
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

A GENERAL APPROACH TO RECURSION IN G-CORE

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

VALENTINA BELÉN URZÚA PUENTES

PROFESOR GUÍA:
CLAUDIO GUTIERREZ GALLARDO

MIEMBROS DE LA COMISIÓN:
JOSE A. PINO URTUBIA

ÉRIC TANTER
DIEGO SECO NAVEIRAS

SANTIAGO DE CHILE
2021

Resumen

G-CORE es un lenguaje de consulta de bases de datos de grafos. Una de sus características
más novedosas es que es un lenguaje cerrado, pues se consultan grafos y se retorna grafos.
Además, tiene la capacidad de expresar caminos como ciudadanos de primera clase, es decir,
se puede manipular, operar y retornar caminos.

Como muchos otros lenguajes de consulta, G-CORE no tiene recursión. Aunque las fun-
cionalidades de caminos ayudan, todavía no son suficientes para expresar una amplia variedad
de consultas, particularmente algoritmos de grafos clásicos como orden topológico, búsqueda
en anchura (BFS), circuito Euleriano, árbol recubridor mínimo, etc.

Para abordar este problema en esta tesis se extiende G-CORE con funcionalidades recur-
sivas. Esto se ha hecho en otros lenguajes de consulta, por ejemplo en SQL y SPARQL,
donde se han obtenido buenos resultados al aumentar su poder expresivo de forma amigable.

Con ese objetivo, comenzamos por introducir una sintaxis y semántica para el nuevo
operador recursivo. Dado que el modelo de datos de G-CORE es el de Path Property Graph,
no es posible traducir directamente la recursión de SPARQL o de SQL. Lo anterior se debe a
que la recursion de SQL y SPARQL está basada en la semantica de punto fijo, usando para
ello la convergencia de una tabla auxiliar temporal que va creciendo hasta estabilizarse.

En el caso de The Path Property Graph, el avance del proceso recursivo no siempre
se corresponde con un crecimiento de algún grafo. Luego no se puede saber de manera
precisa cual métrica seguir para evaluar la convergencia del grafo temporal a un punto fijo.
Para abordar esto, proponemos una recursión general a través de una estructura externa que
pudiera definir distintas métricas para medir el crecimiento y convergencia del grafo temporal.

También mostramos como pueden ser codificadas las consultas clásicas de grafos añadiendo
este nuevo operador recursivo. Finalmente repasamos las dificultades de implementar este
nuevo operador en G-CORE y que otros operadores necesitan ser añadidos al lenguaje.

i

Abstract

G-CORE is a graph database query language. One of its most novel characteristics is that
it is a closed language, since graphs are consulted and graphs are returned. In addition, it
has the ability to express paths as first-class citizens, that is, it can manipulate, operate and
return them.

Like many other query languages, G-CORE does not have recursion. Although the path
functionalities help, they are not yet sufficient to express a wide variety of queries, particularly
classical graph algorithms such as topological order, Breadth First Search (BFS), Eulerian
circuit, minimal spanning tree, etc.

To address this problem in this thesis G-CORE is extended with recursive functionalities.
This has been done in other query languages, for example in SQL and SPARQL, where good
results have been obtained by increasing its expressive power in a friendly way.

With that goal, we start by introducing a syntax and semantics for the new recursive
operator. Since the G-CORE data model is that of the Path Property Graph, it is not
possible to directly translate the recursion from SPARQL or SQL. This is due to the fact
that the recursion of SQL and SPARQL is based on fixed point semantics, meaning it uses
the convergence of a temporary auxiliary table that grows until it stabilizes.

In the case of The Path Property Graph, the progress of the recursive process does not
always correspond to a growth of some graph. Therefore, it is not possible to know precisely
which metric to follow to evaluate the convergence of the temporal graph to a fixed point. To
address this, we propose a general recursion through an external structure that could define
different metrics to measure the growth and convergence of the temporal graph.

We also show how classic graph queries can be coded by adding this new recursive operator.
Finally we review the difficulties of implementing this new operator in G-CORE and that
other operators need to be added to the language.

ii

A mi familia, mi Mamá y mi Papá que me inculcaron ir el amor por la ciencia.

iii

iv

Agradecimientos

Tengo que agradecer a mucha gente el poder haber realizado esta tesís. Fue un trabajo largo
y en ocaciones tedioso pero que al final logró un buen resultado.

Primero quiero agradecer a mi familia, a mi Papá y Mamá que siempre me apoyaron en
todo para que yo pudiese estudiar tranquila y que siempre me incentivaron a tomar desafíos.
A mis abuelitos, la abuelita pilar y el chico Mario que siempre estuvieron ahí preocupandose
por mí en este proceso. A mi gatita Chimu por todo el amor y el ronroneo y también a lupita
y manchita por acompañarme siempre.

Luego agradecer al profesor Claudio Gutierrez por su paciencia y por siempre ayudarme
para que yo pudiese terminar este trabajo, no me es posible retribuirle todo lo que ha hecho
por mi pero espero que con este trabajo podamos sacar una publicación. Al profesor Aidan
y a Adrian que me guiaron en mi tesís aportando ideas y revisando mi trabajo, gracias por
ayudarme!

A mis amigos de la carrera de Licenciatura en Matemáticas, pues sin ellos no hubiese
llegado hasta aquí, en especial a Luis y a Miguel que llegaron a ser tan importante como mi
familia y que siempre estarán ahí no importa que pase.

A mis amigos del trabajo, a Benja, Franquito, Ignacio, Roberto. Por los buenos momentos
y porque a pesar de que eramos compañeros de trabajo, forjamos una amistad profunda y
bonita, espero seguir viendolos y riendonos!

A mis amigos que conocí en Beauchef: Alvaro, Jorge Ampuero, Lucas, Eduardo, Nelson,
Sofía (mi primera amiga de la U) por siempre apoyarme y ayudarme en lo que necesitaba,
son amistades muy valiosas y que lucharé por conservar. A Florencia y a Constanza, por su
amistad única y por siempre creer en mi e incentivarme a hacer nuevos proyectos, muchas
gracias amigas de mi alma.

A mis amigas de la vida, Karin y Vicky que siempre me apoyaron y me ayudaron en llevar
bien este proceso. Gracias por la paciencia y el amor que esta presente hace muchos años.
Espero seguir viviendo cosas maravillosas con ustedes.

v

Contents

Introduction 1
Outline and Main Contributions . 4

1 An introduction to G-CORE 5
1.1 G-CORE Overview . 5
1.2 Data Model . 7

1.2.1 Path Property graphs . 7
1.3 Basic notions of G-CORE . 8

2 Related Work 13
2.1 Recursion in Relational Database Query Languages 13

2.1.1 Datalog . 13
2.1.2 Recursion in SQL . 15

2.2 Recursion in Graph Query Languages . 15
2.2.1 SPARQL . 16
2.2.2 Cypher . 16
2.2.3 PGQL . 17
2.2.4 G-CORE . 17

3 General Recursion 18
3.1 The need for a general recursive operator . 19
3.2 A proposal to generalize the expression of recursive queries 22
3.3 Syntax of general recursive queries in G-CORE 25

3.3.1 Nested Recursion . 26
3.4 Semantics of general recursive queries in G-CORE 27
3.5 An Example: Nodes at k distance from the root 29
3.6 Data Complexity . 31

3.6.1 Note: On Linear Recursion. 31

4 Graphs algorithms with recursive G-CORE 33
4.1 Topological Sorting . 33
4.2 Minimum Spanning Tree . 37
4.3 Eulerian Circuit . 40
4.4 Maximum Matching . 48
4.5 Connected Components . 53
4.6 Planarity Testing . 55

vi

5 Issues for the Implementation of recursion in G-CORE 57
5.1 Current Implementation of G-CORE . 57
5.2 Adding recursion to G-CORE . 58
5.3 Problems with G-CORE operators . 58

6 Conclusion and Future Work 60

Bibliography 62

vii

List of Tables

3.1 Parent Table . 19
3.2 Base Case Nodes at k distance . 30
3.3 Recursive step 1 Nodes at k distance . 30
3.4 Recursive step 2 Nodes at k distance . 30

4.1 Base case topological sorting . 35
4.2 Recursive step 1 topological sorting . 35
4.3 Recursive step 2 topological sorting . 36
4.4 Recursive step 3 topological sorting . 36
4.5 Recursive step 4 topological sorting . 37
4.6 Base step Minimum Spanning Tree . 39
4.7 Recursive step 1 Minimum Spanning Tree 39
4.8 Recursive step 2 Minimum Spanning Tree 40
4.9 Base case Eulerian Circuit . 42
4.10 Recursive step 1 Eulerian Circuit . 43
4.11 Recursive step 2 Eulerian Circuit . 43
4.12 Recursive step 3 Eulerian Circuit . 44
4.13 Recursive step 4 Eulerian Circuit . 44
4.14 Recursive step 6 Eulerian Circuit . 45
4.15 Recursive step 7 Eulerian Circuit . 46
4.16 Recursive step 8 Eulerian Circuit . 46
4.17 Recursive step 9 Eulerian Circuit . 47
4.18 Final graph Eulerian Circuit . 47
4.19 Table representing state of edges in a labeled graph 48
4.20 Base case Maximum Matching . 50
4.21 Recursive step 1 Maximum Matching . 51
4.22 Recursive step 3 Maximum Matching . 51
4.23 Recursive step 3 Maximum Matching . 52
4.24 Table that represents the nodes of a graph 54
4.25 Final Result that represents de nodes that are connected 54

viii

List of Figures

1.1 A PPG that represents a small social network. 8

3.1 Successive partial results given by the query above over the Parent table . . 20
3.2 Mapping from a graph G to a partially ordered structure 24
3.3 Schema of the different steps of the mappings from the data (graphs) to a

partially ordered structure while the recursion is taking place. 24
3.4 The recursive process of evaluation of a query. Each qr gives the next tj based

on the previous one and on G (qr(G, tj−1)). The map H gives in each step the
corresponding element of the order. 27

3.5 A hierarchical company . 29

4.1 A Directed Graph . 34
4.2 G1 topological Sorting . 35
4.3 G2 topological Sorting . 35
4.4 G3 topological Sorting . 36
4.5 G4 topological Sorting . 36
4.6 G5 topological Sorting . 37
4.7 A weighted general graph . 38
4.8 G1 Minimum Spanning Tree . 39
4.9 G2 Minimum Spanning Tree . 39
4.10 G3 Minimum Spanning Tree . 40
4.11 A generic Graph . 41
4.12 G1 Eulerian Circuit . 42
4.13 G2 Eulerian Circuit . 43
4.14 G3 Eulerian Circuit . 43
4.15 G4 Eulerian Circuit . 44
4.16 G5 Eulerian Circuit . 44
4.17 G6 Eulerian Circuit . 45
4.18 G7 Eulerian Circuit . 45
4.19 G8 Eulerian Circuit . 46
4.20 G9 Eulerian Circuit . 46
4.21 G10 Eulerian Circuit . 47
4.22 Final Graph Eulerian Circuit . 47
4.23 G1 Maximum Matching . 50
4.24 G2 Maximum Matching . 51
4.25 G3 Maximum Matching . 51

ix

4.26 G4 Maximum Matching . 52
4.27 A PPG that represents a social network. 53

5.1 Difference of edges . 59

x

Introduction

Graphs are one of the most popular representations of data today. Its flexibility and simplicity
have made them a favorite model in many fields.

For example in electrical engineering, graphs are used in probabilistic graphical models to
explicitly show the probabilistic relationships between variables of a model. In physics and
chemistry they are used to study molecules and in linguistics, they are used for parsing of a
language tree1.

But probably where this model is most popular is in representing data and phenomena
from social networks. Also, in computer science, graphs have been used since long ago for
solving many problems, such as finding the shortest path between entities, or to understand
the importance of an entity which is part of a network.

There are many ways to represent a graph. For instance, representations with adjacency
lists, with adjacency matrices, or with other specific data structures. In graph databases,
currently the most common model for representing graphs is the property graph model [1].
Property graphs have nodes representing entities, edges representing relationships between
nodes, and properties that add information about specific characteristic of those entities and
relationships.

In the last decade many query languages and database systems have emerged for working
with graph-like data. The use-cases for graph databases and the number of sources available
have increased dramatically, and each day it is more natural to see this model as a natural
complement to the relational setting. There are many graph query languages today. Among
the most popular are SPARQL, Cypher and Gremlin [2].

In this work we present an extension for graph query languages that allows us to compute
recursive queries. These kinds of queries were introduced in the last main revision of SQL,
where the "WITH RECURSIVE" clause was introduced, mainly to have a way to deal with
queries that code reachability between entities. Recursion has been widely studied in the case
of relational databases [3] but not so much in graph databases. For graph query languages,
forms of reachability and recursion were first introduced at a theoretical level in Datalog
[3]. As for the first approach with the current wave of graph query languages, it was given
by Reutter et al [4] with SPARQL. We follow closely their approach. Our extension is
declarative, therefore, it is known what to extract (consult) but not how to do it. This model

1http://www.its.caltech.edu/~matilde/ParsingTrees.pdf

1

http://www.its.caltech.edu/~matilde/ParsingTrees.pdf

is found in the syntax of various graph query languages, for example: SPARQL [5], Cypher
[6] and G-CORE.

Our research focuses in G-CORE (2018), which is a query language proposal designed by a
working group belonging to the Linked Data Benchmark Council [7]. G-CORE has two main
features:

1. The language is closed, that is, the input of a query is a graph and the output is also
a graph.

2. Paths are treated as first class citizens [8]. This means that paths can be manipulated
and expressed in a simple way.

Evolution of this thesis. The original objective of this thesis was to study the function-
ality (2) that is novel in query languages. We began by studying how relevant polynomial
graph problems could be expressed with this new functionality. We believed that studying
whether or not classical graph problems could be solved in a graph database language can
give us clear ideas about its query power and help us to optimally design these types of
languages.

These relevant polynomial problems in graph theory were chosen from the book [9]. Soon we
realized that most of the algorithms that solved these problems used some type of structure
that was storing previous results, that is, some sort of recursion that was difficult or impossible
to express with the current functionalities of G-CORE. Clearly a recursion functionality was
needed to express (to code) in a clean and simply manner these algorithms in G-CORE. That
is, we found recursion to be a natural addition to this graph database language and a needed
preliminary step to address the original goal of the thesis.

Given this, we shifted the objective of the thesis towards studying and adapting recursion
from relational databases to graph databases, a problem that was interesting per se and posed
several challenges. We needed to adapt the recursion. SPARQL had a different approach
as it uses tables as output, and thus the recursion in SQL in this case could be adapted
naturally. G-CORE on the contrary, uses property graphs as input and output. Then, to
formally define a recursive operator in G-CORE, we study how it could be extended in the
Property Graph database model. We show that the conversion of this recursive operator is
not direct, since the fixed point is not reached in the same way as in the case of having tables
that converge to the same result.

After formally defining this operator, we studied how the queries of graph problems presented
at the beginning could be expressed. For this, we express the query using the best known
algorithms for each problem and adapt them to the recursive operator using a base case
and a recursive case and in each problem, explaining step-by-step how the response was
constructed.

We also identify in each problem and for the recursive operator new operators and func-
tionalities that needed to be made explicit in the language. Definitively G-CORE needs to
be enriched in order to express basic problems in graph theory. We also found that more
fine-grained operators need to be defined at the level of operators between graphs. Besides

2

these additions, we show that G-CORE is a sufficiently flexible language to permit incorpo-
rating this recursive operator in a simple way. Also we show the importance of implementing
recursion since it allows for expressing classical graph algorithms in a declarative way.

3

Outline and Main Contributions
Chapter 1: We introduce a general G-CORE review, presenting its functionality and main

clauses.

Chapter 2: We introduce the state of art of recursion in relational query languages and
graph query languages.

Chapter 3: We give a formal definition of a recursive operator in G-CORE making syntax
and semantics explicit.

Chapter 4: We show how polynomial graph algorithm problems can be coded with this
new recursive operator.

Chapter 5: We show a small discussion of issues and considerations implementing the
recursive operator in G-CORE.

Chapter 6: We present our conclusions and future investigations that could be explored
based on the results of this work.

Publications
Preliminary parts of this work were published in 13th Alberto Mendelzon International Work-
shop on Foundations of Data Management (AMW 2019) http://ceur-ws.org/Vol-2369/
short07.pdf.

4

http://ceur-ws.org/Vol-2369/short07.pdf
http://ceur-ws.org/Vol-2369/short07.pdf

Chapter 1

An introduction to G-CORE

In this chapter we give a formal introduction to our object of study, the graph query language
G-CORE. We first present in general terms what G-CORE is, then we formally define the
notion of Path Property Graph which is the data model of G-CORE. Finally we review the
syntax and semantics of the MATCH and WHERE clauses which are the base clauses of
G-CORE. The official definition of G-CORE is presented in [8].

1.1 G-CORE Overview
G-CORE is a graph database query language designed by a working group belonging to The
Linked Data Benchmark Council (LDBC) [7]. LDBC was founded in 2012 by members of
academia and industry, and its goal is to set standards for new graph database management
systems. G-CORE was proposed to address the need of a standard property graph query
language (The GQL manifesto [10]). For the authors the main challenges were to have
a composable query language with graph construction, to support path functionalities for
navigational queries and to capture the core of available languages [8].

Like many graph database query languages, G-CORE is essentially a matching pattern query
language, that is, its core functionality is to match a pattern against a graph, describing visual
patterns using ASCII-Art syntax like Cypher [6]. Its main characteristics are that, first, it is
a closed language, that is, the resulting query always returns a graph with a CONSTRUCT
CLAUSE; and second, that it incorporates paths as first-class citizens [8].

Example 1.1.1 Example of a G-CORE query A classic graph database language query is
to get all the friends of a person named "John". This query can be written in G-CORE as:

1 CONSTRUCT (n)
2 MATCH (n:Person)-[:friendOf]-(m:Person) ON G
3 WHERE m.name="John"

This query gives as results all the nodes in a graph G that are adjacent by a relation repre-
sented by the edge whose label is friendOf with a node m whose name is John.

5

Path queries are fundamental in graph database query languages since they can express
navigational queries. As stated above, paths in G-CORE are first class citizens, which means
that these paths can be returned, compared, operated and also stored like any other datatype.
These functionalities are mainly based on the regular path expressions borrowing the syntax
from PGQL [11].

Example 1.1.2 Example of a simple path query in G-CORE. We can extend the example
1.1.1 and make a reachability query, that is to get all persons that are connected with John
via a path of arbitrary length of friendOf edges:

4 CONSTRUCT (n)
5 MATCH (n:Person)-<:friendOf*>-(m:Person) ON G
6 WHERE m.name="John"

In this case, G-CORE finds all the nodes that are connected through a path that satisfies a
regular expression (in this case the Kleene star), therefore, it returns a set of isolated nodes.
To compute this query G-CORE uses the semantics of the shortest path [12], which we will
present in the next sections.

As in SPARQL [5], can use full regular expressions to express navigational and path queries.
In addition, G-CORE allows a PATH clause to express complex path expressions, namely,
regular queries, studied in [13].

Example 1.1.3 Example of stored paths query in G-CORE

7 CONSTRUCT (n), (n)-/@p:JohnContacts/->(m)
8 MATCH (n:Person)-/<:friendOf*>/-(m:Person) ON G
9 WHERE m.firstName="John"

In the query above we see an "@" prefix that indicates a stored path. A stored path is a
path in the graph that is stored as data in the database model, therefore it can be used in
a query. In this case the query is returning nodes and stored paths that are stored with the
label "JohnContacts".

Example 1.1.4 Path clause in G-CORE

10 PATH newFriend = (x)-[e:knows]-(y)
11 WHERE e.date > ’2010-01-01’
12 CONSTRUCT (m)
13 MATCH (m)-/p<~newFriend*>/-(n)
14 WHERE n.firstName = "John"

The above query uses the PATH clause in line 10, that defines an edge pattern with conditions.
Thus we find all the people that can be found from John by following "knows" edges created
after 2010. This example is based on the one given in [11].

6

1.2 Data Model

The Property Graph (PG)[1] is a data model in which vertices and edges in a graph can be
associated with arbitrary properties as key-value pairs. For example, one can have an x node
labeled as "University" and a property name whose value is "University of Chile". This is
the data model of several graph query languages [12], and there are imperative languages like
Green-Marl [14] designed to express graph algorithms in this model.

1.2.1 Path Property graphs

The data model used by G-CORE is an extension of the model described above and is called
a Path Property graph. This model has the characteristic that each node or edge has
property-value pairs and in addition, the paths in the graph can be explicitly handled. Here
is a formal definition of the model Path Property Graph described in [8].

Definition 1.2.1. (Path Property Graph) Assume that:

• L : Infinite set of labels for nodes, edges and paths.

• K : Infinite set of property names.

• V : Infinite set of literals as variables that can be true or false, strings, etc.

• FSET (X) : All finite subsets of a set X including ∅.

• FLIST (X) : Set of all finite items lists of a set X (including the empty list).

Then a PPG (Path Property Graph) is a graph of the form G = (N,E, P, ρ, δ, λ, σ) where N
is the set of nodes of G , E is the set of edges and P is a set of paths identifiers of G (not all
paths in G). On the other hand, ρ, δ, λ and σ are total functions, that is, they are defined
over all the domain, such that:

1. ρ : E → (N ×N), where to each edge e ∈ E assigned a pair of nodes (a, b) ∈ N ×N .

2. δ : P → FLIST (N ∪ E), where each path p ∈ P it is assigned a list that represents
the sequence of nodes and edges that conforms it.

3. λ : (N ∪ E ∪ P) → FSET (L), where each node, edge and path is assigned a set of
labels.

4. σ : (N ∪E ∪P)×K → FSET (V) where to each pair < x, k > ∈ (N ∪E ∪P)×K the
set of values of the property k is assigned for the node, edge or path x.

Example 1.2.1 Consider the following PPG example from the article [8], representing a
small social network:

7

Figure 1.1: A PPG that represents a small social network.

We have:

N = {101, 102, 103, 104, 105, 106},
E = {201, 202, 203, 204, 205, 206, 207},
P = {301},

then, the identifiers of nodes, edges and paths are:

ρ = {201→ (102, 101), ..., 207→ (105, 103)},
δ = {301→ [105, 207, 103, 202, 102]},

and we have that the assignments of edges and paths are respectively:

λ = {101→ {Tag}, 102→ {Person,Manager}, ..., 201→ {hasInterest}, ..., 301→ {toWagner}},

σ = {(101, name)→ {Wagner}, ..., (205, since)→ {1/12/2014}, ..., (102, employer)→ {SAP,HPI}}.

1.3 Basic notions of G-CORE
In this section we will review the semantics of queries in G-CORE, concentrating mainly on
the clause MATCH and WHERE.

Paths conforming to regular expressions: Unlike Cypher [6], which defines the semantics of
the expressions of its paths based on simple paths, G-CORE is based on arbitrary paths.

8

These arbitrary paths are expressed as strings that satisfy a regular expression, where G-
CORE computes the shortest path according to the lexicographical order [15] in the nodes,
because this can be done in polynomial time [8]. Let N , E , P denote infinite sets of node
identifiers, edges, and path variables respectively.

Definition 1.3.1. A regular expression r, used in G-CORE, is defined as follows:

r := _ | l | l− | !l | (r + r) | (rr) | (r)∗,

where l is in an alphabet L. The expressions l and l− represent a label of an edge, while !l
represents the label of a node. On the other hand, the expression _ represents any edge tag,
l ∈ L, and therefore (−)− represents any edge tag of the form l−.

Definition 1.3.2. Let G = (N,E, P, ρ, δ, λ, σ) be a PPG; we say that a path p ∈ P satisfies
a regular expression r if there is a string that belongs to the language generated by r, such
that there is a correspondence between the node and edge labels along the way with the
string.

Also, if the path length of p, length(p) = n, then p is the shortest path from a node a1
to an+1 that satisfies r, if for every other path p′ from a1 to an+1 that satisfies r, it holds
length(p) ≤ length(p′).

Definition 1.3.3 (substitutions). Let G = (N,E, P, ρ, δ, λ, σ) be a PPG. Then a mapping µ
over G is defined as a partial function µ : (N ∪E ∪P)→ (N ∪E ∪P), such that µ(x) ∈ N ,
if x ∈ N , µ(y) ∈ E, if y ∈ E and µ(z) ∈ P , if z ∈ P .

Furthermore, it is assumed that dom(µ) is a finite set that corresponds to the domain of the
function µ. The previous definition states that the function µ assigns each node, arc or path
its respective identifier in the graph in which we want to make the queries.

MATCH clause

First we will start presenting the G-CORE MATCH clause. It is based in the notion of pattern,
whose basic component is the basic graph pattern.

Definition 1.3.4. (Basic graph pattern) A basic pattern is specified in the following gram-
mar:

basicGraphPattern = nodePattern | edgePattern | pathPattern

nodePattern = (x),

edgePattern = x
z−→ y

pathPattern = x
@w in r
====⇒ y | x

w in r
===⇒ y

where x, y ∈ N , w ∈ P , r is a regular expression and z ∈ E .

Definition 1.3.5 (Evaluation of basic graph pattern). Let α be a basic graph pattern. The
evaluation of α on a PPG, G denoted by ‖α‖G is inductively defined as follows:

9

1. If α is a node (x) then ‖α‖G = {µ|dom(µ) = {x} and µ(x) ∈ N}

2. If α is an edge x z−→ y , then ‖α‖G = {µ|dom(µ) = {x, y, z} and µ(x) ∈ N,µ(y) ∈
N,µ(z) ∈ E and ρ(µ(z)) = (µ(x), µ(y))}

3. If α is a path x w in r
===⇒ y, then ‖α‖G = {µ|dom(µ) = {x, y, w},µ(x) ∈ N,µ(y) ∈ N and

µ(w) is a new path, which does not belong to P and is associated with the shortest
path L that goes from µ(x) to µ(y) over G that conforms to r.

Example 1.3.1 Considering Figure 1, for Definition 1.3.4, we have the following cases:

1. α = (x), that is , if α is a node we have:

‖(x)‖G = {µ1, µ2, µ3, ..., µ6}

where

µ1 = {x→ 101}
µ2 = {x→ 102}
µ3 = {x→ 103}
µ4 = {x→ 104}
µ5 = {x→ 105}
µ6 = {x→ 106}

2. α = x
z−→ y, that is, if α is an edge we have:

‖x z−→ y‖G = {µ1, µ2, µ3, µ4, ..., µ6}

where

µ1 = {x→ 102, z → 201, y → 101}
µ2 = {x→ 102, z → 202, y → 103}
µ3 = {x→ 103, z → 203, y → 104}
µ4 = {x→ 105, z → 204, y → 104}
µ5 = {x→ 105, z → 207, y → 103}
µ6 = {x→ 105, z → 205, y → 106}
µ7 = {x→ 102, z → 206, y → 106}

3. α = x
w in r
===⇒ y, that is, it is a path that satisfies a regular expression, for example

r = knows∗, we have:

x
w in r
===⇒ y = {µ1, µ2, µ3, µ4, µ5} (1.1)

10

where:

µ1 = {x→ 102, y → 101, w → knows}
µ2 = {x→ 102, y → 103, w → knows}
µ3 = {x→ 105, y → 103, w → knows}
µ4 = {x→ 105, y → 104, w → knows}
µ5 = {x→ 103, y → 104, w → knows}

Note that the path from node (102) to node (104) is not delivered, since it has length 2 and
is not the minimum. In addition w could be a more complex regular expression. For
instance, (knows+ knows−)∗ is a two-way regular path.

Definition 1.3.6. (Graph patterns in different graphs) In G-CORE the basic patterns can
be evaluated in different graphs. The operator ON is used to specify in which graph to
evaluate them and it is explained as follows:

basicGraphPatternLocation ::= basicGraphPattern |
basicGraphPattern ON location

location::= gid |fullGraphQuery

Where gid is an identifier of a graph and fullGraphQuery is a combination of basic queries
to a graph under the union, intersection and subtraction operations.
A complete pattern is defined as a sequence of basic patterns separated by commas:

fullGraphPattern ::= basicGraphPatternLocation |
basicGraphPatternLocation,

fullGraphPattern

WHERE Clause

Another fundamental structural feature of G-CORE is the WHERE clause that allows for fil-
tering results from Boolean conditions.

Definition 1.3.7. The clause syntax MATCH with conditions is:

matchClause ::= MATCH fullGraphPattern |
MATCH fullgraphPattern WHERE BooleanCondition

where BooleanCondition is an expression which is evaluated as true or false.

Definition 1.3.8. An expression that we will denote by ξ is formally defined, which cor-
responds to a Boolean-valued expression, that is, an expression that evaluates true or False
as follows:

ξ := x | x.k | x : l | � ξ | ξ � ξ | f(ξ, ξ, ...) |
∑

(ξ) | EXISTS q

11

where:

• x is a variable.
• k ∈ K a property name.
• l ∈ L a label.
• � is an operator corresponding to Boolean negation NOT, arithmetic negation −1, etc.
• � corresponds to some binary operator for example: Arithmetic operations on numbers

and strings: +, -, *, / , etc. Boolean operators like AND and OR or comparisons like: 6=,
>, texttt IN, etc.

• f defined as standard functions inherited from relational query languages, Count, Min,
Max, Sum, Avg, etc.

•
∑

is an aggregation function.
• EXISTS q, where q is a subquery such that true is evaluated if the evaluation of q is a

non-empty Path Property graph and is false otherwise.

Subqueries. In G-CORE there are existential subqueries, which provides some type of
negation of graph patterns and enable more powerful pattern filtering.

Suppose we want to know all the people who are friends of John’s friends who do not work
in a telephone company for example "Claro". This can be done with the following query

Example 1.3.2 Example of a subquery in G-CORE

15 CONSTRUCT (n)
16 MATCH (n:Person)-<:friendOf*>-(m:Person) ON G
17 WHERE m.name="John"
18 AND
19 WHERE NOT EXISTS (
20 CONSTRUCT ()
21 MATCH (n)-[:isEmployeeOf]->(c:Company)
22 WHERE c.name = "Claro")

Now in order to extend G-CORE with recursive functionalities we need to study how it has
been done before in other query languages. In the next chapter we will review the state of
the art regarding adding recursion to database query languages putting special emphasis on
Datalog, SQL and SPARQL.

12

Chapter 2

Related Work

This chapter presents a review of the state-of-the-art research on recursion in query languages
for relational databases as well as for graph databases.

Recursion in database query languages has been extensively studied both from a theoretical
[16] as well as from a practical point of view (e.g. SQL, SPARQL [12, 4]). For our purposes
in this thesis, the classical case of SQL and the the graph-like character of SPARQL are the
most relevant and we will concentrate on them.

2.1 Recursion in Relational Database Query Languages

The paradigms of relational database query languages are relational algebra and relational
calculus, which provide the language with algebraic and logical operations, based on algebra
and first order calculus respectively [16]. Although these languages contain what are con-
sidered fundamental operations for database query languages, there are simple but useful
operations that cannot be performed in this framework, for example, transitive closure. In
order to study these types of operators, the formalism of Datalog was introduced. Datalog is
a standard and flexible formalism where to study the more general notion of recursion that
is what interest us here.

2.1.1 Datalog

Datalog was introduced by Chandra and Harel in [17] and it can be viewed as logic program-
ming without function symbols. A Datalog program consists of a collection of rules, each of
which is a conjunctive query [16]. Recursion is introduced by allowing the same predicate
symbol in both the head and the body of a rule or by allowing "cycles" in the order of calls
of a predicate. The semantics for these recursive Datalog programs is based on the theory of
fixpoints. Recursion in general needs a notion of order. In Datalog it uses the order (by set
inclusion) conformed by the set of facts that the program derives from the original dataset.
One can define thus an operator usually called the immediate consequence operator, that
produces new facts starting from known facts. The operator uses the semantic of the small-
est fixed point which is the smallest solution of a fixpoint equation involving that operator.

13

This solution can be obtained constructively. In this manner, standard relational algebra
can be extended with a while operator that allows us to iterate an algebraic expression while
some condition holds.

Datalog with negation The standard semantics for recursive Datalog uses the semantic
of the least fixed point, thus it is only defined for monotonous queries. Therefore, it cannot
express queries such as the complement of the transitive closure. Combining negation with
recursion in queries seems natural, but the fact that the resulting query could be not positive
can present problems. A natural idea would be to extend the fixed-point semantics. However,
with non-monotonous queries the consequence operator may not converge to any fixed point
or there may be more than one fixed point.

In order to define a consistent semantics for Datalog with recursion and negation, different
semantics have been proposed. The most relevant are the inflationary semantics, the stratified
semantics and the well founded semantics. These three semantics are the most relevant
to understanding the complexity of adding negation to recursion. Since algorithms that
use negation are very important in practice (see the examples of graph algorithms in the
following chapters), it is necessary to relax the restrictions that avoid negation (as in SQL
and SPARQL) and define a more approachable semantics. We will return to this topic in the
recursion chapter.

The inflationary semantics [16] has a fixed point approach and it uses iteration based on an
“inflation of tuples”. In other words, the fixed point operator is cumulative, which means
that the previous results are added to the result of the current evaluation and it stops when
no news elements are added (the inflationary fixed point).

Stratified Negation has a different approach based on allowing negation only in the strata
where there is no recursion. Essentially it is an extension of semi-positive Datalog [16], where
negation occurs in predicates in rule bodies and not in IDB (Intensional Database) predicates.
The main idea is that a Datalog program P can be written as a sequence of semi-positive
Datalog programs (strata). Then, at each step of the sequence evaluation the predicates
of the current term in the sequence are the EDB (Extensional Database) predicates of the
following terms. Unfortunately, not every Datalog program can be stratified. This is the
reason to introduce the well-founded semantics.

Well-founded semantics is based on the use of negation using a three-value model [16], where
the truth values are not only true and false as in Boolean algebra but can also be unknown. It
is used for Datalog programs that are not stratified and it can be computed via the alternating
fix point procedure [18]. The idea behind the alternating fix point procedure is to build up
a set of negative facts until the least fix point is reached. This is done in two steps, the first
step the operator transforms an underestimation of the set of negative conclusions into an
overestimation of these and in the second step the operator transforms the overestimation
into a new underestimation, therefore it is alternating, finally the composition of the two
steps (monotonic and antimonotonic) is a monotonous operator. For more details on this
procedure the reader can consult [16, 18, 3].

14

2.1.2 Recursion in SQL

SQL is the most widely used relational database language. Conceptually it is based on
relational algebra extended with many functionalities beyond it. Since relational algebra
cannot express recursive queries, it was assumed that practical (implemementations of) SQL
cannot express them either. This was formally proved in a study by Libkin in [19], where a
formal proof that SQL cannot define recursive queries is given. The novelty was to show the
standing conjecture that no matter what aggregate functions and arithmetic operations are
allowed SQL cannot express transitive closure (and thus recursion).

Given this important limitation on its expressiveness, recursion was included in the SQL-99
standard [12], mainly based on the semantics of Datalog. It was developed via common table
expressions (CTE 'S) that have a base SELECT statement and a recursive SELECT state-
ment. This implementation allows to express reachability queries like DFS, BFS, topological
sort, connected components, etc. In section 3.2.1 we present the sintaxis and examples of
recursion in SQL.

Linear recurive queries The recursive operator implemented in SQL-99 has a constraint:
it only can handle linear recursive queries. This implies that the recursive relation can be
named only once within the recursive procedures. Some other features are not supported,
e.g. mutual recursion and query solving involving an except clause. In general, termination
consists of detecting that there are no further opportunities to add new tuples and cycles
are manually controlled by limiting the number of iterations. Since queries must be linear
and many interesting queries are not [2], optimizations have been proposed in [20, 21] (r-sql
proposal)[16]. R-SQL proposal stands out, where they proposed an extension for recursion
in SQL, adding the stratification techniques and fixpoint computations used for instance in
Datalog. These techniques that consist of building a dependency graph and compute by
fixed-point iteration stratum by stratum allow a legal mix with negation and therefore make
recursion more expressive.

With recursion in SQL several known and useful graph algorithms were implemented in SQL.
The graphs algorithms BFS and DFS were implemented with the recursive SQL operator
[22]. The topological order was studied in [23], making a BFS starting from the node whose
outdegree is zero. In the case of the connected components it was shown in [24] how to
obtain them adding recursion, by building a table with all the connections of the nodes and
choosing the minimum id as a connected component.

2.2 Recursion in Graph Query Languages

Despite having being researched since at least 30 years ago, graph query languages had not
achieved significant visibility yet. Today, due to the emergence of non-relational databases
(NoSQL data bases) and the graph structures that populate the Web, this panorama has
changed and interest in studying its properties has grown. Graph databases have a basic
model where information is expressed by nodes representing entities and edges representing
relationships between them. A relevant point in this line of research and what sets it apart
from the relational systems is that graph databases allow other types of queries by specifying
graph patterns and navigation patterns. These functionalities, that are the building blocks

15

of G-CORE, were studied in depth in [2] where syntax and semantics were compared in three
modern graph database languages: SPARQL[5], Cypher[6] and Gremlin[25].

2.2.1 SPARQL

SPARQL is the standard language for querying RDF graphs[26]. Given the growing interest
in being able to express more complex queries, in particular inherently recursive queries
and navigational queries, in SPARQL 1.1 were introduced Property Paths [5]. The idea of
property paths is to allow the language to compute paths of arbitrary lengths using regular
expressions. Although this allows the user to compute queries related to paths, the expressive
power of this addition falls short in that it does not capture all functionalities of recursion.
This has been studied by Barcelo et al. [27, 28, 29, 30], where it was shown that property
paths cannot express navigational queries. A paradigmatic case is the following example:
match all pairs of nodes connected by a path where each intermediate node belonging to the
path satisfies some condition.

One of the first approaches for combining Property Paths and Recursion can be found in
[31], where the authors propose an implementation of Property Paths using Recursive SQL.
Since the main idea of recursion is to compute a query several times where the query uses a
dataset that changes from iteration to iteration, one needs a closed language for defining this
kind of queries. Since SPARQL queries are applied over RDF graphs, but the result is a set
of mappings (which is analogous to a table), it was necessary to define Recursive Queries in
terms of the CONSTRUCT operator, which is used to return RDF graphs instead. Reutter
et al. [4] use this approach to give a formal definition of a Recursive Operator for SPARQL.

Also, Reutter et al. show queries that cannot be expressed with Property Paths (as the query
defined in the example above), but can be expressed with the Recursive Operator. Finally
they show that General Recursive Queries do not perform well in practice, defining then a
fragment of the language that compute Linear Recursive Queries, the same fragment that is
supported by SQL. They provide an implementation of Linear Recursion in SPARQL that
was compared to the existing approach, showing empirical evidence that Linear Recursive
Queries perform better than Property Paths in several use-cases.

Another attempt to add navigation to RDF was done in 2010 by Peréz et al [32], where they
proposed nSPARQL that uses nested regular expressions, which is an extension of property
paths. However, it was shown in [33] that like property paths, nested regular expressions
cannot express important navigational queries.

2.2.2 Cypher

Cypher is a SQL-inspired declarative language for graph databases. It originated from the
graph database Neo4j, which in turn was created in 2000 by the founders of Neo4j, and
was designed with the goal of having a user-friendly graph database. In Cypher the queries
are a composition of different clauses that are executed in a linear order, that is, from the
beginning to the end of the text. Unlike SQL that specifies the answer of a query with
SELECT at the beginning of it, Cypher specify answers and the end with the RETURN clause.
The basis of Cypher’s queries is found in the MATCH clause, which matches graph patterns.

16

Graph patterns in Cypher are expressed visually with basic patterns of the form ASCII art
as (a) − [r]− > (b) that expresses an arc r from node a to node b. Repeating edges and
nodes are not allowed when matching the pattern in the graph. The MATCH clause returns
a table that provides link information that matches the pattern. Recursion in Cypher has
not been implemented directly. However, Cypher allows to express paths queries with the
Kleene star operator, which can be applied to an edge property/value pair and it uses no-
repeated-node/edge paths semantics. Despite of this functionality, currently it is not possible
to express more complex regular expressions [2].

2.2.3 PGQL

PGQL is a new language for Property Graph data model (PG). Like Cypher and G-CORE,
it uses graph pattern matching, it also follows the SQL structure and has path functionalities
[11].

A basic PGQL query is made up of three clauses: SELECT, FROM andWHERE. In addition,
it includes operators for graph pattern: edge matching, vertex macthing and path macthing,
these operators are located in the WHERE clause. The result of a PGQL query forms a
tabular result set with variables and their bindings. However, it is possible as in G-CORE
to return a graph with a CONSTRUCT clause, also it allows groups of graph solutions with
the SELECT clause and an UNION operator.

Currently, recursion is not directly implemented in PGQL there is no syntactic or semantic
definition of a recursive operator. Despite that, in PGQL there are path functionalities. As in
SPAQRL, you can use regular path queries to express navigational and path queries. However,
since the data model is PG, PQL extends regular paths queries with general expression,
allowing to compare vertices and edges along paths.

2.2.4 G-CORE

G-CORE has the standard approach of graph query languages, using matching and filter
as the basic machine for evaluation. The syntax and semantics of G-CORE is inspired by
current graph query language.

Being a proposal for a graph query language, G-CORE has not been fully implemented.
G-CORE does not have a recursive operator designed or implemented. However, it has
path functionalities that allow you to have a limited form of recursion. As discussed in
chapter 1 section 1.1.1, G-CORE treats paths as first-class citizens. Therefore, paths can be
manipulated (eg. filtered, searched, stored) and like PGQL regular path queries are allowed
using the PATH clause to express more complex regular path expressions.

Given the definitions and applications of recursion in Datalog and SPARQL we are ready
to give a formal definition of recursion in G-CORE.

17

Chapter 3

General Recursion

In this chapter we introduce the concept of a general recursive operator for G-CORE based
both on the recursive SPARQL operator defined by Reutter et al [4] and the recursive SQL
operator [12]. The idea is to allow the user of the query language to explicitly define an order
on which to base the recursive query and so provide more flexibility when writing queries.
This would permit to code in a more natural and simple manner several algorithms.

In the cases of SPARQL and SQL’s recursion, the order that guides the recursive process is
hooked to the set-order of sets of partial results and thus prevents intuitive codification of
various problems, in particular certain graph algorithms. The general idea that we present
is to separate the order that guides the recursion from the successive results that the query
gives in the process of its recursive evaluation.

We will first review notions of order and fixed point that are at the base in the recursion
process. Then, we will see how the syntax and semantics of recursion are defined in SQL and
we will explain the limitations that this given set-based recursion principle presents. Finally
we will extend the definition of SQL to define a recursive operator in G-CORE, defining an
abstract structure that follows an order and that can easily encode classic graph queries.

In the following, we briefly review concepts about partial orders taken from the literature
[34].

Partial Order Let P be a set. A partial order on P is a binary relation ≤ on P such that,
for all x, y, z ∈ P,

• x ≤ x

• x ≤ y and y ≤ x imply x = y

• x ≤ y and y ≤ z imply x ≤ z

This ordered set P will be denoted as (P,≤).

Fixed Points A definition of a recursive procedure or function has two basic parts. The
base step where one specifies the value of the function for the first terms and the recursive

18

step where one defines a rule for finding subsequent values using previous values. A fixed
point for a recursive function F : D → D is an element d ∈ D such that F (d) = d. That is,
it is a point in the domain of the function that remains stationary.

The fixed point theory has a fundamental role in the definition of recursive operators in
database languages. Usually the recursive operator q is a fixed point operator, such that
there is an output table T such as q(T) = T (fixed point). This concept is key to recursion
in SQL, as we will see in the next section.

Our recursive operator proposal is based on the one defined in SQL and SPARQL.

3.1 The need for a general recursive operator

In this section we will show the need to define a general recursive operator for queries. We
will begin by recalling how recursion is defined in SQL and SPARQL, and based on it we will
argue the advantages that a more general notion could bring.

Recursion in SQL

Recursion in SQL was introduced in SQL-99 standard out of the need to be able to express
queries based on transitive closure, which are not expressible in relational algebra [3]. Recur-
sion in SQL is based on the notion of common table expression (CTE). Generally speaking,
a common table expression is a temporary (auxiliary) table that is built by means of queries
that accumulate rows based on certain relationships with the rows that are already in the
table of the results of the main query.

Let us consider the following example:

Example 3.1.1 Consider the following parent’s table that establishes the father-son and/or
mother-son relationship:

parent child
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

Table 3.1: Parent Table

If we know the schema of the table and want to find all the ancestors of somebody, in principle
(i.e. if we do not know the instance table in advance) this cannot be obtained using a basic

19

SQL query. Thus a recursive query is needed, like the following recursive query: 1

1 WITH RECURSIVE Ancestor(anc,desc) AS (
2 SELECT parent,child FROM Parent
3 UNION
4 SELECT Ancestor.anc, Parent.child
5 FROM Parent INNER JOIN on
6 Ancestor.desc = Parent.parent)

A recursive query is made up of a base case (line 2 of the query) and another query that
defines the recursive relationship (lines 4, 5 and 6). In this case, our base case builds all
the "direct" relationships of kinship, e.g. father-son. Then the recursive case deduces more
ancestors by taking into account the ones already added in the previous steps as seen in the
following figure:

Figure 3.1: Successive partial results given by the query above over the Parent table

It is important to note that we do not want the query to run indefinitely. This is why the
semantics of this recursion is based on the fixed point semantics defined above, which in
simple terms, means that the query will end when a fixed point of the successive set of tuples
obtained by the recursive part of the query is reached. Note that we are assuming here
that the recursive function (in the example the query in lines 4, 5 and 6) is monotonously
increasing, that is, in every step the set of tuples obtained is a superset of the previous one,
and reaches a fixed point (in this case given by the combinatorics of possible pairs given by
the finite size of the table).

1Taken from https://www2.cs.duke.edu/courses/fall14/compsci316/lectures/
09-recursion-notes.pdf (visited on January 4, 2020)

20

https://www2.cs.duke.edu/courses/fall14/compsci316/lectures/09-recursion-notes.pdf
https://www2.cs.duke.edu/courses/fall14/compsci316/lectures/09-recursion-notes.pdf

Recursion in SPARQL

Reutter et al [5] proposed a recursion operator based on SQL in 2015. They formalize the
syntax and the semantic of the recursive operator and develop algorithms for evaluating it
in practical scenarios.

Definition 3.1.1 (Syntaxis of a recursive query in SPARQL). The syntax of a recursive
query in SPARQL is defined as follows:

WITH RECURSIVE t AS {q1} q2

where t is an IRI from I, q1 is a c-query (construct query in SPARQL), and q2 is a recursive
query.

Definition 3.1.2 (Semantics of a recursive query in SPARQL). The answer of a recursive
query q, denoted ans(q,D), is equal to ans(q2, DLFP), where DLFP is the least fixed point of
the sequence:

Di+1 = D ∪ {〈t, ans(q2, Di〉)} for i ≥ 0.

Therefore, as in SQL, there is a temporary structure t that is built by joining D with the
evaluation of q1 over D1 until Di = Di+1.

Example 3.1.2 Example of recursive query in SPARQL This is an example taken directly
from [5]. Given an RDF G graph, we want to obtain all the nodes (a, b) (where each node
represent scientific articles) such that a and b are linked by a path of wasRevisionOf links
and that they were edited by the same user. The query can be computed as follows:

PREFIX prov: <http://www.w3.org/ns/prov#>
WITH RECURSIVE http://db.ing.puc.cl/temp AS {
CONSTRUCT {?x ?u ?y}
FROM NAMED <http://db.ing.puc.cl/temp>
WHERE{{
?x prov:wasRevisionOf ?y .
?x prov:wasGeneratedBy ?w .
?w prov:used ?y .
?w prov:wasAssociatedWith ?u}
UNION{
GRAPH <http://db.ing.puc.cl/temp> {?x ?u ?z} .
GRAPH <http://db.ing.puc.cl/temp> {?z ?u ?y}}}
}
SELECT ?x ?y
FROM <http://db.ing.puc.cl/temp>
WHERE {?x ?u ?y}

This query is made up of a base query and a recursive query. First build the triples (x, u.y)
where x e y are joined by an edge of wasRevisionOf and u is the user generating this
revision. Then comes the recursive part so if (x, u, z) is in the temporal graph and (z, u, y)

21

is in the temporal graph then (x, u, y) is added to the temporal graph.

A general recursion operator

Note that in SQL and SPARQL, the recursion is based on the "natural" set order given by
the inclusion order relation. That is, in each iteration the order of subsets of tuples is used
as the base order over which the recursive function operates and terminates. This way of
defining recursion has some limitations. In fact, there are queries that with the semantic
definition given in SQL recursion cannot be easily coded or queries whose intermediate set
of results is not strictly non-decreasing. A natural idea to improve this situation would be
to define an "external" order to serve as the basis for the recursion.

A simple example of this is a query that returns the set of nodes at depth k in a tree. In this
case, the natural order for the SQL query is the size of the table that grows when the visited
nodes are added. However, it seems more intuitive that the recursion be done on the depth
of the nodes that are visited reaching the fixed point when the depth stabilize; we will see
this example in more detail in the next section.

On the other hand, many graph algorithms use some form of negation (e.g. those we studied
to express them in G-CORE, see chapter 4 section 2.2). Negation in recursion produces
problems related to finding the fixed point [16]: The operator may not have a fixed point;
or the operator could have several minimal fixed points; or the sequence of applying the
operator may not converge or the sequence of operators; or could converge but the limit is
not necessarily the fixed point. To avoid these problems, recursion in SQL and SPARQL do
not allow negation in recursive queries. This constitutes a limitation in the expressive power
of queries as negation is needed to code interesting graph algorithms.

Negation in recursion can be managed by adding inflationary fixed point or partial fixed
point semantics. However, this usually makes the definition of recursion cumbersome both
for users and developers. We claim that this burden can be avoided.

In the next section we will give an idea of how can we achieved the idea of an external order
and how can be extended and thus be able to avoid the problems that currently exist with
negation.

3.2 A proposal to generalize the expression of recursive
queries

Well defined recursion, as we saw, is based on a partial order, a starting point and a mecha-
nism to determine when to stop the process. The latter could be a limiting point when it is
known in advance, or in general is the fixed point of the recursive procedure (i.e where the
ordered function that the recursive query defines stabilizes).

The intuitive idea of current recursive queries goes as follow. A recursive query is a query
that produces successive calls to queries over successive datasets. As any recursive procedure,
it is is composed of two parts: a) the base query q0, and b) a recursive query qr. The process
begins by querying the dataset to be queried D with the query q0. The answer of q0(D),

22

say a dataset D1, is then queried by qr giving D2, and so on. At some point it has to stop
and produce the final answer. Usually this is done when the increasing sequence of datasets
D1, . . . , Dn reaches a fixed point.

The new idea we introduce here is to separate (to modularize) the order of the recursion from
the sequence of partial datasets D1, . . . , Dn. In fact, essentially in the above process there
are three structures involved:

1. The base query q0.

2. The recursive query qr.

3. A partial ordered set (A,≤) and mapping H from results to A.

In SQL one does not need to define explicitly (3) because the order set A in (3) is given by
the set of results of the queries q0 and qr (possibly applied iteratively) over D and the order
≤ is subset inclusion ⊆. Not making explicit the order, that in principle could be seen as a
help to the developer 2, becomes an obstacle when more flexibility is needed to code recursive
problems that do not fit easily in the order (Partial results of qr, ⊆).

What we are going to do is incorporate the feature to define (3) independently of the "natural"
order given by successive results of qr. In some sense, we will abstract the implicitly given
partial order of the successive dataset results into an explicit (and hopefully simple) partial
order set (A,≤) and a non-decreasing function F over this partial order. See the following
figure 3.2:

2This seems to be an illusion. The fact is that developer writing an SQL recursive query cannot devise
mentally the recursive process he/she is going to code. What we are doing in our proposal is to make this
implicit thought explicit in the code.

23

Figure 3.2: Mapping from a graph G to a partially ordered structure

To make clearer the idea of how this procedure will work (the syntax and semantics are
presented in the next subsections), consider the diagram in Figure 3.3.

Figure 3.3: Schema of the different steps of the mappings from the data (graphs) to a partially
ordered structure while the recursion is taking place.

In Figure 3.3 the sequence of squares below show the recursion operator R (defined by the
query qr). Classically this sequence will stop when the operator R finds its fixed point (i.e.
the squares start repeating). In our proposal, we obtained (by means of the map H) from

24

each partial result an element in the abstract partial order (A,≤). With this setting, the
recursive operator R is reflected in the partial order (A,≤). That is, there a map H from
the partial result datasets to the order (A,≤) so that H(Di) ≤ H(Di+1) for every relevant i.

Thus the developer, similarly to the classical case, has to code the query qr (and of course
the base case q0); but now, instead of worrying about making monotonous the partial results
of queries qj, can rely on order (A,≤) that usually is much simpler. Of course this brings a
cost, and now will have to code (to make explicit to the compiler) the order (A,≤) and how
at each step the corresponding order for each result is obtained from that result (this is the
map H). This will become clear with an example.

Example. Consider the following problem: Obtain the nodes at distance k from a tree
T presented as a table with schema Tree(Parent, Child). (Technically it does not need a
recursive query, e.g. a join of k copies of T ; but we may not know k in advance or it could
be too big).

A. Our method gives the following simple and intuitive items to be coded:

1. q0: a query to get the root of T .

2. qr: a query that gets the children in T from the previous result qr−1(T).

3. The order (A,≤) that are the natural numbers with usual order. The map H gives the
depth of each iteration. Stop at k.

B. Classically we would need to code only two items, but the second is not obvious at all:

1. q0: a query to get the root of T .

2. qr: the challenge is to find a query qr that using the set order of its partial results gives
the right answer. Not obvious in this example because with traditional recursion we
use the order of subset so we can’t reach a fixed point.

Before going on, let us point out one more problem of the classical view to code recursion in
query languages that motivated our approach. Possibly because it was designed for tables,
coding recursion gets much more complex for the developer when dealing with graph struc-
tures, and in particular, with property graph structures. We will try to argue this with the
study cases in the next section.

Next we will formalize the syntax and semantics of this idea.

3.3 Syntax of general recursive queries in G-CORE

The following syntax is motivated by the one in SQL and the one Reutter et al. [4] gives for
SPARQL. They specify the temporary object (table, graph) over which the recursion acts,
and a base case and the recursive step.

A recursive query q will be defined as follows.

25

Definition 3.3.1 (Syntax of Recursive queries in G-CORE). A recursive query in G-CORE
is defined as:

(R) WITH RECURSIVE t AS (
(BASE q0

RECURSIVE qr
)
OVER ORDER (a)

)

where each of the terms in the code are defined as follows:

1. t is a temporary PPG (a name to the partial results that will be required when defining
the recursive query q);

2. q0 is a usual (standard) G-CORE query that computes the base case of the recursive
query;

3. qr is a usual (standard) G-CORE query that can use the temporary graph t,

Until here we only changed the syntax of SQL and SPARQL by expliciting that q0 is the
base query and qr is the recursive query.3. Now, what follows is new, not just a change of
notation:

4. a is the variable that represent H(t) in the code (inside qr). Recall that H is the map
that gets the abstract order from a given t. It should be of the type of A where (A,≤)
is the partial order.

Notes. Let us call the attention to the next steps that could help the reader understand
what is going on:

1. The dynamic (auxiliary) graph t will be instantiated recursively as follows when the
query (R) is issued over a graph (database) G:

• Base case: q0(G)
• Recursive case: qr(G, t) (the recursive step can consult two data-graphs: the orig-

inal graph G and the temporary graph t.)
• The map H and the order (A,≤) do not show up in the code, but must be clear

when defining the recursive query. It is represented by the variable a.

3.3.1 Nested Recursion

Note that in the syntax of recursion presented above, one would not be able to express nested
recursion procedures, because it is needed that the base case q0 and the recursive step qr be

3In SQL and in SPARQL recursion by Reutter et al. this is done by the convention that what comes
after the "WITH .. AS RECURSIVE (" is the base query followed by a UNION operator and then the recursive
query; we avoided the confused message that the "UNION" installs, that in our case –as we generalized the
order– does not make sense.

26

standard G-CORE queries.

The general syntax thus will be a slight update as follows:

(NR) WITH RECURSIVE t AS (
(BASE q0

RECURSIVE qr
)
OVER ORDER (a)

) q2

where everything is as in Definition 3.3.1, and q2 is a recursive G-CORE query as in (NR), a
simple G-CORE query, or nothing.

3.4 Semantics of general recursive queries in G-CORE
LetG be a PPG (the database to be queried) and q a recursive G-CORE query as in Definition
3.3.1 (the nested case is a straightforward extension).

Classically, the answer ans(q,G) of a recursive query would corresponds to the fixed point of
the sequence t0, . . . , tn of instantiations of the temporary graph t given by:

t0 = qo(G), (3.1)
tn+1 = qr(G, tn). (3.2)

In our proposal, the answer ans(q,G) correspond to the last element of the sequence t0, . . . , tn
obtained when the sequence a0, . . . , an (where each aj = H(tj) and aj ≤ aj+1 in the order
(A,≤)) stops (finds its fixed point of a limit given by the user). We recall, and this is one of
the main advantages of our approach, namely, that we do not impose any condition on the
sequence t0, . . . , tn, i.e. that it should be increasing, etc. We only rely for termination on the
order a0, . . . , an over (A,≤).

This can be visualised in the following diagram:

Figure 3.4: The recursive process of evaluation of a query. Each qr gives the next tj based
on the previous one and on G (qr(G, tj−1)). The map H gives in each step the corresponding
element of the order.

27

The pseudo-code of the algorithm to compute ans(q,G) is the following:

Algorithm 1: Computing the answer of a recursive query in G-CORE
Data: A database PPG G; a recursive query q with components (q0, qr) (see

Definition 3.3.1)
1 Variables t of type PPG; a and a.old of type A
2 Set t = q0(G)
3 Set a = H(t)
4 Set a.old = ⊥
5 while a <> a.old do
6 Set t = ans(qr, t+G)
7 Set a.old = a
8 Set a = H(t)

9 return t

When the order (A,≤) is the one of the results t1, . . . , tn, then we can get rid of H because
H(t) = t and the order is ⊆. In this case the code is more simple:

Algorithm 2: Computing the answer of a recursive query in G-CORE
Data: A database PPG G; a recursive query q with components (q0, qr) (see (R))

1 Variables t and t.old of type PPG
2 Set t.old = ⊥
3 Set t = q0(G)
4 while t.old <> t do
5 Set t.old = t
6 Set t = ans(qr, t+G)

7 return t

Note that were using for the order (A,≤) built-in orders (e.g. that of natural numbers,
strings, etc.). One could allow the user to define more complex orders (i.e., lexicographic,
etc.) over which the recursion will be based. In that case it should be enforced some way
of assuring that the linear order is correct (i.e. there are no cycles, etc.) to avoid infinite
loops. A simple such idea is defining a maximum number of iterations for the recursive
query. This idea has been used previously, in the recursion in SPARQL [4], where a clause
"MAXRECURSION K" was proposed, with K a natural number. This bound limits the
number of iterations and the query is guaranteed to terminate their execution.

28

3.5 An Example: Nodes at k distance from the root

Let us consider a toy example to illustrate the idea. Suppose we have a company represented
in the following figure as a tree where some people are developers, other project managers
and the root is the company manager:

Figure 3.5: A hierarchical company

If we want to know all the developers of the company, that is, all the nodes that are at
distance 2 from the root; we can first consult the root node and then go through the graph
by levels. So we have the following recursive query: We can traverse these graph with the
following query using general recursion:

WITH RECURSIVE t as (
BASE CONSTRUCT (n) SET n.depth:=0

MATCH (n) on G
WHERE n.name=’Ana’

RECURSIVE (
CONSTRUCT (n)
SET n.depth = if x.depth+1=k then x.depth else x.depth+1 end
MATCH (x)-[:BossOf]->(n) on G

(x) on t
)

OVER ORDER (SELECT MAX(n.depth) FROM t)

First the query base is evaluated once and gets the root of the tree:

29

name depth
Ana 0

Table 3.2: Base Case Nodes at k distance

Then it continues until the depth property does not change:

name depth
John 1
Chris 1

Table 3.3: Recursive step 1 Nodes at k distance

name depth
Celine 1
Franco 1

Table 3.4: Recursive step 2 Nodes at k distance

In this case, the function does not use any operator and uses only nodes built in each iteration.
The associated structure are natural numbers that correspond to the depth of the node. In
other words, we have to keep track of:

• Gi: set of nodes
• ai: natural numbers that correspond to the depth of the nodes, example Ana corre-

sponds to 0

• The order in this case is the usual order of the natural numbers.

In the first iteration, the root is constructed. Then the nodes that are at a distance of 1 from
the root and saving the depth of each node as a property. Note that it will stop when the
depth does not change anymore. We want this to happen when the nodes are at distance
2 from the root. This can be achieved by putting a condition in the SET clause of the
construct, specifying the depth k − 1 when the value k is reached in the next iteration.

This is a simple example of how the general recursion can be used; of course this problem can
be solved with the recursion defined in SQL but we will see later with the matching problem
that this type of recursion is needed to express that query.

30

3.6 Data Complexity
It was shown by Angles et al.[8] that G-CORE can be evaluated efficiently in data complex-
ity. They show that given a fixed query q, evaluating q on a PPG G can be computed in
polynomial time. For example, the case of having a fixed pattern φ on a PPG G can be
computed in polynomial time by looking for all combinations of variables and identifiers of
nodes and edges in G that match the pattern φ. In the case of a variable p that represents
a path from a node u to a node v that forms a regular expression r, p is replaced with the
shortest path from u to v applying standard automata theory techniques in conjunction with
Dijkstra algorithm. They also show that subqueries can be evaluated efficiently.

Finally the clause CONSTRUCT on top G and the set of bindings generated by the
match clause can be carried out in polynomial time given that the operations allowed with
this clause are aggregation and grouping functions on top of bindings generated by relational
algebra operations.

What is the data complexity of for a given (fixed) recursive G-CORE query qr? Analyzing
the Algorithm 1 of our recursive operator proposal, it can be straightforward checked that
the size of the sequence of evaluations of the query qr are:

|G| = d, p0(d), p1(p0(d) + d), p1(p1(p0(d) + d) + d), . . .

where pj(x) are polynomials (because the data complexity of a fixed query in G-CORE is
polynomial). That is, the k-element of the sequence is a polynomial of degree k in the size d
of the original graph dataset G.

Thus, the data complexity of the Algorithm will depend on: (a) The number of iterations
being performed; and (b) the size of the intermediate results, that is, the data complexity of
qr. For example to have a polynomial data complexity, we would need a constant number of
iterations (i.e. that do not depend on the datasets to be queried), or a polynomial number
(in the original dataset).

3.6.1 Note: On Linear Recursion.

Traditionally, in SQL and SPARQL, there is a distinction between recursion in general and
linear recursion. This last one occurs when in the j-step of the recursive procedure the query
qr only uses plus the original graph to be queried G, plus the difference tj−tj−1 (instead of the
whole tj). This makes sense because in SQL and SPARQL the output of each step, namely
t also works as the "guiding" order for the recursion (and thus it should be an increasing
sequence t1, . . . , tn).

In [35] we explored a preliminary linear version of recursion in G-CORE. It followed the
lines of classical recursion philosophy (that is, without an additional order that guides the
recursion). It followed pretty much the philosophy and methodology of recursion in Reutter
et al. [4].

In the approach we follow here, it does not matter the order-behaviour of the temporal tj
because as the "guiding" order for the recursion we use another order (the (A,≤) given by
the map H). So the question arises: What does "linear recursion" mean in our case?

31

First, we would like to point out that we do not need to distinguish different syntax (and
a different way to compile) linear versus non-linear queries. Second, in our approach one
should not be worried about "doubling" each step the size of the data because we do not
union the current result with the previous one in order to keep the "monotonicity" of the
sequence of results.

Thus, in our case, a good estimator is to define that a query q will be linear if the t is used
(occurs) only once in qr, that is, it is called only once in the code. This is the standard
baseline to determine if a query is linear [16, 12, 4, 24].

In our case we can be more relaxed. In fact, a query can be considered linear, if the size
of the elements of the sequence of intermediate results t1, . . . , tn is approximately that of G,
that is, it does not increase in a non-linear way (e.g. is a subgraph of G, or a construction
that keeps similar size of that of the source, etc.).

Now that we have defined recursion we can now see how it can be used to express more
complex graph problems, the next chapter we will show how using this new operator one can
code classical graph algorithms.

32

Chapter 4

Graphs algorithms with recursive
G-CORE

In this chapter we show how the general and linear recursion syntax defined in the previous
chapter works by applying it to classical graph problems. Graph algorithms have enough
complexity and interest to expose different features of the recursive formalism we introduced.
We chose graph algorithms that can be solved in polynomial time included in the book [9].

We start by giving a general definition of each problem. Next, we choose a known algorithm
that solves the problem in polynomial time and present an intuitive idea of how it solves
the problem. Finally we show the coding of the respective recursive query that solves the
problem, and develop an example, explaining at each step how the answer is constructed and
which order follows the general recursive operator.

4.1 Topological Sorting

Topological order in a directed graph without cycles (DAG) is a linear order of its nodes.
One of its main applications is the ordering of tasks to be executed, tasks whose precedence
is given by means of a graph.

Definition 4.1.1. Let G be a directed graph without cycles. A topological order of G is a
linear order ≤ of its vertices such that if the edge (u, v) belongs to the graph, then the vertex
u ≤ v in the order.

Intuitively it is not evident how to express topological sort in G-CORE. We will show how
to write this query with the proposed linear recursive operator presented in the previous
chapter.

Intuitive idea Suppose you have the following PPG shown in Figure 4.1. To find the
topological sorting of a graph, we first will find all the nodes that do not have incident edges
and we are going to set them with depth 0. This will be the base case. Then, we are going
to assume we have a set of nodes at depth k, and from them, compute the children of this

33

set and set their depths at k + 1. Clearly in this case, the abstract structure is the set of
depths (i.e. natural numbers) and in this case we choose to compute maximum depth of the
graph constructed so far.

Figure 4.1: A Directed Graph

The following query illustrates the codification in G-CORE of this algorithm for topological
sort.

1 WITH RECURSIVE t AS (
2 BASE (CONSTRUCT (x) SET x.depth :=0,
3 MATCH (x) ON G,
4 WHERE NOT EXISTS (CONSTRUCT (),
5 MATCH (y)-[:Label]->(x) ON G))
6
7 RECURSIVE (CONSTRUCT t UNION (x) SET x.depth:= 1 +
8 (SELECT MAX(z.depth) MATCH (z) ON t)
9 MATCH (x) ON G,
10 (n) ON t
11 WHERE EXISTS (CONSTRUCT (),
12 MATCH (n)-[:Label]->(x) ON G)))
13
14 OVER ORDER (SELECT MAX(x.depth) MATCH (x) ON t)

SELECT z.id,
MATCH (z) ON t,
ORDER BY MAX(z.depth) DESC

The above query first looks for those nodes which have no in-going edges (base case) and are

34

assigned with depth equal to 0 as a property so in this case we will have:

G1
temp

a1 = 0

Figure 4.2: G1 topological Sorting

x.id x.depth
101 0
103 0

Table 4.1: Base case topological sorting

We have the temporary graph G1
temp which turns out to be two nodes whose depth is set to

0.

Then comes the recursive case and the nodes which have in-coming edges from the nodes
obtained in the base case are added with property depth equal to 1 as shown in the following
figure:

G2
temp

a2 = 1

Figure 4.3: G2 topological Sorting

x.id x.depth
102 1
104 1

Table 4.2: Recursive step 1 topological sorting

35

Then we evaluate the recursive query over the temporary graph Gtemp. Note that the next
element in the abstract structure is now a2 = 1 which is the max depth of the property depth
of the graph constructed so far.

And so on, we proceed with the following step-by-step evaluation of the recursive graph:

G3
temp

a3 = 2

Figure 4.4: G3 topological Sorting

x.id x.depth
105 2
104 2
107 2
106 2

Table 4.3: Recursive step 2 topological sorting

G4
temp

a4 = 3

Figure 4.5: G4 topological Sorting

x.id x.depth
107 3
106 3
107 3
106 3

Table 4.4: Recursive step 3 topological sorting

36

G5
temp

a5 = 4

Figure 4.6: G5 topological Sorting

x.id x.depth
106 4
106 4

Table 4.5: Recursive step 4 topological sorting

Finally we have a5 = a6 and we stop in the fifth iteration. That is, because the node 106
does not have any outgoing edge, therefore in the sixth iteration G6

temp is the empty graph
thus the max depth of the temporary graph Gtemp does not change (and so does the value
(SELECT MAX(x.depth) MATCH (x) ON t) and we got a fix point. Then we can obtain for
each node its depth property, which tells us its place in the topological sorting.

Topological sorting has been coded with recursion in SQL [23], where an idea similar to
the procedure presented here is followed. The interesting thing about our approach is that
we use an order, namely the depth of the nodes, that is not based on inclusion of results of
intermediate results.

4.2 Minimum Spanning Tree

The next problem we will code is the problem of finding the minimum spanning tree in a
graph with weights. This problem is important in graph theory given its various applications
in real life, for example in the field of electrical, telephone, communication, etc. The following
is a formal definition of spanning tree and minimum spanning tree respectively:

Definition 4.2.1 (Spanning Tree). A spanning tree of a graph G is a subgraph of G that
includes all nodes of G and that is a tree.

Definition 4.2.2 (Minimum Spanning Tree (MST)). A minimum spanning tree is a spanning
tree whose weight is as small as possible.

Consider the following PPG that represents a graph with weights:

37

Figure 4.7: A weighted general graph

Intuitive idea. There are several algorithms that solve the problem of finding a MST.
We will implement the algorithm of Prim [36], whose basic recursive idea is to choose at each
step a new edge with the minimum weight to add the tree under construction.

To express the query in G-CORE we will use the general recursion operator defined in the
previous chapter. The idea is to build a temporary graph with the union operator and in
each iteration a new edge is joined to the graph until all the nodes are included. For this
query we will use the difference operator that G-CORE offers in its documentation so that in
each iteration we can obtain the nodes that are not yet contained in the temporal graph t. In
general terms, for an edge to be joined to the temporal graph, one of its nodes must belong
to the temporary graph and there must not be another edge that has less weight among the
possible candidates. We choose to set the numbers of edges in the graph as the elements of
the abstract structure.

The query we propose to find the MST of the graph is as follows:

1 WITH RECURSIVE t as (
2 BASE (CONSTRUCT (a)-[:e1]->(x)
3 MATCH (a)-[:e1]->(x) ON G
4 WHERE e1.weight =<
5 (SELECT MIN(e.weight) MATCH (a)-[:e]->(b) ON G
6 LIMIT 1)
7
8 RECURSIVE(CONSTRUCT t UNION (a)-[:e1]->(x)
9 MATCH (a)-[:e1]->(x) ON G
10 (a) ON t
11 (x) ON G \ t
12 WHERE e1.weight =<
13 (SELECT MIN(e.weight) MATCH (a)-[:e]->(x) ON G
14 LIMIT 1)
15 OVER ORDER (SELECT COUNT(e1) from t)

In the example, first we have the base case that constructs the first step (a tree of two nodes,

38

a and b) whose edge has minimum weight in G; that is, we obtain:

G1
temp

H(G1) = Number of edges in G1

a1 = 1

Figure 4.8: G1 Minimum Spanning Tree

x.id e.id y.id
a 101 b

Table 4.6: Base step Minimum Spanning Tree

Then comes the recursive step, where an edge of minimum weight is added such that one
of the nodes belongs to the temporary graph and the other does not. This is done with a
sub query that, for the edges that match the pattern, chooses one of minimal weight in the
original graph (e.g. without considering the edges of the temporary). Then we obtain:

G2
temp

H(G2) = Number of edges in G2

a2 = 2

Figure 4.9: G2 Minimum Spanning Tree

x.id e1.id y.id
a 101 b
b 103 c

Table 4.7: Recursive step 1 Minimum Span-
ning Tree

39

G3
temp

H(G3) = Number of edges in G3

a3 = 3

Figure 4.10: G3 Minimum Spanning Tree

x.id e1.id y.id
a 101 b
b 103 c
c 105 d

Table 4.8: Recursive step 2 Minimum Span-
ning Tree

Finally we have G4
temp = ∅ and a4 = a3 = 3. Therefore, we get all the edges that belong to

the MST.

This problem has not been studied in other languages with recursion and we believe that
the fact that you have to check conditions on nodes and / or edges makes it necessary to have
negation. However, as we pointed out, SPARQL and SQL do not allow it in their recursive
operators.

4.3 Eulerian Circuit

This problem is one of the fundamental polynomial problems in Graph theory. The problem
was inspired by the city of Königsberg, which had two island connected by seven bridges.
The question was if there was a way to walk around the city crossing each bridge exactly
once.

Definition 4.3.1. Eulerian Circuit o Cycle A circuit is a walk that starts and ends at a
same vertex, and contains no repeated edges. A Eulerian circuit in a graph G is a circuit
that includes all vertices and edges of G.

We will show how an algorithm to solve Eulerian circuit problem can be expressed with
our general recursive operator. We note that expressing the Eulerian path in Graph data
was studied by Barceló et al. [27] but using regular expression with memory rather than
recursion.

The existence of a Eulerian circuit in a digraph depends on the degree of its vertices, being
sufficient that the in-degree and out-degree of each vertex be equal. Thus in G-CORE you
can write the following query to collect these values (in degree and outdegree of each node)
and then just have to compare them for each node.

CONSTRUCT (n) SET n.in:=COUNT(x), n.out:=COUNT(y)
MATCH (x)-[e1:]->(n),(n)-[e2:]->(y) ON G

40

In what follows, we will implement the algorithm for this problem proposed by Fleury [37]. It
proceeds by repeatedly removing edges from the graph in such a way, that the graph remains
Eulerian.

1. Choose any vertex v of G and set current vertex equal to v and current trail equal to
the empty sequence of edges;

2. Select any edge e incident with the current vertex but choosing a bridge only if there
is no alternative;

3. Add e to the current trail and set the current vertex equal to the vertex at the "other
end" of e;

4. Delete e from the graph. Delete any isolated vertices.

5. Repeat steps 2 – 4 until all edges have been deleted from G.

Let us consider the following graph to fix ideas.

Figure 4.11: A generic Graph

Intuitive idea. To find an Eulerian circuit in the previous graph, we will use the Fleury
algorithm explained above. Our base query constructs an edge, one of its nodes has id = 101,
and marks the edge with property order = 1 and the other node (which is the current vertex)
with property order = 1. Then a sub-query is made to ensure that the chosen edge is not
a bridge, that is, that there exists a path between the two nodes that does not include the
edge. In the recursive case, we are building edges and marking them with an order, based
on the order of the current vertex, which we obtain by calculating the node that has the
maximum value of the order property. In this case, as in the case of the minimum spanning
tree, the order is calculated as the number of edges of the temporary graph in each iteration.

The next query shows how to find an Eulerian circuit in a graph using G-CORE syntax and
the general recursive operator:

41

1 WITH RECURSIVE t as (
2 BASE (CONSTRUCT (a)-[:e1]->(x) SET x.mark:=1, e1.order=1
3 MATCH (a)-[:e1]->(x) ON G
4 WHERE EXISTS ((CONSTRUCT ()
5 MATCH (a)-/p/->(x)
6 WHERE e1 is not in edges(p))
7 AND
8 a.id=1)
9 LIMIT 1)
10
11 RECURSIVE (

CONSTRUCT t UNION (a)-[:e1]->(x) SET x.mark:= 1 + max(a.mark),
12 e1.order:= 1 + a.mark
13 MATCH (a) ON t
14 (x) ON G
15 (a)-[:e1]->(x) ON G-t
16 WHERE EXISTS (CONSTRUCT ()
17 MATCH (a)-/p/->(x) ON G-t
18 WHERE e2 is not in edges(p)
19 OR
20 Length(p)<=1)
21 AND
22 a.mark=(SELECT max(mark) FROM t)
23 LIMIT 1)
24 OVER ORDER (SELECT COUNT(e1) FROM t)

In our example, the base case selects any edge that does not disconnect the graph G and we
obtain:

G1
temp

H(G1) = Number of edges in G1

a1 = 1

Figure 4.12: G1 Eulerian Circuit

x.id y.id e1.id y.mark e1.order
1 2 101 1 1

Table 4.9: Base case Eulerian Circuit

42

Then, using the recursive part, we continue adding edges to the temporal graph such that
the added edge is not in the temporal graph and does not disconnect the graph:

G2
temp

H(G2) = Number of edges in G2

a2 = 2

Figure 4.13: G2 Eulerian Circuit

x.id y.id e1.id y.mark e1.order
1 2 101 1 1
2 4 105 2 2

Table 4.10: Recursive step 1 Eulerian Circuit

G3
temp

H(G3) = Number of edges in G3

a3 = 3

Figure 4.14: G3 Eulerian Circuit

x.id y.id e1.id y.mark e1.order
1 2 101 1 1
2 4 105 2 2
4 5 106 3 3

Table 4.11: Recursive step 2 Eulerian Circuit

43

G4
temp

H(G4) = Number of edges in G4

a4 = 4

Figure 4.15: G4 Eulerian Circuit

x.id y.id e1.id y.mark e1.order
1 2 101 1 1
2 4 105 2 2
4 5 106 3 3
5 6 107 4 4

Table 4.12: Recursive step 3 Eulerian Circuit

G5
temp

H(G5) = Number of edges in G5

a5 = 5

Figure 4.16: G5 Eulerian Circuit

x.id y.id e1.id y.mark e1.order
1 2 101 1 1
2 4 105 2 2
4 5 106 3 3
5 6 107 4 4
6 7 108 5 5

Table 4.13: Recursive step 4 Eulerian Circuit

44

G6
temp

H(G6) = Number of edges in G6

a6 = 6

Figure 4.17: G6 Eulerian Circuit

x.id y.id e1.id y.mark e1.order
1 2 101 1 1
2 4 105 2 2
4 5 106 3 3
5 6 107 4 4
6 7 108 5 5
7 3 109 6 6

G7
temp

H(G7) = Number of edges in G7

a7 = 7

Figure 4.18: G7 Eulerian Circuit

x.id y.id e1.id y.mark e1.order
1 2 101 1 1
2 4 105 2 2
4 5 106 3 3
5 6 107 4 4
6 7 108 5 5
7 3 109 6 6
3 2 102 7 7

Table 4.14: Recursive step 6 Eulerian Circuit

45

G8
temp

H(G8) = Number of edges in G8

a8 = 8

Figure 4.19: G8 Eulerian Circuit

x.id y.id e1.id y.mark e1.order
1 2 101 1 1
2 4 105 2 2
4 5 106 3 3
5 6 107 4 4
6 7 108 5 5
7 3 109 6 6
3 2 102 7 7
2 5 112 8 8

Table 4.15: Recursive step 7 Eulerian Circuit

G9
temp

H(G9) = Number of edges in G9

a9 = 9

Figure 4.20: G9 Eulerian Circuit

x.id y.id e1.id y.mark e1.order
1 2 101 1 1
2 4 105 2 2
4 5 106 3 3
5 6 107 4 4
6 7 108 5 5
7 3 109 6 6
3 2 102 7 7
2 5 112 8 8
5 3 110 9 9

Table 4.16: Recursive step 8 Eulerian Circuit

46

G10
temp

H(G10) = Number of edges in G10

a10 = 10

Figure 4.21: G10 Eulerian Circuit

x.id y.id e1.id y.mark e1.order
1 2 101 1 1
2 4 105 2 2
4 5 106 3 3
5 6 107 4 4
6 7 108 5 5
7 3 109 6 6
3 2 102 7 7
2 5 112 8 8
5 3 110 9 9
3 1 104 10 10

Table 4.17: Recursive step 9 Eulerian Circuit

Finally we get the following table as final result and we can order each edge by its order
property to find the Eulerian circuit:

Figure 4.22: Final Graph Eulerian Circuit

x.id y.id e1.id y.mark e1.order
1 2 101 1 1
2 4 105 2 2
4 5 106 3 3
5 6 107 4 4
6 7 108 5 5
7 3 109 6 6
3 2 102 7 7
2 5 112 8 8
5 3 110 9 9
3 1 104 10 10

Table 4.18: Final graph Eulerian Circuit

This problem has not been studied with the recursive operator in SQL or SPARQL.
However, as mentioned above it has been studied in [27] using regular expressions with
memory, that is, given a graph it establishes pairs of nodes that are joined by a path that
satisfies a regular expression c allowing some values to be able to be saved and compared, so
using a REM formula it checks if there is a path between that passes through all the nodes
where no edges are repeated. To simulate the Fleury algorithm we need to know if an edge
is not a "bridge", that is to say that when removing it does not disconnect the graph, for
this we use paths and the fact that the edge is not contained in the edges of those paths, a
functionality that is not supported in SQL.

47

4.4 Maximum Matching

The last problem we would like to present to illustrate the potential of our approach for
coding recursion, is finding a maximum matching in an undirected graph. A matching is a
set of independent edges, that is, that have no vertices in common.

Definition 4.4.1. A matchingM of G is said to be maximum if is a matching with maximum
cardinality among all matchings of G.

This problem is important in at least two directions. First, it is a good example that indicates
the difficulties one can find when having as recursion-order only the subset relation among
partial solutions. And second, it points to operators that one would like to have in a query
language (in this case symmetric difference) that are not currently present.

To begin with, let us consider the following lemma to find the maximum matching:

Lemma 1 (Berge’s Lemma). A matching M in a graph G is maximum (contains the largest
possible number of edges) if and only if there is no augmenting path (a path that starts and
ends on free (unmatched) vertices, and alternates between edges in and not in the matching)
in M .

To fix these ideas, consider the following PPG G, and a table indicating the value of the
property of each edge that represents whether or not the edge is in the matching. That is,
n represents that the edge is not in the matching and m represents that the edge is in the
matching. Initially we have no edges in the matching:

e.id e.state
201 n
202 n
203 n
204 n
205 n
206 n
207 n
208 n
209 n
210 n

Table 4.19: Table representing state of edges in a labeled graph

The following query checks if there is an augmenting path in a PPG G (when marked with
n and m as indicated above):

CONSTRUCT (x)-/p/->(y)
MATCH (x) - p<:n(mn)*> -> (y) ON G
WHERE
NOT EXISTS(CONSTRUCT (z)

48

MATCH (z)-[:e1]->(x)
WHERE e1.state=’m’)

AND NOT EXISTS(CONSTRUCT (c)
MATCH (c)-[:e2]->(y)
WHERE e2.state=’m’)

Note that the regular expression n(mn)∗ ensures that the edges are alternated between
belonging and not belonging to the matching. Then a sub-query is made that verifies that
there are no incident edges to the nodes x, y that are in the matching, that is, they are free
vertices.

Intuitive idea. Now that we have a simple algorithm to check if there is an augmenting
path, the Blossom algorithm to find a maximum matching using Berge’s Lemma works as
follows. Mark an edge. Check if there is an augmenting path. If there is one, a well known
result [38] shows that the symmetric difference of M with the already constructed match
yields a matching having one more edge than M .

Thus the Blossom algorithm can be coded as follows:

Algorithm 3: Maximum Matching Algorithm
1 initialization;
2 M ← ∅
3 while exists an augmenting path P do
4 M =M ⊕ P
5 end
6 return M

The algorithm iterates while there is an augmenting path in the graph. For this we are going
to "mark" the edges with an operator ⊕ that codes the symmetric difference between two
sets (it does not exist in current G-CORE; we will denote it as OPLUS and will define it in
the next chapter.) Finally, we finish the iterations when there is no longer an augmenting
path in the graph. Note that in this case, the crucial trick is that we are iterating over the
number of edges in the maximum matching (the "subset-order" of solutions does not work
here because the set of nodes or edges involves could change).

Thus, the recursive query that we propose to solve this problem is:

1 WITH RECURSIVE t as(
2 BASE CASE (CONSTRUCT G, (a)-[:e1]->(x) SET e1.state:=’m’
3 MATCH (a)-[:e1]->(x) ON G
4 WHERE e1.id=207
5)
6 RECURSIVE CASE (
7 CONSTRUCT t OPLUS (w)-/p/->(z)
8 MATCH (w)-p<:n(mn)*->(z) on t
9 WHERE
10 NOT EXISTS(CONSTRUCT (z)

49

11 MATCH (z)-[:e1]-(w)
12 WHERE e1.state=’m’)
13 AND
14 NOT EXISTS(CONSTRUCT (c)
15 MATCH (c)-[:e2]-(z)
16 WHERE e2.state=’m’)
17)
10 OVER ORDER (SELECT COUNT(e) FROM t WHERE e.state=’m’)

In this case we will use general recursion defined in the previous chapter, our recursion will
be based on the number of edges that are marked with state m until there are no more edges
to mark.

In our example: in the base case an edge of the graph G is chosen (in this case 207) and it
is marked with state m:

G1
temp

H(G1) = Number of edges in G1 with state equals to "m"

a1 = 1

Figure 4.23: G1 Maximum Matching

e.id e.state
201 n
202 n
203 n
204 n
205 n
206 n
207 m
208 n
209 n
210 n

Table 4.20: Base case Maximum Matching

Then in the recursive case we find an augmenting path in the graph and we do the oplus
operator and mark the new edges that belong to the matching. In this case an augmenting
path is the path 103 − 204 − 104 − 207 − 106 − 107, therefore the edges 204 and 208 are
marked and the edge 207, originally in the matching, is unmarked:

50

G2
temp

H(G2) = Number of edges in G2 with state equals to "m"

a2 = 2

Figure 4.24: G2 Maximum Matching

e.id e.state
201 n
202 n
203 n
204 m
205 n
206 n
207 n
208 m
209 n
210 n

Table 4.21: Recursive step 1 Maximum Match-
ing

Then, the augmenting path for this matching is searched again and the following matching
is obtained:

G3
temp

H(G3) = Number of edges in G3 with state equals to "m"

a3 = 3

Figure 4.25: G3 Maximum Matching

e.id e.state
201 n
202 n
203 m
204 n
205 n
206 n
207 m
208 n
209 m
210 n

Table 4.22: Recursive step 3 Maximum Match-
ing

Now we have 2 unmatched vertex 102 and 105, where the edge 205 is an augmenting path
with respect to M.

51

G4
temp

H(G4) = Number of edges in G4 with state equals to "m"

a4 = 4

Figure 4.26: G4 Maximum Matching

e.id e.state
201 n
202 n
203 m
204 n
205 m
206 n
207 m
208 n
209 m
210 n

Table 4.23: Recursive step 3 Maximum Match-
ing

Finally, there is no other augmenting path with this matching, therefore a4 = a5 = 4 so the
edges with property state m are set that is the maximum matching.

This problem has not been studied with recursion neither in SPARQL, nor in G-CORE.
The query about whether there is an increasing path with respect to the M matching could
be expressed in other languages without recursion (e.g. Cypher). However, to find the result
it is necessary to iterate until no other matching is found, which is achieved with a fixed
point in the external order. In this query, paths are built which are not supported in SQL
and SPARQL.

52

In this work we study how to express problems of graphs that can be solved in polynomial
time [9] in G-CORE. In the previous section we showed how to express them in G-CORE with
general recursion. In some cases, polynomial graph problems could be solved with the current
machinery of G-CORE, particularly simulating the recursion via regular path expressions.
We will show two such cases in what follows.

4.5 Connected Components

A connected component of an undirected graph is a maximal set of nodes that are connected
to each other, that is, two nodes u, v are the same connected component if they are connected
by a path.

Verifying if a graph is connected or has connected components can be done with the following
query:

CONSTRUCT (x),
MATCH (x),(y) ON G,
WHERE NOT EXISTS(CONSTRUCT (x),

MATCH (x)-/<:Knows*>/-> (y) ON G)

The above query has a sub query that constructs two nodes that are not connected to each
other in the graph. If this query is evaluated as true the graph is not connected, otherwise
the graph is connected.

In the case the graph is not connected, one could ask how to find the connected components.
To perform this query, we will construct a query on related components based on SQL
connected components recursive solution[24]. Let us consider the following graph:

Figure 4.27: A PPG that represents a social network.

53

The graph in the figure has 3 connected components. To obtain them we first write the
following query in G-CORE:

GRAPH H as(
CONSTRUCT (n) SET n.comp=m.id,
MATCH (n)-/<:label*>/->(m) ON G)

For simplicity we will see the result as a table:

n.id n.comp
1 2
1 3
2 1
2 3
3 1
3 2
4 5
5 4

Table 4.24: Table that represents the nodes of a graph

Therefore, we have a table with all edges among the nodes. Now we need to add to each
node their id as component because we need to consider the nodes that are not connected to
any other node, therefore, we do the following G-CORE query:

GRAPH T as (
CONSTRUCT (n) SET n.comp:=n.id,
MATCH (n) ON G)

Finally we perform a union between the graphs H and T and make the following query:

SELECT x.name + MIN(x.comp) AS component
MATCH (x) ON (T UNION H)
GROUP BY x.name

Basically, we group all the ids and for each one of them we select the minimum id with to
which it is connected. This query will give us as a result the following table:

n.id component
1 1
2 1
3 1
4 4
5 4
6 6

Table 4.25: Final Result that represents de nodes that are connected

Therefore, in this case we have 3 connected components which are 1,4 and 6 and we can get

54

the connected component of each node.

4.6 Planarity Testing
Another important problem included in [9] that can be expressed in G-CORE without recur-
sion is planarity testing.

Definition 4.6.1. A planar graph G is a graph that can be embedded in the plane.

Kuratowski’s Theorem. A graph G is planar if only if it contains neither K5 nor K3,3

as topological minor.

Definition 4.6.2. A graph H is a topological minor of G if, when its edges are replaced by
internally disjoint paths, the resulting graph occurs as a subgraph of G. Two paths from u
to v in G are internally disjoint if they have no common internal vertex.

Given these results [39] and G-CORE’s ability to manipulate and express paths, we show in
the following example how to construct the K5 pattern in a query.

CONSTRUCT (v1)
MATCH (v1)-/p1/-(v2),

(v1)-/p2/-(v3),
(v1)-/p3/-(v4),
(v1)-/p4/-(v5),
(v2)-/p5/-(v3),
(v2)-/p6/-(v4),
(v2)-/p7/-(v5),
(v3)-/p8/-(v4),
(v3)-/p9/-(v5),
(v4)-/p10/-(v5) ON G

WHERE
nodes(p1)-{v1} INTER nodes(p2)-{v1}
INTER nodes(p3)-{v1}
INTER nodes(p4)-{v1} = empty

AND
nodes(p1)-{v2} INTER nodes(p5)-{v2}
INTER nodes(p6)-{v2}
INTER nodes(p7)-{v2} = empty

AND
nodes(p2)-{v3} INTER nodes(p5)-{v3}
INTER nodes(p8)-{v3}
INTER nodes(p9)-{v3} = empty

AND
nodes(p10)-{v4} INTER nodes(p8)-{v4}
INTER nodes(p3)-{v4}
INTER nodes(p6)-{v4} = empty

55

AND
nodes(p10)-{v5} INTER nodes(p9)-{v5}
INTER nodes(p7)-{v5}
INTER nodes(p4)-{v5} = empty

Therefore, the five vertices that form K5 can be found in a pattern such that for each node
the four incident paths are internally disjoint.

The same can be done for K3,3. Then let P pattern to find K5,5 and Q the pattern to find
K3,3. Then the query in G-CORE has the form:

CONSTRUCT (v)
MATCH (v) ON G
WHERE(

CONSTRUCT (),
MATCH P ON G,
OR

CONSTRUCT (),
MATCH Q ON G

)

From a theoretical point of view, G-CORE and the recursive operator can express complex
graph queries, however, since G-CORE is not yet fully implemented there are some limitations
and aspects to consider in the implementation of this recursive operator that we will review.
in the next chapter.

56

Chapter 5

Issues for the Implementation of
recursion in G-CORE

In this chapter, we will address the possible implementation of the recursive operator defined
in chapter 3. This will be mainly a theoretical discussion because currently there are no
complete implementations of G-CORE. First we will discuss the current implementation of
G-CORE. Next, we will discuss how difficult it is to add the recursive operator syntax to the
current syntax. Finally we will discuss the operators that would be desirable to be added
and some issues regarding some of the current operators.

5.1 Current Implementation of G-CORE
G-CORE is a language that has not yet a complete implementation. The most systematic
current development of G-CORE we are aware of is the interpreter on Spark 2.2.0 that can
be found in this Github projet [40]. These are the functionalities tested, implemented and
designed in this project:

• Components: The nodes and edges are tested and the paths implemented (not tested).
Each node and edge can have properties; however,checking that a path variable has
properties is not supported yet.

• Properties : Currently the properties in nodes and edges are tested. However, it is not
yet supported to have multi properties, that is, prop = {val1, val2, val3} cannot be
performed yet.

• Clauses: The CONSTRUCT, MATCH, WHERE clauses have been tested and the
clauses have been implemented: CREATE GRAPH, DROP GRAPH, GRAPH VIEW
and GRAPH AS. The PATH clause is designed but not implemented like the SELECT
AND FROM clause that extends the language to return tables. The MATCH clause
can currently be tested with one or more ON clauses which allows querying patterns
from different graphs.

• Operators: Most of the operators are tested. Unfortunately, the most important oper-
ator in our example queries that allows us to make subqueries, the EXISTS operator, is
not yet implemented. The graph operations, that is, union, intersection and difference

57

are not yet implemented.

For more details of G-CORE implementation one can consult [41].

5.2 Adding recursion to G-CORE

Syntax

In the case of the recursive operator syntax, we use the keywords WITH RECURSIVE AS based
on the SQL syntax. In addition, we add the keywords OVER ORDER so that it is explicit that
it defines the order that we are going to use in the query.

Implementation

For a possible implementation of a recursive operator in G-CORE, it must be considered that
the linear version has already been made in the case of SPARQL [42]. In both cases we note
that only one recursive operator is added and all the other components that already exist
in the system are not modified. In the rec-SPARQL case, which is the most similar case to
G-CORE, they only added an operator and did not modify anything in the database system.
The G-CORE operators that we propose are based on the algorithm specified in section 3,
consisting of:

• To have an empty temporal graph
• To perform a base query on the original graph
• To append the result to the temporal graph
• To perform a recursive query on original graph and / or temporal graph
• To append the result to the temporal graph
• For each iteration, to calculate the element of the abstract structure and thus calculate

the order
• To repeat until the order in each iteration does not change

This operation does not modify the query engine because it only does the while statement
until the element that represents how we are comparing the graphs is not modified. Finally,
it is easy to add recursion as it is an algorithm that iterates and the parser needs to be
changed depending on the system.

5.3 Problems with G-CORE operators

In section 4 we needed graph operators that are not in the design of G-CORE [8]. Among
the most relevant are the following:

• Difference of edges in the Eulerian circuit problem: In the Eulerian circuit
problem, in each iteration the algorithm must choose edges that are in the original
graph but not in the temporary graph. Thus, an operator that subtracts graph edges
is needed. Currently the G-CORE difference operator is restricted only to subtracting

58

nodes, so it seems natural to add the edge subtraction operator. This can be defined
as follows.
Let us suppose that we have a PPG G1 and edge e; we define the edge difference
operator as G1 − e = (N,E, P, ρ, δ, λ, σ) where N = N1, E = E1 − {e}, P = {p ∈
P1|edges(p) ⊆ E}, ρ = ρ1|E, δ = δ1|P , λ = λ1|(N∪E∪P), σ = σ1|(N∪E∪P)xK .
The following simple example illustrates the features needed:

Figure 5.1: Difference of edges

The result we expect in this case is simply to delete the edge with identifier 201 from
G1. We need a new substract operation because the difference operator that currently
exists first subtracts the nodes. Thus in this case, the node 101 and 102 would be
deleted along with the edge 201, so that only the node 103 would remain.

• Symmetric Difference in Maximum Matching Problem: Another operator that
we need to implement and we believe it is important is the one used in the maximum
matching problem in section 4, which denoted "<>". This operator allows us to make
a symmetric difference between the edge labels. That is, if we have a path p in a Graph
G1 with the set of edges {e1, e2, e3} with σ(e1, k) = n, σ(e2, k) = m and σ(e3, k) = n,
the result of doing G <> p would be the Graph G1 with edges {e1, e2, e3} where
σ(e1, k) = m, σ(e2, k) = n and σ(e3, k) = m.

• SQL clauses: At some point we defined an order on a query in SQL. Thus it would be
desirable to implement in G-CORE the basic SQL clauses. As we saw in the previous
section, the clauses that extend G-CORE to be able to query and manipulate tables
are designed but not implemented.

• If expressions: If statements are not currently defined in G-CORE. There is a similar
clause called Case and it allows to build rows based on a condition. This clause is
implemented in Cypher and we use it in the previous examples (chapter 3 section 3.5).
In this case we want to build a property of a node based on the value of the property
of another node that is joined to it by an edge (match pattern). For the query we use
a generic form of Case 1, and we believe that it can be easily added to G-CORE since
Cypher and G-CORE are similar languages.

1https://neo4j.com/docs/cypher-manual/current/syntax/expressions/

59

https://neo4j.com/docs/cypher-manual/current/syntax/expressions/

Chapter 6

Conclusion and Future Work

Initially, this study aimed to investigate G-CORE’s capacity to express graph problems.
Specifically, we wanted to analyze graph problems that could be solved in polynomial time.
Addressing this initial goal, we realized that recursion was fundamental to express most
polynomial graph algorithms, and that expressing recursion in G-CORE was by itself a
challenging research problem. Given the thesis timeline, we focused on solving the latter.

SQL and SPARQL recursion were our main inspiration for this work. The main difficulty
we had in adapting the recursive operator to G-CORE was the Property graph data model,
since recursion in SQL did not apply directly. SQL and SPARQL recursive operators both
base their fixed point convergence on their data models cardinality. SQL’s tables data model
cardinality is given by the number of rows of the table, as in SPARQL’s RDF graph data
model it’s given by the number of triples. In the case of G-CORE’s Property Graphs, being
a more complex data model with metadata as properties on its edges and nodes, translating
the recursion from SQL or SPARQL was not straightforward.

In addition, in traditional recursion the temporal graph was built based on the union of
the previous ones, which leaves out other types of queries that are also recursive. This was
due to the fact that the results of the intermediate steps of the recursion, compared under
a set theoretical order, were used as a "measure" of the advance of the recursion. So in
our approach we redefine this general architecture, by separating the intermediate results
from the order that guided the recursion. Indeed, we use an "external" (and simpler) order
structure that in each iteration would reflect the "order" of the corresponding partial result
data in that iteration. In our case, this measure can be chosen by the user and usually is a
simple measure (number of nodes, depth of a tree, number of edges with some mark, etc.).

We realized that in any query language it is convenient to isolate and separate recursion
in to iteration mechanism and the order/recursion mechanism. This offers more flexibility
and simplicity to the programmer coding the problem, especially when dealing with graph
models. This way, it’s easier to code problems that have negation and queries that appear
non-monotonous in traditional recursion but are monotonous in our recursive definition.

This separation can be designed and implemented very easily, although it requires attention

60

by the user to express the order correctly in the query. Small changes are necessary to
implement it on a data base system; is includes having a temporal graph structure and an
While algorithm (as discussed in chapter 3).

We also learned that there are operators that are not specified in G-CORE syntax and
are necessary to express graph queries (for instance, edges substractions in chapter 5). We
discovered that some operators are defined inconsistently (in a very restrictive way). For
instance, the substraction operator which subtracts the sets of nodes from each graph and
information is lost.

Although we believe it is important to add recursion to G-CORE, this language has valuable
path functionalities, and for example, the planarity testing problem and connected compo-
nents problems could be expressed using only this paths feature.

From our research, we conclude that further investigation is needed in the following topics:

• In depth studies on path properties to compare and integrate recursion and paths as
first class citizen. This is relevant and is a novel problem since there were no languages
with paths as first class citizens.

• Find out if all graph polynomial algorithms can be expressed in this new version of
G-CORE plus recursion.

• To extend the recursion mechanisms defined for G-CORE to Cypher and PGQL, since
G-CORE is based on these two languages.

As general conclusions regarding this thesis, we consider that by adding a recursive operator
we were able to fulfill the objective of expressing graph algorithms in G-CORE.

Finally, we believe that G-CORE is a flexible enough language to implement the recursive
operator and its possible implementation remains as future work.

61

Bibliography

[1] Renzo Angles. The Property Graph Database Model. In AMW, 2018.

[2] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and Do-
magoj Vrgoč. Foundations of Modern Query Languages for Graph Databases. ACM
Computing Surveys, 50:1–40, 09 2017.

[3] Todd Green, Shan Shan Huang, Boon Loo, and Wenchao Zhou. Datalog and recursive
query processing. Foundations and Trends in Databases, 2, 01 2012.

[4] Juan L. Reutter, Adrián Soto, and Domagoj Vrgoč. Recursion in SPARQL. pages 19–35,
Berlin, Heidelberg, 2015. Springer-Verlag.

[5] Eric Prud'hommeaux and Andy Seaborne. SPARQL Query Language for RDF - W3C
Recommendation, 2008. https://www.w3.org/TR/rdf-sparqlquery/.

[6] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor.
Cypher: An evolving query language for property graphs. In Proceedings of the 2018
International Conference on Management of Data, pages 1433–1445, 2018.

[7] LBDC. http://ldbcouncil.org/.

[8] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter Boncz, George Fletcher, Claudio
Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan Sequeda, Oskar
Van, Alex Averbuch, Hassan Chaa, Irini Fundulaki, Alastair Green, Josep Lluis, Larriba
Pey, Jan Michels, Raquel Pau, Arnau Prat, Tomer Sagi, and Yinglong Xia. G-CORE A
Core for Future Graph query Languages Designed by the LDBC Graph query Language
Task Force *. In: SIGMOD, 2017.

[9] Ludek Kucera. Combinatorial Algorithms. IOP Publishing Ltd. Adam Hilger Editorial,
Praga, Checoslovaquía, 1990.

[10] The GQL Manifesto. https://gql.today/.

[11] Oskar Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. PGQL: a
Property Graph Query Language. pages 1–6, 06 2016.

[12] Jim Melton and Alan R Simon. SQL: 1999-Understanding Relational Language Com-

62

https://www.w3.org/TR/rdf-sparqlquery/
http://ldbcouncil.org/
https://gql.today/

ponents. Morgan Kaufmann, 2001.

[13] Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular Queries on Graph
Databases. Theor. Comp. Sys., 61(1):31–83, July 2017.

[14] Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun. Green-Marl: A DSL
forEasy and Efficient Graph Analysis. International Conference on Architectural Support
for Programming Languages and Operating Systems - ASPLOS, 47, 04 2012.

[15] Michael Sipser. Introduction to the Theory of Computation. Course Technology, second
edition, 2006.

[16] Richard Hull Serge Abiteboul and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[17] Ashok K Chandra and David Harel. Horn clause queries and generalizations. The
Journal of Logic Programming, 2(1):1–15, 1985.

[18] A. Van Gelder. The alternating fixpoint of logic programs with negation. In Proceedings
of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS ’89, page 1–10, New York, NY, USA, 1989. Association for Computing
Machinery.

[19] Leonid Libkin. Expressive Power of SQL. Theor. Comput. Sci., 296(3):379–404, March
2003.

[20] Gabriel Aranda, Susana Nieva, Fernando Sáenz-Pérez, and Jaime Sánchez-Hernández.
Formalizing a broader recursion coverage in SQL. pages 93–108, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[21] Carlos Ordonez. Optimization of linear recursive queries in SQL. IEEE Transactions
on Knowledge and Data Engineering, 22, 2010.

[22] Devin W. Homan. Transitive Closure in SQL. http://dwhoman.com/blog/
sql-transitive-closure.html.

[23] FusionBox. Graph Algorithms in a Database . https://www.fusionbox.com/blog/
detail/graph-algorithms-in-a-database-recursive-ctes-and-topological-sort-with-postgres/
620/.

[24] Torsten Grust. Advanced SQL. https://db.inf.uni-tuebingen.de/staticfiles/
teaching/ss17/advanced-sql/slides/advanced-sql-05.pdf.

[25] Marko A. Rodriguez. The Gremlin Graph Traversal Machine and Language. The 15th
Symposium on Database Programming Languages, pages 1–10, 2015.

[26] RDF Graph Literals and Named Graphs. https://www.w3.org/2009/07/NamedGraph.
html. último acceso 2018-07-22.

63

http://dwhoman.com/blog/sql-transitive-closure.html
http://dwhoman.com/blog/sql-transitive-closure.html
https://www.fusionbox.com/blog/detail/graph-algorithms-in-a-database-recursive-ctes-and-topological-sort-with-postgres/620/
https://www.fusionbox.com/blog/detail/graph-algorithms-in-a-database-recursive-ctes-and-topological-sort-with-postgres/620/
https://www.fusionbox.com/blog/detail/graph-algorithms-in-a-database-recursive-ctes-and-topological-sort-with-postgres/620/
https://db.inf.uni-tuebingen.de/staticfiles/teaching/ss17/advanced-sql/slides/advanced-sql-05.pdf
https://db.inf.uni-tuebingen.de/staticfiles/teaching/ss17/advanced-sql/slides/advanced-sql-05.pdf
https://www.w3.org/2009/07/NamedGraph.html
https://www.w3.org/2009/07/NamedGraph.html

[27] Pablo Barcelo, Gaelle Fontaine, and Anthony Lin. Expressive path queries on graph
with data. Logical Methods in Computer Science, 11(4), Oct 2015.

[28] Pablo Barceló, Jorge Perez, and Juan Reutter. Relative expressiveness of nested regular
expressions. CEUR Workshop Proceedings, 866, 01 2012.

[29] Pablo Barceló, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. Expressive Lan-
guages for Path Queries over Graph-Structured Data. ACM Transactions on Database
Systems, 37(4):1–46, 2012.

[30] Pablo Barceló. Querying Graph Databases. In Principles of Database Systems (PODS),
page 175–188, 2013.

[31] N Yakovets, P Godfrey, and J Gryz. Evaluation of SPARQL property paths via recursive
SQL. CEUR Workshop Proceedings, 1087, 01 2013.

[32] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. NSPARQL: A Navigational Lan-
guage for RDF. Web Semant., 8(4):255–270, November 2010.

[33] Leonid Libkin, Juan L. Reutter, Adrián Soto, and Domagoj Vrgoč. Trial: A navigational
algebra for rdf triplestores. ACM Trans. Database Syst., 43(1), March 2018.

[34] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge Uni-
versity Press, 2 edition, 2002.

[35] Valentina Urzua and Claudio Gutiérrez. Linear recursion in G-CORE. In Aidan Hogan
and Tova Milo, editors, Proceedings of the 13th Alberto Mendelzon International Work-
shop on Foundations of Data Management, Asunción, Paraguay, June 3-7, 2019, volume
2369 of CEUR Workshop Proceedings. CEUR-WS.org, 2019.

[36] H N Gabow, Z Galil, T Spencer, and R E Tarjan. Efficient algorithms for finding min-
imum spanning trees in undirected and directed graphs. Combinatorica, 6(2):109–122,
January 1986.

[37] Journal de mathématiques élémentaires [et spéciales]. Number v. 5. C. Delagrave, 1881.

[38] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[39] Saeed Akhoondian Amiri, Ali Golshani, Stephan Kreutzer, and Sebastian Siebertz. Ver-
tex disjoint paths in upward planar graphs. In Edward A. Hirsch, Sergei O. Kuznetsov,
Jean-Éric Pin, and Nikolay K. Vereshchagin, editors, Computer Science - Theory and
Applications, pages 52–64, Cham, 2014. Springer International Publishing.

[40] LDBC. Implementation of G-CORE Graph Query Language on Spark. https:
//github.com/ldbc/gcore-spark.

[41] G-CORE implementation. https://g-core.org/wp/.

64

https://github.com/ldbc/gcore-spark
https://github.com/ldbc/gcore-spark
https://g-core.org/wp/

[42] SPARQL implementation. https://adriansoto.cl/RecSPARQL/index/.

65

https://adriansoto.cl/RecSPARQL/index/

	Introduction
	Outline and Main Contributions

	An introduction to G-CORE
	G-CORE Overview
	Data Model
	Path Property graphs

	Basic notions of G-CORE

	Related Work
	Recursion in Relational Database Query Languages
	Datalog
	Recursion in SQL

	Recursion in Graph Query Languages
	SPARQL
	Cypher
	PGQL
	G-CORE

	General Recursion
	The need for a general recursive operator
	A proposal to generalize the expression of recursive queries
	Syntax of general recursive queries in G-CORE
	Nested Recursion

	Semantics of general recursive queries in G-CORE
	An Example: Nodes at k distance from the root
	Data Complexity
	Note: On Linear Recursion.

	Graphs algorithms with recursive G-CORE
	Topological Sorting
	Minimum Spanning Tree
	Eulerian Circuit
	Maximum Matching
	Connected Components
	Planarity Testing

	 Issues for the Implementation of recursion in G-CORE
	Current Implementation of G-CORE
	Adding recursion to G-CORE
	Problems with G-CORE operators

	Conclusion and Future Work
	Bibliography

