tends to infinity.

Remark 2.2. The smallness condition is needed in the proof to get a well-defined
flow and good boundedness properties of the L;%, norm of u, and we do not know if it can be
improved to | (ug, vo)||z2xz1 < € only. Note also that only the conditions ||(ug, vo)|rzxm < €
and supeg [ (w(t), v(t))] g1, g2 < € are essentially needed in the proofs here.
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The proof of Theorem follows the introduction of a new virial identity, in the spirit of
the previous results by Martel and Merle |20, 21] in the gKdV case, and [12], 1] in the BBM
case. Note however that in those cases the functional involved is related to the mass (L?
norm) of the solution. Here, we use instead a modification of the energy of the solution.

Having described the small data behavior in exterior light cones, we concentrate now in
the interior light cone behavior. Here things are much more complicated, since the energy
is no more useful to describe the dynamics. Instead, we shall use a suitable modification
of the momentum (2.5]).

Theorem 2.2 (Full decay in interior regions). Let (u,v) be a global solution of (2.3) in the
class C(R, H' x H?*) n L*(R, H' x H?), not necessarily small in norm. Then for any L > 1
we have

o rL
J f (v* + u(l =) u + [uP™) (¢, z)dadt < 1. (2.13)
2 Jor

Moreover, we have strong decay to zero in the energy space (L* x HY)(I), for any I bounded
interval in space:

Tim [, v)(#)]| 22 )1y = 0. (2.14)

Remark 2.3. Estimate (2.13) shows that the local L? norm of v is integrable in time,
and some mixed norms of u. Note however that u seems not locally L? integrable in time.
However, ([2.14]) shows that this norm indeed decays to zero in time (even if it is not integrable
in time).

Remark 2.4. The fact that explicit higher regularity is needed in Theorem is certainly
a consequence of a sort of quasilinear behavior of gIB. See also [2] for a similar behavior in
a fully quasilinear model, the 141 dimensional Born-Infeld. In some sense, although gIB is
well-posed, still shares some bad behavior coming from the originally ill-posed Bad Boussinesq
model (2.2). Note that this phenomenon does not occur in the Good Boussinesq case [24].
Also, Theorem can be read as “boundedness in time in H' x H? implies L? x H' time
decay in compact sets of space”.

Remark 2.5. Note that arbitrary size solitons ([2.6)-(2.7) satisfy the hypotheses in Theorem
2.2] Hence, (2.14) it is also true for large solutions.

The techniques that we use to prove Theorem are not new, and have been used to
show decay for the Born-Infeld equation [2], the good Boussinesq system [24], the Benjamin-
Bona-Mahony (BBM) equation [12], and more recently in the more complex abcd Boussinesq
system [14], [T3]. In all these works, suitable virial functionals were constructed to show decay
to zero in compact/not compact regions of space.

However, the case of gIB is different by several reasons: first of all, the small data long
time dynamics in all the aforementioned models is not singular, in the sense that using well-
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cooked virial identities, one always gets integrability in time of the whole associated energy
norm. This is a nice property present in plenty of Hamiltonian models so far. The gIB case
is different because this last property is not true at all: we only gets integrability in time of
very particular portions of the L? x H! norm (see (2.13])). This fact complicates matters,
since proving (|2.14)) will require to prove additional estimates, not coming from the virial
itself, but instead coming from tricky bounds and preservation of sign conditions under the
nonlocal operator (1 —¢2)~!, namely the maximum principle. Second, finding the right virial
identity for gIB was a very complicate process, since no clear notion of decay is shown by
computing variations of energy and momentum. For instance, the derivation of a localized

version of the momentum law (see ([2.16]))

J(t) = JRQO (%) (uv + Opudyv) (t, x)dx, L>»1,

leads to the badly behaved identity (see (2.39)))

1 2
—j( ) =157 J ¢ <U2 + ZmWVDJr1 —v? - (@vv)?) d
1
— —f Qu(l — 2 u+ [uftu)da.
L Jr
No evidence of good sign conditions is clearly shown here. This identity, valid only for the
gIB case, is far from being useful (actually, it is the first case among the above mentioned
equations where it fails to give decay information). The key to prove decay is an additional
term in the virial, called N'(¢) (see - - that allows us to recover the positivity of

the virial in (2.40)):

d _ b 2 1 o1 A2N—1
_E(j(t)JrN(t))_QLJ dx+2L P'u(l —d5) ude

p— 1 p+1

+—(p+1)LJ o lulPHde + — 5T
and therefore the decay property. In that sense, we believe that estimate is a true
finding, since it is the only positivity property that we have found so far in gIB around
compact sets. Note also that at this point we are not able to fully recover the decay of the L?
norm of u locally in space, but instead only a portion of it, expressed in terms of the estimate
§7§s p'u(l— 02) " u(t, x) dedt < +o0. In order to prove the more demanding decay property
([2.14)), we need additional estimates where the hypothesis (u,v) € L(R, H! x H?) seems to
be essential. We have no direct clue about whether or not this condition is also necessary,
but it seems to appear in several quasilinear models [2].

w’U(l =) (Jul" u)da,

2.1.3 More about solitons

One important question left open in this paper is the stability /instability of solitons —
(2.7). But, as we shall explain below, this question is far from being trivial. However, we
believe that part of the techniques introduced in this work could be useful to show a certain
degree of (asymptotic) stability of the IB soliton.

Let us be more precise. In an influential work, Grillakis, Shatah, Strauss [7] (GSS) ob-
tained sharp conditions for the orbital stability /instability of ground state solutions for a
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class of abstract Hamiltonian systems. This result was extended to another class of Hamil-
tonians of KdV type by Bona, Souganidis and Strauss [3]. Hamiltonian systems as the ones
considered in [7] allow us to introduce the Lyapunov functional F' := H — ¢, where H is
the Hamiltonian and I is functional generated by the translation invariance of the equation
(usually, mass or momentum). Here, ¢ is the corresponding speed of the solitary wave. The
stability of the solitary wave is then reduced to the understanding of the second variation of
F, in the sense that 0?F > 0 leads to stability. Also, if the former positive condition is not
satisfied, but the corresponding nonpositive manifold is spanned by two elements (directions)
which are associated to the two degrees of freedom of the solitary waves (scaling and shifts),
it is still is possible prove stability using 0?F, but it is also necessary to restrict the class of
perturbations to those which are orthogonal to the nonpositive directions.

Smereka in [28] studied the soliton of 1B and observed that this soliton fits into the
class of abstract Hamiltonian system studied by GSS. However, it is not possible to apply the
GSS method since an important hypothesis is not satisfied. In fact, he observed that ¢%F is
nonpositive on an infinite number of directions, where two of them can be associated to the
point spectrum, and the remaining with the continuous spectrum. Therefore, GSS is useless
in this case. However, the same author showed numerical evidence that if d7(Q..)/dc < 0, then
the solitary waves are stable, and if dI(Q.)/dc > 0 the solitary waves seem to be unstable.

In a very important paper, Pego and Weinstein [26] proved (among other things) that Q.
is linearly exponentially unstable in H' when

3p—1) \’
1<C2<<%), with p>5

Their method combines the use of the Evans function as well as ODE techniques. They also
showed [27] that the linear equation around @), for ¢ ~ 1 satisfies a convective stability
property, based on the similarity of IB with KdV for small speeds. This result has been
successfully adapted to a more general setting by Mizumachi in a series of works [22], 23].
Whether or not the asymptotic stability results by Martel and Merle |20} 2I] can be applied
to this case, is a challenging problem. An interesting result in this direction can be found in
the recent work [18].

Organization of this chapter

This paper is organized as follows: Section deals with two new virial identities introduced
in this paper. Section [2.3]is devoted to the proof of Theorem 2.1} In Section [2.4] we prove
Theorem 2.2,
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2.2 Virial identities

In this section we present two new virial identities for the gIB equation (2.3]). One is related
with the exterior light cone behavior (Theorem [2.1]), and the other is useful for understanding
the compact in space region (Theorem [2.2)).

Let L > 0 be a large parameter, and ¢ = () be a smooth, bounded weight function, to
be chosen later. For each ¢t,0 € R and L > 0, we consider the following functionals.

Z(t;L,o) =Z(t) :% J]Rgo (x 41—;01?> <u2 + v + (0,0)° + Z%M”“) (t,z)dz, (2.15)

J(t;L,o) =Tt :JR(p(erat

) (uv + Opud,v) (t, x)dx. (2.16)

Note that both functionals are generalizations of the energy and momentum introduced in

[2.4)-(2.5), and they are well-defined if (u,v) € H! x H?. This fact is essential for the proofs,
and it is the key ingredient in both Theorems [2.112.2] The following result describes the time
variation of both functionals.

Lemma 2.3 (Energy and Momentum local variations). For any t € R, one has

d o 2
—T(t) = — / 2 2 . 2 e p+1 d
dt() 57 Rgp (u +v +(8v)+p+1|u| ) x
1
- ZJ Qo1 —02) " (u+ |ufP~tu)da, (2.17)
R

1 2
—J(t) = %JRQO/ (uwv + dpud,v) dx + 5 Rgp’ (u2 + Zm|u|erl —v? — (6xv)2) dz (2.18)

1

— —f Qu(l — 2 u+ [uftu)da.
L Jr

Proof of Lemma[2.5 We have two identities to prove.

Proof of (2.17)). We compute using ({2.3)):

d o

2
t)= — go’(u2+v2+ 0,v)? +

?|U‘p+l) dx

+ J © (u@tu + V0 + Opvd%v + |u|p_1ué’tu) dx .
R

7/

Y

Th (1)
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We deal first wit

r

R
~

J
Jp
-,
J
J

R
~

R

h the term Z;. We have from (2.3))

¢ (udpu + vo + 0,vd%v + |ufP udu) da

¢ (u+ 2o+ [ufu) dudr + J}Rgovatvdx

wou(l — 02) " (u + |ulPtu)dz + J]Rgov(l — 32) N+ Juffu),dr
wou(l — 02 (u + |ulPtu)dz — L&x(gov)(l — ) Nu+ [ufru)de

(go@tu — % — gp&xv) (1 =03 (u+ [uftu)dx
1

- —f Qo1 — %) (u + |ulP~tu)d.
L Jr

Finally, using this last identity, and replacing in the derivative of Z(t), we obtain

as desired.

d o 2
Y7 - & i 2 2 )2 Pl g
P (1) ZLJRw <u + v° + (0,0) +p—+1\u| ) x

1
1 f o1 — )7 (u+ [uP M u)da,
L Jr

Proof of ([2.18]). The proof here is similar to the previous one. We have

d
&j(t) =

%J ¢’ (uwv + Opudyv) dz + f © ((%UU + U0V + OppuOpv + (%uaitv) dx
R R
%J ¢ (uv + 0,ud v)dx—kj 30(8 VU + b + 0200 + Opud’, )

R R

1

EJ ' (uv + Gud,v) dx+—J gp(?x v? 4 (0,v) )dx
L Jr 2 Jr
+ J ¢ (ud + dyudi,v) da

R
7 ¢ (uv + d,ud v)dx—ij ¢ (v* + (0,0)) da
+ | ¢ (uow + 0udZw) da

R

20
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Now, integrating by parts,
1
To(t) = J pudpvde — J 0. (0% v)udr = J pudvde — —f ¢ 02 oudz — J ©00; vudx
R R R L Jr
1
- J ou(l — ?)oywdr — ZJ ¢ 02 vudx
R

R
J ou(l—02)(1 — %) 10, (u + |ufP u)de — %J ¢’ 0%, vudx
R

- | ¢
- ¢

1

w0y (u + [uP u)dr — — f ¢ 0% oudw
L Jr

%

1 1
. ( u? + —— |u\p“) de — J ¢'ud?,vdx
D+ L
@’

1 1 1
g o (e St ) ao 1 [ a7 s
1 1
o (3 o2 \u|p+1)dx——fa%ou><1—02> Y+ ful)d,
L 27 \2
73(t)

We consider now the term J3(t):

Ti(t) = fR«so'u) Gt gu)(1— )M+ [P u)da

J (1—2)(p'u)(1 —2) Hu+ [uffu)ds + J Qu(l — 2 Hu + [uf u)d
R R

<p w? + |ulPt)dr + J Qu(l — 2 u+ |[ufPtu)dz.

R
Therefore,
iJ(zﬁ) = zf ¢ (uv + d,ud v)dx—L go "(v* + (0pv)?) do
dt L Jg 2L ’
1 1, D P+l 1 f 02 +1
- - S dr + = p+1yq
L[ (G i) o 4 [ o+ s
1
— —J Qu(l —2) " Hu+ |ulf~tu)d
L Jr
1
:% JR ¢ (uv + 0pud,v) do — oL J. ¢ (V* + (0,0)?) d
+ lf ¢ L + ! lulP*t ) dz — lf Qu(l — 2 u+ [uf " u)dz
L Jr 2 p+1 L Jg v

1 2
:% ) ¢ (uv + O0yud,v) dx + 3L ). ¢’ <u2 + m\uP’“ —v? - (axv)2> dz
1
—— | u(l =) (u+ [uftu)dz.
Ly
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We introduce now a second functional. Let

N(t) = i Rgo’ <%> udvda. (2.19)

Lemma 2.4. We have for ¢ = ¢/ (%),

d 1
iV =51 ),

1
o | (= el (1= 027 (ul ) Y az
2L Jo

go’((&xv)Q —u? +u(l— 82)_1u)dx 0

Proof. We compute using ([2.3))
d d
2L—N(t) = —J Pudyvdr = f ¢ (Opulv + ulypv)de
dt dat ) .
= J ¢ ((0,0)* +u(1 — 212 (u + |u[P~'u))dw
R
= J ¢ (0pv)*dw + f ©u(l — 03 (JulP~tu)de
R R
+ f Ou(l — ) Pu —u+u+ 32(|ulP~ u))dx
R
= J ¢ (0,v)%dx — J Qutdr + J Qu(l — 2) tude
R R R
+ J Qu(l— )2 — 14+ 1)(Jufftu)dz
R
= J ¢ (0,v)2dw — f ©uldz + J Qu(l — ) tudz
R R R
— f @ |ulPtdr + J Ou(l — 03 (JulP~tu)da.
R R

The final result arrives after multiplication by ﬁ [

2.3 Decay in exterior light cones. Proof of Theorem [2.1

In this Section we prove Theorem [2.1] Recall that we have from (2.17):

d o 2
Qi o (2402 2 p+1
% (t) 2LJRSD (u + v 4 (0,v) +p+1]u| >dx
1
— EJ Qv(1 — %) (u + |ulP~tu)da. (2.21)
R

In what follows, fix o € R such that |o| > 1. Controlling this last term requires some work.
Indeed, we shall need the following definition (see [15] 14, 12] and references therein for more
details)
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Definition 2.5 (Canonical variable). Let u € L* be a fived function. We say that f is

canonical variable for u if f uniquely solves the equation
(1= f=u, feHR).

In this case, we denote f = (1 —32) " u.

Using f as canonical variable for u, we obtain the following result:

Lemma 2.6. One has
f s = f 2+ 20uf) + (2)Dde — — | o2,
R R

and

f ©v(l — %) u+ |uftu)de = f Qo(f + (1 -3 ulPtu)dz.
R R
Proof. Computing,

Lgp’qux = JR O (f —2f)*dx = JR o (f*+ (02f)? —2f0%f)da.

Integrating by parts, we have

f 1 fdz = —f J(0ufde + — [ " fde.
R

R 2L% Jr
Therefore,

1

| wutdo = [ o 2007 + @i - 4 | o
R R L R

This proves (2.23)). The proof of (2.24) is direct.

Using Lemma [2.6| we can rewrite (2.21)) as follows:

%I(t) — Q(t) + SQt) + PAt),
where
Qt) := % ] O (242000 + (32f)° +0° + (0p0)?) da — %L@’vfdx,
SQ(t) = —573 Rso’”fzdrc,
PO(t) = mkw’\ulf’“dx - %qu ) tudz,

Now we are ready to prove a first virial estimate.
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Lemma 2.7. Assume 0 = —(1 +b) < —1 and ¢ = tanh. Then one has

Q(t) <rs —f ¢ (0 + 0 + (0,0)7) da. (2.28)
R
Stmilarly, assume now o =1+ a > 1 and ¢ = —tanh. Then one has
Q(t) Sra —f @' (u® + v* + (0,0)?) da. (2.29)
R

Proof. First we prove (2.28)). We concentrate on Q(t) in (2.25)). Note that, if ¢’ > 0, we have

f Pvfdr
R

Consequently, if b > 0, 0 := —(1 + b) < —1, and ¢ = tanh, we have in (2.25)

1 1
< —J Ovidr + —f ¢ fd.
2 Jr 2 Jr

g

Q(t) o |,

N

¢’ (f2 + 200, 1) + (2f)? +0v* + (&EU)Q) dx

1
1,2 ! £2

— dr + — d
+2L Rapv :E+2LJRgof x

1
— 02—; J]ch’ (f2 + 112) dx + % Rgp’ (2(&1]”)2 + (32f)* + (6331))2) dx
b , (1+0)
_ﬁ RQD (f2+U2)dl‘—T

fR ¢ (2(0f)” + (32f)% + (0,v)?) d.

Now we need the following result about equivalence of norms in terms of f and w.

Lemma 2.8 ([12, 14]). Let f be as in (2.22). Let @ be a positive, smooth, bounded weight
function satisfying |@'| < Ao for some small but fired 0 < A « 1. Then, for any ay,as, a3z > 0,
there exist c1,Cy > 0, depending of a; and X\ > 0, such that

cl J putdr < J @ (arf? + a2(0:f)% + as(02f)?) da < le puidr. (2.30)
R R R

Using Lemma [2.8) with A = L' « 1 and ¢ = ¢/, we conclude
Q) 510 = [ U+ @l + (@207 4%+ (0))
R
~ — f ¢ (0 + 0+ (0,0)?). (2.31)
R

This proves (2.28)). Now we sketch the proof of (2.29), which is similar to the previous case.
Set 0 =14 a, a > 0. Choosing ¢ = — tanh it is clear that ¢/ = —sech? < 0. From ([2.25) we
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have
Q1) = ~I [ 1¢1(2 + 20 + (@247 + 0% + @) do+ [ I¢ofe
< — Jo| f 1| (f2 4 2(0. 1) + (O2f)* + v* + (0,v)?) dw
7 | 1wlide+ 7 [ 1ol

o [ e = ZL 1 @ + @207+ @) o

Therefore, by Lemma 2.8 again,
Ot) <ra —f | (u® + v* + (0,v)%) da
R

This ends the proof of ([2.29)). |

Now we consider the two terms in (2.26)) and (2.27). First of all, note that in both cases
([2-28) and (2.29),

o nmn g2
— d
213 JRSO frdw

1
S ﬁf || fAde < —f ' lu*da.
R
Therefore, for L large enough,
Qt) + SO(t) <r.ap —f '] (u® + v* + (0,0)?) da. (2.32)
R

Finally, note that in both cases (2.28) and ({2.29)),

g NulPide —
leu\ =TT

|U| J p+1
7 __ e dz < 0.
Finally, we deal with the last term in (2.27):

1 b
£ [ ot tuael < PR [ e

o (2.33)
(1 — 02) Pt 2.

i o 11 (= ) )

The first term on the RHS can be absorbed by Q(t) in - In what follows, we need the

following auxiliary result.

Lemma 2.9 ([I5], see also [14]). The operator (1 — 0%)7! satisfies the comparison priciple:
for any u,v e H!
v<w = (1-3) " v<(1-0*) " w. (2.34)



Now, coming back to (2.33), suppose u > 0. Then 0 < |ul/"'u < |lul?2 u, so that using
(2.10]) (this is the only place where we use this hypothesis)

0< (1= (Jul~ ) < [ulfz' (1= 0w Sap 7S
(Note that € depends on a,b.) Consequently, in this region
|2'[((1 = 32) " (lul"~ ) = ['[(1 = 32) " (Jul"~ ) (1 = &)~ (Jul"~ )
< 62(p71)|¢/|f2.
If now u < 0, just note that

[/ 1((1 = a0 (ul~ ) = [ 1 (1 = 62) 7 (| = ul"~ (—w)))?,

which leads to the previous case. Finally, we conclude that the second term on the RHS of
(2.33) is bounded by

[y
max{a, b} L Jg 4 v

J || f2dx

Consequently, for € small we obtain

d

dtI( ) =0) +SQ(t) + PO(t) <rap — JR '] (v +v° + (0,0)?) da. (2.35)

Integrating in time, we have proved (2.12) in Theorem [2.1]

2.3.1 End of proof of Theorem

Now we conclude the proof of Theorem [2.1] - It only remains to prove (2.11). First, we
prove decay in the right hand side reglon namely ((1 + b)t,+0), b > 0. Now we choose
¢(z) = 1 (1 +tanh(z)), 0 = —(1+b), 6 = —(1 + b) with b > 0 and b = b/2. Consider the

modiﬁed energy functional, for t € [2,10]:

'_1 x + oty — a(tg — t) 9 9 9 2 o
L, () = 5 chp ( 7 ) (u +v* 4+ (0,0)" + P 1|u| dz. (2.36)

Note that 0 < ¢ < 0. From Lemma and proceeding exactly as in (2.35)), we have

d to —ol(tg —t
dtItO( ) <or —J sech? (x + 9t La( 0 >> (v +v* + (0,v)?) dz < 0 (2.37)
R

what it means that the new functional Z;, is decreasing in [2,%y]. Therefore, we have

to d
| Tt = Ty(t) - Z(2) <0 = Tu(t) <Zo(2),
2

On the other hand, since lim,_,_ ¢(x) = 0, we have

lim supj @ (w> (v + v* + (0,0)?) (6, z)dz = 0, (2.38)
R

t—00 L
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for 5,7,0 > 0 fixed. This yields

0< JR © (@) (v + v* + (0,0)?) (to, z)dx

< JR(p (a:— %tog (2+b)> (u? + 0% + (0,0)?) (2, 2)da,

which implies,
— (1
lim supJ © (w) (v + v* + (0,0)?) (t,z)dz = 0.
t—00 R L

In view of ([2.35]), an analogous argument can be applied for the left side, i.e (—o0, —(1+a)t),
but in this case we choose ¢(z) = 5 (1 — tanh(z)). The proof of (2.11)) is complete.

2.4 Decay in compact sets: Proof of Theorem

Let us find the key virial estimate to understand the dynamics on compact sets in space.
Recall that from ({2.18]), if o = 0, we have the identity on 7:

1 2
—j< ) = 5Y3 QO' <u2 + m]m”“ — %= (awv)2> dz

(2.39)
1 / 2\-1 p—1
- —J ou(l —07)  (u+ |uff" u)dz.
L Jg
Assume that ¢’ > 0. From (2.39) and (2.20|) we obtain the positivity estimate
d 1 1
—&(j(t) + N (t) = oL |, ©'v?dr + 37 ). ©u(l — %) tude
p—1 +1 1 2y-1 1 (2:40)
—_— Prid 'u(l —07)~ P~ u)da.
v @H)Lf e+ 5z | ull = 327 (ul u)de

Note the surprising fact that each term in the RHS above is nonnegative.

Lemma 2.10. For any ¢ bounded smooth and such that ¢’ > 0, and for any v € H*(R),

J Ou(l — 2 (|ulP~tu)dz = 0. (2.41)
R

Remark 2.6. Note that this result is independent of the size of u. Note also that in order
to prove this lemma, we need at least u € H'?*(R). Therefore, we see that (u,v) € L? x H*
(the energy space) seems not sufficient for our purposes.

Proof of Lemma[2.10. Suppose ¢’ > 0. If u > 0, we have |u|P"'u > 0. From Lemma [2.9| we

conclude
f Su(l — )L (JuP~Lu)dz > 0.
R

In a similar way, if the case u < 0 follows. |
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From the previous Lemma and (2.41)) we obtain

d
- S(TO+ N ()
1

1
> 5L ). 'vida + —J Qu(l —02) tudz + (p—k—l)LJ ¢ |ufPtda.

This last estimate tells us exactly what are the quantities in gIB which integrate in time. As
far as we could understand, it was not possible to get integrability in time of the L? norm of
u, nor 0,v. A corollary from this last estimate is the following result.

(2.42)

Corollary 2.11. Let (u,v) be a global solution of ([2.3) in the class (C'n L®)(R, H' x H?),
with initial data (u,v)(t = 0) = (ug,vo) € H' x H%. Let ¢(z) := tanh (z) in (2.40), such that
¢ =sech® > 0. Then we have the following consequences of (2.42)):

1. Integrability in time:

f f sech? (%) (v* +u(l — 3 u + |ufPT)dedt Sugwr 1 (2.43)

2. Sequential decay to zero: there exists t, 1 oo such that

lim Z(t,) = 0. (2.44)

n—0o0

Remark 2.7. Note that the smallness condition on (u,v) is not needed here; only bounded-
ness in time of the H! x H? norm. Also, property is not trivially obtained from
as in previous works; some additional estimates are needed in order to ensure full decay along
a subsequence of the local energy norm present in Z(t,,).

Remark 2.8 (About the equivalence of norms for canonical variables). Note that if f =
(1 — 02)~!u, then for L large,

fR sech? (%) u(l —2) tudr = fR sech? <L> f(f —2f)dx
_ JRsech2< )(f2 (0pf)?)dz + %L(sedﬂ)’ (%) fo, fdx
25 [ seat (F) 07 + @upya
Consequently, from ,
JRJR sech? (%) (f* + (0u.f)?)dadt Sugap.r 1.

This information will be useful in what follows.
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Proof of Corollary[2.11. Estimate (2.43) is direct from (2.42). On the other hand, from

(2.43) we clearly have the existence of an increasing sequence t,, 1 o such that

lim | sech? (%) (0% + u(l — )" Yu + Juf ) (b, 2)dadt = 0.
R

n——+0o0

From this fact and the L* boundedness in time of u we easily have

lim | sech? (%) u?(tn, r)dx = 0.

n—0o0 R

Indeed, from Remark [2.8 we have

lim | sech? (%) (f2 + (00£)%) (tn, x)dz = 0.

n—0o0 R

Hence, using interpolation, and L » 1,

Hsech2 (%) 2 f(tn) i

L2

< Hsech2 (%) Ouf (tn)
< Hsech2 <%) Ouf (tn)

03 (sech2 (%) f(tn)>

L2 L2

L2’

therefore we obtain the desired result. Finally, again from interpolation, the boundedness of
v(t,) in H?, L » 1, we have the estimate

2

Hsech2 (%) Ox0(ty)

< Hsech2 <%) v(ty,) 02 (S.ech2 (%) v(tn)>

2 L2 2
x
Hsec 7 v(ty) N
so || sech® (£) 0,v(t,)|r2 — 0 as n — +o0. This proves (2.44). |

2.4.1 End of proof of Theorem
Consider Z(t) in (2.15) with ¢ = 0, ¢ = sech®. From (2.17)) we have

d 1

el - / 22\ —1 p—1
1) Lwaa &)~ (u + JulP~"u)dz.

Let g := (1 — %)Y u + |u|P~'u), so that g = f + (1 — 0%)"*(Ju|P~'u). We have

d 1 1
El(t) =-7 Lgp’vgdx =-7 J]R ©'v (f + (1 - 8§)_1(|u|p_1u)) dz.

Therefore,

—I(t)‘ <= JR sech? <%) (v? + 2+ (1 = 2) H(|ulP~u))?)da. (2.45)

Suppose u = 0. Then 0 < |u[P~'u < |[ul?> u, so that from Lemma
0< (1) (lul" ") < ulf' (1= 30) " u < f.
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(Here we use the boundedness character of w in L*.) Consequently, in this region
sech? () (1= 227 (jul ™ u)? = seeh® () ((1 = &) () (1 = )7 (ful" "))
x
< sech? <Z> f2.
If now u < 0, just note that
sech? () (1= )7 (jul'u))? = sech? () (1 = @27 (] = u* ™ (=u)))?
which leads to the previous case. Finally, we conclude that is bounded by

I%I(t)' < % JR sech? (%) (v? + f2)dz.

Integrating in [¢,¢,], we have (using Remark [2.8))
| 9 (T
1Z(t) — Z(t,)] < f —J sech (—) (v* + f*)dadt.
¢ Lr L
Sending n to infinity, we have from (2.44) that Z(¢,,) — 0 and
Z1 2 (TN 2 g2
IZ(t)] < — | sech (—) (v° + f*)dadt.
¢ Lr L

Finally, if ¢ — o0, we conclude. Since for L? x H' data Z(t) 2 [(u,v)(¢)|3,, ;1, this proves
Theorem 2.2
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Chapter 3

Ill-posedness issues on (abcd)-Boussinesq
system

Abstract. In this paper, we consider the Cauchy problem for (abcd)-Boussinesq system posed on one- and
two-dimensional Euclidean spaces. This model, initially introduced by Bona, Chen, and Saut [5l [6], describes
a small-amplitude waves on the surface of an inviscid fluid, and is derived as a first order approximation
of incompressible, irrotational Euler equations. We mainly establish the ill-posedness of the system under
various parameter regimes, which generalize the result of one-dimensional BBM-BBM case by Chen and Liu
[14]. Among results established here, we emphasize that the ill-posedness result for two-dimensional BBM-
BBM system is optimal. The proof follows from an observation of the high to low frequency cascade present

in nonlinearity, motivated by Bejenaru and Tao [I0].
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3.1 Introduction

3.1.1 Setting

As a rigorous derivation from the free Eulerian formulation of water waves, Bona, Chen, and
Saut [6] proposed the model called one-dimensional (abed)-Boussinesq, as

(1 —b02)0m + 0n(ad?u + u + un) = 0,

1D (abed) (t,x) e R x R. (3.1)

1
(1 —dé2)omu + 0,(c2n +n + §u2) =0,

As two-dimensional model, Bona, Colin and Lannes [7], formulated 2D (abed) as

(1-0A)0m+ V- (aAu+ 4+ un) =0,

2D (abcd) (t,x) e R x R% (3.2)

1
(1—dA)oui+ V (cAn+n+ §|ﬁ|2) =0,

Here, unknowns 7 and w (also ) describe the free surface and the horizontal velocity of
fluid, respectively. Both systems (3.1) and (3.2)) are all first-order approximations of the

incompressible and irrotational Euler equations assuming the small parameters defined by

a=—<«1, f=-—=x1 a~2pf,

where A and ¢ are typical wave amplitude and wavelength, and h is the constant depth.
Such assumptions sometimes referred to as small-amplitude long waves or Boussinesq or
simply shallow water waves regimes (see [9]). In the two-dimensional case, the irrotational
hypothesis can be (mathematically) characterized as

V Ai=0, (3.3)
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which is preserved by the evolution. Note that the condition (3.3)) is not necessary in the
one-dimensional case since there is a single horizontal direction. See also [I] for relevant
result.

The parameters (a, b, ¢,d) in both (3.1]) and (3.2]) are not arbitrary and hold the relations

see 16 1 1 1 1
a=§<92—§)u, b=§(92—§) (1-v),

1 1
c= 5(1—92)V—T, d= 5(1—02)(1—u),
where 6 € [0, 1] appears in the change of scaled horizontal velocity corresponding to the
depth (1 — #)h below the undisturbed surface, 7 is the surface tension (7 > 0), and v, p are

arbitrary real numbers ensuring

1/, 1 1 9 1
= - = = 2 (1=-06* -7 =~ _ T
a+b 2(0 3), c+d 2( 0%) , a+b+c+d 3

The dispersive properties of the systems depend on the choice of the parameters. Precisely,
the pair (a,c) enhances the dispersion, while the pair (b,d) weakens it (see [14]). This
versatility makes the (abcd)-Boussinesq model interesting and challenging.

Two systems 1D (abed) and 2D(abed) allow the following energies

1
Buolunl(t) = 5 [ (o = cn? 421+ ) + ) t.a)d

and
— 1 — —
Banli,nl(t) = 5 | (-alVa? — elVal? + (1 + ) + )0, )
R2

respectively, that both are conserved in time when b = d and a,c¢ < 0. Thus local well-
posedness in H!-level space is immediately extended to the global one at least for small data.
Note that Sobolev embedding in two-dimensional case is not enough to control L* norm of
n, but Gagliardo-Nirenberg interpolation inequality can control n|u]?.

These models have been extensively studied (in various perspective) in the literature, see
e.g. [5, 16, 1), 15, 22 29] 27, 14], 4, 28, 21], 23, 20} [30, B1]. Among other them, we focus on
Cauchy problems for these systems. In [5], [6], Bona, Chen and Saut first studied local and
global well-posedness of linear and nonlinear problems, and established the following results
(the following results only exhibit the case when H (see ([3.12))) has order 0):

1. the generic regime in H*(R) x H*(R), for s = 0.
2. the BBM-BBM regime in H*(R) x H*(R), for s = 0.
3. the KdV-KdV regime in H*(R) x H*(R), for s > 3/4.

In [15], Dougalis, Mitsotakis, and Saut proved that two-dimensional (abed) Boussinesq system
under the generic regime is locally well-posed in H*(R?) x H*(R?) for s > 0. Note that this
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local result is indeed valid in L?(R?) x L?(R?) by improving Grisvard’s bilinear estimate
[16], see Appendix (Lemma [3.16). In [22], Linares, Pilod, and Saut focused on the
strongly dispersive (KdV-KdV system) regime, and established local well-posedness result
in H°(R?) x H*(R?) for s > 3/2. Previously, Schonbek [32] and Amick [2] considered a
version of the original Boussinesq system (a = ¢ = b = 0,b = 1/3), and proved global well-
posedness under a non-cavitation condition via parabolic regularization. Later, Burteau [1T]
improved it without a non-cavitation condition. Studies on long time existence of solutions
have been done in, for instance, [29] 24, 28], 30, 31]. In these works, the authors established
the well-posedness for large time with appropriate time scales.

In contrast with results mentioned above, this paper concerns with the ill-posed issues on
one- and two-dimensional (abed)-Boussinesq systems in the following cases:

1. Generic regime

a,c <0, bd>0, (3.4)
2. KdV-KdV regime
1
a=c=g, b=d=0, (3.5)
3. BBM-BBM regime
1
a=c=0, b:d:a (3.6)

As far as the authors know, there is only few results for ill-posedness issues. Chen and
Liu [I4] established the (mild) ill-posedness result for one-dimensional system under the
weakly dispersive regime (1D BBM-BBM system) below L?. The main idea follows the
abstract theory developed by Bejenaru-Tao [I0]. The authors also discussed the formation
of singularities and provided blow-up criteria. Recently, [3] Ambrose, Bona and Milgrom
have established the ill-posedness of the one-dimensional periodic Kaup system (a = 1/3 and
b=c=d =0) is ill-posed in any positive regularity Sobolev space, in the sense that the
flow map is discontinuous at the origin. They also concerned with the case that the generic
condition (3.4)) is negated.

3.1.2 Main results

Before presenting our results, we clarify what we mean “ill-posedness". To do this, we first
define “well-posedness" of Partial Differential equations problems. As the author’s best knowl-
edge, The French mathematician Jacques Hadamard initially proposed the concept of well-
posed problems as

Definition 3.1 (Well-posedness). The mathematical models of physical phenomena should
have the following properties:

e there exists a solution,
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e the solution is unique,

e the solution behaves continuously with the initial condition.

Obviously, problems that are not well-posed in the sense of Hadamard are termed ill-
posed, in other words, invalidity of one of above properties makes problems be ill-posed. In
this paper, in order to obtain ill-posedness results, we attack the third property in Definition
B.1] A precise strategy follows the negation of Proposition [3.5]

We are now ready to present our main theorems.

Theorem 3.2. The 1D-abed system (3.1)) is ill-posed in the sense that the flow map from
initial data to solutions is discontinuous at the origin in H*(R) x H*(R), where

1. s< —% for the generic case (see (3.4))).

2. s < =3 for the KdV-KdV case (see (3.5)).

Analogously,

Theorem 3.3. The 2D-abcd system (3.2)) is ill-posed in the sense that the flow map from
initial data to solutions is discontinuous at the origin in H*(R?) x H*(R?), where

1. s < —% for the generic case (see (3.4))).

2. s < =3 for the KdV-KdV case (see (3.5)) .

3. s <0 for the BBM-BBM case (see (3.6]) ).

Remark 3.1. The BBM-BMM case of the one-dimensional (abcd)-Boussinesq system has
been dealt with by Chen and Liu [14]. However, the two-dimensional BBM-BBM system is
considered here for the first time, and together with Appendix [3.A] we completely resolve
Cauchy problem for it.

The proofs of theorems follows the same idea developed by Bejenaru and Tao [10], and
motivated by an observation as follows: All nonlinear interactions are quadratic, thus high
x high interaction components over an appropriate short time depending on the frequency
cause resonances near the origin of the resulting frequency. For this reason, the flow cannot
disperse the high-frequency energy for this time so that the smoothness of the flow breaks
below certain regularity. Note that this observation is simply applied to a one-dimensional
problem, but it is non-trivial to construct initial data that can cause resonance in two-
dimensional case.

It is easy to see that (abcd) systems are completely coupled systems, thus an attempt
at decoupling of (at least) the linear system must take precedence in order to observe its
propagators. Under generic regime, standard transforms (see (3.11)) and (3.26) for one- and
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two-dimensional cases, respectively) diagonalize the linear operator with eigenvalues o (see
(3.13))) for one-dimensional case and p for two-dimensional case of order 0, while those
under BBM-BBM and KdV-KdV regimes have order —2 and 2, respectively. The difference
of orders of eigenvalues directly affect the dispersive properties of solutions, thus so flow maps
of stronger dispersive systems can take rougher initial data. Such observations can be seen
in, for instance, Lemma (3.8 and relevant lemmas.

Our results are coherent with one-dimensional BBM-BBM system, generalized BBM equa-
tion and KdV equation. On one hand, In [8], the authors established that the flow map is
not of class C2, and warned that their result is not suitable to assert that the BBM-equation
is ill-posed in H* for negative values of s. Conversely, in [12], the authors proved the discon-
tinuity of the flow map at the origin in H® for s < 0. On the other hand, our result for the
KdV-KdV system differs from the ill-posedness result of the original KdV equation estab-
lished by Molinet [25]. The proof follows from an argument of functional analysis together
with the discontinuity Miura transform and the validity of Kato smoothing effect of mKdV
solutions. However, the same argument may not apply to the KdV-KdV system, since it has
no such good structure. We also refer to, e.g., [I7, 18| 19} 13| 26}, [14] for relevant ill-posedness
problems of single equations.

In Appendix [3.A] we give a bilinear estimates of (1 — A)V(fg), which slightly improve
Grisvard’s result [16]. This improvement enable us to obtain the local well-posedness of
two-dimensional (abed) system under generic and BBM-BBM regimes in L?(R?) x L?(R?) x
L*(R?). As mentioned in Remark , the well-posedness result for two-dimensional BBM-
BBM system, in addition to Theorem , asserts the completion of Cauchy problem for
it. The proof is based on Littlewood-Paley theory, and is completed by a delicate observation
of frequency interactions.

Organization of this chapter

This paper is organized as follows: Section devotes to introducing abstract and general
well- and ill-posedness arguments developed by Bejenaru and Tao [10], and to representing
Boussinesq equations as linearly decoupled forms. In Sections and we prove Theorems
and [3.3] respectively. In Appendix we briefly provide a refined bilinear estimate to
establish the well-posedness of some classes of systems. In Appendices [3.B], [3.C| and [3.D] we
give precise computations for decomposition of quadratic terms in the nonlinearities.

Notations

For z,y e R, (= Rn (0,00)), x < y means that there exists C' > 0 such that z < Cy, and

r ~ymeans v <y and y < x. For a Schwartz function f in x € R4, we denote the Fourier
transform of f by F(f) or f defined by

for = | et o, gere,
Rd
and f denotes the inverse Fourier transform of f defined by

Foy _ L iz-£ d
f(&) = ok fRde f&)de, zeRY
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In the rest of sections, the following properties of the Fourier transform among others will
be used frequently:

~ ~

F(f=9)(€) = f(§)g(€) and F(onf) =i&[f(§), 1<i<d

3.2 Preliminaries

3.2.1 Bejenaru-Tao’s abstract theory

Here, we briefly present the abstract well- and ill-posed theory initially introduced in [10].
Consider the abstract equation

T = L) + No(7,7), (3.7)

where Uy € D is the initial data, and ¢ € S is a solution of abstract equation. Here, £(7)
and N5 (v, ¥) are the linear and bilinear part of Duhamel’s formula, respectively.

In the context of this work, ¥ is a solution to the (abed) system (3.1) (v = (n,u)) or (3.2))
(U = (n,4) = (n,u1,us)). First, we introduce the definition of quantitative well-posedness
introduced in [10].

Definition 3.4 (Quantitative well-posedness, [10]). Let (D, | - ||p) be a Banach space of
initial data, and (S, | - |s) be a Banach space of space-time functions. We say that is
quantitatively well-posed in D, S if one has the estimate of the form

1£(%0) s < [Wolp
and
N2 (T, 0)]s < [7]2, (3.8)

forallvge D and v e S.

As we can see in the introduction, it is known that abed-system (in one- or two-dimensional
case) is locally well-posed in the sense of Definition [3.4] (see [0]).

The following theorem asserts that the quantitative well-posedness indeed guarantees the
analytic well-posedness, that is, the flow from given initial data to a solution is represented
as a power series expansion of continuous nonlinear maps.

Theorem 3.5 (Theorem 3 in [10]). Suppose that is quantitatively well-posed in the
space D,S. Then, there exist constants Cy,e9 > 0 such that for all vy € Bp(0,e), there
exists a unique solution U]ty € Bg(0,Coego) to (B.7). More specifically, if we define the
non-linear maps A, : D — S for n € Z~q by the recursive formula

Ay (V) = L(7p)
An<170) = Z NQ(Am (770)7 An2 (170»’ n>1,

ni,n2=1
ni+nz2=n
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then we have the absolutely convergent (in S) power series expansion

o] = Y An(ih),

n=1

fOT all 170 € BD(O,ET()).

On the other hand, Theorem alternatively says that one can prove ill-posedness of
(3.7), once showing discontinuity of A, for some n, i.e., A, does not satisfy (3.8]). This
observation can be precisely stated as follows:

Proposition 3.6 (Proposition 1 in [10]). Suppose that is quantitatively well-posed in
the Banach spaces D and S, with a solution map f — u[f] from a ball Bp in D to a ball
Bg in S. Suppose that these spaces are then given other norms D' and S’, which are weaker
than D and S in the sense that

[P0l < tollp,  7lg < 117 -

Suppose that the solution map vy — U[vh] is continuous from (Bp,|| | /) to (Bs,| |g). Then
for each n, the non-linear operator A, : D — S is continuous from from (Bp.| |p) to

(S 1 lgr)-

3.2.2 Equivalent representation of abcd systems

This subsection devotes to rewriting (abed) systems (3.1)) and (3.2)) in the form of (3.7]). We
follow the arguments in [6] and [I5] for the one- and two-dimensional cases, respectively.
One-dimensional case.

We first deal with one-dimensional case. Applying the Fourier transform to the linear abed
system ((3.1)) without un and Ju?), we obtain

i (2)+i¢ (e 07 () =0 .

(3.10)

where

Using the transform

: (3.11)

where H is the Fourier multiplier defined by

)
HFE) = h(OF©), with ()= (“’1“))%:(“‘“52“1”52));, (312)
(

wa(§) (1 —cg?)(1 +b¢?)
the system (3.9) becomes a symmetric form as
3) -0,
W

i () 1 (0 o)
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where

N =

_ NCELSIEES
(6= (OO} = (et o) (5.13

Note that (3.10]) and (3.12)) are well-defined whenever the parameters a, b, c and d satisfy the
generic or KAV-KdV cases. Therefore, the system is written in the form

JORIGR
o) -8 ) )

Coming back to the original variables n and u, we write the linear system as

)4 -

where an operator A is determined by (also explicitly computed by taking the Fourier trans-

form)
-1
H H H H
()0 h)
and thus the solutions to the linear abed system are of the form

(1) o) = st () @

where S(t) is associated to the linear flow of the system generated by A. It is clear that S(t)
is a unitary group on H*(R) x H*(R) for any s € R. When

wi(§wa2(§) > 0,

where

the linear flow S(t) can be expressed

. Wl(f)
cos(éo(€)t)  —isin(éa(£))
) I el [ R
Sisin(Eo(€) S cos(a(©)) g
Note that ) )
wi(§) _ (wi(§)\? _ - wa(§) _ [wa(§))2 _ 1
o6 (wz(f)) ME)and (wl(f)) G}
where h is as in . Let
Li(t, &) = cos(€o(€)t) and  La(t, &) = isin(Ea(€)t). (3.15)
Then we rewrite as

#(s0(})) - (—mélf—ti%la,o Eiee ) @ (319
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Duhamel’s principle for the nonlinear system (3.1) yields
(1) =0 ()~ [ st—om (£ 2030 o
s () ((2)-()).

KdV-KdV regime. Making a simple additional scaling, one may assume that a = ¢ = 1,
and obtain that the linear system of (3.1]) satisfies

d (7 0 1\ (7
i (2) s (1) (7)o
that the linear propagator Sk (t) is represented as

Pso@)- (B9 Be)@. o
where

LE(t,€) = cos(€ox()t), LE(t,€) = isin(ox(€)t) and  ox(6) =1—-€.  (3.19)

(3.17)

Analogously, we obtain

Two-dimensional case.

We write the two-dimensional linear abed system ((3.2)) without @y and $|i@[?) in the equiv-
alent form (in the Fourier space, for fixed ¢ € R*\{0})

J J
O |y | +i[EJAE) | w | =0, (3.20)
U Us
where
0 31 (kam?) & <1fa\&|2)
gl \ 1+bl¢l? gl \ 1+bl¢l?
& (1=cl?
& EHW 0 0 . (3.21)
& [ 1-=cl¢]?
& \ TP 0 0
Define the Fourier symbol o(|¢]) by
1
(1 —algP)(1 - C|§|2)>2
o(¢]) = < . 3.22
D= aiem v aep) 422

A straightforward computation yields that the matrix A(¢) has three eigenvalues 0, o(§) and
—0(&), thus the matrix A(¢) is diagonalized as follows:

0 0 0
PHOAQPE) =0 o) 0
00 o]
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where the block matriz and its inverse are given by

05 €(l€\) —<§(|£\)
P(&) = —gﬁ g\ @ (3.23)
oW &
and
0 —2€(|§|2% (!€|)£%
P = (€ <UeD5 | (3.24)
KD\ el e

respectively, for

(a1 +dg)\?
“'5')‘<<1—c|£|2><1+br§|2>> ' (3.25)

We consider the following change of variables:

~ ~ 2 o 1 -~
i 1 N e \s|“§1 + \5|“2
I B K L
n)=PE) (i <\§|) + g + 2|§| : (3.26)
1% U
2 2 ~5ey T g T agd

Note that i = 0, since the fluid is irrotational (equivalently, (3.3))). Thus, new variables
(11, 12) finally determine an equivalent expression of the system (3.20]), and for (3.2)), as

() wsem () =0 (060 = ()

where B(—iV) is the 2 x 2 matrix operator whose entries are pseudo-differential operators,

with symbol
o(l¢) 0
el (U6 e

which is the skew-Hermitian matrix.

Coming back to the original variables 1, u; and wuy, we write the linear system as

o [ n
a u | + A uy | = 0,
U9 U9

where the linear operator A is indeed given by the inverse Fourier transform of i|£|.A(&) as
in (3.20)). Thus, the solutions to the linear abed system are of the form

n Mo
Uy (t,l’) = S(t) U1,0 (l’),
U2 U2,0
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where S(t) is associated to the linear flow of the system, generated by A. When, a,b, ¢ and
d satisfy the generic condition, the linear flow S(¢) can be expressed as,

f
F 8@ |y
h
0 0 0 f
=P(&) [0 elléleleht 0 P T
0 0 o€l . (3.27)
fl<t O ()G Rt6) <(€)ig Rt /7
where R R
Ji(t,€) = cos((€lol(€Dt),  To(t,€) = sin(lelo(€])), (3.28)
and o(|¢]) is defined in (3.22)).
Duhamel’s principle for the nonlinear system yields
U Mo ¢ (1 =bA)"H(V - (na))
o T —J S(t—s) | 1(1—dA)o, a2 |(s) ds
U9 IU/Q’O 0 %(1 — dA)_laxJ’lIP (3 29)
"o n n
= S(t) Uro | + N2 Uy |, | U1
U2,0 Ug U2

Remark 3.2. Notice that the eigenvalues o and o (see (3.13]) and (3.22)), respectively) have
the same radial behavior regardless of the dimension.

Casea=cand b=d > 0.

In this case, we insert the conditions a = ¢ and b = d into (3.21]), we then have

n n
O | Uy |+ il€|oan(€])Aas(§) | w1 | =0, fERQ\{O} (3.30)
Ug Uz
where
0 & &
& lgl - fel 1— a|§]2
Aw) =17 0 0 [and ou(l¢]) = T (3.31)
% 0 0

Analogously as above (for the generic case), we can find three eigenvalues 0, 1 and —1 of the
matrix Ag(€). Thus the matrix Ay, (§) is diagonalized as follows:

00 0
Pt () Aa(E)Pap(é) = {0 1 0 |,
00 -1
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where the block matriz P,, and its inverse are represented as in (3.23)) and (3.24]), respectively,
with ¢(]¢]) = 1. Change the variables analogous to (3.26)), then we have

0 i ¢
_ | 1. &an 4 &5
= | 2T agta T gtz

£ &2 @2

=P, (€)

<) 2
=

> =
[N}

As same as before, i = 0, and new variables (11, 1) determine an equivalent expression of

the system ((3.30)) as
1 . vy g (t = O) _ (Y10
o) maem () -o (etn) - ()

Vy
where B, (—iV) is the 2 x 2 matrix operator whose entries are pseudo-differential operators,

with symbol
. 1 0
lens (5 %))

which is the skew-Hermitian matrix.

Solutions to the linear (abed) system are of the form

n Mo
uy | (t,z) = Sap(t) | w1p | (),
Uz.0

U2

where S,;(t) is associated to the linear flow of the system, precisely expressed as,

f 8 st BN /7
. ~ 2 A~ ~
FlSa®) [g]]= | G5O @I §#ree (7). (3.32)
" IO SR @ e) )\
where R R
Ji(t,€) = cos(|€]oan([€])t), S5 (¢, €) = sin(€|oas(€])E), (3.33)
and 0q(|€|) is defined in (3.31)).
Duhamel’s principle for the nonlinear system (3.2)) yields
n Mo t (1=bA)"H(V - (ni))
wr | = Su(t) | ure —f St —s) | 11— bA) 1o, a2 | (s) ds
0 11 —bA) 10, |a?
U2 U2,0 a( ) | 1] (3.34)
"o n n
= Sab(t) UI,O +N2 uy |, U1
U2,0 Ug U2

The above case covers KdV-KdV and BBM-BBM regimes, but we distinguish them below

for simplicity.
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KdV-KdV regime. As same as the one-dimensional case, one may assume that a = ¢ = 1.

Then, the system (3.2)) has the form

{ om+ V- (Ad+ad+in) =0, (tx)eRxR?

o+ V (An +n + 3]df?) = 0.

Analogously, we have
o (l&]) =1 —[¢[*. (3.35)

Due to 0k (£]) € R, the semigroup has the form

JEE ) g6 BIE

. ~ 2 A ~

F(Sk(t) = | &I e=IF(E ) ST
SR SRIRE ) ST
(3.36)

where

TE (& t) = cos(|€|ox (|EDL), T3 (€, t) = sin(|€]ox (|€])E)-

BBM-BBM regime Let a = ¢ =0 and b = d = 1/6. Then, the system (3.2]) has the form

1
(t,x) e R x R?.

1 1
1—=A) o Sl ) =
< c )6tu+V(77—|—2]u\> 0,

Analogously, we have

entleh = (1+ plef)

Due to op € R and ¢g([¢]) = 1, the semigroup is

F(Sgp(t) = | &JP

(3.37)

where
Jy (€,t) = sin(|€|on(|€])).

TP (e, t) = cos(|€|os(€])1),

3.3 Proof of Theorem

3.3.1 Generic regime: a, c<0and b, d >0
Before proving Theorem [I| we address the following two lemmas, which play key roles in our

proof.
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Lemma 3.7. Let 0(&) be as in (3.13). For || ~ N, we have the following relation:

ac

o(§) = EJF&(Q,

where N is sufficiently large and 5(£) = O(£72) as |£] — .

Proof. A straightforward computation gives

(1—-ag?)(1—cg?)  ac <1+ : ag + )

@) = Trearae) =~ 1+ 6€2)(1 + de?)

where
bd(a + ) and B_@_l
ac ac

\/7 al® + 3
(14 b€2)(1 +d&2)

Using the binomial series expansion, we know

—(b+d) —

which implies

o0]

1
(1+2)Y2 = Z()xk=1+§w+0(x2) for |z| < 1.

Thus, we can write

U(g) = a + &(5)7
where o m o1 5 - 1
7O =\d sa e raey O wslel> L
since

’ af? + 3
(14 06€2)(1 + d&?)

« 1 for [¢] » 1.

This concludes the proof.

Lemma enables us to capture a specific nonlinear interaction among other interactions

which makes non-smoothness of the flow, see Lemma [3.8 below.

Lemma 3.8. Let N » 1 be sufficiently large, T =
N and || ~ 1, then

1
100N

and 0 < s <t <T. If |&],|£ =& ~

: T T ~ A~
(1 +de¢ > (51)L2(t—s €)La(s, &) L(s, € — &) + %Ll(t—s,g)L1<s,gl>Ll(s,5_§l> > 3_12

1+06€2 /) h(E)
where h and Ej, j=1,2are as in (3.12) and (3.15)), respectively.
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Proof. A direct observation gives

1+ de?
1+ bg?

d
< 1L- .
max( b)

From the definition of h and the sizes of £ and &;, we immediately know

‘}2&%) < max <1, %) .

Moreover, we also know from Lemma [3.7] that

§0(6) = 3776 + O™,

as |¢| — o0. On one hand, the conditions [¢] ~ 1 and 0 < s < ¢ < T with T' = 50 yield

sin(€a ()t — )| < 3

which implies

% Lo(t — 5,&)La(s, &) La(s,€ — &)| < 3_12’

for sufficiently large N. On the other hand, since

Elo(©)lt = sl, o (€)lsl. | — lo(e - &)ls| < 5.

for sufficiently large N, we obtain

%Emt = 5,Li(s, )15~ &) > %

Collecting all, we complete the proof of Lemma [3.8] |

Proof of Theorem . We use a contradiction argument. Suppose that the flow map
U > 0[] is continuous in H*, s < —3. Then, from Proposition , the map vy — Ao (7))
is also continuous, where

Ay (Ty) = Na(A1(th), A1(Th)).

In what follows, we are going to prove that the map vy — A(tp) violates the following
inequality:
| A2 (o)

for s < —% and s’ € R, which completes the proof.

stf < H770||§7

Let ¢y be an initial datum, which will be chosen later. Using (3.16)), we write

= () =50 () = (ot mam = ) (3.38)
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where h and L;, j = 1,2, are as in (3.12) and (3.15]), respectively. Let

aala) = [ it 990, <1(1_ bfe)ag;(%l) Gas= [ (g) as )

as in (3.17)).

For N large enough, we choose the initial data ny as the zero function and wug as a large
frequency localized function, more precisely, vy = (1, ug) so that

Mo=0 and wo(§) = N""xay (§), (3.40)

where y is the characteristic function and the set Ay is given by

1 1
AN—{geR:N—§<|§|<N+§}.

Note that |ug| s ~ 1. Inserting the initial data (3.40)) into (3.38), thus (3.39), we obtain
Q2 = Q21 + W22, where

01 — Wibg) JR B(E) Dot — 5,€)Eals, €)1 (s, € — E)@(E)B(E — 1)dE,
and )
Q= Z(ngg) fR Li(t —5,6)La(5,6)La(s,€ — &)do(&1)d0(E — &1)dEr.

A precise computation is given in Appendix From the supports of 4g(&;) and ug(§ — &),
the possible values of ¢ satisfy

2N —1<|{|<2N+1 or [¢<1.

Moreover, by Lemma [3.7] we have

o @1 1(E ~ €)o(E ~ 6] ~ 4[N + 0,

for sufficiently large N. Set ¢ := Then, from Lemma , we obtain

1
100N °

@ [ (g;) ds

> <£>S/JO Oads

| A2 ()]

\%

H¥ (R)x H* (R)

(L2x L2)(¢]<1)

L2(Jgl<1)

. t
©” 1 +l€d§2 L J}Rao(fl)ao(f —&1) déids

2 N7 7Y€ r2qe1<1)

1
> —
32

L2(Jgl<1)

which does not guarantee the uniform boundedness of | Az (%) | o gy s+ (g for s < —3. This
complete the proof. [ |
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3.3.2 KdV-KdV regime: b=d=0and a =c= %

In order to prove Theorem , we need a modification of Lemma which was essential
to prove the generic case. We have

Lemma 3.9. Let N » 1 be sufficiently large and T = W and 0 < s <t < T. If
&1, 1€ = &| ~ N and || ~ 1, then we have

EE (=5, O T (5, ) R (5.6 — &) + 3L (0= 5, O TR (5. ) IR (5,6~ ) > o,

where o and L]K, j=1,2 are as in (3.19), respectively.
Proof. The proof is analogous to the proof of Lemma [3.8] thus we omit the details. [ |

Proof of Theorem . The proof follows the proof of Theorem . Suppose that

the flow map vy — ¥[7p] is continuous in H®, s < —3/2.

Let ©h = (1o, uo) be initial data given by (3.40)), and

oo () s ()

where Sk (t) is given by (3.18). Then, we write

() = [ Sicte =)0 77{ s = [ (E]) as

0

A straightforward computation enables us to decompose @1 and Q3 as Q1 = Q11 + Q12 and
Q2 = Q21 + (22, Where

Q11 = —i¢ fR LE(t — 5,6)LE (s,6) L (5, € — &1)i0(&1) R (€ — &)dér,

G =~ [ B~ 5. 081 (5, &) B (5. € ~ 0)(&)E — €1)d6s,

R
Oar = i€ f EX(t— 5, €)EK (5,60 K (5,6 — €)@ (€ — &)dey

and ‘
A i

Q2 = gsz (t =, LY (5,60 L1 (5, € — &)@ @(€ — &)dé,

where Lf j = 1,2, are given in (3.19)). On the supports of 1y (&) and ug(€ —&;), the resulting
frequency & possibly lies in the regions

2N —1<|¢§|<2N+1 or [£<1.
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Moreover, for sufficiently large N, we observe

&0k (§0)]5 [(€ = &1)or(§ —&)| ~ N°.
Set t := 100%. From Lemma , we conclude

f @2(15
0 L2(J¢I<1)
©ie f fR B0(€) (€ — &) derds

2 N3] r2qg1<1),

| A2 ()]

H¥ (R)x H*' (R) =

1
2 R
32 12(I¢l<1))

which does not guarantee the uniform boundedness of |As(t)| v (g)x g (g) for s < —3 and
this completes the proof. [

3.4 Proof of Theorem 3.3

3.4.1 Generic regime: a, c<0and b, d >0

We first address the following lemma, which plays a similar role as Lemma [3.8]

Lemma 3.10. Let N » 1 be sufficiently large, and T =
||, |1€ — K| ~ N, €] ~1 and (k = &) -k > 0, then we have

L+ deP) €k sUE=RD 7\ T e e 1T (o n
0D T oy 28288 = /) Aals k)

(k—&) -Kkl~ ~ ~ 1 (k=& -k 1
W§J1(t:f)t]1(3>f —K)Ji(s, k) = 16 (m - 5)

1

_|_

where - denotes the standard inner product in Fuclidean space, and g, jj, 7 =1,2 are as in

(13.22), (3.28), respectively.

Proof. A direct computation yields

) i (1, [ 0D

<(1&]) cb [€lx] (1 + DI¢J?)

Note that Lemma [3.7] is valid for o, thus

elel) = 351l + O(1 ),

d
< 1>,
e (1.1)

as |k| — co. On one hand, since || ~ 1 and 0 < s < ¢ < T with T = 5%, we know
|sin(I¢le(I€])( = s))| < &, hence
£k (€ —rl) (L +dIg*) » > > 1
Jo(t —5,8)Ja(s, & — k) J1(s, k)| < —,
e (o) 2 TSR E DA< 5
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for N large enough. On the other hand, since

T
[€le(lEDt = sl |xle(lsDls], [€ = le(j€ — xDls| < 3,
we have | |
§J1(t — S,f)Jl(S,KZ>J1(S,€ - /‘i) = E
We complete the proof from the last frequency condition
(E=8r
|k —£]l¢]

Remark 3.3. The last condition (k —§) -k > 0 in Lemma is not artificial under the
rest conditions |k, | — k| ~ N and |[£]| ~ 1, since the low resulting frequency from two high
frequencies interaction occurs only when two high frequencies lie in the opposite side around
the origin. A precise observation will be seen in the proof of Theorem below.

Proof of Theorem- . Analogously to Theorem (3.2 - . suppose that the flow map
Uo +— U|th] is continuous in H®, s < —=

Let Uy = (1o, uo1, uo2) be an initial data to be chosen later. Let

J1770 + §(|VD V| J2u01 + §(|VD \V\ J2u02
— a )
1= U111 = S(t) U1 = (|€| |V|J2’f]() + |V|2 J1U01 + le’lmg N (341)

—02
(|V| ‘V‘JQTIO + \V|2 —d2 J1U01 + |V|2 JIUOZ

where Ji, J5 are defined in (3.28)), and ¢(|£]) is given in (3.25)).

For N large enough, set

1 1
SN::{RER2ZN—§<I€1§N+§aDd|/€2|<1}
, 1 1 b e
uikelR :—N—aglﬁg—N—i-iand]mﬂgl =: Sy uSy.

We choose the initial data vy = (1o, w1, to2) as
no =0, and wo = ue2 = Y, (3.42)

where @N(f) = N"%xsy(€). Note that |n]gs ~ 1. Moreover, on the supports of @//)\N(§ — K)

and ¥ (k), the resulting frequency & belongs to

={€eR*:|g]<2,j=1,2}
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or

Syi={€eR*:IN—1< || <2N+1, [&]<2}.
From (3.29)), we have

¢ (1= bA) 1[0, (mur1) + Ouy (Mmur2)] t [ Qi(s)
Ay(57) = f Stt—s) | 2711 —dA) o, (w2, 12y | = J Qals) |ds. (3.43)
0 2711 — dA) 1 0p, (udy + uiy) 0\ @Qs(s)

Inserting (3.42)) into ( - thus (| -, we obtain QQ as Q2 = Qa1 + @22, where
A P& k) k(€= -+ B Y
Ot =60 ) T TR T S (O €~ Al = i)

(k—8-r p&r) 1= s AR AN WYy
o JE Al (1 + g2 (01 = A R (e = m)i ()

C/«522 = _15

o (& +¢ ) (1 + )
(&1t 82— Rt — K2) (K1 + Ko

PER = ey W

See Appendix for precise computations of Q);, j = 1,2, 3.
j

(3.44)

For ¢ — k, k ec Sy, the resulting frequency £ lies in 7, only when the vectors ¢ — k and &
are located in the opposite side around the origin, that is, £ — k € S, and k € Sy or k € SF,
and £ — k € Sy. Then, the angle 8 between two vectors £ — k and & satisfies

1 1
T —tan ™! (N—1> < B <m+tan™? (N—1>'
2 2

Then, by taking sufficiently large N, we make
3 (—K) K

——>cos(ff) = —-F—. 3.45
1 (8) € Al (3.45)
Moreover, on each support of ¢ (& — k) and ¢y (k), we have
_ 3)?
_p(g’ li) :(K?l - 51 + Ko — 52) (1‘11 + KJQ) > (Nl 2) : > §, (346)
1€ — K| K| 1+ (3+N) 4

provided that N > 16. Thus, for ¢ := =, by Lemma [3.10} (3.45]) and (3.46]), we get
, rt @1
1 A2(00)[| 17+ ) 15’ @) x 117 (R) = [<E)° .Jo Q2 ds
Qs (L2 x L2 x L2)(R?)
rt
> K€" J, Q2ds
L2(R2)
o 1.3 o [ v dete - manas
Z — = YERRETPIOE, N(K)YN(E —
T s
(1 +d|f| )z

which does not guarantee the uniform boundedness of [|Ay(To)|l s m2)x o w2y for s < —3.
This completes the proof. [ |
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Remark 3.4. Thanks to the symmetric structure of Q)2 and Q3 (see Appendix for more
details), the same conclusion is obtained by taking ()3 as a target instead of ()3 in the proof

of Theorem .

3.4.2 KdV-KdV regime: b=d=0and a =c= %

E|For ok is given in (3.35)), from the observation below
1€l o (IEN] = [€111 — €] ~ [€I°,

for [£] » 1, we have

Lemma 3.11. Let N » 1 be sufficiently large, T =
N, [&] ~1 and (k — &) -k > 0, then we have
£k
€]~

and0 < s <t <T. If|k|,|E—K| ~

1
T00N3

(T 5,6 = 0 s + ST T 56 = ) )

=55 (=i )

where JI, j = 1,2 are as in (3.36).

Proof. The proof is analogous to the proof of Lemma [3.10] thus we omit the details. |

Proof of Theorem

Suppose that the flow map vy — 0[7] is continuous in H®, s < —‘r—;. Taking the initial data

Vo = (10, Uo1, Uo2) as in (3.40)), we obtain

m Mo oea
v = | unn | = Sk(t) [ vor | = \VI L5 o + Mz JKU01 + Tzwjl uo2 |
U U Oz, Ox
12 02 |V\ J2 |V|2 —o J1 U1 + |V\2 Jl Up2
thus so
¢ Oy (MuU11) + Oy (Mu12) ¢ [ Q1(s)
Ay(0y) = J Sk(t—s) 2710, (u?, + udy) =: J Q2(s) |ds.

0 2710, (ui) + uiy) 0\ Qs(s)

Analogously to the proof of Theorem , we focus on ()5. A direct computation yields
that ()9 is decomposed as Qo = Q21 + (22, Where

Q== its ||| € MO (5.6 = W) T (R D(E = mD(r)

(E—r)-k
we |6 rlln|

1By scaling, we make a = ¢ = 1 as one dimensional case.

Q2 =16 p(&,R) = ff‘(t, &) T (5, € — k) K (s, K)n (€ — &) (r)dr
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for p given by ((3.44] - Note that all computations in Appendlx are available for KdV—KdV
case (by putting b =d = 0 and a = ¢ = 1). Thus, for ¢ := 100N3, by Lemmam, 3.45)) and

, we get

| A2 ()]

13w (Tf ~, o~
Hs/(R)XHs’(]R)XHS’(R) = a . Z H<£> glJO - wN(I‘f)l/}N(g — /ﬂ?)dfidS

LE(SL)
> N*QS*«?}

2(5)

which does not guarantee the uniform boundedness of |Az (%) g re)x o g2y for s < —3.

This completes the proof.

3.4.3 BBM-BBM regime: a =c=0and b=d=1/6
We have

Lemma 3.12. Let N » 1 be sufficiently large, and T = ﬁ and 0 < s <t < T. If
|k[, 1€ — K| ~ N and || ~ 1, then we have

S8 58 €) TP (5.6 — r)TE (s, 5) +

S o8 ‘JB(taf)ﬁB(Sf—/f)le(S,/ﬁ)

1€ — rllx] 2
L (=9w 1Y
16 \ | —~lls| 2
where ¢ and j]B with j = 1,2 are as in (3.22), (3.37) and respectively.

Proof. The proof is analogous to the proof of Lemma [3.10] with

€]
(1+5l¢)
for |£] » 1. |

[€les(l€]) = ~ €17,

Proof of Theorem

Suppose that the flow map v — ¢[t)] is continuous in H*®, s < 0. Taking the same initial
data Uy = (1o, o1, up2) as in (3.40)), we compute

m o Jan() + \V\ JQ Up1 + \V\ J2 Up2
0x10

v = | uir | = Sp(t) | uo | = ‘V| J2 Mo + |V‘2 Jl ugr + TQWJI Uo2 |

U12 Up2 0x2J —0z1 Oy B
+ 2 JByoy + 7
viJ2 0 T T 1 Yol \v|2 02

where JZ and J£ defined by (3.37)), thus so

¢ (1= §A) [0, (mu11) + Ory (u2)] t [ Qi(s)
Ay(v7) = J Sp(t — s) 2711 — ¢ A) 0y, (ud) + udy) =: J Q2(s) |ds
0 2_1(1 - %A)_laa:z (U% + u%z) 0 Qs(s)
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Note also that all computations in Appendix are available for KAV-KdV case (by putting
a=c=0and b=d=1/6).Thus, )3 is decomposed as Qs = Q21 + Qa2, Where

A §-rk pl&,K) »p 7B _ \TB n AT
@2 =—1& fR? €]lk] (1 + %‘5’2)‘]2 (t, )15 (s,§ = K)J7 (s, K)UN(§ — K)Un(K)dER,

. ~ ). 1~ ~ ~ ~ ~
Qua ity [ M2 PO L3000, )38(0,€ ~ )30 (5,06 — )l
6

for p given by (3.44). Thus, for ¢ := 555, by Lemma (3.45)) and ([3.46]), we get

| A2 ()

1 3 s t ~ ~
HS’(R)XHS/(R)XHS'(R) = a . Z H<€> glL - ¢N(K>¢N(€ - /{)d%ds

L3(Sr)

Z N_28

©"&

Y
LZ(Sr)

which does not guarantee the uniform boundedness of | Aa (%) v (g2 x g 2y for s < 0, this
ends the proof.
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Appendices
3.A Local Well-Posedness

This section briefly shows the local well-posedness of (3.1]) and (3.2)) including BBM-BBM
case, but not KdV-KdV case. This result may not be optimal except for BBM-BBM case.
The well-known well-posedness theorem is given by

Theorem 3.13. Let n =1,2. Fiz s > 0. For any (ug,vy) € H*(R™) x H*(R"™) , there exists
a T'(ug,v9) > 0 and a unique solution (u,v) € X5 (for a suitable solution space X5 ) of the
watial value problem . The maximal existence time T = T, for the solution has the
property that c

(Uo, Uo) ”HS(R)XHS(R)

t2]
where the positive constant Cs depends only on s.

It is well-known that Theorem immediately follows from multilinear estimates, thus
in what follows, we only focus on bilinear estimate (see Section below).

3.A.1 Notations

We define Bessel and Riesz potentials (J° and D?*, respectively) of order —s, s € R, as Fourier
multipliers by

A

J @)= F (U Ig3f) and Df(e) = F(1e)T)

In particular, v/—A = D' = D is the Fourier multiplier of the symbol |].

3.A.2 Littlewood-Paley Decomposition

This section devotes to explaining the Littlewood-Paley decomposition, which is an useful
way to improve the bilinear estimate for the local well-posedness theory. As well-known, the
Littlewood-Paley decomposition is a particular way to write a single function as a superpo-
sition of a countably infinite family of functions of varying frequencies.

Let ¢(&) be a real-valued radially symmetric bump function on R™ with the support
{€ e R™ : [¢] < 2} which is identical to 1 on the set {{ € R™ : |¢] < 1} and is decreasing on
{€ e R" : 1 < |¢] < 2}. Define a dyadic number N € 2220 of the form N = 2% k € Z-,. Let

denote p; = ¢ and define
_ (£ 28
pn(€) =¢ (N) — (N) , N

By construction, the sequence of py satisfies

Z en(§) = 1.

N=1 : dyadic

\Y
N
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We simply write )., by dropping "dyadic". This provides a typical partition of unity which
allows to define the projection operator (one of the so-called Littlewood-Paley projection

operator) on L*(R") by Pyf(z) = F~! (@N(ﬁ)f> (). Using the projection operators, one
decompose any function f in L*(R) as
f= Z Py f.
N>1

We sometimes denote Py f by simply fy. Note that fy belongs to any Sobolev space H*(R™),
s = 0 (or smooth), whenever f € L?(R"). The following lemma is well-known Bernstein
1mequality, which is to upgrade low Lebesgue integrability to high Lebesgue integrability with
the price of some powers of IV:

Lemma 3.14 (Bernstein’s inequalities). Let f € L*(R"), 1 < p < ¢ < o, and s = 0. Then,
we have
| D=ty ~ N vl o (3.47)

and
Ifnllpe S N? 7o || fnlpe - (3.48)

The implicit constants in both (3.47)) and (3.48)) depend only on s,n,p and q.

3.A.3 Bilinear estimates

Lemma 3.15. Let f,g € L*(R"). Then, we have

1P (f 2 = 1] 2 g2 -

Proof. The proof follows from \(J?* DI < flz2 9]z and SI£|<1 d¢ < 1. |

Lemma 3.16 (Refined bilinear estimate). Let s > "T_Q and f,g € H*(R™). Then, we have

|77 D(f9)] - < 1

s 1] s - (3.49)

Proof. From the duality argument, it suffices for the left-hand side of (3.49) to estimate

fR? (JS_ID(fg)) w du,

where w € L? with |w|,. = 1. We make the Littlewood-Paley decomposition of f,g and w

as
f:Zpr QZZQNQ and WZZWN,

Ni=>1 No=>1 N=>1

respectively. Without loss of generality, we may assume N; < N,. By Lemma [3.15, we are
now reduced to establishing

SOY Nt j Fangmawy 4z < 1 F e l9lge (3.50)

N>1 Ny,No=>1
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We separate ([3.50]) into two cases : N ~ Ny = Ny and Ny ~ Ny » N.
(Case I.) N ~ Ny = N;. Using Holder’s and Bernstein’s (3.48)) inequalities, one has

n
ffzvlgzvawfv dr < vl loms 2 [wnl e = N [ Fwall g2 g 2 lowll e -

With this, we further reduce (3.50)) to
22 2 NTUNSNE T fw
N>1No~N N1 SN2

thanks to (3.47). We denote the multiplier in the left-hand side of (3.51) by m(N, Ny, Ny),
namely, m(N, N1, No) = N™'**N;*N{~*. Note that the number of N, is finite, and then

20 20 lamlze ~ D lawlz.

N Nao~N N

ws 92 Lo [wnl 2 = 1 F gz 19l ars (3.51)

With this observation, Cauchy-Schwarz inequality yields

LHS of B51) < | sup >, m*(N,Ni,No) | [ f]

N>1 1<N1<N2
No~N

Hs Q‘Hs wHL2~

Hence, it remains to prove

sup > Y. NTEFEN;ENPTE < (3.52)
N>1 Ny N 1SN SN2

This is sometimes referred as Schur’s test, see, for instance, [33, Lemma 3.11] for more details.
Then, one gets if s > 3

Z Z N—2+28N2—28N{l—25 < Z N—2+25N2—25 < ]\[—27

No~N 1<N1<No No~N

otherwise (s < %),

Z Z N72+25N2725N{172s < Z N72+23N;74s < Nn7272s.

No~N 1<N1<No No~N

Thus, (3.52) holds true if s > 252

(Case II.) Ny ~ Ny » N. Analogously, using Holder’s and Bernstein’s (3.48)) inequalities,
one obtains

szvlgzvngv dz < [ fw |2 lgwall e lwnll o < N2 1wl 2 a2 w2

which ensures (3.49) provided that

sup > > Ny EN;EN'TE gL (3.53)

N2>1 NON, 1<N<N

One immediately obtains (3.53)) for s > ”T_Q, we thus complete the proof. [ |

75



Remark 3.5. Lemma slightly improves the bilinear estimates by Grisvard [16], par-
ticularly, validity of the bilinear estimates in H "%, This seems to facilitate the global
well-posedness in the energy space for 4-dimensional problem.

Remark 3.6. Replacing the Bessel potential J=! by (1 — bA)™! or (1 — dA)™! in Lemma
affects only the constant in the left-hand side, precisely, the implicit constant should
depend on b or d.

Remark 3.7. The standard Picard iteration method immediately assures the (smooth) local
well-posedness in H*(R"), s = max(0, "7_2) Thus, BBM-BBM case is optimal in the sense
that the flow map is analytic.

3.B  Decomposition of ()1, Q)2) on the generic regime: one-
dimensional case

This section provides a precise computation of );, 7 = 1,2, for one-dimensional case. Recall

(3-39) t t
i) = [[ste—o (G iz = (8 )as

where the linear propagator S is given in (3.16). A direct computation yields

Q1 = f[<1+b£2)L1(t ;&) (s, §) 2(1+d52)L2(t LE)u(s f)] 550
A . 1 ~ o 1 ~ )
Q2 =i [—mLz(’f - S,f)mul(s,ﬁ) + mh(t - 5»5)“1(575)]

Inserting the initial data 0y = (19, ug) = (0, ¢) into (3.38)), we have

r(3)-r(on(2) - (4545)

With this, a direct computation gives

7 (6) = fRnﬁ(gl)m _6)de = — f h(ED Dalt, €0 Da(t, € — €)(E)I(E - &)

R

and

urun (§) = f (& — &) (&)dé = Lil(tufl)zl(t»f — &)0(&)0(E — &1)dér.
Thus, by inserting them into (3.54)), we conclude that
O - —15[ (1+—1b§) j B(ED LA — 5,€) La(s, &) Da(s, € — £)B(E)D(E — &)y

h(€) > - - ~ o~
o0+ de) JRL2(15 = 5,§)La(s, &) La(s, € — £1)@(§1)0(§ — &1)d&y
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and

~

. 1 ~ ~ ~ ~ ~
Q2 = lf[ W JR h(&1)La(t — 5,6)La(s,&1) Li(s,§ — &1)o(61)P(€ — &1)d&

+ng&ﬁj;&u—agﬁma&ﬁmag—&ﬁ@a&s—&mal

3.C Decomposition of (@1, @2, Q3): generic case

This section provides a precise computation of @);, j = 1,2,3, for two-dimensional case.
Recall (3.27))
f Ti(t,€)f + g(‘f’)m J2(t )19 + &h ]
Fis®){g]|]= |15§|1)|§‘J2(t f)f + ‘5 A f)[519+52 Il (3.55)
" Tt OF + g h(t.O]6d + &h)
where J;, j = 1,2, are given in (3.28). Inserting the initial data ¥y = (1o, w01, u02) =
(0,0,9) = (f,g,h) into (3.55)), we have
m\  (SUED G R0
Flun |= %Jﬂt,ﬁ)qﬁ : (3'56)
U12 52(§‘§|—§§2)J1(t, I3

Recall the integral part in (3.29))
¢ (1 = DA) M, (mur1) + Oy (Mur2)] t [ Q1
As(v]) = J S(t—s) 2741 — dA) 710, (ud) + u3y) =: f Q2 |ds
0 2711 — dA) 710y, (ufy + uiy) O\ @

A direct computation on @, j = 1,2, 3, yields

0 = B0 [ ) + ()] — S T, (4, + )

A &1 j2(ta£) — — i& 7 2. 4

% =~ ORI iy () + TR+ Gy 1010 (). 557
A & B8 — i ER

Q= = T+ o P OFm) + &) + gy h . 6) (v + o).

With (i3.56)), we first compute nonlinear interactions

(&1 — k1)
€ — K|

(€)= | s(ri(e ) S (e ) (1€~ R)AE — ) .

(e =i [ sebnte. ) S e e € - 033 - o) an,
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) (& — k1) SRNB(E — k) dis
R0 = | w6 DS 1,0 1.~ R)3R)(E — ) di,

and
e = [ re 5 g~ 030e )
] €5l
e 6+ € ) 5+ 1)
11t 82 — K1 — Kg) (K1 + Ko
Ao =" W
Inserting them into , we obtain
A_——l K K/—g'(é—_m)/\ AS —HASHA/‘QA — R)AKR
@ = s L Ot 0 S 0T € = ) (5,06 — )
__<(eDie R s e
o | e T R0 15, = 1) (s, —
s i oSlEE (€1 T e 30056 —
igl ( /{)H —I{,ASKJAK}A — R)AR
+2(1+d|§|2)fR = Kwp(f W) Ti(5. €~ 1) (5, MBR)F(E ~ )
and
s i SR € E=n) 5 o5 TR
@s =~ s | 16D S e B Tl € = 1) (5, 0D(E — )
)
|

T 2(1 i§(21|£|2) JR (|£ il p(& k) J ( f)jl(s,f — n)ﬁ(s,m)&(n)&(f — k)dk.

3.D Decomposition of (Q1,Q2,Q3): a=cand b=d >0

This section provides a precise computation of @);, j = 1, 2, 3, for two-dimensional case when
a =cand b =d > 0. Note that the decomposition here is valid for both KdV-KdV and

BBM-BBM cases. Recall (3.32))

f Teb(t, €)fA+ g 8,660 + &h]
7 (Sab<t> (9)) = | BT OF + ST [ + &h ]

h BT + J‘ﬂ’(t O)[&d + &)
where JJ‘?b, j = 1,2, are given in (3.33)). Inserting the initial data vy = (1o, uo1, up2) =
(Oa ¢7 ¢) = (f797 h) into 171 = Sabﬁo , We have
7]1 i(fl‘giz)ng(t7§)¢A
Flun | = %Jﬁ%t,w : (3.58)
U192 52(?2"552 Jizb(t £)¢
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Recall the integral part in (3.34))

t (1- bA)_l[ﬁzl(muH) + Oy (Mtt12)] t [ Q1
AQ('Uﬁ]'_) = J Sab(t — S) 271<1 — bA)*lﬁxl (U%l + U%Z) =: J QQ ds
0 271 (1 = bA) 10y, (ufy + uiy) 0\ Qs
A direct computation on Q);, j = 1,2, 3, yields

O = 20O LT + T ~ e (6 (i + ).
- Tab —~ —
0, = - é—'% €, () + & (an)] + %Jﬁb(af) (i +ed).  (359)

) HEP)
@3 _ §2 ng<t7 f)

52 a /2\ /-2\
_ @(1 n b\f] ) [51(771 11) + 52( 1U12)] mjlb(t,g) (un + U12> .

With (3.58)), we first compute nonlinear interactions

() =1 [ p(e ) S0 T € - 030 - )

€)= [ ol SR T €~ 030 )

0 = [ e E I T ) T, B3 )

R?
and

uh(§) = fR pER (fg_ |)Jfb<, R)TE(E€ = )O(R)S(E — ) dr,
where

_ (&1 + & — k1 — K2) (K1 + Ka)
N N T

Inserting them into (3.59)), we obtain

A 1 /<;§<§ K) Sab abS K abSFLAFU,A Kk
@ =~ e | 6D R T s, = T s,k )

_ €] K- (§—K) 2 Fab — T i R)(E — 1)dk
s | e T . T 5. - ) TP 5,3~ )

I S /@5(5 K) b Zab 76 )A()DE — Kk)dk
4. - <1+.b|§|2>f pl6.R) it T T35, = W) T s, R) )€ - )

i& (E—kK) kK . ~ - A
ST L e PO R0 OT6.€ = R B)3(E )

and

=~ (1 fzf\s\z) f Pt “)fwéuf - K\) Tsb(,€) T3 (5,6 — k)T (s, K)o (K)D(E — K)dr

i& (E—K) Ky Tab 1) T (s k)b D(E — K)dk
BT b6 e O 18 = 0B —
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Chapter 4

Asymptotic stability manifolds for
solitons in the generalized Good
Boussinesq equation

Abstract. We consider the generalized Good-Boussinesq model in one dimension, with power nonlinearity
and data in the energy space H' x L2. This model has solitary waves with speeds —1 < ¢ < 1. When |¢]
approaches 1, Bona and Sachs showed orbital stability of such waves. It is well-known from a work of Liu that
for small speeds solitary waves are unstable. In this paper we consider in more detail the long time behavior
of zero speed solitary waves, or standing waves. By using virial identities, in the spirit of Kowalczyk, Martel
and Munoz, we construct and characterize a manifold of even-odd initial data around the standing wave for

which there is asymptotic stability in the energy space.

Contents
4.1 Introductionl . ... ... ... . ... o oo e e 84
.................................. 84
[4.1.2  Standing waves| . . . . . ... 86
413 Mammresultsl. . . .. ..o 87
4.1.4 Ideaof theprooff . . . . . . . . . ... ... ... ... . ... ... 89
[4.2 A virial identity for the (¢GB) system|. . . . . ... ... ... .. 91
|4.2.1  Decomposition of the solution in a vicinity of the soliton| . . . . . . 91
4.2.2° Notation for virial argument|. . . . . . . . ... ... ... 92
423 Virial estimate] . . . . . ... oo 93
4.2.4  End of Proposition[4.3] . . . . . . .. ... . 99
4.3 Transformed problem and second virial estimates| . . . . . . ... 99
[4.3.1  The transformed problem| . . . . ... ... ... ... 99
|4.3.2  Virial functional for the transformed problem| . . . . . . . . . . .. 99
[4.3.3  Proof of Proposition [4.8} first computations| . . . . . . .. . .. .. 100
4.3.4 First technical estimates . . . . . . . .. .o oo 102



|4.3.5 Controlling error and nonlinear terms| . . . . . .. ... ... ... 106

4.3.6  End of proot of Proposition 4.8 . . . . . . ... ... ... ... 108
4.4 Gain of derivatives via transfer estimates/ . . . . ... ... .. .. 109
[4.4.1 A virial estimate related to M(¢)| . . . . . .. ... 110
4.4.2 Second set of technical estimates . . .. ... ... 0000 111
4.4.3  Start of proot of Proposition|4.19 . . . . . . .. ... .. ... ... 114
[4.4.4  Controlling error terms|. . . . . . . .. ... ... 116
4.4.5  Controlling nonlinear terms| . . . . . . . . ... .. ... ... ... 118
4.4.6  End of proot Proposition[4.19 . . . . . . .. ... ... 119
4.5 A second transfer estimatel . . . . . . . ... .o 0000 120
[4.5.1 A virial identity for N'(¢)] . . . . ... ... o 120
|4.5.2  Start of proot of Proposition|4.25| . . . . . . .. ... ... .. 121
4.5.3  Control of nonlinear terms|. . . . . . . ... ... ... ... ... 124
4.5.4  End of proot of Proposition4.25 . . . . . ... .. ... ... ... 124
4.6 Proof of Theorem4.1f . . . . . .. ... ... . oo 125
4.6.1  Coercivity] . . . . . . . . . 125
[4.6.2  Proof of TheoremWM.Il. . . . . . . . . . ... ... ... ... ..., 129
4.7 Proof of Theorem 4.2 . . . . . .. ... ... ... .. .. ... 133
[4.7.1  Conservation of Energy| . . . . . . .. . ... ... .. ... ... 133
|4.7.2  Construction of the graph| . . . . . . ... ... ... ... . .... 134
[4.7.3  Uniqueness and Lipschitz regularity|] . . . .. . ... ... ... .. 136
APPENdICES| . . . ¢ v i vt e e e e e e e e e e e e e e e e e e e e e e e e 140
[4.A Linear spectral theory for —05£ . . . . . . ... ... .. ...... 140
4.A.1 Asymptotic behavior of fundamental solutions of —02L(u) =0 . . 144
4.B Proof of Claims 4.21/and4.22 . . . . ... ... ... ........ 145
4.B.1 Relation between 0,z and dvi| . . . . . . .. ... ... 145
4.B.2 Relation between 05z and d5v;| . . . . . .. ... 147
4.C Proof of Lemmal4.27 . . ... ... ... ... 00000 149
[Bibliography|. . . . . . . ... o oo e 150

This work has been recently submitted and can be found at |arXiv:2102.01151.

4.1 Introduction

4.1.1 Setting

In the 1870’s, J. Boussinesq [7] deduced a system of equations to describe two-dimensional
irrotational and inviscid fluids in a uniform rectangular channel with flat bottom. He was
the first to give a favorable explanation to the traveling-waves, solitons, or solitary waves
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solutions discovered by Scott Rusell thirty years earlier [31], which remained in their form
and travelled with constant velocity.

In a first order approximation, Boussinesq’s matrix model reduces to a scalar, fourth order
model

0i¢ — Oz — 02 + 02(f(9)) = 0, (4.1)

However, this model, known as the bad Boussinesq equation, is strongly linearly ill-posed.
Consequently, in order to repair this problem, the following equation was proposed [36], 28]:

0{¢ + 0z — 03 + 02(f()) = 0. (4.2)

Here the physical model considers the nonlinearity as quadratic, i.e. f(¢) = ¢ and ¢(t, )
is a real-valued function. This model is called good Boussinesq, and if formally u = ¢ and
v = 0, '0;¢, this model has the following representation as 2 x 2 system:

Ot = 0xv

v = 0x(—2u+u— f(u)). (4:3)

(9GB) {

This will be the exact model worked in this paper, which is Hamiltonian, and has the following
associated conserved quantities:

Eluv] - - f [ + @ + (0u)? — 2F(w)]  (Energy),
2 (4.4)
Plu,v] = Juv (Momentum).

(Here { means SR dz.) These laws define a standard energy space (u,v) € H! x L?. As well as
the Korteweg-de Vries (KdV) equation, (¢GB) is considered as a canonical model of shallow
water waves, see [35]. In addition, (¢GB) arises in the so-called "nonlinear string equation"
describing small nonlinear oscillations in an elastic beam (see [11]).

The study of the Boussinesq-type equations has increased recently, mainly due to the
versatility of these models when describing nonlinear phenomena. There are several authors
that focus on the good Boussinesq equation. The fundamental works Bona and Sachs [6],
using abstract techniques of Kato, proved that the Cauchy problem is locally and globally
well-posed for small data, and showed the existence of solitary waves for velocities ¢? < 1.
Linares [22| [14], using Stricharz estimates, proved that the Cauchy problem is globally well-
posed in the energy space in the case of small data. Kishimoto [16], in the case of a quadratic
nonlinearity, proved that the Cauchy problem is globally well-posed in H*(R), for s > —1/2,
and ill-posed for s < —1/2. In [30], it was proved that small solutions in the energy space
must decay to zero as time tends to infinity in proper subsets of space. Recently, Charlier
and Lenells [9] developed the inverse scattering transform and a Riemann-Hilbert approach
for the quadratic (¢GB), which is integrable. In general, solitons (solitary waves in integrable
equations) are stable objects. However, this is not the case of good Boussinesq (similar to
Klein-Gordon). Indeed, small perturbations of solitons may decay or form singularities in
finite time, see [11], 23] [3, [36].
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In this paper, we are motivated by the long time behavior problem for solitary waves of
the gGB (4.2) in the case where f(s) = |s[P7!s for p > 1. A solitary wave is a solution to

(4.2) of the form
(u,v) = (Qe¢, —cQe)(x — ct —x0), |c| <1, x9€eR,

with Q. solving (¢?—1)Q.+ Q"+ f(Q.) = 0in H'(R). This interesting question has attracted
the attention of several authors before us, showing that the behavior of solitary waves in the
standard energy space H' x L? is not an easy problem. Bona and Sachs [6], applying the
theory developed by Grillakis, Shatath and Strauss (see [13]), proved that solitary waves are
stable if the speed ¢ obeys the condition (p—1)/4 < ¢* < 1 and p > 4. Li, Ohta, Wu and Xue
[21] proved the orbital instability in the degenerate case 1 < p < 5 and speed ¢ = (p — 1)/4.
Additionally, Kalantarov and Ladyzhenkaya in [I5] proved that solutions associated to initial
data with nonpositive energy may blow up in some sense. Inspired by this work, Liu [23]
showed that there are solutions with initial data arbitrarily near the ground state (¢ = 0)
that blow up in finite time.

4.1.2 Standing waves

In the case that f is a pure power nonlinearity of the form f(s) = |s|P7's for p > 1, it is
well-known that (up to shifts) standing solitary waves have the form

pt1 1/(p—1)
u(t,z) = Q(x) = <2cosh2 (p;lx)> , v(t,z) = 0. (4.5)

Here, () satisfies the equation
Q'"(x) — Qx) + f(Q(x)) = 0. (4.6)
Let us consider a perturbation in of () of the form
u(t,z) = Q(x) +w(t,x), v(t,x)=z(t, ).

Then one can see that this perturbation satisfies the following linear system at first order:

Ow = 02 (47
Orz = 0, Lw,

where
L(w) = —2w + Vo(z)w, with Vo(z) =1— f(Q). (4.8)

L is the classical Schrodinger operator associated to the soliton (). This operator has been
extensively studied in [§] for instance.

Therefore, from ([4.7) one has 02w = 0?Lw. Consequently, for the well-understanding of
the problem we require to study the fourth order operator —d2£, much in the spirit of the
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fundamental works by Pego and Weinstein results [32], 33]. In Appendix we will prove
the following: for any p > 1, the linear operator

— L) = Otu— Pu + B2(pQ ), (49)
has a unique eigenfunction ¢q(x) associated to a negative first eigenvalue —v3 < 0, satisfying

(0, 0,0, b0y =1, —02L(do) = —vido, |oo(x)| < e V. (4.10)

Note that we also have d; !¢ well-defined, exponentially decreasing and part of L. Here (-, -)
is the inner product in L?*(R), and 1~ is a number slightly below 1. The second eigenvalue
of —02L is 0 but it is also a resonance in the classical sense (in L*\L?), but the unique L?
eigenvalue is ¢1(x) = ¢;Q’'(x). Therefore, by the Spectral Theorem, orthogonal to ¢ the
operator —02L is nonnegative. See Appendix for more details and full proofs of all the
previous statements.

Let 5 -2
_ 0 _ z %0
Yi - < iVOa_l(bO ) ) Zi - < iVala;1¢0 > : (411)

These are even-odd functions, i.e. the first coordinate is even and the second odd (see
Appendix [4.41). The functions uy (¢,z) = e**"Y , () are solutions of the linearized problem
(4.7)), showing the presence of exponentially stable and unstable linear manifolds relevant for
the dynamics of nonlinear solutions in a neighborhood of the soliton.

In that follows, we refers to global solution of (4.3) to a function C'([0,0), H' x L?) that
satisfies (4.3)) for all ¢ > 0.

4.1.3 Main results

It is not difficult to realize that preserves the even-odd parity in its variables (u,v). In
this paper, we will prove that any even-odd small perturbation of the static soliton (¢ = 0)
in the energy space, under certain orthogonality condition, is orbitally stable and in fact, it
is (locally) asymptotically stable. Furthermore, we will construct a manifold of initial data
such that the associated solutions are orbitally stable in H! x L?, and locally asymptotically
stable in the space L? n L®. Our first result is:

Theorem 4.1. Let p > 2. There exists 6 > 0 such that if a global even-odd solution
(0,000, ) of ([4.3) satisfies for allt =0,

[(6, 0205 0) (1) — (Q, 0) [ 1 zyx r2m) < 6, (4.12)
then, for any v > 0 small enough and any compact interval I of R,
lim ([o(t) = Qllramynreay + (1= 7) " 0d(t) ] 12(n) = 0. (4.13)

t—+00

This is, as far as we understand, the first description of the standing wave dynamics in the
Good Boussinesq model, which is unstable by nature. Clearly the data under which (4.12)) is
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satisfied is not empty, the soliton (Q,0) being its most important representative. However,
cannot define an open set in the energy space as simple as in some stable, subcritical
dynamics, such as KdV. Our second result will describe the manifold of initial data leading
to , but first we need to clarify some remarks.

Remark 4.1 (On the lack of decay of derivatives). Estimate (4.13) provides a clean and
clear description of the local decay of ¢(t) in the Lebesgue spaces L? n L®. However, no
clear description of the derivative 0,¢(t) has been found, which remains an interesting open
problem.

Remark 4.2 (On the 0;0,'¢ term). We have been unable to provide a clean description
of decay for the second component of the Good Boussinesq system. This is due to some
deep problems present at the level of the dynamics. However, provides additional
information on the decay of a suitable modification of the second variable. The constant ~
depends on 4, but it can be taken arbitrarily small if needed.

Remark 4.3 (About general data). The construction performed in this paper uses in several
steps the parity of the data. Extending our results to general data is a challenging problem,
mainly because one needs to introduce shifts that may affect in a strong fashion the dynamics.
We hope to consider this problem in a forthcoming publication.

Remark 4.4 (About the condition p > 2). The condition p > 2 is of technical type, and it
is needed to ensure a control on the unstable direction, sufficiently good for our purposes.
We believe that the situation for p close to 1 may be very complicated because of the weak
decay of the amplitude associated to the unstable direction.

The following result provides a description of the manifold of initial data leading to global
solutions for which (4.12)) holds.

Let §p > 0, and let Ay be the manifold given by
Ay = {eec H'(R) x L*(R)| € is even-odd , [ €] 1412 < 8§ and (e, Z,) = 0}. (4.14)
Theorem 4.2. Let p = 2. There exist C,6q > 0 and a Lipschitz function h : Ay — R with
h(0) =0 and |h(e)| < C’H(—:HZ?XB such that, denoting
M ={(Q,0) + €+ h(e)Y; with e € Ay}, (4.15)
the following holds:

1. If ¢q € M then the solution of (4.3|) with initial data ¢, is global and satisfies, for all
t>=0,

lp(t) — (Q,0)|mr®)yxz2®) < Clldg — (Q,0)| 11 (®)yxL2()- (4.16)
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2. If a global even-odd solution ¢ of (4.3)) satisfies, for allt =0,

1
lp(t) = (Q, 0)|m myxL2m) < 550, (4.17)

then for allt =0, ¢(t) € M.

Remark 4.5 (About blow-up). Liu [23] showed that initial data (ug, vy) for which E(ug, vg) <
0, or E(ug,vp) = 0 and less than a particular function of Im § 0, *ugvy (which is zero in our
case), lead to blow up solutions in finite time. In our case, we work with perturbation of the
soliton (@, 0). One can easily check that F(Q,0) = 2(1;;11) § QP+ > 0, therefore we are not in
the blow-up regime determined by Liu.

Remark 4.6 (Extension to other models). We believe that our results open the door to the
understanding of long time solitary wave dynamics in several other Boussinesq models. We
mention for instance the asymptotic stability of abed solitary waves, at least in the zero speed
even data case [4, 5], and the more involved case of the Improved Boussinesq solitary wave;
see [29] for further details on this challenging problem.

4.1.4 Idea of the proof

The proofs in this paper follow the lines of the ideas used recently by Kowalczyk, Martel and
Munoz in [18] to understand the unstable soliton dynamics in the nonlinear Klein-Gordon
equation, and by Kowalczyk, Martel, Munoz and Van Den Bosch [19] to study the stability
properties of kinks for (1+1)-dimensional nonlinear scalar field theories.

More precisely, the proofs are based in a series of localized virial type arguments, similar
to the ones used in [I} 2], 18], 19, 17, 25, 27]. In our case, we will use a combination of virials
to obtain the integrability in time of the L? x L?-norm of (¢(t) — Q, (1 — vd%)~'dé(t)), for
any v > 0 small enough, and in any compact interval I, i.e.,

L (190 = QU + 11 = 783) 06 ()3a(ry) dt < 0.

However, some important issues, not present in the previously mentioned works [I8] [T9] will
appear along the proofs. The beginning of the proof is similar to [18]: The first step is to
decompose the solution close to the solitary waves in an adequate way. We will consider
(u1,u2) € H' x L? be an even-odd perturbation of the solitary waves, which are in some sense
orthogonal to Y, and Y _, and the flow on these directions: for a;, as unique,

u(t,z) = Q(x) + a1 (t)po(x) + uy(t, x),

v(t,z) = as(t)ved, tdo(x) + us(t, ).

Then, we will focus on (uy,us) € H* x L?, which satisfy the linearized equation (4.7)). Fol-
lowing [30], for an adequate weight function ¢4 placed at scale A large, we obtain the virial
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estimate q )
o J(:OA(x)ullQ <-3 J [wE + 2(0,w1)? + (1 — CLA™) wi]

(4.18)
+ Cyaf + Oy fsech (z)u?,

where (wy,ws) is localized version of (uy,us) at A scale, and C; denotes a fixed constant.
This virial estimate has no good sign because of the term C} {sech (z) uf. Then we require to
transform the system to a new one which has better virial estimates, in the spirit of Martel
[24]. For any « > 0 small enough, we define new variables (vi,ve) € H' x H? by

vy = (1 —~702) " Luy,
vy = (1 —~v02) u,.

(see (.50)). Note that (vi,vs) € H' x H? which is bad news because of the lack of a
correct regularity order in the variables. This will cause problems later on. However, the
new system for (vq,v9) (see (4.57)) satisfies, for an adequate weight function ¥4 5, B « A,
the virial estimate

d 1
aQ J¢A7BU102 < - 3 J [27 + (Vo(z) — C2B™")25 + 2(0p22)°]

(4.19)
¥ B—102(|w1|%2 ; ||w2uiz) + Colarf?,

where (21, 22) is a lozalized version of (vy,vs), at the smaller scale B, V; given by (4.8]), and
(5 denotes a fixed constant.

Following [I8|, in order to combine estimates (4.18]) and (4.19) we need an estimate for
the last term in (4.18)). However, unlike previous works, here we have the following coercivity
estimate in terms of the variables (wy, ws) and (21, 22):

JSeCh(ﬂf)U? < BT (Jwilze + [ 0swn]32) + B 21|72 + B70u21 7. (4.20)

We can directly observe that the term 0,21 does not appears in (4.19)), leading to the main
obstruction present in this paper. This problem is deeply related to the fact that (vy,vs) €
H' x H?, i.e., the new variables are in opposed order of regularity.

In order to overcome this problem, we introduce a series of modifications that will allow
us to close estimates (4.18) and (4.19)) properly. First, we must gain derivates. In a new
virial estimate for the system of (0,v1, 0,v2) (see (4.98)), we obtain the third virial estimate

%JwA,BaxvlaacUQ < - %f ((5I21>2 + (%(I) — OgB_1> (§$22)2 + 2((9322)2)

+ Cslz2 72 + O3B~ 217
+ O3B~ ([0pwi]72 + w17 + [wel32) + Cslay|?,

(4.21)

with C3 > 0 fixed. This new estimate give us local L? control on d,z; and 0%2,, which was
not present before. Finally, our last contribution is a transfer virial estimate that exchanges
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information between 0,21, 0,29 and 0229, in the form of

1 d
5 J(@le)Q < a pA7Bax111U2 + C4J [(éﬁzQ)Q + (53522)2 + 2’22 + Z%]
(4.22)

' @B*”leré ; wzwiz) + Cilaif®

Here Cy > 0 is fixed and p4 p is a suitable weight function. Finally, we consider a functional
‘H being a well-chosen linear combination of (4.18]), (4.19), (4.21), (4.20) and (4.22)). We get

d
EH(T,) < — CQB_I (||w1”2L2 + Haxleiz + ||U}2||%2) + C'5|a1|3, for all ¢ = 0.

This final estimate allows us to close estimates, and prove local decay for u; after some
standard change of variables from w; to u;.

Organization of this chapter

This paper is organized as follows. Section [4.2] deals with a first virial estimate for a de-
composition system, namely . In Section we introduce the transformed problem
and prove first virial estimates on that system. In Section .4 we obtain virial estimates for
higher order derivatives of the transformed problem. Section is devoted to a technical
transfer estimate dealing with higher order transformed variables. Finally, in Section 4.6 we
prove Theorem [£.1], and in Section [.7] we prove Theorem 1.2
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4.2 A virial identity for the (¢GB) system

Recall the (¢9GB) system (|4.3)). The first step in our proof is to consider a small even-odd
perturbation of soliton (@, 0). In what follows we will describe this decomposition, introduce
some notation, and develop a virial estimate for the good Boussinesq system.

4.2.1 Decomposition of the solution in a vicinity of the soliton

Let (u,v) = (¢, 0.0, @) be a solution of (4.3)) satisfying ([4.12) for some small § > 0. Using
Y, asin (4.11), we decompose (u,v) as follows

{u(t, ) = Q(z) + a1 (t)go(2) + wi (L, ), (4.23)

v(t, z) = as(t)vedy ' go(z) + us(t, ),
where (see (4.10)))
a1(t) = ult) — Q, v Loy = (ult) — Q, & 60,
0a(t) = (00, 052000y = (005 ),
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such that
(u(t), 07 %oy = 0 = us(t), 05 o), (4.24)
or equivalently,

(ui(t), Loy = 0 = (ua(t), 0Leo). (4.25)

Orthogonalities (4.24]) are nonstandard particular choices motivated by key cancelation prop-
erties. See Appendix for a detailed construction of d; ¢y and ,%@g. Setting

1 1
b+ = 5(&1 + CLQ), b_ = 5((1,1 — CLQ), (426)

from (4.12)), we have for all t € R,

Jur(@) e + [ua(B)llz2 + lar ()] + laz(£)] + [b4 (£)] + [b- ()] < Cod. (4.27)
Moreover, using (4.6)), (4.10) and (4.24)), (a1, ay) satisfies the following differential system
- N,
a1 = VQs by = voby + ﬁ
, No or equivalently 0 (4.28)
a2=1/0a1+—, b — b_%
Yo - T - 21/()‘
where )
N =0, (f(Q) + [(@)(ardo + w1) — f(Q + ar¢o + u1)) (4.29)
Nt = N =Ny, ¢y, and Ny=<{(N,0d, " ¢o). '
Then, (ug,us) satisfies the system
= Oz | (4.30)
U = amﬁ(ul) + N s
with u; even and u, odd.
4.2.2 Notation for virial argument
We consider a smooth even function y : R — R satisfying
x=1on[-1,1], x=0on (—00,2]u[2,0), x <0on [0,0). (4.31)
For A > 0, we define the functions (4 and ¢4 as follows
1 X
) = exp (<0 - x@lel ) ale) = [ Gy, wer (@32)
0

For B > 0, we also define

cute) = e (~5 - x@)lel ). eue) = [ Gy, seR @3

We consider the function 14 p defined as

T

Yan(z) = Xi(@)en(x) where xa(e) = x (). zeR. (434)
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These functions will be used in two distinct virial arguments with different scales

1« B« BY « A. (4.35)

The following remark will be essential for the well-boundedness of some nonlinear terms
in what follow.

Remark 4.7. One can see that for each function v

fxin < J v? < C’J e~/ Ay < JUQCZI‘ < [ Gol3e.
|z|<2A lz|<2A

This estimate will be useful later on (see Subsections [4.3.5 and |4.3.5]).

4.2.3 Virial estimate

Set
I(t) - fR 0 (2) 101, (4.36)

and
Wi = <Aui, 1= 1, 2. (437)

Here, (wq,ws) represents a localized version of (uj,us) at scale A. The following virial
argument has been used in [I8] 19] in a similar context.

Proposition 4.3. There exist C; > 0 and d; > 0 such that for any 0 < § < 41, the following
holds. Fix A = §~'. Assume that for all t = 0, ([4.27) holds. Then for allt >0,

—7Z(t) < — %J[wg +2(0,w1)* + (1= CLA ) wi| + Cial + Cy Jsech (g) w?. (4.38)

Some remarks are in order.

Remark 4.8. This virial has several similarities with the developed in [I§] for nonlinear
Klein-Gordon equation. In that paper, the main part of the virial is composed by the H'-
norm of wy. In our case, this main part is similar to the H' x L?norm of (wy,w;), and
the rest of the terms are the same. Unlike [I8], we did not use a correction term since the
momentum of the equation (4.4) works well in this case. This virial was already used in [30]
in a different context (small solutions around zero).

The proof of Proposition follows after the next intermediate lemma.
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Lemma 4.4. Let (uy,us) € HY(R) x L*(R) a solution of ([4.30). Consider o4 = pa(z) a
smooth bounded function to be chosen later. Then

d 1 1
&I(t) =3 Jgp’A (u3 + ui + 3(0u1)?) + 3 fcp”/{uf
(4.39)
[ (s + oatin) (F(@) + F(@aidy — F(@+ o + ur) = Nod6n)
Proof. Taking derivative in (4.36)) and using (4.30)),
d ) . 1
&I(t) = | pa(trug +urtz) = | pa(dpugus + ui (0, L(u1) + N7))
, (4.40)
-3 J‘gp%ug + JgoAulé‘zﬁ(ul) + f(pAulNl.
For the second integral in the RHS of the above equation, we have
f@Aulaz‘C(Ul) = fsoAul(—aiul + Opur — 0o (f'(Q)ur))
1 /
=— f@Aul(?f;ul +3 J pals(uf) — f@Aulax(f (Q)ur).
Integrating by parts
1 / / !/
|t = = 5 [t + [ + gt - [ eamen(r(@u)
X (4.41)
=—3 J@IA [uf + (0pur)*] + J@'A’Ulaiul - f@Am@m(f'(Q)ul)-

Integrating by parts in the second integral in the RHS of the above equation, we get

Jgp’Aul&iul =— f(gofﬁ‘ul + 40ty ) gty
" ax u2 / / n u2
= [ (AE o) = - [+ [

For the last integral in the RHS of (4.40)), separating terms and integrating by parts we
obtain

J@AulNl - JSOAul (02 (F(Q) + f'(Q)(aro + wr) — f(Q + ardo + u1)) — Nod; o)
= J(SOlAul + pa0u1) (f(Q) + f(Q)ardo — f(Q + argo + uy))
+ f@Aulﬁx(f’(Q)m) — No f@Auléglgbo,
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Cancelling terms, we finally obtain

d [, u% u% 2 <amul)2
&I(t) =~ | ¥ <5 +t5 (Ozur)” + 5

[ //Iu% /
+en - [eamondrQuy

.

+ [ (Pawr + padour) (f(Q) + f(Q)ardo — f(Q + ardo + u1))
! (4.42)

r

" meﬂ@w—MJWMW%

1 1 -
T2 J%x (us + i + 3(0pu1)?) + 2 JSOZU% - NOJSOAulax L¢p.

¥ f (yr + ademn) (FQ) + F(Qardo — F(Q + ardo + 1))

This concludes the proof. [ |

Now we rewrite the main part of the virial identity using the new variables (wy, ws).

Lemma 4.5. It holds

" /1 \2
Jgo;, (us + i + 3(0pu1)?) — Jgp’;{u% =J (w% + 3(0w )* + (1 + C_A — (%121) ) w%) :

with
1
< —. (4.43)

NP

Ca G

Proof. Considering w; = Cqus, i = 1,2, and ¢/, = (%, we have

[ty = [+ ) = | (05 4. (149
Also,
[er@mn? = [y + [uzth (1.45

In the case of the last terms we have,
2\ " 7 \2
f@%u% = J—(QAQ) w? = QJ (—A + (CAQ) ) w?
CA QA CA

A

Ca

-
Ca

By (4.32)), we have

(4.46)



Then, substracting

" 1 1
C_i <§j> a2 [X(@)]2] + (1 = x(2)sgn(x)]” + 1 X' (z)|z] + 2} (z)sgn(x)].
For 1 < |z| < 2, one can see that
(@)
Ca Ca A

For |z| = 2, we have that

Gh (CA> _ 1
Ca Ca A2
Then,
é Ga < 1 1 < l
Ca (CA) (A A2> Ljelz1y S A
This ends the proof. |

Next, we deal with the nonlinear terms.

Lemma 4.6.
U(@IAM + adyur) (f(Q + ardo +ur) — f(Q) — f'(Q)airo) — J@Aul > o
gail—kfsech (g) w? 4+ A?|u | J|6 w |

(4.47)

Proof. First, we treat the term Ny { @410, ¢. Noticing that

No = (N, 0, ¢o) = =(f(Q) + f"(@)(ar¢0 + u1) — f(Q + a1¢o + u1), b0), (4.48)

and by Taylor’s expansion, one has

[F(Q+argo +ur) = F(Q) — (@) (ardo +u)| < aif"(Q)¢5 + f"(Q)ui +|ar[¢f + [ua|". (4.49)

Thus, by exponential decay estimates on () and ¢y (see Appendix [4.Al), and by (4.27)),
1] < 1, ]z < JJua]mr < 1, it holds

|No| < a? + fsech(Qa:/lO)uf, (4.50)

taking A > 4, we have
No| < a2 + Jsech (5)wt (4.51)

Noticing that for all x € R, |pa| < |z],
3
w2
sec (4:6)

la0, 0| S |wsech(92/10)] <

)
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and using Hélder inequality, we have

[ (3)
Jutsen )] |3

We conclude using Cauchy-Schwarz inequality

<

JU190A5;¢1¢0

1/2 1/2 1/2

<

~

< [[[utsean ()

< INof? +

2
<Saj+ fsech (g) w?

For the remaining terms, we consider the following decomposition

No JSOAWQZI%

JUMOA@_I%

[ (eatin + ) 7@+ aon + ) = Q) = 1'Qren]

= [040.[P(@+ axén +w) = F(Q+ vdn) — (£(Q) + £ (Qarn)un]
- [ eaQ 1@+ wn + w) = F(@ + ardn) ~ (£(Q) + 1 Qarén)un)
~ a1 [ 0020 [F(@ + ar6o + w) = F(Q + ar6n) = J/(Qus]
+ | hnlf(@ + o + i) - 7(Q) - F(Qard]

=. [1+Ig+[3+[4,

and rewriting as

I =— | §u[F(Q+ a1do +ur) — F(Q + argo) — F'(Q + argo)ur — F(uy)]

SuLF(Q + ardo) — F(Q) + F(Qardo)] s — fsomm),

I = — f oaQ [F(Q + ardo + w) — F(Q + ardo) — £(Q + amdo)ur]]
- j 0aQ (F1(Q + ardo) — Q) + F"(Q)ardo) us,

Iy =—a; J@Aax% [f(Q+ ar¢o + u1) — f(Q + ar¢o) — f(Q + ardo)us]
~ a1 [[0atutn (7Q + arén) ~ 1/(Q)

and

1y =J9014U1[f(Q + a1¢o + U1) - f(Q + a1¢0) - f(“l)]
n fso’Aul[f(Q Fardo) — 1(Q) — (Qardo) + fso;ulﬂul).
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By Taylor expansion, p > 1, |a1], |u1|r= < 1, we have

|F(Q+ai1do + u) — F(Q + a1¢0) — F'(Q + aro)ur — F(uq)],
<1Q + a1¢0/” M} + |Q + axdo|[ua ”,

<1Q + argoP1ud + |Q + ardo|[ur|® < sech(9x/10)u; < sech <%> w3
Similarly, using (4.32)) and A > 4, we find the following estimates
/ / z 2
4@ LF(Q + @60 + w) = F(Q + @6o) — /(@ + amdo)ur] | < sech (5 ) wi,

la1pa000 [f(Q + aro + ur) — fF(Q + a1¢o) — f(Q + argo)ur] | < sech (g)
| ur [f(Q + ardo + uy) — f(Q + ar¢o) — f(u1)]| < sech (g) w?.

Furthermore, once again by Taylor expansion, we have

|04 [F(Q + a1¢0) — [(Q) + f'(Q)ardo)] us]
+paQ [f(Q + a1¢0) — f(Q) + f"(Q)aigo] il
+ la19a0:¢0 [f'(Q + a1d0) — f'(Q)] u1] (4.53)
+ [P [f(Q + argo) — f(Q) — f(Q)ardo] |

< sech (2) a1 |*|uy| < sech <2> lw;|* + sech (4) lag|*.

For the last step, we need the following claim proved in [I8].

Claim 4.7. It holds

[ Gtaps = [ P < 2tz 1o

Using this claim, we have

U‘PAFUI

Finally, we get

U plau f(ur)

fCAu < AP [ f|5 wi .

U(ax%ﬂn +padeur) (f(Q + argo +u1) — F(Q) — f'(Q)argo + Novy 2 L)
< a‘f+fsech (g) w? + A% |up||h J\& w |

(4.54)

This ends the proof of Lemma |
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4.2.4 End of Proposition 4.3
Applying Lemmas and [4.6] and taking |us]z» < d4, for §4 small enough, we have proved

d 1 1 1
&I(t) < — 5 J lw% + 3(53311)1)2 + (1 — (Z + F) 1{|m|>1}) wf]

+ Ciat + Cy Jsech (g) w? + A u |5 J 0w 2 (4.55)

1 C x
< - 3 f [wg +2(0pw1)* + (1 - j) wf] + Crat + C) JSGCh <§> w?.

This concludes the proof.

4.3 Transformed problem and second virial estimates

Following the idea of Martel [24], we will consider the function v; = Lu; instead u; to obtain
a transformed problem with better virial properties. However, we must be careful since our
original variables (uy,us) belong to H'(R) x L*(R), and by using £, the new variables are
not well-defined. Therefore, we need a regularization procedure, as in [18].

4.3.1 The transformed problem

Let v > 0 small, to be determined later, set

— (1 — ~a2)-1
vy = (1 7@)7 Luy, (4.56)
vg = (1 —73?)tus.

From the system (4.30), follows that (vi,v3) € H'(R) x H*(R), and satisfies the system

1‘)1 = L’(&mvg) + G(l’), (457)
Uy = 0,01 + H(x),
where
H(w) = (1 =03 N, .
G(x) = 7(1 —~3;) 7 [2(f(Q))rva + 20, (f(Q))Ozvn] - '
Now we compute a second virial estimate, this time on (v, vs).
4.3.2 Virial functional for the transformed problem
Set now
j(t) = J¢A’BU1U27 (459)
with
YA = XaPs, 2= xalpvi, i=1,2. (4.60)

Here, (z1, z2) represents a localized version of the variables (vq,v9) at the scale B. This scale
is intermediate, and J(¢) involves a cut-off at scale A, which is needed to bound some bad
error and nonlinear terms; see [I9] for a similar procedure.
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Proposition 4.8. There exist Co > 0 and 6, > 0 such that for v = B~ and for any
0 < § < 8y, the following holds. Fiz B = §~8. Assume that for allt > 0, [&.27) holds. Then
forallt =0,

d 1
E](t) <— =z J [27 + (Vo(z) — CoB™")25 + 2(0p22)°]
+C,B7 (mué ; |wzr%2) + Colarf?,

where Vy(x) is given by (4.8)).

(4.61)

The rest of this section is devoted to the proof of this proposition, which has been divided
in several subsections.

4.3.3 Proof of Proposition [4.8} first computations
We have from (4.59)) and (4.57),

—J J@DAB[&? Vg ) Uy + 8(UI)+H( Jup + G(2)v ]

4.62
= J¢A,B(ﬁ5zv2)v2 ~3 JWA,BUf + f?ﬂA,B [G(2)ve + H(z)v1] . -
In a similar way to the computation in (4.41)), we have
| vaneomen == 5 [ s (6 + 3@?) + 5 | W03 = 5 [0anf (@a0d)
We consider now the following decomposition
_j( f¢AB v} + 05 + 3(0p02)?) waBQ
(4.63)

——J¢A3f 2+ (v3) JwABG U2+fwABH
=: (Jl + Jg) (J3 + Jy + J5)

By definition of ¢4 p (see (4.60))), it follows that

Vg = XaCs + (X2) s,
Vi = Xa(CB) + 203G + (XA)" ¢s, (4.64)
e = XalCB)" +3(x%) (CB) +3(x4)" ¢ + (X)) " ¢s-

Also, by the definition of z; in (4.60)), we have:
ot = W (0 + 02 4 3(0000)?)
A+ (A wp) (1 + 02+ 3(0,0)?) (4.65)
(X

— 2+ 20+ [0@)yes (2 + 2 + 3(0m2)?) +3 f VAL ().
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Derivating zo = (gxavs, replacing and integrating by parts, we obtain

[z - S [emr+ | [XA 20, g

] XACBUQ' (4.66)
B

Then, for J; we obtain

—2J; = J(zl +22)+3 J B2+ 3 f(8m22)2

#3 [ |xar 22 ke + [0rm (443 + 30.02).

Now we turn into Jo. By (4.64)), Jo satisfies the following decomposition

(4.67)

2, — f CA(CE) + 30AY(CY + 30A)'C + ()" on)v?

2 [(%) +C—B] A+ [BOAYGY +3086 + (A en)id

For J3, integrating by parts and using the definition of z3, we obtain

Y f o (banf Q)0 = — f (OGS + 020 F(Q) + Xapsls(F(Q)] 2

= | [F(@Q + o @Q)22| 2~ | (6 esf Q3
G

Finally, we obtain that the main part of the virial can be write as

1 ~
Jy+ Iy + J3 = ) J [zf + V(x)22 + 3(6’x32)2] + Ji,

where
Vi =1+ 28 o) o),
and the error term is given by
i3 [ |30k = 06k = S0V + (03 = 6)en o

X (4.68)

+5 [0 enr (@i -5 [0 emt - 5 | 0EY on@us)

To control the main part of the virial is necessary a lower bound for the potential V' (z). We
have the following result:

Lemma 4.9. There are C > 0 and By > 0 such that for all B = By, one has
V(z) = Vo(x) — CB™Y, where Vo(z) =1— f(Q). (4.69)
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Proof. First, recalling (4.43)) and changing the scale, we have

(9]
(B (B

Using that for z € [0,0) — (p(z) is a non-increasing function, we have for = > 0,

E (4.70)

e _ 506k
¢ GG

> 0,

and 0,(f'(Q)) < 0 for z > 0. Then,
V(z) > 1-CB™ = f(Q) +10.(f(Q)z| =1 -CB™ = f(Q) = Vo(a) —CB™".  (4.71)

The case = < 0 is similar. These estimates hold for any x € R. This concludes the proof. W

First conclusion. Using this lemma, and the above definition of Ji, we conclude
1

d
EJ@) < —=

5 f [21 + (Vo — CB™)z3 + 3(0,22)%] + Ji + Ju + Js, (4.72)

where J; and J5 are related with the nonlinear term in ([£.63). To control the terms J;, Jy, Js,
and the terms that will appear in the sections below, some technical estimates will be needed.

4.3.4 First technical estimates

For v > 0, let (1 — v02)~! be the bounded operator from L? to H? defined by its Fourier
transform as N
9(¢)

(=219 =

We start with a basic but essential result, in the spirit of [19].

for any g € L*.

Lemma 4.10. Let f € L*(R) and 0 < v < 1, we have the following estimates
1) 11 =) fleew < Ifle2m).
(i) (1 =702 0uf 2@y < v 2 f 2y

(ifl) (1 —~v2) " fllaz@) < v flrze)

We also enunciate the following result that appears in [19] [18]:

Lemma 4.11. There exist 4 > 0 and C > 0 such that for any v € (0,71), 0 < K < 1 and
g € L?, the following estimates holds

|sech (Kz) (1 —~02)~ gHL2 < C|(1=~02) " [sech (Kz) g] (4.73)

li2

and

Hcosh (Kz) (1 —~0%) " [sech (Kz)g]|,, <C H (1—~03)" gHL2 :

|1z <
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From this lemma, we obtain the following result.

Corollary 4.12. For any 0 < K <1 and v > 0 small enough, for any f € L?,

| sech(Kz)(1—~03) 00 fl> < v V?| sech(Kx) f L2,

where the implicit constant is independent of v and K.

Proof. Using (4.73)) and rewriting, we have

| sech(Kw)(1 = 703) " uf 12 < (1 —~07) ™ [Sech(KIIC)a =

(1 —~0%) 710, [sech(Kx) f] | 2

+ (1 = 707) " (s sech(Kz)) f 2.

The proof concludes applying Lemma [4.10]

Following the spirit of Lemma [4.11] we obtain

Lemma 4.13. For any 0 < K <1 and v > 0 small enough, for any f € L?,
| sech(Kx)(1 =)~ (1 = 3) fllz2 < 7" sech(Kx) f] 2,
where the implicit constant is independent of v and K.
Proof. Set h = sech (Kx) (1 —0%)7Y(1 — 02)f and k = sech (Kx) f. We have
cosh (Kz)h = (1 —~02)7'(1 — 2) [cosh(Kz)k] .
Thus, we obtain

cosh (Kz)h = (1 —~02) ! [cosh(Kz)k] — 02(1 — v02) ! [cosh(Kx)k]

(1 —~02) ! [cosh(Kx)k] + 71 (1 — 402 — 1)(1 — 402) " [cosh(Kz)k]

(4.74)

(4.75)

(4.76)

= (1 —~v0%) ! [cosh(Kx)k] + v ' cosh(Kx)k — v (1 — v0%) ! [cosh(Kx)k] .

Thus,
vh =(y — 1) sech (Kx) (1 — v0%) ™! [cosh(Kz)k] + k,

using Lemma [{.11] and dividing by 7, we obtain
[7]ze < 7K 2

This concludes the proof.

We need some additional auxiliary estimates to related the several variables defined.

Lemma 4.14. One has:
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(a) Estimates on vy:
Jorll < v~ M 22,

B B (4.77)
[0zl < v 21 (Qual r2 + 77 Orwa 2.
(b) Estimates on vs:
[oallze < [uallzz,  |0avallie < v us) e, (4.78)
[0zvallze < v~ ua 2.
The proof of the above results are a direct application of Lemma
Lemma 4.15. Let 1 < K < A fized and (x as in (4.33). Then
(a) Estimates on v;:
v < “w 2,
(65 i'l v wir . (4.79)
[k Ozvr] <7 | Gawn e + 47wl
(b) Estimates on vs:
[Ckvallze < wel L2,
R PR 1 17 (4.80)
[Crezvallre < v~ w2
Proof. Proof of (4.79). (i) Applying the definition of v; (4.56]), we have
ICxvillze < k(1 =~8) " [(1 = 32)(wa) — F/(Qua] |1z
Using Lemma and Lemma [4.10} (4.32)) and 1 < K < A, we conclude
[Ckvrlze < v ICkunllee + €k f/(@Q)un | 22
< 77k wi e + ICk G (@) lze < 7w e
Proof of (ii). First, by the definition of w; (4.37)), we get
Iy Ca
CKﬁxul = CKCA 6xw1 — C_Awl . (481)

Then, by definition of vy in (4.56)),

Ik a2 < ICk (1 —702) "1 (1 = 02)pun 2 + |Gk (1 — 702) 1 Ouf (Q)ua] 2

and using Lemma [4.13]

ICk0uv1 ]2 S Y ¢k Ot ze + (| Cre f/(Q)un | 2
< v M (10swi]| 2 + A7 wi | 22) + w22

< v M (10swi |2 + Jwi]r2)-

This ends the proof of (4.79). Following the preceding steps for vy, the proof concludes. W
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Now we perform some technical estimates on the variable z;.

Corollary 4.16. One has:

(a) Estimates on z;:
lz1] <9~
|0p21] < A Opwr ]2 + 47 wr | 2.

w1z,

(4.82)

(b) Estimates on zo:
|22] 2 < Jlwsz2,
10 22|l 22 < YV |wa 2, (4.83)

102202 < 77 |wa £2-

Proof. Proof of . For (i), from definition of z; = xa(pvi, we have
lz1]z2 < [CBuallze,

and using Lemma [4.15] we conclude
l21llze < v~ w22

For (ii), derivating z;, we obtain

Op21 = X%CBM + XACIBUI + xaCB0OzV1
(B

(B

= XaCBU1 + =21 + XalBOLv:1.
Then, by Lemma |4.15( we have

|0z21] < ’771( HwIHLZ + Ha:vleLQ)'

For z, we use the same strategy, and we skip the details. This ends the proof. |

Lemma 4.17. One has:

(a) Estimates on u:

HseChI/Q(:c)mH < w2,
L2 (4.84)
Hse(:hl/Q(x)ﬁgculHL2 < [Gwr |2 + [Jwi 2.

(b) Estimates on usy:
Hsechl/Q(x)UQHLQ < [lwa]| 2. (4.85)

Proof. Proof of (4.84)). Recalling definition of w; = (4u; for i = 1,2.. We have

| sech'?(a)u 2 < | sech!’(2) ¢ iz < i e
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Furthermore, derivating w;, we have

/

gAamul 0 W1 — C_Awl
Then,
| sech"?(x)0puq |2 = |sech'/?(x)¢ 3t (6 wy — g—;w1> H < | Gpwn | g2 + A7 wr || 2.
This concludes the proof. |

4.3.5 Controlling error and nonlinear terms

By the definition of (g and x4 in (4.33)) and (4.34), it holds

Co(z) <e B, |Ch(x) < =e B, |pp| < B,

(0T AT TG T A7 ()" <A

(4.86)

Control of J;.

Considering the following decomposition J;:

Ji=- %J(Xi)’wfa[vf +3(0p02)*] + %J[(Xi)’f’(@ + ()" = (A)) Jesvs

-3 = 00 - | caog =+ 1+

For Hy and H,, using |(x4)'¢5| < A™'B and Remark [4.7, we obtain
[Hil € A7 B([vil 2o <2a) + 10202072 (1<24) € A7 B(ICG01]72 + [Cadsv2l72),

and
|Hy| $ A7 Bloal|72aciaj<a) S A7 Blva| 72 (ajcony S A7 Bl Gual 7

For Hj, using (4.86)), we have

|H3| < J‘ Xaxa — XA )_( )lgB CBU2

(AB) | Cpv2liaa<any S (AB) " [Cpral L.

Finally, we get
(11| £ AT B ([Cavn |22 + [CavalTe + [Cadeval22) (4.87)

since (g < Ca.
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Control of J,.
Recall that

Ja = 7f¢A,BU2(1 — 02 [20,(0.(F/(Q))dpv2) — 2(f(Q))0sv5] -

Using Holder’s inequality
[ Jal € Yvavaf e | (1 = 783) ' [20:(0:(f'(Q))0rv2) — 05(f'(Q))rve]| 12 -

Y

T

First we focus on J}. Using (4.10]),
Tt <7 (0 (F1(Q))0rva e + [02(F/(Q)) v 2.

Recall that [0,(f/(Q))],|02(f(Q))] ~ @ 2|Q'| < e ® V2l Therefore, we are led to the
estimate of
He (r— 1)|x\(’} 'UQHLQ.

Differentiating 2o = x4(gv2, we obtain

/
XaCB0svs = Opza — B 2o — X4 (B2,

(s

we get

e 2P=VIel(5 4y)?
= eI (0,0)% 4 271 — \2) (0p00)°

< ¢~ (=Dl [(8 2)? + (EB) 2 4 (XCACBUQ)2] +e—(p—l)Ae—(p—l)lz\(33502)2
B

1
P [(a 2 + ] ] e BDlel (3 C)? 4 o P-DAG— Dzl (3, ,)?.

Hence,
le16,ual 12 5 [0azallze + 22l + €~ 4(ICaval 2 + 1Cndvalze).

By the above inequality, we have
S < (\a eolliz + 22l s + TV (|Cavlo + [Cads vzum) (4.89)

Second, using ¥4 5 = x4¢p in (4.60), and Remark one can see that

|ha,sval2 < Blxave|r2 < Blva|r2(ej<24) < Bl Gvz] 2.

We conclude
dl < V2B o1 (uam\m + [l + T DA(Cpunl s + cBaxv“z)). (4.89)
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Control of Js.

Recalling that ¢4 g = Y4¢B, using the Holder inequality and Remark |4.7, we get
; AP

s = \ [vast@n] < gl - 2e) 31

< Ixaesvr|r2|G(1 = ~402) "N pe.

By the definition of N* (see ({4.29)), it follows that

[CA(1 = 02) 7 N2 + [ Nol[CA(L — 703) 07 "o 2

JCA(1 = @2) TN 2 <
< IGA( = 502) " N2z + [ Nol,

|
|
since 0, '¢g e L? and 0 < (4 < 1

Furthermore, by definition of N in (4.29)), and using Corollary .12} (4.49) and Lemma [4.10]

we have

ICG(1 = ~32) "N 2
<7y VIGLFQ) + f1(Q)(ardo + u1) — F(Q + ardo + wr)]| 12
[a

<7 PGl Q)07 + f1(@Q)ud + e [Pof + [ur )] 12 (4.90)
< 2 (@l Q)G + £ (Q)Cawi ]z + laal”[CAoE L2 + [Calua [P~ ewn|12)
<77 (@ + Jun] o= | £(Q)wr ] 22 + aa [P + [un |7 e | 22)
<72 (af + e | 2) -
Note that we have used that p > 2. Since |xapp| < B, we have
Ixapsvilz: < Blxavilre < Bloirzqei<ea) < Bl¢GGor]ze. (4.91)
Finally, by (4.51)), (4.90) and (4.91)) , we conclude
[Js] < By 2 CGoilze (af + o s | 2). (4.92)
4.3.6 End of proof of Proposition
From (4.87), (4.89), (4.92), and choosing
0<~vy=DB" (4.93)

it follows
|y + Ju+ J5| < AT'B ([|Cavi |22 + [Caval3e + [Caduval32)

£ 2Bl Caval (|a walie + 22l s + =TV Cavlis + [Code vm)

+ By Va1 ( + ”“1”L°Ow”“’)'
(4.94)
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Applying Lemma [4.15t(4.79) and (4.35]), we obtain

iyt T < B (rwlr; + ol + ] + am|ri2)
(4.95)
+ B ( ; um%mnwluiz).
Choosing
B<d6 V8, (4.96)
(to be fixed later) and using (4.27)), we arrive to
B! + s o 01 [2) < 6@ + Jur [Zorfun ) 5 Jan]? + Juws | 2.

Then, using the above estimates, we obtain that the error term and the associated to the
nonlinear part are bounded as follows:

|y + Ji+ J5| < B (w72 + [wal7a + [|22]72 + |0p2a]72) + Jas|®.

Finally, the virial estimate is concluded as follows: for some C5 > 0 independent of B large,

d 1
G0 < =5 [+ 04le) - CB3 + 3@
+ 0B (|wlr%2 + gl + [l + amné) £ Claif®
, (4.97)
< - 3 J [27 + (Vo(z) — CoB )25 + 2(0p22)°]

£ 0,8 (||w1|%2 ; w) + Colaf®

This ends the proof of Proposition [4.8|

4.4 Gain of derivatives via transfer estimates

We must note that in the last term is a localized one, which in the language of estimate
(4.97) will correspond to a term of type 0,21, not appearing in this last estimate. However,
this new term will be well-defined by the regularity of the original variables (u;, uz). We think
that this problem appears as a product of the lack of balance in the regularity of (vq,vs) (see
Subsection . Therefore, we need new estimates to control 0, z;.

To solve this new problem, we will focus on a new virial obtained for a new system of
equations involving the variables ©; = J,v;, for i = 1,2. Formally taking derivatives in (4.57)),
we have

by = L(0.0) = 0/ (@2 + Ga), Glo) = 2,G(a) .
Uy = 0,01 + H(x), H(z) = 0,H(z), '
where G and H are given in ({4.58]).
For this new system, we consider the virial
M(t) = quA,Bf)lQNJQ = j(ﬁA,B&mvl&QO. (499)

Later we will choose ¢4 p = Yap = Y4 (see (4.60)).
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4.4.1 A virial estimate related to M(t)

Lemma 4.18. Let (v1,v2) € H'(R) x H*(R) a solution of ([(£.57). Consider ¢ p an odd
smooth bounded function to be a choose later. Then

i/\/l JqﬁAB 8 201)% + (0p02)? + 3 &21)2 ng”’ (0pv2)?
(4.100)

-3 JCbA B (Q)0:((0pv2)?) + J¢A,BG($)@UUQ + J¢A,BH(I)axU1-

d
The identity (4.100)) is interesting because it has exactly the same structure that EJ (t)

in (4.63)). This holds despite the new derivative terms appearing in (4.98)). To obtain this we
will benefit from a cancellation given by the parity of the data.

Proof of Lemma[{.18 From ( m (4.98) and ( @, we have

d
EM(t quAB 07 + 05 + 3(0,02)%) J(biXBf
__J¢ABf JCbAB F(@)vs + G(z) U2+f¢ABH (z)01.
(4.101)
Rewriting the above identity in term of the variables (v, vq), we have
d
—M = — = JQSAB 6 1)1> + (@Cvg) +3 621)2 f¢”’ 6 UQ

9 J¢Ava/(Q ((Op2)? JCbA B (f(Q))v20,v2 (4.102)
¥ fm,gc?(x)am ; f ba 5 H ()00,

Noticing that vo0,ve, 0,(f'(Q)) and ¢4 g are odd functions (see (4.56]) and - we have

J¢A Ba UanW = 0.

This ends the proof of Lemma [

The following proposition connects two virial identities in the variable (2, z2). Recall that

from (4.93) and (4.96), v = B~*, B < 65,

Proposition 4.19. There exist C3 > 0 and 63 > 0 such that for any 0 < § < 43, the following
holds. Fixz B = 6~/ < 67Y/8. Assume that for allt >0, - ) holds. Then for allt = 0,

1
%M(t} < - 5 f ((ale)Q + (‘/0(!13) — CgB_l) ((396,22)2 + 2(552’2)2)
+ O3] 22|72 + CsB™ 2172

+ O3B ([0wn|[ 72 + [wi]72 + Jws]f2) + Cslaal’.

(4.103)
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The proof of the above result requires some technical estimates. We first state them, to

then prove Proposition (Subsection 4.4.3)).

4.4.2 Second set of technical estimates

Now, we recall the following technical estimates on the variables (5 and other related error
terms. These estimates are similar to the ones obtained in (4.43)), therefore we only prove
the new ones.

Lemma 4.20. Let (g and x be defined by (4.33) and (4.31), respectively. Then

5 _ L @]+ (1 - x(@)sgnia)]. 2 (C_) + @)l + 21 (@)san(z)],

CB B CB (B B
(4.104)
and
CEINCICEIN A
By (B B el + 3¢ (@sonte)]
G Bl o (Y Ch G\, Lru
nm
. = 4C_BC_B +3 <C_B> — 12§B (C_B) +6 (C_B) + B [X( )(x)|z| + 4x (:B)sgn(a:)] :
(4.105)
Proof. Direct. |
Remark 4.9. From the previous lemma we observe that
G
Ci < B 1y (@),
C//
< B~ 1{‘m|>1}( ) + B_11{1<|x‘<2}(a:) < B~ %4+ B! Sech(a:),
B
l// 6(4)
C < B3 + B 'sech(x), [22-| < B™*+ B 'sech(z).
B B
In particular, for A large enough, the following estimates hold:
C‘/ "
2B\ < B ‘1{A<x|<2A}_B < B2,
CB CB
" (4) (4.106)
‘1{A<|x<2A}_B < B, lacuj<oay2-| < B
(B (B
Finally,
" /// C
éi + CB 59 < B7L (4.107)
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These estimates will be useful in Claim Now we prove a formula for changing
variables.

Claim 4.21. Let P € WY*(R), v; be as in (4.56), and z be as in (4.60). Then
"
[ Ponicaa = [ Py + [ [P + pn 2]

R ¢ s (4.108)
+J g ( ( ) )CBU17
where ) c
£(P).2) = P [¥ha + 032 | + JP @AY (4109
and
E:(P(@),2)] £ AP |1 + (AB) Y|P (4.110)
For the proof of these results, see Appendix [4.B.1]
Remark 4.10. For P =1, we get
ing}%(&mvif =J((9 ) —z - J& (1, ) B, (4.111)
where . C
&(1,2) = Sxxa + (XA)' 22 (4.112)
2 (B’

Finally, one has the following estimate:

IxaCBOuil* < [0uzil72 + B |zi72 + (AB) ™ w72
We need a second claim on the second derivative of v;.

Claim 4.22. Let R be a W**(R) function, v; be as in ([4.50), and z be as in (4.60). Then

| rerag @y - [ Re@a2 + [ Rz + | Paw)e)?

(
v [|raE + pe)E |2+ [ et s
)

+ | EuPato) )it + [ EaBie) o) @)

where
/// "

(4) m
CB "
G g

R(z) = — 2R() C_B + C_BC_B — 2R/ (z)2 (4.113)
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_ B (B 2] N
Pr(xz) = R(x )[4CB (CB) + 2R (x)CB, (4.114)
&1 is defined in (4.109),

// n
Ex(R(x).x) = — R(x) (xiz‘>xA+4xzxAgB B 4 20 )

B (s (B

— R(x) (2)(’”)(,4 - 6XZ;XAi + 6X'4 XA > (4.115)
(B (B

- @) (o + 50802,
B

and

Ny

Ex(R(x),x) = R(x >[4XA><A - 22 + 2

>=(x )]-I—R'( Y(xA) (4.116)

Finally, Pr, & and &; satisfy the following inequalities

|Prl| € BT R [pe + B Rz,

[Pl € BT R |z + BT R + B7Y R0,

(&2 < (AB) | R"|p= + (AB*) 7| R [z + (AB®) | R =,
[&5| < AR + (AB) V| R| .

(4.117)

For the proof of these results, see Appendix [£.B.2]

Remark 4.11. For R = 1, we obtain

@2 = [@a2 + [ R+ [ Pwy@e + [ | PwE + P | -
J e | f ol |+

(B B
JEQ (1, 2)(Bv? +J51 7)(Ev? +J53 (1, )3 (0,m1),
(4.118)
where,
Ry (x) = [Cg + CZ g] Pi(z) = 4C—§ — (?Z) (4.119)
& is defined in (4.109),
ul1,) = = (W + s + a4 20 ), (1.120)
(B e (B
and
E4(L ) = s — 2000 + 2203 (4.121)

(s

By Lemma [4.15 we obtain the estimate:
IxaCelzuill < |0zail72 + B Cuzillze + B ailze + A7 B wi] 7.
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4.4.3 Start of proof of Proposition [4.19

The proof of this result is based in the following computation:

Lemma 4.23. Let (vy,v9) € H'(R) x H*(R) a solution of {.57). Consider pap = tap =
X4¢5. Then

CM=- %f (@ + (Vo) = Q)] (@l + 3(e22))
+ ?B EB O2(f'(Q))75 + Ra(t) + Ru(t) + DR,(t) (4.122)

+ fgbA,BG(x)@wg + JﬁéA,Bﬁ(fﬁ)axUl,

where R.(t), Ry(t) and DR,(t) are error terms that satisfy the following bounds

[R-(O)] + [Ro(®)] + DR ()] € B~ (Jwr L2 + | Gswn[[72 + [wa]72)

! (4.123)
+ B (Jalz2 + 22 Z2 + [ 0u22lZ2),

valid for B sufficiently large.

Proof. First, we recall that z; = xa(pvi, and by (4.64) and Claim

fgb;LB [(0o01)? + (0pv2)?] = J(& 21)? + (0p22)° JC 27 + 23)

+ j &(10)G (02 + 03) + [0V en [0 + (@a1a)?]
(4.124)
where & (1, x) is given by (4.112)). Now, using Remark (4.118), we get

f &y 5(0202)° = J (E22)* + f i) (6,22) + f [fh(x) + Pl )gB + Pi(a) CB] 2

fsz (1,2)CEv3 + J E1(Py(x), )CEvi + f53(1,x)g3(&xv2) (4.125)
+ | 0V en(un

where Ry (z), Pi(x),E(1,x), E(1, ) are given by ([@.119), (£.120), [@.121)), and & is gyven

by (4.109).

Now, continuing with the second integral in the RHS of (4.100)), we have

2\n 4
[ttt = [ KB A @02 + [ |00y EE +s0a) + 02752 | oy
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and using Claim

m _ (CB)" 2 (C3)" Ch o <<<B)”)/<B 2
J@B“Q ‘J (“)*J a @ﬁf a ) &>

+5 f (%23” lXAX + 2(XA)’§B]CB 3+t J ((Z)”)/ (%) ¢y (4.126)

+ f [6(@)’%’2 +3(x%)" + (XA)’”Z] (B (0nv2)*.

For the third integral in the RHS of (4.100|), integrating by parts

[oasr@antar) =~ | (f(@>+f§ QD) i Pur?
- [eeyenr @

By the extended version of Claim and expanding the derivates in terms of z5, we have
fﬁéA S (Q)0.((0,v2)?)
" 2/ !/
-] <f @+ Zar@)) & - (20.0@) - 25 @)+ ) -

CB (B §: CB
- [(r@+ Zar@) @ - 5 [ (7@ + Fair@n) [+ 2040 e
—5 o (r@+ Zawr@n) odrad - [dresr @
i (4.127)

Collecting (4.124)), (4.125)),(4.126)) and (4.127)), we obtain

Mg [ear s () - 201@) ) (@ + 3@

1 /
+5 f lf—gg—iaﬁ(ﬂ(@) + ?;g Oa(f’ (Q))] 24 RU(1) + Ro(t) + DRu(D)
+ J¢A,Bé($)amvg + J%,BH )01,

where the error terms are the following: associated to (z1, zo) is

:__JC ;HRI(:UHP;( )E—B+P1( )C;]f
” CCZ)” CB i (%)%] £ (4.128)
w3 [|r@2+ (@) - 22 2o @) &

( CB ” — 3P ) é’ 22)2,
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associated to (vy,vy) is

Rlt) = = 3 [0 0 + ) - [ |eata) + o)) chod

1 i (CJQB),/[ " /<B] ((CB) ) 2\ 2,2

+ i) Xaxa + 2(x3% )< CB o+ J 3 (x2)'(Bv; (4.12)

o1 (f Q)+ £z <f'<@>>) [x;;xA +2<xi>’<—B]cév§
4 J & (B
1( / ¥YB ’ 2\ 2 2

e (f Q)+ £20,(f <@>>) (Y,
1) 3

and associated to (0,v1, 0;v2) is
DRu(E) = = 5 0V [(@a0n)? + (e + 3@20a)"] - 5 | Ea(1,0)h(@ura)
2 2 (4.130)

1

+ 5 | BOAYY + 308G + 68)"%n + () vaf (@) 0ara)*

We have obtained the identity (4.122). To conclude the proof of Lemma [4.23, we must
estimate the error terms.

4.4.4 Controlling error terms

We consider the following decomposition for R, (t) from (4.128)),
R.(t) = R.(t) + RI(t) + RI(1),

[ g [l GE (F) & -mels
R0 - -5 [ | P >§B+P1< B3 [ (2 -sn0)) @anr

1

3| [F@E + (2@ -2 o) &

For RL(t), recalling estimate (£.107) and R; (see (#.119)), and we obtain

where

Ri(t) =

RO < B |27z + B2 7 (4.131)
For R2(t), we recall the form of P; (see (4.119)) and by (4.107), we conclude
[REW] < B~ 2272 + B~ |0w2a]12- (4.132)
For R3(t), first we note
2@ <8

and by (4.106]), we obtain
IRI(H)] < B2 (4.133)
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Collecting (4.131] and m, we have
R0 < 57 ([l + Laalts + [ousl ). (4.134
For R,(t), given by (4.129)), we consider the following decomposition

RO = 5 [@1.0G08+ ) - [ |00 + &m0 |G
+ if (C%)” lXAX +2(x )ICB:|CB o+ J ((C%)//)/(XQ) B3,

G < 3
-1 (r@+ Sar@) g
. (f<@>+f§ (@) [XAXA+2<>< >'§§]

We note that the terms & (Py(z), z) and (1, z) (see ([.109)), (4.119) and (4.120)), by (4.106),

are bounded and satisfy the following estimates:
&(1,2)] < (AB*)™, and [&(Pi(x),2)| < (ABY)™

and for & (1, x) in (4.112)),
[&1(1, )| < (AB)™

Then, we have
[R,(®)] < (AB) ™" (ICsv1]72 + [CpralZ2) -
For R2(t), expanding the derivative and using (4.86]), we obtain

IR2(t) < A~ JCB
cat[lr@+ %

Ro(t)] < A7'B (|Cpur]Z2 + [Covalz2) - (4.135)
For DR,, given by (4.130)), computing directly and using Remark , we have

[DRu()] SBA™ ([CA0zv1lZ + [CAdaval 72 + A v2llZ2) - (4.136)
And, by (4.134), (4.135) and (4.136]), we obtain
R-(0)] + [Ro(t)] + |DR. (1))

< BATH([CAdavn |72 + ICA0v2 L2 + [CR 0502 22 + ICmvr ]2 + [ Covalliz)
+ B (lalze + lz2lze + [ 0azellz2) -

2 2
Cpv;

2(7(Q)) +2 ( - E—Bf—B) 6:(£(Q))

Cpv; < A7 B|Cpualis.

o:(f'(Q))

Then,

Using Lemma [4.15, we conclude
[R:()] + [Ro(t)] + DR (1) £ A B (Jwr 72 + | Cawn 2 + o] 72)
+ B (L + 22l + 0oz Z2)-
This ends the proof of Lemma [£.23] |

(4.137)
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4.4.5 Controlling nonlinear terms

Recall (4.122)). We set
M, = JaﬁA,B@(m‘)(%vz, M, = f¢A,Bﬁ(x)amU1-
These are the two remaining terms in (4.122)) to be controlled.

Control of M,
Recalling that G(z) = ,G(z) and G is given by (£.58), we have

Ma = =7 [(0GVGh + XA )l = 108 [P (@)ura + 20,(F(@)) %]

o [l = 12) [(Q)an + 20,(£(@)0]
el M21 + MQQ.
First, we focus on Ms;. Using Remark and Lemma [£.15] we have

(X2 ¢ + Xa(CE) ) 0nva] 2 < A7YCROwva| 12 + B™xalp0uva| 2
S A_IBQHWQHLZ + B_l [Hé’szHLQ + B_1H22HL2 + (AB)_1/2H’UJ2HL2]
< B[ 0wzal 2 + | 22] r2] + B~%[wo] 12,

and by (4.88]), we conclude
Mul 5 879 lsaals + il + sl | (4.139)
Secondly, for M. Set p(z) = sech(x/10), making the following separation

|Mas| < vlxapsp(x)d2vs 12

(p(2)) (L — 1) [%(f’(@))@w . 2@(]"(@))52112]

L2

< BlxaCoZun] s |(pla)) (1 — 7@2) [9§(f’(Q))5xv2 ; 2ax<f'<c2>>a§v2}

v~

Moag

L2
>

Using Lemma 4.11|in Ms3, we obtain

Maa = () (1= 122) oo (@) pl) s + 201 (@ o) s}

L2

<

(1) [(ag%(f'(@))(p(x))laxvz . 2ax(f’(Q))(p(w))10§vz)]
<I@(F Q) (pl)) rval e + (@) (o))~ 0 o

2
(4.139)
Since A2(f'(Q))p~* ~ e~4I#I/> and making the following decomposition, we have
e S5 (0,0)? =eMPCEE (x aCpuv2) + eI (L = XA (Cadava)®.
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Since e~ 471/5¢ 1 < 1 and e 34/5(;2(A) ~ e724/5 using Remark and Lemma we
conclude

le™ V50,02 < [|022]l22 + B~ 222 + A7 Cpual 2] + e P Cady v 12
<

|0zzal|z2 + B~ |22 r2 + A7 wal| 2.

And, for the second term in the RHS of (#.139). We note 0,(f"(Q))p~! ~ e~ *=/> and
repeating the decomposition, we have

o B (Gun)? =e AN R (T02)® + e NP (1 = XA CA(O702)”.

By a similar argument as before, e=4#1/5¢ 2! < 1 and e 34/ 2 (A) ~ 724/

.11 and Lemma [.15] we have
le= 5020, |12 < [ xaCBO2va| 12 + €7 Cad2vs| 12
< [0220] 12 + B0z 2 + B 2] 2 + (A7 B*)? | 2.
Finally, for My, we have
| Mas| € B7° ([0522] 72 + |0022]72 + B™2[22[72 + A7 B |wal72) - (4.140)

, applying Remark

Collecting (4.138) and (4.140]), we conclude
My S 3_3[9522”%2 + [ 0azalZ2 + 2272 + fwalZ2 |- (4.141)

Control of M;.

Recalling that H = 0, H, H is given by and using Lemma we obtain
(M| < [xappdovi |z xa(l — ) 0N 12
< Ixappdevn] 2| CG(1 = 82) 710N 2.
Now, by a similar computation that , we have
[ =02 0u(NF) 2 < v H(ad + Juafp [wi ] 2). (4.142)
Then, by , Lemma , and the above estimates, we conclude
(M| € v Bllwira(af + e i ] 22)*

4.143
< B w2 + 7B a? + un e fan[20). (4.143)

4.4.6 End of proof Proposition 4.19

Using a similar computation that Lemma we are able to estimates £ M. Set B = 6=/,

and con51der1ng m, and ({ 14 4.141]), we obtain

dye - % [(@ar+ (v - o) @er + 2@

L ((eBCE 2, s ) 5
. J(CB ZA(F@)+ ZEar@))s
+ C’max{BgA ,Bfl,é} (H&xleLa + leH%Q + HUJQH%;)

L 0B [ramzz\; ol + zn\%?]  Clarf
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Since

2585 52 (Q)) + P28, (£(Q))| < 1.

¥B A /
g =Q) <0 and Hm @ Cs

Ck

we conclude

_M < _ lf(a 2)% + (Vo(a) — CB™Y) (0u20)? + 2(0%20)?

+ Clzl}2 + CB™ a7
+ Cmax{B°A™' B4} (H&xle%z + |wi]3s + ||w2|]2L2) + Clay .

Calling C5 = C, and using (4.35)), the proof is completed.

4.5 A second transfer estimate

The variation of the virial M(t) involve the terms 0,2, and 0229, these terms do not appear
in the variation of the virial related to the dual problem. Hence, we need to find a way to
transfer information between the terms 0,21 to 022,. The virial N, defined as

N = JPA73171U2 = J‘pAJgaxUl'Ug, (4144)

where py p is a well-chosen localized weight depending on A and B, its variation will give
us that relation. A similar quantity was considered in [I9]. Note that the virial A/ considers

the dynamics in (4.57) and (4.98]).

4.5.1 A virial identity for N (¢)

Lemma 4.24. Let (vy,v9) € HY(R) x H*(R) a solution of (4.57). Consider pap an even
smooth bounded function to be a choose later. Then
d
TN =2 [ s = [ panl(@)? 4 V@) @sP] + [ pan(an?
: : ) (4.145)
b5 | Bloanvi@li = 5 [ At + f paseaCia) + [ pantonH(z).

Proof. Computing the variation of N, using and ( - we obtain
%/\/’ = JpABwE&m@g + JPA,B@% + pr,ng(é(x) — 0. (f1(Q))ve) + JpABﬁlH(x).
Integrating by parts the first integral of the RHS, we have
JpA,ngﬁﬁxfjg = JpA,ng(—aiﬁg + Vo(2)0,09)
=- Ja:?:(pA,BUQ)ax@2 - J ((7m[PA,BV0($)]U2772 + pA,BVE)($)T}§>
= JPIX,BW% +2 JPQ,B@ - JPA,B ((0202)* + Vo(2)73) — Jam[PA,BVo(x)]W%-
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Then, we get

d
G = = [ pan (@ + Ve@) + [ pant? +2 [ inh ~ [ ulpantitoas
|t grats + [ pasen(Glo) - 2u(F(@e) + [ paninti(a).

Rewriting the last expression in terms of (v, vy), we obtain

d 1
GV = = [ pan (@0 + V@) @) + [[pas(@on)? 42 [ o p(@n)? = 5 [ olfhnd
1 ~
+5 | BloasVo@1ed + [ panen(Glo) - 2u(7Q)n) + [ pasdonti(a).
The proof concludes from the fact that pa gv3 is even and ,(f/(Q)) is an odd function. W

Now we choose the weight function p4 . As in [19], let
pap(e) = Xalh, (4.146)

with x4 and (p introduced in (4.34)) and (4.33).

We will make the connection between (4.145|) and the variables (21, z2), through the fol-
lowing result. Recall that from (4.93)) and Proposition 4.19, v = B~*, B = §~1/19.

Proposition 4.25. Under (4.146)), the following holds. There exist Cy and 64 > 0 such that
for v = B~* and for any 0 < 6 < d4, the following holds. Fix B = §~'/° holds. Assume that
forallt =0, (4.27) holds. Then, for all t = 0,

d 1

a/\/’(t) = 5 J(&le)Q — C4J [(é’izQ)Q + (09622)2 + Z; + Z%]
(4.147)

. 04514“9<|w1||%z ¥ ol + ra1|3).

4.5.2 Start of proof of Proposition [4.25

The proof of this result is based in the following result, which relates Lemma and the
variables z;.

Lemma 4.26. Let (vy,v) € HY(R) x H*(R) a solution of ([£.57). Consider pap = x4(%,
then

GV = [ @ - sy @ar + R @]+ [@ar .
+ RZ(t) + RV(t) + RDV(t) + pr,ngé(x) + JpAvB@,;le(x),
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where RZ(t), RV(t) and RDV(t) are error term that satisfy the following estimates
IRZ(t)| < B?|1l72 + B~ |27 + B[ 0u2l72,
RV < (AB)™ 'y w7 + A7 wa 72,
[IRDV(8)| < (AB)™ 'y ws| 7.

Proof. First, we consider the following decomposition from (4.145]):

d
EN = fﬂA,B(amvl)Q - JPA,B(85U2)2 - pr BVo(2)(0pv2)” + 2 prB (Opv2)?

1 1
+3 fai[PA,B%<$)]U§ -5 Jpﬁf‘}Bv% + pr,B&zle (x) + J panonClz) (4149)

2
= (Nl + NQ + Ng + N4> -+ (N5 + N6) + (Nl +N2).

Secondly, from the definition of p4 5 (4.146])
Pas =)'+ Xa(CE)
Phs = (X4)"Ch +2(0¢4) (CB) + XA (Ch)",

s = ()" +30¢)"(CB) + 3064 (CB)" + Xa(ca)”
(XA

PVp = )W +403)"(CE) + 6(x2)" ()" + 403 (CB)" + AW

For N3, applying Claim with i = 2 and P(x) = Vy(x), we have

(4.150)

= [Vl + [ [ + 2. 06@)E | 4+ a0 (@5

(B
where &; is given by (4.109) For Ny, by (4.150)), we have
1 " / !/ CQ g
3N = 080G+ 031 @Newr + [ dgmr s
B

and using Claim .21} with i = 2 and P(x) = ((3)"/C3, we get

<<B>"> G (&) j] : ((@%)" ) -
“( G ) G W 2 fa &) )

+ f [0G) + 2<XA>'§BJ<B<6 )’
Now, for Nj, expanding the derivative, replacing and using definition of 25, we have
2\ 2/
v == [ | -2 - S @) - 28 0o
¢ 5 5 (4.154)
# [ |20 + |Vt + 208,00 ) et

Finally, for Ng, reeplacing (4.150f), we have

4) 2\m 2\
e [ a0 o0 s ()| Gt s
B B
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Therefore, collecting (4.118)), (4.111)), (4.151)), (4.153)), (4.154) and (4.155) (and also for N,
and Ny we use the relations in Remarks [4.10| and 4.11]), we conclude

GV = [ @ s e + @] - [@n
L REZ(l) + RV(L) + RDV(L) + J pasaCi(z) + J panlunH(z).

where the error term related to z = (21, 22) is

ra() - [ St - [ |0 E + o.0anE | 2
-3 [ [ ) - 288 i + B
- [+ P )Eﬁ e ><B]

the related to (vq,vs) is

RV(t) = J&(L@Cigv?

- [|astite o + .0 + i) -2, (“% o) |z

v [ (2082 + ) voto) + 20872040 | e

-5 [|r0cr e s onar el s >”'§§ -0 G
and the related to 0,vs is

ROV = 2 [ [0 + 04V SE ~ St o) |ch e,

It is clear, from (4.107)), that the error terms satisfies the following estimates
R2(0] 5 57 (Jalls + Ll + 0wl ). (4.156)

and

IRV(t)] < (AB)"|¢puil7. + A7 Cpua3s,
IRDV(t)| < (AB)™*[Cpuva]%.

Recalling that v = B~* and applying Lemma , we conclude
IRV(t)| £ A7 BT w72 + A7 ws7e,

4.157
RDV()] < A~ Byl (4.157)
This concludes the proof of the Lemma [ |
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4.5.3 Control of nonlinear terms

The nonlinear terms in (4.148)) are denoted

Ny = JPA,BUQG(ZE), N = fﬂA,Baxle@)-

Control of V. Recalling that G = 0,G and G is given by (4.58), using definition of z, and
(4.146)), we have

Ny = \ [(Gcacoyzs + xacotez)6t)| < 2(12alis + 100zale)Gle

By Cauchy-Schwarz inequality, (4.88)) and Lemma [4.15[ we conclude
NGl 5 9l + [0uzalia) (1ol + Pl + €04 ([Gaal + Kntuvalio))
S (Hﬁmiz + 2272 + e 24 CpaZa + ||CB@xv2||%z))

< 2 (Ham; +eala + e-2<p-1>Av-1\w2\%z).
(4.158)

Control of N;. We observe that

(xACB)?0pv1 = xalB0rz1 — (xalB) 21,

then, we have

N = [[eacatez: = (xate) bt ).
Recalling that H(x) is given by (4.58)). Moreover, using (4.90)), (4.51]) and (4.27)) we have

V1| < B7' (|0s21]7 + ||21]172) + B (af + ur |7 |wi]72)

) (4.159)
< B (|0sz1l72 + |21]72) + B0 (Jau|* + |wi3-) -

4.5.4 End of proof of Proposition [4.25

Since v = B~* and B = 6~ Y'%, collecting (4.156)), (4.157)), (4.158) and (#.159)), we obtain for
some Cy > 0 fixed in (4.148])

G0 > (@ - [[|@ar+ 0= @)@+ @)
~[RE(W)] — RV — [RDV()| — M| — MG
> % J(alef o f [(229)° + (o22)” + 22 + 22]
- Camax{a™ 5,090 (s + sl + )
Using (£.35), A™'B” « B=3 « §'/19. This ends the proof.
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4.6 Proof of Theorem 4.1

Before starting the proof of Theorem [4.1], we need a coercivity result to deal with the term

f sech (z)w?

that appears in the virial estimates of Z(t) (see (4.38))). We will decompose this term in
terms of the variables (wy,ws) and (21, 22). The last ones involve the variables (vy, v9); then
we should be able to reconstruct the operator £ from our computations.

4.6.1 Coercivity

We shall prove a coercivity result adapted to the orthogonality conditions (u, Q") = (u, L(¢g)) =
0 in (4.24)), where ¢ was introduced in (4.10). The idea is to follow the strategy used in [34]
and [I0]. Recently, in [I8|] the operator £ was appeared in a similar setting. It has a unique
negative single eigenvalue 79 = —(p + 1)(p + 3)/4, associated to an L? eigenfunction denoted
Yo.

Our first result is a coercivity property for £ whenever the first eigenfunction Yj is changed

by ﬁ(d)o)-

Lemma 4.27 (Coercivity lemma). Consider the bilinear form

H(u,v) = {L(u),v) = J(&Buﬁxv +uv — f(Q)uv).
Then, there exists A > 0 such that
H(v,v) = Aoz, (4.160)
for all ve HY(R) satisfying (v, Q") = (v, L(¢g)) = 0.

Proof. See Appendix [4.C| |

We will need a weighted version of the previous result. See e.g. Cote-Munoz-Pilod-Simpson
[10] for a very similar proof of this result.

Lemma 4.28 (Coercivity with weight function). Consider the bilinear form

He,(u,0) = (N @eL(u), \/dpv) = f 30(Caudyv + wv — f(Q)uv).

for ¢y smooth and bounded and such that 0 < ¢, < Clgy, where C' is independent from (.
Then, there exists X\ > 0 independent of € small such that

Hav,0) 2 ) [ 6@ + %),
for all v e HY(R) satisfying (v, Q") = (v, L(¢g)) = 0, and provided { is taken small enough.
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The key element of the proof of Theorem [4.1]is the following transfer estimate.

Lemma 4.29. Let u; be even and satisfying (4.25), (wy,ws) be as in (4.37), and (z1, z2) as
in (4.60). Then, for any B large enough, it holds

fsech(w)u% < BTV (Jwi |22 + |Gpwn|22) + BY2||z1 |22 + 7|00z | 2o (4.161)

Proof. Set 2 < ¢ < min{2, }/A} <

fsech r)ud < Jsech2 (0x) u?

Now, we focus on the term on the RHS of the last equation. Applying Lemma [£.2§ for
¢ = sech® (£z), since |¢'| < Cl¢p. We obtain

. We note that

lol»—t

fsech2 (bx) u3 < Jsech2 (Cz) [uf + (pur)?]
< ;Jsechz (0z) [uf + (Opwr)?* — f(Q)uT].
Now, integrating by parts
fsech(éx)(@zul)Q =— fsechQ(ﬁx)ulﬁgul + % f(sechQ(Ex))”u%,

and by
|(sech?(¢x))"| < £ sech®(fx).

Choosing ¢ small enough (0 < ¢ < ) we obtain
fsech%ﬁa:)u% < Jsech2 (bx) L(uy)uy.
Now, using definition of v;, we obtain
Jsech2 (lx) L(uq)uy < Jsech2 (lx) uyvy — ’yfsech2 (b)) uy 020y (4.162)
For the first integral in RHS of , using definition of z; and w;, one can see that
Jsech2 () uyvy = in sech? (£x) u vy + j(l —x3) sech? (£x) uyv,

= in sech® (£x) (CaCp) w2y + J(l — x%) sech? (¢x) Cwi (Cavr)
max {sech® (£z) (CalB) ™" Hwillz2]21] 22 + fﬁgﬁ{SGChz (£z) Cy2YHlwr] 2 [Cavn [ 2

< max {sech” ((x) (Ca¢p) ™" Hwi 2] 22 + 77" max{sech® (¢x) (x*}wa] 72
|z|<2A |z|>A

A

_ A
elwilzz + € Mz liz + v e 738 fwn| L.

A

(4.163)
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Note that the last inequality holds if 2B~ < /.
Now, for the second integral on the RHS of (4.162)), integrating by parts we obtain the
following expression

J O [ sech? ((x) ul] O
— f [(sech?® (£z)) us + sech? (£z) Oyus | Opv1
(4.164)
= J(sechQ (0x)) % u1 001 + J(l — x4 (sech? (0)) uy 0,01

+ J sech? (£x) X% 0u10,v1 + J(l —x%) sech? (£2) 0,1 0,01 .

Using the following decomposition and by Hélder inequality, we get

U(sech2 (0x)) u10,v1| < U(sech2 (0x)) \*u1 0pvy

+ U(sech2 (0z))' (1 — x3)u10,v1

< U(sech2 (€)' 310,01 | + U(sech2 (0z)) ¢ (1 — X)) w1 (Cadpvr)

< Cxaw 2 |Cax50:01 |2 + 5g‘lgi{seChQ(gx)Cf}leHL?\|CA@U01HL2~

Furthermore, by the definition of z;, we can check

!

X4CB0x01 = Xa0z21 — XAE_le — Xa21; (4.165)
B

and by Lemma and Remark [£.7, we obtain

U(Se(}h2 (0x)) u10pv1| < L|wr |2 (|01 22 + B’lelan)

(4.166)
+ 07! ‘rﬁgﬁ{sechQ(fa:)Cf}(\lazwlII%z + [wi[72)-

In similar way, we obtain

U sech? (£x) Oyu10,v;

< Usech2 (0x) x5 0pu1 Oy0r

+ Usech2 (€z) (1 — x3)Opu1 0pvy

< [xadeur |2 [CaX3 0001 | 12 + lg‘lg?j{SGChQ(h)Cf}HCA@:MHL?|\CA5mU1||L2-

By (4.165)), Lemma and Remark we get

U sech? (£2) 0,u1 0,01

< [Cadptn[[2(10p21 ] 2 + 21 ]z2) + 7 g‘lgﬁ{secm(&){f}HCA(%:Ul||%2-
We conclude using (4.81)) with K = A, we have

Usech2 (0x) OpurOpvr| < (|wallpz + | Oswr | 22)(|Onz1llL2 + |21 22)

(4.167)

9 masee? ()G} (o + 1w 32),
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Collecting (4.163)), (4.166)), (4.167) and by Cauchy-Schwarz inequality, we obtain

1
fsech(:ﬂ)lﬁ < €|wllp2 + EH'ZlHL2

+ 7 (JwillZe + [Gswilz2) + 7 (102172 + B[z 72)
< max{e, A" w2 + 7 Qw72

+ max{e !, B_Z}Hzlﬂiz + ’y||8leH%2.

Finally, choosing e = B~/2, we conclude
fsech(l“)uzf < BT (w2 + |01 [72) + B2 2172 + v]00 e

This ends the proof of Lemma [£.29 |

We will need a third coercivity estimate, related to the function z5 in (4.60)).

Lemma 4.30. Recall £ = —02 + Vy(x), with Vi defined in (4.8). Assume that §Qg¢y # 0.
Then there exists mg > 0 fized such that

1 ~
(L(u),uy = mollul?p — — |Cu, 87 60)["
myg
for any uw e HY(R) odd.

Proof. Since u is odd, one clearly has (L(u),u) = 0. Since ker £ = span{Q’}, we only need
to check that
(L(u), uy = molulZ:, (4.168)

for any v € H'(R) odd, and provided (u, 0, '¢o) = 0. First of all, it is not difficult to check
that for some mg > 0,

L(w),uy = mo (Jul2e — Q2 u, @)?) .

Assume that ||ul|zz= = 1. The term on the right hand side is zero only if u is parallel to @',
which is not possible since { Qo # 0. Therefore, after rescaling, (4.168) is proved. |

Remark 4.12. Lemma will be used in the following way: from (4.24) we have (uy, 0, ¢y =

0, and from (4.56]), we have
(g, (1 — 7020, o) = 0.

Using (4.60]) and (4.37), and the exponential decay of 0, ¢y we obtain
(22, 0, o)| < (22, (1 = 702)0,  do)| + I(z2, Ouho))]
[(axaCa, (1= 702)0; " po)l + ¥] 22 2
[Cva, (1= xaCB)(1 = 709)0; b0yl + ][22l 12
[CuaCa, €4t (1 —702) "1 (1 — xalB) (1 = 732)0; ' do)| + 7] 222

_1
e 2B\|UJ2||L2 + 7] 22 2

NN IN N

N
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Finally, we prove that

Lemma 4.31. {Q¢ # 0.

Proof. It § Qo = 0, from one has (0?LQ, Q) < 0. However
02@%@Q»=4p—m@aqv=—@—H@%@—Q@=—@—nﬁyf“—@%.

Finally, from the equation Q)" = Q@ — QP and multiplying by Q? and integrating by parts, we

get
pferer- o fom

Finally, using that Q" = Q? — I%Qp“, we get [ QP! = % § Q*, and replacing,

0= <ag2c£Q7 Q> = —(p — 1) J;R(Qerl _ Q2p) — p(gf—i__ll)); J]RQQP = 0’

a contradiction. [ |

Now we are ready to conclude the proof of Theorem [4.1]

4.6.2 Proof of Theorem (4.1
Recalling that the constants v, C} and 6; > 0 for i = 1,...,4 were defined in Propositions

[.8} .19} [4.25]

Proposition 4.32. There exist C5 and 0 < d5 < min{dy, ds, d3, 04} such that for any 0 < § <
85, the following holds. Fiz A = 6, B = § V¥ and v = B~*. Assume that for all t > 0,

(4.27) holds. Let
H=7T+16C,B T + B"'M — 16B°C{C,N.

Then, for allt =0,

d
SH() < =GB (lwnle + |23 + Jwal) + Gl (4.169)

Proof. First, from (4.38) and (4.161]) we obtain for some C; > 0 fixed,

d 1 1
0 <~ 5 [l + 2000 + S|

+ Ciai + CLB™2 (w7 + 00w 72) + CLBY2 217 + Ciyl0sza| o

Using (4.147) and v = B™%, we get
D2 <= L (wnl2e + 200012 + Lhwn 2 ) + Clanl® + B0 S ()
dt 4 2 dt
1 BY2C |21 B + BCy 16220 + 1022l + |22l + [21]2]
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Secondly, for %J , using (4.61)), Lemma , and Remark

d 1
70 < —gma( Ll + 1ol + alts ) + a8 (Junli + Jualf ) + ol
We conclude that
d —1 d 1 2 2 2
&j(t) + 16023 E:Z(t) < — gmo HZlHLQ + HaxZQHLQ + HZQHL2

1
~ 40257 (lugle + 20wl + ol
d
+ 163_50102”6222“%2 + 202|a1|3 + 16B_501023N(t).
Thirdly, using (4.103) for %M,

d 1 1 _
&M(t) S 5 (10s21]7> + 110222]32) + Cs[0z22]72 + 503!!22\\%2 + O3B 217
+ O3B! ([ Qwn|[ 72 + [wi]72 + Jws]72) + Cslaa .

Therefore,

% (T (t) + 16CoB™'Z(t) + B~'M(t) — 16B~°C1CoN (1))
1 1

< —Emo(m”%? + [ 0z22]32 + |Z2i2> - 13_1 (16221]72 + [10222]72)

— CoB7" (Jwa| 7z + [0pwn |72 + Jwni[72) + 3Cs|as .
Setting H = J + 16C2B~'Z + B7'M — 16 B75C,Cy/N, and Cs = 3C,, we obtain the desired
property. |
We define now
B=b -2,

where b, ,b_ are given in (4.26)).

Lemma 4.33. There exist Cg and dg > 0, such that for any 0 < § < dg, the following holds.
Assume that for allt = 0 (4.27)) holds. Then, for allt >0,

. : 2
by — vobs| + b + wob_| < Cg (bi B+ Hsechl/Q(x/2)w1HL2> , (4.170)
and
q d 5 \ 3/2
‘Ebi — 2upb% | + ‘&bQ + 2upb | < Cp (bi + 0+ Hsech1/2(x/2)w1HL2> : (4.171)
In particular,
d Yo, o 2 1/2 2
EB > §(a1 +a3) — Cg Hsech (91:/2)11)1HL2 : (4.172)
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Proof. From (4.51)) and (4.26)), it holds

|No| < 0% + 0% + fsech (g) w?.

From (4.28) we conclude the estimates (4.170) and (4.171)). Finally, (4.172)) follows directly
from (4.171)) and taking dg > 0 small enough. |
Combining (4.169) and (4.172)), it holds

d C v
a4 (B - 235%) > 0@+ ad) + G (sl + [0+ funl%) . (4173)
2

By the choice of A = §7!, the bound |pa| < A, ([#.36) and (4.27), we have for all ¢ > 0
IZ(t)] 5 Al g2 luzll > < 0.
Analogously, using Lemma [4.14] we have

T ()] < Bloi|r2ve|re < By i r2llusl r2
< B|luy r2]uz| 2 < B <6,

IM@)| < Bloyv1| 2] dwve]re < By~ 2w 2] us] 12
< B7Hu1HL2Hu2||L2 < B76% < 0,

and
IN(@)] < |0zvi] 2 o2l 2 < v~ ual |zl 2 € BYus|lan Juz| 2 < B'6* < 6.

Then, we have
|H| < 6.

Estimate |B| < §? is also clear from (4.27)). Therefore, integrating estimates (4.173)) on [0, ¢]
and passing the limit as ¢ — oo, we have

o0
L (@ + @3+ [ws ) + [Opwn B + ] dt < 6.

By Lemma one can see

0

Q0
J (a% + a3+ f(u% + (Opu1)? + u3) sech(x)) dt <. (4.174)
Using the above equation, we will conclude the proof of Theorem [£.1]

Let
K(t) = Jsech(x)u% + fsech(x)((l — Y02 P Opun)? =1 Ky () + Ka(2).

For Ky, using (4.30) and integrating by parts, we have

dd_lctl =2 fseCh(x)(unh) =2 fsech(w)(U1§xuz) = —QJ(sech'(x)ul + sech(x)dpuq us.
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Then,

%}Cl(t)‘ < fsech(x)(u% + (Opun)? + u3).

For Ko, passing to the variables (v, vy) (see (4.56)))
Ko = Jsech(x)(é‘xvg)Q,

and using (4.57)), we get

%’CQ = QJsech(as)é‘xvgﬁivl +2 Jsech(x)&xvgﬁxH(m) =: Ko + Ky.

Integrating by parts in Ky, we have
Ko = —2 J(Sech'(x)@m + sech(z)02v,) 0,01,
besides using Cauchy-Schwarz inequality and Lemma [£.14] we obtain
K| < Jsech(x)((&wvg)z T (0) + (B01)?)
<2 fsech(w)(u% + (0pu1)?).

For Ky, we use Cauchy-Schwartz inequality, Corollary and a similar computation of

, then
Kol < JSGCh(x)[((l — 700 uz)” + (1 = 903) 7 0 N")?]
< Jsech(w)['y_lug + (1 —=~A 0, NH) <, af + fsech(x)[ug + u?l.

Then, we conclude

d
a’cz(t)

<, ai + fsech(:v)(uf + (Opu1)? + ul).

By (4.174)), there exists and increasing sequence t,, — oo such that

lim [af(t,) + a3(t,) + Ki(tn) + Ka(tn)] = 0.

n—0o0

For ¢t > 0, integrating on [¢,t,], and passing to the limit as n — o0, we obtain
Q0
K(t) < J la% + fsech(m)(u% + (Opu1)? + ug)] dt.
t

By (4.174)), we deduce
lim /C(t) = 0.

t—o0
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Finally, by (4.28]) and (4.51)), we get

d ,

d
E(al)

—(a3)| < aj + a3+ Jsech(:c)u%.

+ ‘

In a similar way as above, integrating on [¢,¢,] and taking n — oo, we conclude

o
a(t)+a3(t) S J ai + a3+ Ju% sech(:v)] dt,
t

which proves limy_,q, |ai(£)| +|az2(t)| = 0. By the decomposition of solution (4.23)) this implies
(4.13). This ends the proof of Theorem [4.1]

Remark 4.13. We have not being able to describe the asymptotic behavior of (0 u;)? and
u3, due to the fact that we are working in the energy space, and any variation of the virial that
involves these terms is not well-defined. In fact, the regularity considered for the variation
of Iy and /Cy is sharp, in the sense that we do not have a gap where to include terms with
higher-order derivatives. For example, for

Ks = fsech(m)u%,

its variation is q
a’Cg =2 Jsech(x)m(&ggﬁul + N1).

One can see that Lu; € H~! and uy € L?. Then, the last estimate may not be well-defined.

4.7 Proof of Theorem 4.2

Now we construct initial data for which Theorem [4.1] remains valid. We follow the ideas in
[18], with some particular differences in some estimates.

4.7.1 Conservation of Energy
Using (4.4), (4.23]), (4.8), and by the orthogonality condition (4.24]), we have

2[E(u,v) — E(Q,0)] = J [v* + u® + (0,u)* — 2F (u)] — 2E(Q,0)
- & [1R(0: 1002 + @ [(@u0? + Vo) + [ F(@fardn + )
[ (en)? + Vala)ad + ) ~2 [ (Flu) = F(Q) ~ £(@ (s + w)

= a3R10 dol2 + aR(L (o), b0) + (L), ) + [ual s
-2 f (Fw) = F(Q) = F(Q)ard + up) — 7/(@) 1)),
Using (4.10)), we get
(L(00), b0) = (VRO 00, b0y = 105 60, 05 00) = 17,
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and, by (4.26)), we obtain the identity
2[E(u,v) — B(Q,0)] = — 45b b+ (Lur), ur) + |uz[72

—2 [ (P - F@ - F@amon +u) - i@ U210

2
(4.175)

Let dg be defined by
05 = b3.(0) + 02 (0) + Jur(0) 3 + uz(0) 2.

Considering (£.175)) at t = 0 follows [2[ E(u,v) — E(Q, 0)]| < 63. Besides, by the conservation
of energy, estimate (4.175)) at some t > 0 gives

| = Avgbsbo + (L(ur), ur) + JuzlZz — O(b+ > + [b-* + [uall3)] < 0.

Considering the orthogonality condition (uy, Q") = (uy, L(¢g)) = 0, the parity of uy, and
using the Lemma m, it follows that for some X € (0, 1),

(L(ur),ur) = Mua|7p.
Due to [Juy | g1 + |uz|r2 + |b4| + |b—| < o, the following estimate holds

Jur G+ [ua] 72 < [0y * + [b-|* + 6. (4.176)

4.7.2 Construction of the graph

We will construct initial data that directs to global solutions close to the ground state (). To
accomplish this objective, we use the energy estimate (4.176)), Lemma and a standard
contradiction argument.

Let € = (€1,€3) € Ag. Let Z, be as in (4.11)). Then, the condition (e, Z,) = 0 rewrites

(e1, 05 2oy + {ea, vy 105 oy = 0.
Define b_(0) and (u1(0), u2(0)) such that

b-(0) = —(e1, 0, o) = {2, 15 ' 0 o),
and
€1 = b_(0)¢0 + Ul(O), €y = —b_<O)Voa;1¢0 + UQ(O)

Then, it holds
(ui(0), 0,20y = (uz(0), 0, 'oy = 0.

From (4.15) and (4.14), we observe that the initial condition in Theorem holds the
following decomposition:

¢ = #(0) = (Q,0) + (u1,uz)(0) + b_(0)Y_ + h(€)Y .

We will prove that there is a function h(€) such that the corresponding solution ¢ is global
and satisfies (4.16)). We show that at least h(€) = b, (0) satisfies this statement.
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Let 0y > 0 small enough and K > 1 large enough to be chosen. Following the scheme of
[18], we introduce the following bootstrap estimates

Jur|gr < K260 and  us||2 < K26y, (4.177)
|b—| < Kéo, (4.178)
b+ < K55 (4.179)

Given any (u1(0),u2(0)) and b_(0) such that
Jur(0)[ < do,  [u2(0)]z2 < do,  [b-(0)] < do (4.180)

and b, (0) satisfying
b, (0)] < K®6,.

Let

T =sup{t =0 such that (4.177)), (4.178), (4.179) hold on [0, ¢]}.

Since K > 1 follow that T is well-defined in [0, +00]. Our aim is to prove that there exists
at least a value of b, (0) € [~K®§?, K°02] such that T = co. To prove this we argue by
contradiction: we assume that for all values of b, (0) € [-K?6%, K?63], one has T < 0.

The first step is improve the estimates . By (4.177] m we have
Jur 70 + Huzuiz < 2K%6 (4.181)
Otherwise, using the energy estimates (4.176)) it holds
Jur 7 + Juzl7e < Cs(K?65 + K16 + &7),

for some constant Cg > 0. Thus, using the smallness of dy and largeness of K, it holds
1 1
Cs < ZK“, Cs K168 < ZK‘*, 1< -K*, (4.182)

and we obtain

3
[l + Jua |z < K4,

that it is a clear improve of the inequality (4.181)).

The second step is control b_. Using (4.171)), (4.177)), (4.178)) and (4.179), we have

e2l/0tb3 )

< CQ(K1556 K653) 2ugt

i
for some constant Cy > 0. Therefore, by integration on [0,¢] and using , we obtain
v < ﬁ(}(1558 + K°%63) + 63
219
Under the constraints
Cy

2V0

14 Cy

K15(561 X Z 9 1 4 1

—2 K% < 4 ;1 ZK“, (4.183)

N

2V0
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we get

b’ < ZK%@,

that is an improvement of (4.178]).

By the improved estimates (4.177)) and (4.178]), and a continuity argument, we observe
that if T' < 400, then |b, (T)| = K°43.

The third step is to analyze the growth of b,. If ¢t € [0,T] is such that |b, ()| = K42,
then follows from (4.170)) that

d
> 2upb> — 2C4|by |(B2 + K205 + K*67)
> 20 K058 — Cho(K'558 + K52,

for some constant C7g > 0. Under the constraints

1 1
CioK"°6; < §V0K10, CioK?® < §VOK10, (4.184)

the following inequality holds

d

S = K> 0

By standard arguments, such transversality condition implies that 7' is the first time for
which |b (t)| = K°52 and moreover that T is continuous in the variable b, (0). The image of

the continuous map
by (0) e [-K°03, K°63] — b, (T) € {—K°6;, K°62}

is exactly {—K?®0%, K°02} which is a contradiction. We conclude that there exists at least
one value of b, (0) € (—K®°§2, K552) such that T = oo, when constraints in (4.182)), (4.183)),
(4.184)) are fulfilled. Finally, to satisfy the conditions (4.182), (4.183)), (4.184)) it is sufficient
first to fix K > 0 large enough, depending only on Cg, Cy, Cp, and then to choose dy > 0
small enough.

4.7.3 Uniqueness and Lipschitz regularity

To finish the proof of Theorem 2, we will prove the following proposition that implies the
uniqueness of the choice of h(e) = b, (0), for a given € € Ay, as well the Lipschitz regularity

of the graph M (see (4.15))

Proposition 4.34. There exist C,0 > 0 such if ¢ and Eﬁ are two even-odd solution of (|4.3])
satisfying

for all t = 0, (1) = (Q,0) [z <6, [B(t) = (@ 0)rsr2 <0 (4.185)

then, decomposing

$(0) = (Q,0) + €+ b, (0)Y 4, (0) = (Q,0) + &+ b (0)Y, (4.186)
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with (€, Z ) ={€,Z,) =0, it holds

14 (0) — by (0)] < C6Y2]e — &l grrre (4.187)

Proof. Let ¢ and ¢ solutions of (4.3)) likes in the Subsection , i.e., satisfies the decom-
position (4.23) and the smallest condition (4.27). Then,

lull g + i e + Juzlz + [dia] r2 + |be| + [bo] < Cod. (4.188)
Let

a; = a; — ag, ag = Q9 — A2, b+=b+*b+, b_zb_*b_, Uy = Uy — Uy,

g - N g N (4.189)
Uy =us— Uy, N=N-N, Nt=NL—N:H Ny=N,—N,.

Then, by (#.28) and ([@.30)), (i, ;) and (b, ,b_) satisfy the following equations:

< - Ny
~ > by =1pby + —
Uy = 0l + 00+
! ? . and 2o (4.190)
Uy = 0. L(U;) + N+ ~ ~ Ny
b_ = —1pb_ — —.
2V0

Furthermore, let
/64- = bi—? 5— = b2_7 6c:<£617ﬂl>+<2\22762>‘
Computing the variation of ., we obtain
e = 2 (Nt ).
Now, recalling (4.29)) and (4.51)), we get
N = (Q' — a@10p00 — Oyily) [f/(Q) + (@) (a1 + ur) — f(Q + ardo + ua)

- (1@ + Q-+ 1) - (@ + anon+ ) |

+ (410200 + Oot1) (f'(Q) — f(Q + ardo + u1))
+ (G100 + 1) f(Q) (1020 + Oin).

By Taylor expansion, for any v, v, it holds

1@ +v) = (@) = Qv —(f(Q+7) - f(Q) — ["(Q)D)]

< v =ol(Jo] + [ Q7" + [o]" + [8]"7%) < v — |(Jv] + [0])
Then,

IN| < [G1¢0 + 1||Q" — 1000 — Optin| (Jaro + | + |ardo + wi)
+ f(@Q)|a10:¢0 + Ol ||ardo + ur| + f"(Q)|@1d0 + Ur||a102¢0 + Oxia].
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Then, using Sobolev embbeding, L?- norm of N is bounded by

IN|z2 < |Gi¢o + ]| 1 ]|Q" — @10sdbo — Onin | 12 (largo + @]z + Jardo + uif =)
+ [@102¢0 + Oxtin | 2] @1do + wil| e + [G1¢po + Tl e | @102Po + Optin [ 12
< (Jay] + i) g)| Q" — 410200 — Outin| 2 (|aa] + |G| gr + |ar] + ] 1) (4.191)
+ ([ar| + @) (ar] + flua]ge) + (@] + @] g (@] + @]z
< (@] + [ g [lar] + 1aa] + Jlua e + @]
Then, by ([@.190), ({.191), and using |No| < | N 12]05  dol 12, we get
8. + 184 — 20084 | + |B- + 2weB-| < K6(B. + B+ + B_) for some K > 0. (4.192)

In order to obtain a contradiction, assume that the following holds
v
0 < K8(8:(0) + B+(0) + B-(0)) < 155+(0). (4.193)
Now, we consider the following bootstrap estimate

K6(Be + By + B-) < vofy. (4.194)

and let
T = sup {t > 0 such that (4.194)) holds } > 0.

From (4.192)) and (4.194), it holds
voBs < 20084 — KO(B. + By + =) < By, for t € [0,T7]. (4.195)

Then, (3, is positive and increasing function on [0, T].

Now, by (4.192) and (4.194]), we get
Bc < V0/6+ < B-ﬁ-

integrating and using that 5, (0) > 0 , we obtain

Bc(t) < ﬁc(o) + 5+(t) - B-ﬁ-(o) < Bc(o) + 5+(t)
Furtheremore, by (4.193)) and for § small enough, we get

<0

K0B(t) < K8(5:(0) + B+ (1)) < T36:(0) + KGB.(t) < B4 (¢).

For 5_, using (4.192) and (4.194)), we get
Bo < —2uB- + voBy,

integrating and using (4.193)), we have

t

B(0) < e B-(0) + vofe ™ | cods < 5(0) + 5.(0).

0
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For 0 small enough, we get

KB-(t) < K6(B-(0) + B+ (1)) < 756+(0) + KB (1) < 2B (1),

For 3, it is clear that holds K¢ < % for ¢ small enough.
We have proved that, for all ¢ € [0,T7],

KO(Blt) + 54 (6) + 6 (1)) < S8 (1)

By a continuity argument, we get that T = co. However, by the exponential growth (4.195))
and 3 (0) > 0, we obtain a contradiction with (4.188)) on |by|.

Since it holds

e=u(0)+b_(0)Y_, e=u(0)+b_(0)Y_,
with (u(0),Y _) = (u(0),Y_) = 0, and estimates (4.193)) is contradicted, we have proved
@187). n
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Appendices

4.A Linear spectral theory for —02L

In this section we describe the spectral properties of the operator —02L, where £ is introduced
in (4.8). Notice that this last operator has been widely studied (see [25] 26]). For the study
of the operator —02L we shall start with the following result.

Lemma 4.35. Let p > 1. The operator L defined in (4.8)) satisfies the following properties.
1. The continuum spectrum of L is [1, ).
2. The kernel of L is only spanned by the function @'.

3. The generalized kernel of L is given by span{Q’(m),Q’(:U)f (Q,(T))2d7’}, for any

r=2e>0orx<e<0.

In what follows, and with a slight abuse of notation, we will write
| @) 2ar
0
instead of {7(Q'(r))~2dr; but it is understood that the zero limit of integration corresponds

to any ¢ sufficiently close to zero.

An important remark is the following:

Remark 4.14. Note that
L(fg) =gL(f)—2f'9 — fg". (4.196)

This property will be useful in the following computations.

Now, we study the properties of the operator —02L.

Remark 4.15. A direct analysis shows that the null space of 02Ly = 94 — 02 is spanned by
functions of the type

e, e 1, z, as x — .

Note that this set is linearly independent and among these four functions there is only one L?
integrable in the semi-infinite line [0, c0). Therefore, since 02£ is a compact perturbation of
the scalar operator 0Ly, the null space of 02L|ya(r) is spanned by at most one L-function.

Lemma 4.36. Let p > 1. The operators —02L satisfy the following properties.

1. The continuum spectrum of —d2L is [0, 0).
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2. The generalized kernel of —02L is spanned by

e

/ ’ ( - S—ooQ ) / ' o -2
Q) [TV o). @) [[@) dr}.

(4.197)

Proof. The proof of follows directly from the form of the operator.

Proof of . Clearly
wlo)i= Q) w()i= Q@) [ (@)
are solutions to —d2L(u) = 0. Notice that if —02L(u) = 0 is equivalent to £(u) = ax + b with

a,b € R. Then we should solve this equation. First, we consider the case a = 0. Without
loss of generality, we consider b = 1. One has £(1) = 1 — pQP~!. Computing,

L (Q/L Qn) _ ‘C<Q/)L Qn _ Qn(QQ”) _nQn—l(Q/)Q
= —20"(Q - Q") —nQ" (@2 = 1@”“)
ot 2n+2p+2Y\ .,
=Q 1(—2—n)+<—p+1 )Q .
A - _ 2p p—1
£<QLQ )_ e
2

Set uz(z) = 1 [1 + Z%IQ/@)J Q—l(r)dr]. We observe that £ (us(x)) = 1. There-
0

fore, up to the generalized kernel of £, uz solves the equation £(ug) = 1.

If n = —1, we have

Now, without loss of generality, we consider a = 1 and b = 0, then we must solve L(uy) = .
Using the method of reduction of order with an unknown function v, consider uy = Q1.

Using (4.196)), we have
LQY) = —2Q") - Q" =z

We obtain that the solution of this equation is

o) = @) (@26 ([ ) as— ([ @) @) [“@)#oas
- [[@6) ([ vewa- [ awa)as

-0 [ @ <s@<s> - @<y>dy) ds.
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We finally conclude that the fundamental set of solutions for 02£(u) = 0 is given by

{ur(z), ua(z), usz(z), ua(z)} .

This ends the proof. ]

Corollary 4.37. There is, up to constant, only one solution of —0>L(u) = 0 in L*(R).

Now, we focus on describing the eigenfunctions and negative eigenvalues of operator —d2L.
This analysis will be the main ingredient to describe the stability of the soliton. Our first
result establishes the parity of eigenfunctions associated to nonzero eigenvalues.

Lemma 4.38. If ¢g € H*(R) is an eigenfunction associated to an eigenvalue \g # 0 of the
operator —02L, then 0, ¢y € H® and and 0,%¢y € H?, i.e., are well-defined. Furthermore, if
Go is an even function then 0, ¢y is an odd function and

| " boly)dy = 0.

Proof. We have
—aiﬁ(ﬁo = )\0¢0, with )\0 # O,

this is equivalent to
Opbo — Ozp0 + 02 (PQY " P0) = Moo (4.198)
Applying Fourier transform, we have
€0 + €200 — E2p(QP 1) = ot
From this identity, and the fact that ¢y € H*(R), we observe that
lim do(€) = A5 im (€60 + €260 — €907 700 = 0.
Also
lim &~ do() = A5 lim (€760 + §6 — pQ7 ) = 0,
lim €26() = A5 lim (€260 + do — p@ 60 ) = —pA7' Q10 0)
Then, we obtain that

Jfbo(ﬂ?) =0, JFOO ¢o(s)ds = 0.

Also, we know that QP~1¢y is well defined (the Fourier transform is an homeomorphism from
L? into L?). Then ;¢ and 0, ¢y are well-defined, and exponentially decreasing, provided
¢p and its derivatives are also exponentially decreasing.
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Now, suppose that ¢, is an even function. Integrating between 0 and z in (4.198)), we
obtain

(0200 — Oupo + 0x(pQ” ")) (x) =[O0 — Cutbo + Ou(PQP " P0)]le=0 = Ao f’” ®o-
0

Since QP! is an even function and 03¢, d,¢9 and 0,(QP ' ¢y) are odd functions, satisfying

Pd0(0) = 0,00(0) = 0.(QP 1) (0) = 0, we conclude

0,L(0)(2) = (%0 — Gudho + 6 (PP 00))(@) = Ao j " do(y)dy.

Now, given that ¢y € H*(R), one has 2¢g(z), 0xdo(z), 0(QP o) (x) — 0 as & — +oo. We
conclude

f bo(y)dy = — L—f boly)dy amd L * o)y = 0.

This proves the oddness of 0, !¢ and concludes the proof. ]

We observe that —02L is not a self-adjoint operator. In fact, if ¢, € H4(R),
(=03Lp, ) = {p, —2LW)) + L, f1(Q) 050 — 2(f(Q))),

since the operators 02 and £ do not commute. For this reason, we need to consider this
operator in an appropriate sense. A way to face this problem is to consider the following
result.

Lemma 4.39. The operator —02L has only real eigenvalues.

Proof. Given ¢y € H*(R) eigenfunction of the operator —02L with eigenvalue \g € C, we
consider @y = d,1y or Yy = I, ¢py. We know that this function is well defined by Lemma
[4.38] Now, we have

—02L(0uth0) = —03L(00) = Ao = Aolatho.
Integrating, we obtain

— 0 L(0s%0) = Aotbo.

We can easily check that the operator —0,L£0, is self-adjoint with eigenvalue Ay and eigen-
function 1y. We conclude that )g is real, hence the eigenvalues of —02L are real. |

Therefore, the operator —d2L has a similar structure of a self-adjoint operator. This fact
allows to follow the strategy of Greenberg and Maddocks-Sachs [12, 20] for counting the
negatives eigenvalues of this operator.

The most important property about —d2L is that it possesses only one negative eigenvalue.

Theorem 4.40. The operator —d2L has a unique negative eigenvalue —vg < 0 of multiplicity
one. The associated eigenfunction ¢y satisfies the exponential decay in (4.10), along with its
derivatives.
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This is just a consequence of the fact that the only solution of —02L(u) = 0 converging
to zero at —oo is Q'(x), see Claim [4.42] This function has a unique zero. The exponential
decay is just consequence of Remark [4.15]

Corollary 4.41. Given ¢ eigenfunction associated to the unique negative eigenvalue —v3,

then ¢q is an even function and 0, '¢q is an odd function.

Proof. Consider the function ¥ (z) = ¢o(—x), we have
—0RL(Y) = 0p(4) — O3 + GZ(pQ" ).
Notice that QP~1, 02(QP~!) are even functions and J,(Q?!) is an odd function, also
Q") (x) = Q" (2)do(—x)) = GZ(pQ" " do)(—).
Then, we observe that
—0:L(Y) = —02L(¢o)(—x) = —v5¢0(—2) = —v52) ().
Finally, since )¢ is the unique negative eigenvalue of multiplicity one, we conclude that

bo(x) = ¥(x) = ¢o(—x), i.€., Pg is an even function. Finally, by Lemma we know 0, !¢

is an odd function. [ |

4.A.1 Asymptotic behavior of fundamental solutions of —d2L(u) = 0

The following computations are direct, but we include them by the sake of completeness.
They are just simple applications of L’Hépital’s rule.

Claim 4.42. The functions uy, us, us and uy found in Lemma[4.55 and [{.36 satisfy

xl—lgloo uy(z) =0, xl_lgloom(x) = 400, wl_l)IEl@Ug(I) =1, zl_l)IEloo uy(z) = —o0.

Proof. One has

1.
Jim, o) =l Q')
2. Second,
Jim ) = i, @) [[ (@) = i,
(Q'(z))? 1 1

|
?
|

= +00.

om0 —(Q'(2))2Q"(x)  wm—e —Q"(x) w0 Q2)(QY(2) — 1)
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lim wz(z) = lim - 2 . [1 p42- 1@’ xQ_l(r)dT]
T——00 T——00 — 0
o xQ_l(r)dr
2 p+1 _ 2 p+1 .
=——— —"—— lim Q'(m)f Q (r)dr = — — lim 2 —
p—1 p—la>= 0 p—1 p—Tlas-o (Q(x))!
L e QM 2 g Q@@ e
p—1 p—Tleoe —(Q@)2Q"(x) p—1 p—Tlavi Q-—Qr
2 p+1 lim (1_pi1Qp_1)_1
TPl pleww 1-Qrl
4. Finally,
lim ug(z) = lim Q'(z f (Q)~ ( ) Q) ds
T——00 T——00 0 —
[[@ ( (5 j‘ Q)i @y (- o
=l W T T Q) W
_ mﬂ(“””‘me)z ml(“”@‘IMQ):]mlemwuwm—@@»
=00 —Q"(x) a——0 Q(z)(QrH(z) —1)  em—w Q'(x)(pQP~(z) — 1)
= hm v = —0

4.B Proof of Claims 4.21] and 4.22

4.B.1 Relation between 0,z and d,v;
We prove Claim First, recall that z; = xa(pv; and

Op2i = (XACB)/Ui + X aCBO ;.

Then
(aar Zi)2 =

For a function P(x) € C'(R), we consider
| Perécomy
Using ([4.200)), we obtain

f )X CE (0rv)? JP )(0:21)* f
JP 62’1 f
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@) 0xaca) P + 5 [P@uaca 12

|
(4.199)
(xaCBO1i)%. (4.200)
@l0cac) P = 5 | P@)(xaca)yeste?)
(4.201)



Now

PP =PI | 0 + 03| + Pla)ace? (g—i)

Then, we have

[ Petcace = [P (&) 24 [pe| e + oars
As for the third integral in the RHS of (4.201)), we have

[PE@)OAC)T = P/@)0AC) + Pl)0AG)"
_ P [o&)' L2 (g—i)]

o o+ (8 + 9
rofeema () 6]

L PG [<x Y4 ax >f§] + P04

= 2X%Ch

Then, we obtain

[y =2 [P « | (&) +§—”
v [P [0d+ 108 e + [ Pndyde
We conclude in (E201):
| Pardciomy = | P@@a) — | @l ot + 5 [[Pa) (g

- [P - [ P C—B)Qz?— [ P + | czer

B
%)2 ]
(CB " CB]

+ % J P(x) [(XA) +4(x )gi] Gl + %fP’(x)(xA)’c?gv?

- JP(x)(&;zi)erJ[ (a )%JFP( )C;]ZQ

+ f&(P(x),ff)C%U?,

(4.202)
where

£.(P(a),x) = P() [ngxA s <><A>’§§] FLP@d. (4.203)

Finally, (4.110) follows directly from the definition of & (P(x),x) and Remark replacing
B by A. This ends the proof of Claim [£.21]
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4.B.2 Relation between 0%z and 0%
Now we prove Claim [4.22| The following relation is obtained from z; in (4.60)):

022 = (xaCB)"vi + 2(xalB) Oxvi + X aCBOVS,
(022)% = [(xaCB)"ui]* + 4[(xaCB) Ouvi]? + [xaCBT01]?
+4(xa¢B) vi(xACB) Qavs + 4(xaCB) OevixaCBO20 + 2(XaCB) VixaCBIOS0:
= [(xals)"w)* + 4[(XACB)/6:E’Ui]2 + [XACBa;%Ui]z
+2(xa¢B)" (xa¢B) 0 (v]) + [XACE] 0= [(x03)%] + 2(xaCB) "X ACBU:OZ 01,

Then,
(XACBaiUi)Q = (5521)2 - ((XACB)”U1>2 - 4((XACB)/ain)2
—2(xaCB)" (xaCB) 0 (v]) — 2(xalB) X aCBUid5v; (4.204)
— [XACR] 0ul(0p0i)7].
Now,
| rcar?

= [ R@@a7 + [ Ble) (e Pt = 400t Pea?)
+ | R = (00aaPY22(02) = (b 2ul(0r00)%) — 2(xa6a) xaGaudtul]
- | B @+ f R)(~[xaGo)"Pe? — Al0caca) P(020)?)
[ ulRET0acaV Y1 + [ 2R oI — [[2R@) ata) a2,

(4.205)
Since

- 2R o) xatouidt = — [ 2Lt xaoli? +2 [ R 0uato) xata(0i)
we get
[ R oty
= [ B @a + [ R0 Pt = 400t P
| alB@ Ot P12 + | 2R a1
- | 2R g adale? +2 | R (xaca) xaga(@m)?
— [ B@)@a + [ ada) o] + AR Ocae) Y] = R (ade) Po?

+ | [2RE@) 0 xaa + L RE@IOae V] = AR xao) P 0o
(4.206)
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Now we perform the following splitting:
fR@mm@%wV=fmmwkf
- [@[R(x)([uAcB)']?)/] — R@)(xala)) — ai[R(xxxAcB)”xAcB]]vf

+ f lﬁx[R(x)(XiCé)’] +2R(x)(xaCB)"xaCB — 4R(33)((XA<B)/>2] (Ozv3)?

=: Rl + R2 + Rg.
(4.207)

Firstly, we will focus on Ry. The term that accompanies to v?, holds the following decompo-

sition
Ox[R(2)([(xaCB)'T*)'] — R(2)((xalB)")* — 2| R(x)(xACB)" X CB]
) ; (4.208)
=XaCpl(z) + E(R(x), 7)(p,
where
R B (4) m CB oR( m o 1900
R(z) = — 2R(x) C_B+C_BC_B - ()CB <>CB (4.209)
and // "
E(R( (XA XA+ 4XZ{XA— +6xhxa22 + 2(x5 )/—B)
§: (B
— R (x (2)&{)@ - 6XAXA - 6XAXAC > (4.210)
R// < AXA + /CB)
Rewriting Ry, we obtain
Ry = JR(%)Z? + JSQ(R($>, 7)) (B (4.211)

Secondly, for R, the term that accompanies to (d,v;)? satisfies the following decomposition

Ou[R(x)(X3CE)'] + 2R () (xalB)"xalB — 4R(z)((xa(B)')?

— Pa(e)AC + Ex(R(2), 2)CE, 4212)
where )
— B CIB (o @
Pr(z) = R(x )[4@9 Q(CB) ] +2R/( )CB’ (4.213)
and
E(R(z),z) =R($)[4X2XA —2(x4)* + Ci( )] + R'(x)(x%)"- (4.214)
Now, by Claim | we have
/ CB g 2
Pr(2)x4C5(0,v;)? Pr()(0,2)* Pp(x)>= + Pg(x)
f J . J[ CB CB] (4215)
+ 5 | E(Pato) 01che?,
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where & is given by (4.203]). Finally, we obtain that R3 has the following decomposition

Ro = [ Pat)eea + [ |pha) 4 PR@)C—ﬁ] 2

+%J51(PR(SL’) BU +J53 CB (71)1) .
Collecting Ry, and , we obtain
jR(x)ﬁCé(aivi)? _ f R()(322)? + f Ra)2 + | &(R().2)c2e?
+ [ Pt + | [ )2 + P ><—§] 2 (4.217)
+5 | a0 + | &R DG ),

where &, &, €3 and Py are given in (4.203)), (4.210), (4.214) and (4.213)), respectively. Finally,
the proof of (4.117)) is direct. This concludes the proof of the Claim [4.22]

(4.216)

4.C Proof of Lemma
Proof. We claim that for all v e H'(R) that satisfies (L¢g,v) = 0, one has
Lv,v)y =0

Then the conclusion is evident since (@, v) = 0. Suppose that for some nonzero u € H'(R)

with (Lo, uy = 0, we have (Lu,uy < 0. Then, since ¢q satisfies (4.10)),

<£¢0,¢0> = y0<6 2¢0,¢0> = Vo<6 2¢0,6 Oy 1¢0> = —Vo”a 1¢0HL2 <0.

Then we observe that the quadratic form (£-,-) is negative definite in span(¢g,u). Since
(o, Q) # 0 (see Lemma4.31]), there exists ug € span(do, u) such that ug L Q and (Lug, ug)y <

0. This is a contradiction with the result

inf (Lv,v) =0.
<vQ>—< >

(See Proposition 2.9 in [34] for more details.) |
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Chapter 5

On the decay problem for the Skyrme
wave maps

Abstract. We consider the decay problem for the Skyrme and Adkins-Nappi equations. We prove that the
energy associated to any bounded energy solution of the Skyrme (or Adkins-Nappi) equation decays to zero
outside the light cone (in the radial coordinate). Furthermore, we prove that suitable polynomial weighted
energies of any small solution decays to zero when these energies are bounded. The proof consists of finding
three new virial type estimates, one for the exterior of the light cone, based on the energy of the solution, and

a more subtle virial identity for the weighted energies, based on a modification of momentum type quantities.
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5.1 Introduction

This work is concerned with two nonlinear quantum field models, also known in the liter-
ature as Skyrme and Adkins-Nappi equations. Physically these models intend to describe
interactions between nucleons and m mesons. Classical nonlinear field theories played an
important role in the description of particles as solitonic objects. A well known example of
these nonlinear theories is the SU(2) sigma model [9], obtained as a formal critical point
from the action

S(lﬂ) N J]Rl,d n“y(w*g)w - JRld U“VauwAﬁwagAB Y. (5~1)

Here ¢ is a map from a (1 + d)-dimensional Minkowski space (RY4,n) to a Riemannian
manifold (M, ¢g) with metric g. From a geometrical point of view, the associated Lagrangian
is the trace of the pull-back of the metric ¢ under the map 1. A current choice is M = S4
with ¢ the associated metric and for d = 3, one obtains the classical SU(2) sigma model.
The Euler-Lagrange equation corresponding to the action S is called the wave maps equation.
Unfortunately, the SU(2) sigma model does not admit solitons and it develops singularities
in finite time [4, 8, [15]. To avoid these inconveniences and to prevent the possible breakdown
of the system in finite time, Skyrme [16] modified the associated Lagrangian to by
adding higher-order terms which break the scaling invariance of the initial model, which in
spherical coordinates (¢,7,0, ) on R and co-rotational maps ¥(t,r,0,¢) = (u(t,r),0,¢),
the Skyrme model leads to the scalar quasilinear wave equation satisfied by the angular
variable u, as it will be shown in (5.2)).

This equation has a unique static solution with boundary values u(0) = 0 and lim, ., u(r) =
7, and which is currently known as Skyrmion [14]. This existence was proved in [10] and
[14] by using variational methods and ODE techniques respectively. As far as we know, the
Skyrmion is not known in a closed form.

5.1.1 Main results

In this paper, we are interested in the long time asymptotics of two relevant mathematical
physics models. First, the Skyrme model is written as

<1 + M) (gt — Upr) — %ur + sin(2u) [1 +a? (uf —u?+ Sin?(u))] =0, (5.2)

r2 r2 T r2

and the second model is a short of generalization of supercritical wave maps as it was pre-
sented by Adkins and Nappi [I]. This is a simplified version of the Skyrme model (5.2)) and
it is currently known as Adkins-Nappi model

2 sin(2u)  (u — sin(u) cos(u)) (1 — cos(2u))

Ugyp — Upp — ;ur + = + " =0. (5.3)

These two models have the following low order conserved quantities (subindices "S" and
"AN" for Skyrme and Adkins-Nappi models respectively)

155



Bs[ul(t) - f " [(1 + M) (2 4+ u2) 4 25 81“4(1‘)] )

0 72 72 r

Bavlul(t) = | 2 [uf a2 4280 (e sin() COS(“>>2] . (5.5)

0 r2 r4

(Here SSO means Sgo dr.) Respecting to the Cauchy problem, ([5.2) is globally well-posed for

small data in H %2(R?), and the corresponding global result for the Adkins-Nappi equation
(5.3) holds in (B*? x B3?) n (H' x L?)(R?) (see [7]). For large-data global well-posedness
results, Li showed that it holds in H*(R?) for Skyrme (5.2) (see [12]).

We denote by £X the space of all finite energy data of degree n, namely

&x = { ()

where here X = S refers to the Skyrme model or when X = AN to the Adkins-Nappi
model. In what follows, we consider (u,u;) € &' and such that is a solution of (5.2) or (5.3)),
respectively.

Ex[u](t) < %, 6(0) = 0, lim ug(r) = m} , (5.6)

The main goal of this work is to prove that small global solutions with enough regularity
of Skyrme (5.2) and Adkins-Nappi equations decay to zero in a certain region of the
light cone. Furthermore, we also study the decay of an associated weighted energy for both
equations, and which we need them for analyzing their corresponding long time behavior.

More precisely let b > 0 and consider the following subset depending on time
R(t) ={zeR®||z| > (1 +b)t} = R®. (5.7)

We will show that any global solution u to (5.2)) (or (5.3])), which is sufficiently regular and
without a previous smallness condition, must be concentrated inside the light cone.

Theorem 5.1 (Decay in exterior light cones for the Skyrme and Adkins-Nappi models).

Let (ug,u1) € &, defined in (5.6), such that u is a global solution, for when X =S,
or (b.3) when X = AN, respectively. Then, for R(t) as in , there is strong decay to zero
of the energy Ex, in particular:

Tim (| (ur (2), ur(8)) | 22 x 2@ AR (1Y) = O- (5.8)

Additionally, one has the mild rate of decay for |o] > 1:

o0 MO0
f f emcolrtotly2(y2 4 o2)drdt <, 1. (5.9)
2 Jo

Remark 5.1. The spaces £ are not empty. In fact, for the Skyrme and Adkins-Nappi
equations, the corresponding energy is well-defined in the homogeneous Sobolev space H A
H'(R3) and in H*? n H'(R?) respectively.
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For the next results, we have to introduce a weighted version of the spaces (5.6]). Let £X¢
the space of all finite ¢-weighted energy data of degree n

EXP = {(u,uy) |Ex o|u](t) < o0,up(0) =0, ug(0) =nnr}, (5.10)

n

where Ex 4 is written for the Skyrme model as

Eo[u](t) — Jw 8(r) K1 ; %32(“)) (a2 ) 4 25 @ Sm4(“>] a1

0 r2 rd

and for the Adkins-Nappi model as

(5.12)

EAN7¢[U](1§) - J:O gb(?“) [u? " U? " QSmTQ(U) N (u — sin(:il) Cos(u)) ] |

In fact, one can sce, that if Ey2[u](t) = Ex[u](t), then £X° = £X, for X € {S, AN}.

Our second result shows that the energy Ex associated to any global solution (u,u;) €

EX A ES T of (5.2)) or (5.3)), decays to zero when ¢ goes to infinity. This means that for
any global solution u which is sufficiently regular and it satisfies a weighted integrability on
r, its energy Ex,» decays to zero when ¢ goes to infinity for both X = S or X = AN cases.

Theorem 5.2 (Decay of weighted energies). Let § > 0 small enough. Let (u,u;) € " A
55("’”_1 a global solution of (5.2]) or (5.3) such that

sup Ex|u](t) <0, for X = AN, S. (5.13)

teR

Then, the modified energy Ex ,[ul(t) with p(r) = r™ decays to zero, forn >7 (X =S case)
or forn € [%ﬁ, 10] (X = AN case), respectively. In particular,

T 77 (ue, ) (8) | 12 2(m5) = lim Ex,n(t) = 0. (5.14)

t—0

The next remark will be useful in the proof of Theorem [5.2]

Remark 5.2 (|5, 6, 1I]). Note that finite energy smooth solutions of Skyrme (5.2)) and
Adkins-Nappi (5.3) equations are uniformly bounded as follows

|ulry, < C(Ex[u](0)), where X € {S, AN}, (5.15)
and C(s) » 0 as s — 0.
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5.1.2 Idea of the proof

In order to prove Theorem , we follow some ideas appeared in [2] 3], 13], where decay for
Camassa-Holm, Born-Infeld and Improved-Boussinesq models were considered. The main
tool in these works was a suitable virial functional for which the dynamic of solutions is
converging to zero when it is integrated in time.

In this paper, the new virial functionals give us relevant information about the dynamics
of global solutions of Skyrme and Adkins-Nappi equations. Using a proper virial estimate,
we prove that the corresponding energies associated to Skyrme and Adkins-Nappi equations
decay to zero in the subset R(t)

R(t) = {z e R®|z > (1 + b)t} = R,

which is the complement of the ball of radius (1 + b)¢, for b > 0.

Furthermore, to prove Theorem we will study the growth rate of polynomial weight
energies of the Skyrme and Adkins-Nappi equations. After that, assuming that their growth
is bounded, we will prove that this growth decays zero as t tends to infinity. To prove this
result, we introduce a functional associated with a sort of weighted momentum. It happens
that the virial identity associated to this functional shows no evidence of good sign conditions,
i.e. that the derivative of the functional be negative. Therefore, we have to introduce a new
functional as a linear combination of these two viral identities and for which there is a good
sign property. This ensures the integrability in time of polynomial weighted energies of degree
n. Moreover, it also guarantees the decay of polynomial weighted energy of degree n+1 over a
subsequence of times. Combining these two facts, we conclude that the polynomial weighted
energies, which are bounded, decay to zero as t tends to infinity (over R3).

Organization of this chapter

This chapter is organized as follows: Section is splitted in two subsections where a series
of virial identities are presented: in Subsection [5.2.1] and [5.2.2] we show the virial identities
used for to prove the decay of the energy in the Skyrme equation and , respectively.
Section deals with the proof of Theorem for the Skyrme and Adkins-Nappi equations.
Finally, Section [5.4] deals with the proof of Theorem |5.2|for the Skyrme equation and Adkins-
Nappi.

Acknowledgments

We are indebted to C. Munoz for stimulating discussions and valuable suggestions that helped
to improve a previous version of this work. I am deeply thanks F. Gancedo (U. Sevilla) for
his hospitality during some research stays where part of this work was done.

5.2 Virial Identities

In this section three virial identities for the Skyrme and Adkins-Nappi models ({5.2))-(5.3])

are presented. One of the virial functionals is related with the exterior light cone behavior
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(Theorem , and the other ones are useful for understanding the decay of the weighted
energy of Skyrme and Adkins-Nappi models (Theorem . Moreover, we remark here that
the energies Fs[u] and Fax|[u], defined in and (5.5)), are bounded in spaces & and
EMN respectively. Furthermore, it is well-known that these energies are well defined in the
homogeneous Sobolev spaces H/* n H*(R?) and H*? n H'(R?) for the Skyrme and Adkins-
Nappi equations, respectively.

5.2.1 Virial identities for the Skyrme Model

Let ¢ = ¢(t,r) be a smooth, bounded weight function, to be chosen later. For each t € R we
consider the following functional

Zs(t) = JOO or® [(1 + M) (uf + u?) + 2Sin2(u) - o Sin4(u)] : (5.16)

0 r2 72 ré

which is a generalization of the energy introduced in , and well-defined for (u,u;) €
(H7*~ H") x L*(R?). Moreover, if ¢ only depends on r and it can be written as ¢(r) = ¢/r?,
then we recover Fg 4, which is the weighted energy defined in . The following identities
will be useful for the proof of Theorems [5.1

The following result shows the variation of the localized energy for the Skyrme equation:

Lemma 5.3 (Energy local variations: Skyrme Model). For any t € R, ¢(t,r) a smooth
function previously defined, and Zs(t) as in (5.16)), we have that

d o, 2a2sin?(u)\ 5, o sin?(u)  o?sin*(u)
&Isﬂ) = JO O |:(1 + 7’—2) (Ut + UT) + 2 2 + A

0 2 2 12

0 72

(5.17)

Proof of Lemmal[5.3 Derivating ([5.16)) with respect to time, and using a basic trigonometric
relation, we have

d To(t) = F ot [(1 N 202 sin2(u)) (i + ) + 2sin2(u) N o? sin4(u)]

dt 0 r2 r? r4

ey foo 907’2Utl <a2 SiI;(QU)> (u? + u?) + sin(22u) N a? sin2(ui sin(2u)]
0 r r r

0 2 2 i 0 2 2 in2
+2f oriuy <1 + o (u)) utt+2f or? (1 + oy (u)) Up Uy

0 r? 0 r?
= Il+]2+13+]4.

Now, using the equation ([5.2)) in I3, we have

0 202 sin? 9 (2 o
I3 =2f 907“2Ut{<1+w> urr+_ur_Sln(QU) [1+a2 <ut2—uf+S1n Q(U)ﬂ}
0 r T T r
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And integrating by parts in the last integral I, we obtain

1 *© 202 sin?(u
514 = — f 0,12 (1 + —2()) Up Ut

0 T

B JOO 807”2%3( (guT N 202 sig(2u) u?) B <1 N 202 si;ﬂ(u)) urr)-
0 r r r

0 22'2
IQ+[3+I4= —2J QOTT'Q (1+M)Utur,
0

Finally, we have

and we get that

d To(t) = JOO o [<1 N 202 sinQ(u)) (i + ) + 2sin2(u) N o? Sin4(u)]

dt 0 r?

0 22'2
I J orr? (HM) .

0 2

This concludes the proof. |

Remark 5.3. With the change of variables p = ¢/r?, we avoid the term r? in the weighted
function ([5.16)), and which coming from the dimension of the problem. Then, Eg 4 is recovered
from Zg(t) and applying the Lemma we get

EES@ = Joo b [(1 + M) (uf +ul) + P O s Sm4<u>]

dt B r2 72 rd

Y AN 202 sin?(u)

This relation will be useful in the proof of Theorem [5.2]

(5.18)

Now, we define two functionals that we will use to prove the decay of the weighted energy
Ex 4. Firstly, denote by f the following function

202 sin?(u)

r2

flu) =1+ (5.19)

Now, considering 1 and ¢ smooth weight functions of r, which will be chosen later, we define
the functional Kg(t) associated with a sort of momentum, given by

Ks(t) = LOO ¥ f(w)uguy, (5.20)

and the functional Pg(t), which corrects the bad sign of the variation in time on the functional
Ks(t), and which is given by

Pult) = [ ofwu (5.21)
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Lemma 5.4. Let t € R, ¢ be a smooth weight function and Kg(t) defined as in (5.20). If
we &Y and p(r) = <— - 4w>, then we have

r3

d 1 0] / 1 o0} 0
EICS(t) = — —f %ﬁu? - §f r)riu? — % p(r) sin®(u) (uf + u?)
0 0 (5.22)

+L (%—2w)sin( )+5L )2

Proof. First of all, we notice that the derivates of f (5.19) are

U g (), — 20280 28 (5 93

r2 r3

(f(u): = 2

I

72

Secondly, derivating the functional ([5.20) with respect to time, we get

G0 = [ oD+ [ o)+ )
- [ o+ [ v+ 3 [ erw,

Integrating by parts in the last term of RHS, we obtain

—le J Y (f(w), uu, + J Y f(u)ugu, — lj O fu)u;
0 2 Jo (5.24)
- §f 1/1(f(u))rut2 = K1 +K2+K3+K4.

For K5, using (/5.2]), we obtain

:J ¢ur {f(u)urr + gur - Sin(QU) ll
0 T

. 9
2 2 ,  sin“(u)
2 o <ut —u, + —7“2

.
= [} g2 [ [ e 140 (a2

r2

0 2 0 12
— _fo [V f(u) + (f(u)),] % + 2L %uf ?/J sm(2u)ur [1 + o2 (uf —u? + smﬂ(u)
and replacing , we get
. [, U% o [ sin(2u) 4 o [ () oy
KQ——JO wf(u)g—aLwTur+2aL¢ u+2f0 U
[0 i 02
- % sin(2u)u, [1 +a? (uf —u? + i 2(u )]
J%r Tww (5.25)
sin?
- [T v [T o u+2f;3
— r‘Oogsm(Zu)ur l1+a ( sm )]
Jo 1°
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Using ((5.25) and ((5.23)) in -, one can see

© . 9 o - 9
%m ) ——% [ v (1+2a—<“>) ) o [ et vy
Ty

+ QJ —u,, — (sm () — 7 — (sin*(u)),-

07"4

Finally, integrating by parts and regrouping terms, we get

o 2 © o2 "
i’CS() —lj ! <1+m> (Uf+u3)+2a2J %Smrgu)(U?jLuf)wLQf %ui

dt 2 Jy 0o T
0 7 2 Gin2 12
o a® sin®(u) ) osin®(u)
+L ﬁsm(u) 1—|—7 - —20 rgsm() 1+aT
_ wl 2,2 1JOO 5 9 O JOO .2 2 2
- 2 0 7“2 L 9 0 p(T’)T’ Uy 9 0 p<7,.) S (u)<ut + ur)
Y0 g+ @ [ )
+ L <ﬁ — 2 sin”(u) + 5 ) p(r) R
and we conclude. [ |

Similarly, we have the following result for the correction term Pg(t) (5.21)).

Lemma 5.5. Let t € R, ¢ be a smooth weight function and Pg(t) as in (5.21). Then, if
we &’ we have

%PS( t) = a2 foo 10) (s1n(2u)u + 2sin (u)) (uf B Uz) . Loo gb(u? . U?")
+ o? JOO (Tgb” — 44 + 6%) sin2(u) W — o JOO ¢usin(2u) sz(u)
0

73 r

o () [ [ ) [

Proof. Derivating the functional (5.21)) with respect to time, we have

(5.26)

—775 f & (f(u)), wu + Jo of (u) (ugu + u?)

QQQJ gbsm?fw u?u * Joo ¢f(u)u? * JOO puf(u)uwu (5.27)
0 0 0
2=P1 + P2 + P3.

Using (5.2) in P3, we get

P3 = JOO ou {f(u)uw + 2ur - Sin(22u) ll + o’ (uf —u? + sini(u))] } :
0 r r r
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Integrating by parts the first term on the RHS, we get

Loo¢f(U)uuw= J ¢ f(u)uu, — J o(f ruur—Jooqﬁf(u)uz
2[ (¢"F(u) + Ju —J o TUUT—J:O(bf(u)uQ

Having in mind derivatives in ((5.23)), we get

J:O ot = 5 [ " (e + a2 J:O & <Sm(2§” - 2Sin2<“>> %

r

o2 x 5 <sin(2u) B 2sm > ay — [ of(u
J// ,sin( ) JQ ,sm
f ¢" fu)u® + o J ¢’ upu” — 20 J o

_QOPL qssmrf“ —l—4af ¢Sm Jqﬁf

Now, integrating by parts the second term in the above line in the RHS, we obtain

fgbsm o foo <¢sin:3(u)) 2
@ in(2u)u, sin®(u)
[ (o,

Then, substituting into (5.28)), we get

P LOO ¢ f () + o fo (—4¢' v 6?) ) 2 _ e [ Susin(u) sin’(w)

73 o T r3

+ « foo <¢’ — 2?) Mu,ﬂf - foo o) (a2sm(22u)u + f(u)) u?

() [ et

Replacing (5.19) and regrouping again, we obtain

P, = o? J ) (ch” —a¢ + 6?) sin(w) o 2 [ Susin(u) sin’(u)

0 73 o T 73

+a JOO <¢' - 2?) Sm?f“)urﬁ — a2 J s > (sin(2u)u + 2sin’(u)) u? (5.30)

0

[ (—>u+ [ [T o™ [ Touz - [ o
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Collecting Ps in (5.30)), (5.27)), and using (5.19)), we get

—735 f gbsm 2u) 2, f of(u)u? + a fo (r¢”—4¢’+6%) ()

0 rs
W J qﬁustu sm( )
+ « L ((b' - 2?> 51n(22u)u u? — J % (sin(2u)u + 2sin*(u)) u;

S e

Finally, regrouping terms,

%Pg(t) = o’ JOO ¢ (sin(2u)u + 2sin*(u))

0 r2

+042JOO (ngﬁ” 4¢' +6¢)
0

0 ¢\ sin(2u) ) 1, * sin(2u)
wa [ (0-27) ™ f [(?)r#]“gﬂ T

We conclude the proof. |

f gﬁusm 2u ) sin®(u)
”

5.2.2 Virial identities for the Adkins-Nappi Model

Let p = p(t,r) a smooth, weight function, to be chosen later. Similarly to the previous
section, for the Adkins-Nappi equation we introduce a suitable functional, as a weighted
generalization of the energy ([5.5)), and given by

0 r2 rd

0 i02 e 2
Zan(t) =f pr? [uf +u? + i (v) + (u = sinfu) cos(u)) ] , for each t € R. (5.31)

Recalling Remark [5.1], if p is a bounded function, the functional Zsy(t) is well-defined for
(u,uy) € (HY3 n H x L?)(R3). The following result describes the time variation of (5.31]).

Lemma 5.6 (Energy local variations: Adkins-Nappi Model). For any t € R, one has

0 102 o 2 0
%IAN( ) — J‘ ,OtTQ [U? + uz + ZSlnr2(u> + (U Sln(:il) COS(U)) ] _ J pr27"2utu7~. (532)
0 0

Proof. Derivating the functional ((5.31)) with respect to time and using basic trigonometric
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identities, we obtain

d o0 i02 o 2 o0
—Zan(t) zf per? [ u? +u? + i (u) + (u = sin(u) cos(w)) + QJ 12Uy Uy
dt 0 r2 rd 0

+ JOO 2puyr? [utt + singu) n (u — sin(u) cos(u)) Si + sin®(u) — cos® u) ] |

0
-

v

J1
(5.33)
Now, using the equation (5.3 and integrating by parts in .J;, we have

@ 2
Ji :f 2,0ut7’2 luw + —ur]
r

0

0 Q0
=f 4prugu, — J 2 (pﬁ“Qut + p2ruy + pr2utr> Uy
0 0

Finally, substituting J; in (5.33), we get

d 0 s 2 o 2 0
Ao :J o [u? 2 g o (u) n (u — sin(u) cos(u)) ] B QJ g (5.34)

2 4
dt 0 r T 0

This ends the proof of the lemma. [

Remark 5.4. Similarly to Remark , using the change of variables p = ¢/r?, the term r?
in Zyn(t) is avoided, and therefore recovering the functional Egng[u] (5.12). Furthermore,
by Lemma we have the following identity for the time evolution of Ep 4:

0

a2 o 2
GEat) = | o [ a4 200 Lo i) con(u) ]

rd
. ¢
- 2L <§b7« — 2?) UtUy.

This relation will be useful in the proof of Theorem [5.2]

(5.35)

Now, let ¢ and ¢ smooth weight functions of r, which will be chosen later. We define the
functional M 4n(t) associated with a sort of momentum, given by

0

Mon() — f D, (5.36)

0

and the functional R 4n(t), which is the term that corrects the bad sign of the variation on
the functional M 4n(t), given by

Ran(t) — LOO s (5.37)

The following results show the time variation of these functionals, which will be used in the
proof of Theorem [5.2]
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Lemma 5.7. Lett € R, 1) be a smooth weight function and Man(t) as in (5.36)). Then, if
AN
ue &l ", we have

_MAN :__f W J(Q%%) z_%fj(Q%_w,)sin;(U)

L[ (- v) it

(5.38)

Proof. Just derivating the functional (5.36)) with respect to time, we obtain
d 0
—Mun(t) = J VY (Ug Uy + Uptiyy)
dt 0
1 o0 ) 9 0 0]
=— - Vuy + Yugu, = My + M.
2 Jo 0

For M, using ((5.3]) and integrating by parts, we have

M, = Jw Y, (uw + g%) i ro - (sin(SU) | (w=sin(u) cos(w) (1 - cos(2u)))

_ VN e - Y Sin(SU) (u — sin(u) COS(:Z)) (1 — cos(2u))
M£)+<M222_ T) L ( = " )

With respect to Mys, note that rewriting it and integrating by parts, we obtain

1 1

My =-3 f: %(SiHQ(U))T -3 fo % ((u — sin(u) cos(u))?),

0 i 02 0 o 2
_ lj 2% L sin®(u) lf 4% oy (u — sin(u) cos(u)) |
2 Jo r 72 2 Jo r ré
Finally, collecting My, My, and Myy, we get
d L, W\, L0 sint(w)
Bl H = = r _Z¥ _ 97
dtMAN( ) 2], Puy — J;) ( 9 , Uy 2J{; r (G r2

1 J ) (4% - w) (u = sin(u) cos(w))*

r4

This ends the proof of this lemma. |

Lemma 5.8. Lett € R, ¢ be a smooth weight function and Ran(t) as in (5.37)). Then, if

ue ANl

CRaxlt fczmt L[m—qﬁ— %”“] fczs? foo—usm@u)

_ L i (u — sin(u) cos(u)) (1 — cos(2u)).

, we have

(5.39)
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Proof. Just derivating the functional ([5.37)) with respect to time, we obtain
d o0 a0
_RAN ZJ ¢U,52 + J ¢uttu = Rl + RQ. (540)

For R,, using (5.3 and integrating by parts, we get

Ry = — Lw(¢’u + du)u, — JOOO (g)r?f

J u (Sln@u) N (u — sin(u) cos(u)) (1 — Cos(2u)))

rd

e[ ()

f du (Sm 2u) n (u — sin(u) cos(u)) (1 — Cos(2u))> |

r2 r4

Regrouping the terms, we obtain

P N
) J()(¢2 ¢+¢)T2 Lm
- f:o <%us1n(2U) + 2 sinfu) cos(w) (1 - cos(2u))u) | o4

Then, substituting (5.41)) in (5.40]), we obtain

d ee} a0 2r7~ 2 0
&RAN() J ¢u?_L lgb’r—gb—rf ]u__ . pu?

_ JOO %u sin(2u) — foo %u (u — sin(u) cos(u)) (1 — cos(2u)).

0 0
This concludes the proof of the lemma. ]

5.3 Decay in exterior light cones for the Skyrme and
Adkins-Nappi models

This section deals with the proof of Theorems|s.1]for the Skyrme and Adkins-Nappi equations.
In what follows, fix 0 € R such that |o| > 1. Recalling the identity (5.17)) and using the

. . r+ ot
weight function ¢ = ¢ , we get

L
iIs( t) =12 JOO o2 |1+ 2 sin’(u) (u? + u?) + QSmQ(U) N a”sin’ (u)
di L Jy r2 r2 A
” 2 gin2 (5.42)
1 /2 20 sin”(u)
L . wr 1+T—2 2y
Furthermore, from Lemma [5.6] we have:
. ) )

%IAN( £ = %JOO o [uf +ul + 281n22(u) N (u— sm(u4) cos(u)) ]

0 ' ' (5.43)

1 o0
— Zjo ' 2r’uu,.
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Now, we are ready to prove a first virial estimate.

t
Lemma 5.9. Let L > 0,0 =—(1+b) < —1, and p = ¢ = tanh (r —ZO' ) Then

1. for the Skyrme equation, we get

d * 202 sin?(u) sin?(u)  o?sin(u)
&Is(t) SLb _J p'r? l(l + —2> (uf +up) + 25—+ 4

0 r r r
(5.44)
2. for the Sgkins-Nappi equation, we get
d © ol . 5 sin®(u)  (u—sin(u) cos(u))”
&IAN(t) <Lb —L o'r [ut +u; + 2 .~ + " ) (5.45)

Proof. Firstly we prove (5.44)). Focusing on the last term in RHS of (5.42)), note that, if

¢ > 0, then using a Cauchy-Schwarz inequality, we have

0 22'2 0 22'2
f @'r? (1+Ln(u)) 2, <f ©'r? <1+Ln(u)) (u? + u?).

0 2 0 2

Therefore, if b > 0, 0 = —(1 + b) < —1, and ¢ = tanh, we have from ((5.42))

iIs(lt) <Z f ) ©'r? [(1 + 207 sin7(u) Sm2<u)) (u? + u?) + 2Sin2<u) + o’ Sin4(u)]

dt L J, 72 r? rd
1 (" 202 sin? (u)
+EJ;) 90,7‘2 (14‘7) (U?'FU?)

Consequently, we obtain (5.44])

d » ) 2a%sin?(u)\ 5 o sin®(u)  o?sin*(u)
&Is(t) $L,b — JO ]gp’]r |:(1 + 7’—2) (Ut + UT) + 2 2 + " ] . (546)

The proof of ([5.45)) proceeds in a similar way. Only note that the last term in ((5.43)) holds
the following inequality
ee}
J o' 2uu,

0

e 0]
< J p'r?(u? + u?), for o' >0,
0

the rest of the proof follows the same lines as in the Skyrme case and hence, for the sake of
simplicity, we do not show it here.

Finally, we can observe that integrating in time on ((5.44)) and ([5.45|), we have proved ([5.9))
in Theorem [5.11 [
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5.3.1 Proof of Theorem [5.1; Skyrme and Adkins-Nappi equations

Firstly, we focus on the Skyrme case. It only remains to prove (5.8). We must to show
decay in the right hand side region, namely ((1 + b)t, +0), b > 0. Now we choose (r) =
T (1+tanh(r)), o = —(1+b), & = —(1 + b/2) with b > 0. Consider the modified energy
functional, for t € [2, o]

IS,to(t) =
1 (* (r+otg—0a(to—1t)\ , 202sin?(u)\ 5 sin?(u)  o?sin(u)
éL <p< 7 T 1+T (uy 4+ uy) + 2 R B :

Note that o < & < 0. From Lemma and proceeding exactly as in ((5.44]), we have

d
_IS,t() (t) §b,L

dt
B Jvoo sech? (7“ + oty — 5(t0 - t)) 2 [(1 n 2002 sin2(u)> (uf . ug) N 281n2(u) . o2 Sin4(u)]

0 L 72 72 r4

<0,

which means that the new functional Zg,, is decreasing in [2, t]. Therefore, we have

to d
| s = Zusy(t0) = Tasn(2) <0 — Tuylto) < Lo ).
2

On the other hand, since lim,_,_,, ¢(z) = 0, we have

lim sup JOC % (—T —pt= 7) 7 l(l + —2a2 sinz(u)> (uf +u?) + 2sin2(u) + o’ sin4(u)] (v,r) =0,

t—o  Jo L 72 72 rd

for 8,v,v > 0 fixed. This yields

0

N

fogo (M> 7 Kl + M) (u? + u?) + 28in22(u) + o’ Sm4(u)] (to,r)

0 L 72 r r4

§ foo(p <7~ Yy — (24 b)) r [(1 ) M) () + 5’ (u) Lo sin4(u)] (2.1,

2
0 L r

which implies,

lim sup foo © (ﬂ) 7 ((1 + M) (u? + u?) + QSmQ(u) - o’ Sm4(u)) (t,r)dr = 0.

t—0 Jo L 72 72 ré
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This means that the energy over R(t) (see (5.7])) converges to zero, implying (5.8) and then
we conclude the Skyrme case.

For the Adkins-Nappi case, the proof is analogous but this time considering the modified
energy functional

© r+otg—o(tyg —t sin?(u u — sin(u) cos(u))?
zAN,tOu)::fp( 03 >)r2[ug+u3+2 T2<>+< <r4> ()” |
0

and repeating the same steps as in the Skyrme case. This concludes the proof of Theorem

B

5.4 Decay of weighted energies

Firstly, we study the growth rate of the modified energies introduced in (5.11)) and ((5.12)).

5.4.1 Growth rate for the modified energy in the Skyrme and Adkins-
Nappi equations

In this section we study the growth rate for the power type weighted energy of the Skyrme
and Adkins-Nappi equations

Proposition 5.10. Let u a global solution of (5.2)) (or (5.3)) such that u € ﬂsg(””i, for
i=2
X =S5 or X = AN. Then the corresponding weighted energy satisfies

Ex m[ul(t) = O(t"?), (5.47)
where Ex |ul(t) is given in (5.11) and (5.12)), respectively .
Proof. Firstly, we consider X = S. We note that for ¢ = ¢/r?, we get

To(t) = Bsylul(t). (5.48)
Then, using (5.35) with ¢ = r", one can see

d
—TIs(t) = -2 t
3 2st) Ks(t),
where Kg(t) is given by (5.20)) and ¢ = ¢’ — 2% = (n —2)r"~!. Now using (j5.48)), we get
d
B li)] < o L), (5.49)

and for n = 3, we obtain

(5.50)



Similarly, for n = 4 and using the last inequality, we get

'%ES”,A [u](t)| SEs,s|ul(t) < Es[u](0)t + |Egs[u](0)]. (5.51)

Now, integrating with respect of time, we have

tQ
| Bsra [ul ()] <Es[u](0) 5 + [ Es,ps[u] (O]t + [ Eg e [u] (0)]. (5.52)
Repeating this procedure, we conclude
n—3 '
| Esn[u] (t)] S Es[u](0)" % + Y | Eg pn-s[u] (0)]. (5.53)
7=0

This ends the proof for the case X = S. Analogously, following the same ideas, it can be
proved for the case X = AN case. This completes the proof. [

5.4.2 Decay to zero for modified Energies: Proof of the Theorem
0.2
In the spirit of [2, B, 13|, we consider a suitable linear combination of virials Kg(t) and Pg(t)

(see (5.20) and (5.21))), and Man(t) Ran(t) (see (5.36) and (5.37)), for the Skyrme and
Adkins-Nappi models. Let

Hs(t) = Ks(t) +1sPs(0), (5.54)

and,
HAN(t) = MAN(t) + ”YANRAN(t), (5.55)

be new virials, where vg and y4n will be chosen later. These new virials introduce u?

terms, which allow us to simplify the problem considering Taylor expansions for the involved
trigonometric functions.

Decay to zero for modified Energy: Proof of the Theorem for the Skyrme
model

Lemma 5.11. Let u be a global solution of (5.2) such that || <8, ue EY, and ¢ = r¢

(where ¢ and ¢ are the weight functions presented in (5.20) and (5.21)). Then, Hs(t) in
(5.54) satisfies the following identity

d 1 (*® 1 (@
g0 -5 [ (v-met) -5 [ (ve@e-nb)u

0 2
- f ((2 - w)% + (295 — 1) — ﬁrw”) =

2
0
0 2
_ QZL (w' —(2+ 475)%) %(uf + u?)
0 1 4
_ oﬂfg (—5(1 s+ (2~ 45) % %aw") L H),
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where

oezf < Ysr" + (— 3+6’Vs)¢'+(673+12>%> (%JFOS))

0
0 4 0 6 0] 8
(vt ) s 2 (2t ) (5 2

0

afoo[ < ¢+2(1+675)¢> 2

+ 435 (w —2(1 + 475)%) (u" + O(u?)) ]:—j(u? +uy).

O = m

OOIH

Proof. Collecting (5.26)) and (5.22)) and regrouping terms, we get

d
3 s ()
=—1f (¢'—275¢)U?—%J

o0

(lﬁl + 2950 — 4%> u?
2 Jo 0 r

(2o [ S [ () 1)

_ 042 Jw lf_; SiHQ(UI) - 2% SinQ(u) — ,str% (SlH(ZU,)u + 281n2(u))] (U? n uz)

+ s L (f—” - % +6 (b) sin?(u)u? — ysa® JOO %u sin(2u) sin’(u)

0

+ a_J (% —4 w) Sjn4(u) + ’ySaQJ;) (% -2 ¢> sin(2u)uru2.

2 rd

Now, let § > 0 small enough such that |u[.= < § (by Remark [5.2)), we note

1 2
sin?(u) =u? — §u4 + Euﬁ +O(u®),

4 4
wsin(2u) =2u* — §u4 + 1—5u6 +O(u®),

16
2sin?(u) + usin(2u) =4u?® — 2u* + 4—5u6 + O(u),
2

wsin®(u) sin(2u) =2u* — 2u® + O(u®),

sin(u) =u* — §u6 + O(u®).
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Then, we obtain

d
EHs(t)

=3[ @ -5 [ (v meo -4l [ ((?)—ésb) %
+ LOO (% - 2%) [u2 - %u‘* + %zﬁ + O(ug)] — s LOO % <2u2 - §u4 + %u6 + 0(u8)>
LT 08) (b 2 o)
- 75% (4u2 —2ut + guﬁ + 0(u8)> ](Uf +uy)
T g0 ro <¢_" VAN 6%) <u4 N O(u8)> — ysd? F rii (2u* — 2u° + O(u®))

2 3
0 T r 3 0

2 (oo / 9 . ,
+ %J@ <% — 4;/}—5) (u4 _ §u6 + O(uB)) + ’Ysa2f0 <f_2 _ 2%) Sin(?u)uruz.

We now consider the following decomposition

d
&Hs(t) = H, + Hy + H3 + Hy + Hs, (5.56)
where
1 * / 2 1 * / w 2
Hi=-3 (v —273¢)Ut—§ Y+ 2950 —4— | uy,
0 0 r

N e T e (G RO

Q0
¢ o 4,4 8
—ysf 3 2u—§u + U +O0u®) ),

0

oo] / 1 2
H; =— aQL [ <% — 2%) (u2 — §u4 + EUG + O(ug))

Hy = ysa? foo <¢—: — 4% + 6%) (u4 - %uﬁ + O(ug)) — ysa? JOO 24 (2u* = 2u® + O(u?))

”
2 00 / 2
+ %J;) <% — 4;0—5) (u4 — guﬁ + O(ug)) )

Hs = ysa? JOO (ﬂl - 2%) sin(2u)u,u?. (5.57)

0 72

Regrouping terms of the same order, we get

” ¢ Vs 0 VW ¢ Y 29 4¢
oo [ (s (8) -Gk e ) [ (G- an i) o

o 4 4 ¢
vJ, (B et (0 - ow).

and
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Similarly, for H; we get

Hs; = — aQJ (ﬂ - 2% - 475%> u?(u? + u?)

0 7

2y 1y ¢
2 /v -7 2 e 4
“ L [ <37"3 3r? - =y

1 /
+ YT (2:%—2 - 4% - 1675%) (u® + O(u®)) ] (u + u?).

For H4, we have

LY Y ¢ ¢" ¢ ¢
Hy = o Sl 2T 9y yg — Ayg— + 6ys— | ut
4 aL (2T4 5 75T4+75T2 VST3+ ’YST4 U

L1 ¢ 4 ¢ ¢ 1Y 49
2 (272 4 206D 2962 12062 2V L2V (8 L o).
o JO ( 3%17’2 +375r3 751"4+ 737“4 374 +37"5 (u +0(u ))

For Hs, first we note

1d
sin(2u)u,u? = ZE(Qu sin(2u) — 2u® cos(2u) + cos(2u) — 1).

Now, replacing in Hj; and integrating by parts, we get

Vs o * QSI ¢ . 2
Hs = — Vs ol ZE (2usin(2u) — 2u” cos(2u) + cos(2u) — 1),
0 T

using its Taylor expansion and regrouping the terms, we have

Hy = — TS 2 JOO (¢_” — 4%/ + 6%) (2u4 — guﬁ + O(u8)>

4 o \r?
o] /! /
2 Vs @ ¢ o 4
= ——— 4+ 27— — 3v5—
e} L < 5 2 + VSrg 757"4)”
o} 2 ¢// 8 ¢/ 4 ¢
2 6 8
—Yg— — —=Yg—= + =Yg— O .
e L (9757’2 97573 * 3154 (v +O(?)

Collecting the last equation and Hy, we obtain

o0 1 / / "
H4+H5=oz2j AN AIPORL P A L PV
o \2r r r r 2r (5.58)
o0 1 ¢// 4 ¢/ 1 ¢/ 4 w 4 Qb :
2 6 8
——Yg—= + =Yg — =— + —— + =Yg— O .
Ta JO ( 9572 +975r3 37“4+3r5+375r4 (u +Olu >)
Having in mind that ¥ = r¢, we have
/ " /
gb’:ﬂ—ﬂ and ¢”=¢——2g+2£.
roor2 r r2 r3
Now, rewriting H;, fori=1,...,5, in terms of ¢ and its derivatives, we get
1 (™ 1 (™
m--g [ (v-net)a- [ (vees-0b)e (5.59)
2 Jo r 2 Jo r



(5.60)
H3 :—QZJw (22/—(24‘4’}/3)%)“ (ut +u )
0

o0 1 !/ 2

— 042JO |: (—g% + 5(1 + 6’}/5)%) U4 (561>
2 4
+ (25 - 0+ 0% ) (o + 0w) [t + a2
and
© /1 Y’ Yo s "
Hy+ Hs = a? ( (1—6’)/5)——(2 4yg ) +——) ut

Jo 2 o2 (5.62)

+ 042J0 (_%'YS% - (% - g%@) v <975 + §> %) (UG + O(US)) :

Finally, collecting (5.59), (5.60), (5.61), (5.62)), and regrouping the terms of the same
order, we obtain

d o0 o0
=3[ (-m2) -1 (v 0t)s
w0 2
- L ((2 - 73)% + (275 = DY’ = %w”) %
0 2 (5.63)
_ ngo (W —(2+ 475)%) %(uf +u?)
* 4
where
H(
e} 6 8
[ (oo o1 ) (5492

T DO R

ozf:{ <w+21+6fys)w) 2

2
+ - <”¢' —2(1 + 4vs)

2

) w00 |0 + a2

RERSE
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This ends the proof.

Under the hypothesis of Lemma the functionals Kg(t) and Pg(t) (see (5.20)—(5.21))

are well-defined. In fact, using the Cauchy-Schwarz inequality, we have

Ks(t) < fow (1 + M) (uf +u?),

0 T

and

Palt) < | 1o (1 ¥ M) (w + 55,

0

Then, assuming ) = r¢, and u € 55,9’”, we get

[Ks(t)] + [Ps(t)] < Esp[u](t),

hence concluding that the functionals Kg(t) and Pg(t) in (5.20)-(5.21) are well-defined.

Corollary 5.12. Let n,vs € R and ¥ = r™x. Then, under the hypothesis of Lemma |5.11

the following identity holds:

0] 1 o0 B "
J (n — 2vyg)r lx—i—rnx') u?—§J ((n+2fys—4)r" Y+ X’) u?
0

Q

foo ((n =2 —dys)r" " x +1"x') 2(UMU)
- foc ((2 —vs +n(2ys — 1) — fgn(n — 1)y

2
n./ VS my1 n\U
+(’YS(2—”)—1)7’X—77“ X)T—Q



and for H, holds
2 11 n—1 no 2 u? 2 2
H,(t) = -« 3 (—n+2(1+67s)r" 'x +r"X) u ﬁ(ut + u?)

1 0 1 u4
— §J ((n —2(1 + 29g))r" " x + rnx’) 2

9 0 6 9] 8
+ = (n=20+7s))r" 'x+1r"Y) L o)

45 J, 72 r?

5 " 2 (5.66)
- Eazf (n—2(1+ 4ryg))rm X 4 X (u4 + O(u6)) ﬁ(uf + u?)

0

1 2 OO n—1_/

+ 5@ ([vsn(5 — n) = 3n + 6ys + 12]r" 'y
0
ub O(ud
+ (75(6 —n) = 3)r"x — ysr" T Y") (F + 5‘4 ))
Proof. The proof follows directly replacing ¢ = r™x in Lemma [5.11 |

Now, if we set y = 1, we obtain the following result:

Corollary 5.13. Let § > 0 small enough, ¥ = r" and u be a global solution of (5.2)) such
that u € £ and |u|p» < 8. Then, for vg = —1 and n > 2, the functional Hs(t) (5.54)
satisfies

d 1 (™ u?

—Hst)=—=| 1| (n+2)u?+ (n—6)u+ (n—06)(n— 1)—

dt QL [ , r ) (5.67)
+202 (n + 2) %(uf +u2) + a(n — 6)(n — 2)% + H.(1),

with |He(t)| < 8*°Egm-1(t).

Assuming § > 0 small enough, n > 6 and applying Corollary [5.13], we obtain the following
virial inequality
d | 2 2 u?
_&HS(” > 1), r (n + 2)uy +(n—6)ur+(n—6)(n—1)ﬁ

2
+202 (n + 2) %(uf +u?) + a?(n — 6)(n — 2)= ] > 0.

r4

In particular, as an application of (5.68]), we obtain the following result for r®*¢ and r7*
weighted energies.

T+e

Corollary 5.14. Let € > 0 and u be a global solution of (5.2) in the class 55’T6+6 N 805”"
Then,
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1. Integrability in time:

2 4

w2
f f rOte 4 pTre) lut + u? ot 2 u—(ut +u?) + a —] drdt <, 1. (5.69)

rd

2. Sequential decay to zero: there exists s,, t, 1 o such that

lim Eg,e+e[ul(t,) =0 and lm Eg,7+[u](s,) = 0. (5.70)

n—a0 n—oo

Decay to zero for modified Energy : Proof of the Theorem for the Adkins-
Nappi model

Similarly to the Skyrme equation, we will need the following technical lemmas.

Lemma 5.15. Let u be a global solution of @ such that u € 8{)4N’¢, and 1 = r¢ (where 1
and ¢ are the weight functions presented in (5.36) and (5.37) ). Then, the functional Han(t),

defined in (5.55)), satisfies the following identity

—5 [ (v ma) -3 [ (v - 2tan -2 2

5 [ [Pt = v w"] g [0 0] S ey
L o] (5580

—éf:o |:4(2+37AN)£_2¢] ( )

Proof. First, we note that My (t) and Ray(t) are well defined in ;Y. Collecting (5.38)
and (5.39)), we get that Han(t) is given by

%HAN@) = %LOOW —27and)u LOO (— - —) u? —Yan f: pu?
_%L“@% ) éw—éf @%_W>w—$m2mwm2

Q0 2 Q0
_P)/ANJ‘O l¢7"—¢— ¢TT:|T——")/ANL <%)USIH<2U)

e f - (%) u (1 — sin(u) cos(u)) (1 — cos(2u)).

0

=]

178



Now, let 6 > 0 small enough and using the Taylor approximation for |u|p~ < d, we have

usin(2u) = 2u? — éu + iu °+ O,

3 15

sin?(u) = u? — 1u + 3u +O0(u®),

B 37 45

4 8

Q] 2 — 6 -

(u—sinucosu)® = gU 45u + O(u'?),
4 32
u(u — sin(u) cos(u))(1 — cos(2u)) = §u6 - EUS + O(u'?).

Replacing in %’H an(t) and regrouping the terms of same order, we get

0 Q/J/ 2

2o - [ (5——+m¢>
U
2

1

D)

0 I 2
J %——1# + VAN T + Yan® — Yan gbw]

2
o L
T 19 u? 29 1 ub  O(u®)
—L 3 —@/J - —VAN¢] - _Jo [4—5? - —w —VANﬁb] ( t—3 )
0 6 8
J gggﬁb —WANQb] <u +O(1i >)
o L r r

Since ¢ = r¢, we get
P )

2
Then, rewriting Han(t) in terms of ¢, we get

S an ()
(v mnd) i L[ ()
_ %LOO _2(1 - ’YAN)% — '+ VAN”/’”] z—j
A o o529
. éfo :4(2 + 3%@% - 21#'] (;f—j + 05,1468)> '
This ends the proof. -

Similarly to Skyrme equation, using 1) = r¢ and the Cauchy-Schwarz inequality, we get

< Eany[ul(t).

Then, the functionals My (t) and R n(t) are well-defined if u e £

(Man ()] + [Ran(t)|
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Corollary 5.16. Under the hypothesis of Lemma and assuming n,vay € R and ¢ =

r"x, the following holds:

EHAN(t) =
1 [ 1 /
- §J [(n—27AN) r’"e X—I—r"x]
Lo
3 J [(n—2)(1 = vann — Yan)
0
1 [ 1
_gjo [(—(47AN+1)+§71>
1 * n—1 n./ U’G
- ) [(2(1+6’7AN)—7L)T X—T X] ﬁ+

1 o0
;).

Proof. The proof follows directly using ([5.71)) and replacing v = r".

Uu
Tn—lx + TnX/] —
r

6
_ " U
[(4(2 + 3van) — 2n)r" 'y —2r X’] (r_4 +

[(n+4—2yan) iy + X' u?

o0
> 1
u; 5
0
2
n+1 //] u-
2

I+ (van — D™+ yanr™ M x

4

r2

O(uS)) |

rd

0(u8))

Now, considering that x = 1, we obtain the following result:

Corollary 5.17. Let ¢b = v | and u be a global solution of (5.3 such that u € 5641\/,1”".

Then, for yany = (n —2)/8 and n =
following identity

2, the functional Hay, defined in (5.55)), satisfies the

_HAN()\_—J ’T‘n_l nt th_f_ﬂuz_’_(n )(TL n )u_
+7”L —2 (b N O<u8> N (10 —TL) ub N O(,ug) .
45 72 r2 9 r4 A :
For n e [—HQ/H, 10]; by Corollary [5.17, we obtain the following inequality
d 1~ 3n+ 2 3(6 -2 —n—10
—Han(t) = _J =1 n + 4 ( +n)u§+ (n—2)(n*—n )
+n*2u6+(10*n)u6 - .
45 r2? 9 rd =

which is essential to obtain the integrability property. In particular, we obtain the following

4+€ 5+e€

result for the r and r

Corollary 5.18. Let u be a global solution of (5.3) in the class S(fw’r“e N 564N’T5+6

€ [0,4[. Then,

1. Integrability in time:

JJ rAte 4 pSte) ((ut+u)+—+—>drdt§uO1

weighted energies.

for

(5.74)
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2. Sequential decay to zero: there exists s,, t, 1 o0 such that

lim Egnpsee|ul(t,) =0 and lm Egnpa+e[ul(s,) = 0. (5.75)

n—0o0 n—o0

The proof of above corollary follows directly from (5.73). With these results, we are ready
to conclude the proof of Theorem [5.2] for the Adkins-Nappi equation.

Now, we are ready to prove Theorem for the Skyrme equation.

5.4.3 End of proof of Theorem
Consider Eg,, as in (5.11)) with ¢ = 77", From (5.18)), we have

GEsolul) = -2 | " (¢ - 2) (1 + 2“—“(“)> s,

0 72

Therefore,

;itES@[ J(t )‘ < JOO ¢ —2%‘ (1 + M) (W2 + 1u2). (5.76)

0 72

Integrating in [t,t,], we have

B o[ul(t) — Es,o[u] \<fj

Sending n to infinity, we have from (5.70) that Eg[u](t,) — 0 and
2
|Es ul(t)] < f J © _2g0‘ ( o’ sin (u)) (u? + u?)drdt.
5+e€

Finally, if t — o0, we conclude. Since Eg ,[u] H T2 U, T =R

2
o - 2('0‘ ( o’ sin (u)) (u? + u)drdt.

2 :
t)!‘L2xL2(R3), this proves

Theorem [5.2] for the Skyrme equation. The proof in the Adkms Nappi case is analogous
considering E4n, in (5.12)) with ¢ = r°F

This concludes the proof of Theorem [5.2]
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

This work concerned the study of well-posedness, and long time asymptotics of small or
solitonic solutions for five models appearing in Nature: Improved, abed and Good Boussinesq
models, Skyrme and Adkins-Nappi equations.

The results obtained in the Part [[I] of this work essentially consist of a deep analysis of
the following topics:

e Decay of solutions of the Improved-Boussinesq,
Ofp— 20 — 02 — 2(|g[P~'p) = 0, forp>1, (t,7) e R x R, (6.1)

for which we improved decay results by Cho-Ozawa.

e Asymptotic stability of standing waves of the Good-Boussinesq model,

where we constructed a manifold of data around the standing wave (Q,0), and charac-
terize the asymptotic behavior in this set. This work is the first of his type in Boussinesq
models, and opens a new area of research for next years.

e Ill-posedness for the (abcd)-Boussinesq system:

(1—-0A)0m+ V- (aAd+ 4+ un) =0,

(abed) (t,x)eRxRY d=1,2. (6.3)

1

Here we improved existing results on well and ill-posedness for 1D and 2D (abed)
Boussinesq.

In Part [II]) of this thesis we studied the following high energy models:
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e Decay of solutions of the Skyrme equation,

202 sin? 9 in?2 in?
(1 + w) (U — Upyr) — U + SH;QU [1 +a? (uf —u + a;u)] =0, (6.4)

r2

e Decay of solutions of the Adkins—Nappi equation,

2 sin 2u u —sinucosu) (1 — cos2u
Ut — Upp — ~Up + 2 + ( 4) ( ) = 0. (65)
r T T

For each of these models, we provided the first decay results known to date.

We provided new ideas (the virial technique for instance) and decay results for Boussinesq,
Skyrme and Adkins-Nappi models. However, several questions were left open here, and we
believe that these are nice continuations for the future.

6.2 Future Work

We want to focus on the understanding of the long time behavior problem in non-decaying
solutions, e.g., solitary waves, standing waves, and kinks. The first step is to focus on
the kink’s stability and asymptotic stability for the Wave-Cahn-Hilliard equation. The
second step is to study the stability of standing wave solutions of the (abcd)-Boussinesq
system. Finally, I want to concentrate my efforts on the stability of solitary waves solution
in the Improved-Boussinesq model.

6.2.1 Stability and Asymptotic Stability of Kinks in Wave-Cahn-
Hilliard equation

The well-known Cahn—Hilliard equation given by
Ou + Otu + 02u — 02(u?) = 0.

This model has a huge literature, and has many interesting properties. See [I5] [16] [5] for
further details. We propose to study the model

O2u + Otu + 0%u — 2(u?) = 0, (6.6)

that we call the Wave-Cahn-Hilliard equation. This variation makes the dissipative nature
of the Cahn-Hilliard equation change to a wave-like behavior, with a huge flavor to good-
Boussinesq. This model is also a generalization of the ¢? model. A kink is a solution to (6.6))
of the form

u(t,x) = He(x — ct — x9),, c,x0€R,

with H, solving H” + (¢ + 1)H, — H3 = 0. Tt is well-known that (up to shifts) standing
kink (¢ = 0) has the form H(x) = tanh (\%) . Cahn-Hilliard and wave-Cahn-Hilliard models

share the same kink solution. However, since our modified equation has not been studied
yet, there are many research possibilities for their study, ranging from well-posedness to the
classical stability properties. We expect that the study of the elementary properties of the
Wave-Cahn-Hilliard equation will open a new field of research.
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6.2.2 Asymptotic stability of even data perturbations of solitary
waves in the (abcd)-Boussinesq system

For a,c < 0and b = d > 0, the system carries a Hamiltonian structure, and are the conserved
quantities, given by

1
B nl(t) = 5 [(~alVaP = dVaP 411+ 1) + )(t.a)de, T(0) = [ u+ 599V

These are the energy and impulse functional, respectively. Recently Bao, Chen and Liu [I]
considered ground states for 1D abced of the form:

(n,u)(z) = (No, U,)(x —wt) e H'(R) x H'(R) weR,

in the natural energy space. For a,c < 0, b = d they proved the existence of these ground
states, such that the traveling speed w satisfies

] min{l,%},whenb#@
w| <

1, when b =0.

In general, (N,,U,) are not explicit but sometimes they are. In [3| 4, [7] it was given an
explicit description of the solitary waves. For instance, for w = 0 and a = ¢ < 0,

(No, Uo)(@) 1= (=@ (w/+/lal) . v2Q (w/v/]al) )

where Q(z) = %SechQ(g) is the positive solution of Q" — Q + Q? = 0. Furthermore, they
proved that the solitary waves are spectral stable for all subsonic speeds, i.e. |w| < 1. In
the spirit of my previous work [12], under orthogonality and parity conditions, I want to
prove that if the standing wave is orbitally stable then it is asymptotic stable. Once this is
done, the natural extension of the problem is to consider the moving solitary wave and its
dynamics.

6.2.3 Stability of the solitary wave in the Improved-Boussinesq equa-
tion

One important question that remains open is the stability /instability of Improved-Boussinesq
solitons. But, as we shall explain below, this question is far from being trivial.

In an influential work, Grillakis, Shatah, Strauss [6] (GSS) obtained sharp conditions for
the orbital stability/instability of ground state solutions for a class of abstract Hamiltonian
systems. This result was extended to another class of Hamiltonians of KdV type by Bona,
Souganidis and Strauss [2]. Hamiltonian systems as the ones considered in [6] allow us
to introduce the Lyapunov functional F' := H — c¢I, where H is the Hamiltonian and [
is a functional generated by the translation invariance of the equation (usually, mass or
momentum). Here, ¢ is the corresponding speed of the solitary wave. The stability of the
solitary wave is then reduced to the understanding of the second variation of F', in the sense
that 0*F > 0 leads to stability. Also, if the former positive condition is not satisfied, but
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the corresponding nonpositive manifold is spanned by two elements (directions) which are
associated to the two degrees of freedom of the solitary waves (scaling and shifts), it is still
possible prove stability using 0?F', but it is also necessary to restrict the class of perturbations
to those which are orthogonal to the nonpositive directions.

Smereka in [I9] studied the soliton of IB and observed that this soliton fits into the
class of abstract Hamiltonian system studied by GSS. However, it is not possible to apply the
GSS method since an important hypothesis is not satisfied. In fact, he observed that 0?F is
nonpositive on an infinite number of directions, where two of them can be associated to the
point spectrum, and the remaining with the continuous spectrum. Therefore, GSS is useless
in this case. However, the same author showed numerical evidence that if d7(Q.)/dc < 0, then
the solitary waves are stable, and if dI(Q.)/dc > 0 the solitary waves seem to be unstable.

In a very important paper, Pego and Weinstein [17] proved (among other things) that Q.
is linearly exponentially unstable in H' when

3p—1) \°
1<CQ<<%), with p>5

Their method combines the use of the Evans function as well as ODE techniques. They also
showed [18] that the linear equation around @), for ¢ ~ 1 satisfies a convective stability
property, based on the similarity of IB with KdV for small speeds. This result has been
successfully adapted to a more general setting by Mizumachi in a series of works [13], [14].
Whether the asymptotic stability results by Martel and Merle [10, 11] and the recent work
of Kowalczyk, Martel and Munoz [9] can be applied to this case, is a challenging problem
that I would like to consider. An interesting result in this direction can be found in the
work [8] and my recent work [12].
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