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A FAST-RUNNING FAILURE PROGNOSTIC ALGORITHM BASED ON A
NON-HOMOGENEOUS MARKOV CHAIN

Typically, model-based prognostic algorithms estimate the remaining-useful-life distribu-
tion by characterizing the probable system trajectories described through state-space mo-
dels. Unfortunately, as the state dimension increases or the prognostic horizon enlarges, the
computational time of such algorithms augments considerably, complicating their real-time
execution.

To overcome this difficulty, this work proposes a paradigm change in model-based prog-
nostic algorithms; instead of tracking the state-space trajectories, a Fast-Running Mar-
kov Chain-based Prognostic Algorithm (FRMC-PA) is proposed, capable of estimating the
time-of-failure probability mass function directly. FRMC-PA is based on a two-state non-
homogeneous discrete-time Markov chain, where state “0” describes the operative situation
and state “1” represents a catastrophic failure event. FRMC-PA is composed of two stages:
i) offline stage, which leverages historical data to train a regression model that maps the sys-
tem variables to the transition probabilities of the binary-stochastic process; ii) online stage,
which combines the regression model built previously and real-time observations to estimate
the system’s remaining useful life.

This method is validated using the case study of battery discharge. Results show that
FRMC-PA can transfer most of the computational cost to the offline stage, achieving an
online computational-time reduction of 99 % compared with a Monte-Carlo-based prognostic,
without significantly sacrificing the prognostic accuracy.
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Típicamente, los algoritmos de pronóstico basados en modelo estiman la vida útil del
sistema utilizando una caracterización estocástica de las trayectorias del estado. Desafor-
tunadamente, al aumentar la dimensión del estado o el horizonte de predicción, el tiempo
computacional de dichos algoritmos crece considerablemente, complejizando su ejecución en
tiempo real.

En lugar de seguir las trayectorias del estado, esta tesis propone el Fast-Running Markov
Chain-based Prognostic Algorithm (FRMC-PA) para estimar directamente la función de
probabilidad del tiempo de falla. FRMC-PA se basa en una cadena de Markov no-homogénea
con dos estados: “0” (sistema operativo) y “1” (falla catastrófica). FRMC-PA comprende dos
etapas: i) fuera de línea, que utiliza data histórica para entrenar un modelo de regresión que,
evaluando variables del sistema, estima directamente las probabilidades de transición de la
cadena; ii) en línea, la cual combina el modelo de regresión obtenido con observaciones en
tiempo real para estimar la vida útil del sistema.

Este método es validado en un caso de estudio de descarga de baterías. Los resultados
muestran que FRMC-PA puede transferir gran parte del costo computacional a la etapa fuera
de línea, reduciéndolo en un 99 % durante la etapa en línea, comparado con una técnica de
pronóstico de Monte-Carlo.
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Chapter 1

Introduction

1.1. Motivation

In the engineering discipline of Prognostics Health Management (PHM), there is a clear
distinction between a fault (abnormal conditions in which a system is still operative) and
a catastrophic failure (which implies the inoperability of a system). In this regard, Fault
Diagnostic and Failure Prognostic (FDP) algorithms can enhance the safety of a system by
detecting and isolating incipient faults (fault diagnostics) and subsequently forecasting the
progression of these faults to the point of catastrophic failure (failure prognostics) [1]. Failure
prognostic algorithms evaluate the reliability of a system in its current life cycle conditions,
predicting the time at which a system or a component will no longer perform its intended
function. This time is typically known as Remaining Useful Life (RUL), End-of-Life (EoL),
Time-of-Failure (ToF), and Time-to-Failure (TtF) [2, 3].

One key challenge in the design and implementation of prognostic algorithms is to redu-
ce the associated computational burden. For instance, real-time execution is desirable, even
mandatory, for mission re-planning in Unmanned Aerial Mobility (UAM) [4, 5, 6]. Unfor-
tunately, these systems often have limited computational resources on-board. Therefore, for
such applications, the main goal of prognostic designers is to develop algorithms capable of
computing effective predictions within a reasonable computational time period. Research in
the field of real-time prognostic algorithms has explored a great variety of approaches. One
of the most recognized efforts in this regard is presented in [7], where authors proposed a
particle filter (PF) based algorithm for failure prognostics, providing the means to estimate
the ToF Probability Density Function (PDF).

PF-based prognostic approaches are considered as the state-of-the-art for model-based
prognostics by many PHM researchers [8]. Most of these works show promising results in
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terms of prediction capability, but the computational burden is not treated as a priority
[9]. Indeed, as particle-filtering-based failure prognostic methods intend to characterize the
evolution of the state vector over extended time periods, the computational complexity of
the algorithm increases significantly with the dimension of the state vector and the length of
the prognostic horizon.

To address this issue, this work proposes a novel prognostic strategy based on a fundamen-
tal attribute of the problem. Given that catastrophic failures are binary stochastic processes
in nature (where the system can only fail catastrophically once), it is reasonable to ask if it
is necessary to track the full state of the system. In this regard, it is conjectured that there is
a sufficient representation of the problem that provides a minimal description of the failure
state. Although this simplified representation can lead to some mismatches in the prediction,
it could achieve a significant reduction in the dimension of the relevant variable, and thus in
the computational cost of calculating the ToF distribution.

1.2. Objectives

1.2.1. Main objective

This research effort aims to design, implement and validate a novel prognostic algorithm –
called Fast-Running Markov Chain-based Prognostic Algorithm [FRMC-PA]– that alleviates
the computational burden associated with its real-time execution. The proposed algorithm
is comprised of two stages, and it is based on a reduced representation of a state-space
degradation model. This reduced representation corresponds to a non-homogeneous discrete-
time Markov chain model with two states: “0”, to indicate that the system has not failed (it is
faulty and degrading), and “1”, to indicate that the system has already failed catastrophically.

1.2.2. Specific objectives

The specific objectives of this work are the following:

1. To represent a high-dimensional state-space degradation model (which characterizes a
degradation process at a system level) with a non-homogeneous two-state discrete-time
Hidden Markov Model (HMM), where the dimension of the state vector is significantly
reduced.

2. To formulate analytic expressions that link both the state-space model and the Markov
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chain representation. In particular, to derive a simple expression to obtain the ToF
distribution based on the transition probabilities of the non-homogeneous Markov chain.

3. To design the FRMC-PA offline stage, whose purpose is to train the Markov chain
model, obtaining a regression model from system variables to transition probabilities of
the binary process. For this purpose, Machine Learning algorithms are used and tested
to obtain a sequence of posterior estimates for transition probabilities, conditional on a
given usage profile for the asset, measurements, and a failure threshold.

4. To design the FRMC-PA online stage, which aims to use the Markov chain and the
obtained regression model to estimate the probability distribution of the RUL of the
system, conditional on new measurements.

5. To test the proposed algorithm in a battery discharge case study, comparing its perfor-
mance with a Monte-Carlo-based prognostic technique.

1.3. Hypotheses

This work aims at testing the following hypotheses:

1. Given a state-space model of a time-invariant non-regenerative degradation process, a
two-state non-homogeneous discrete-time Markov chain is a sufficient representation of
the process if the aim is to characterize the Time-of-Failure.

2. This reduced representation provides a way to estimate the Time-of-Failure probability
distribution.

3. It is possible to design an online-efficient prognostic algorithm based on the sufficient
representation of the degradation process.

1.4. Structure

This thesis is organized as follows. Chapter II presents the literature review regarding
failure prognostics based on particle filters and Markov chains. Chapter III develops the
proposed Markov model and explains the computation of the Time-of-Failure distribution
based on this model. In Chapter IV, the FRMC-PA is presented, including the offline and the
online stages. Chapter V includes a synthetic example, where the offline stage is illustrated.
Chapter VI presents the experimental validation of the method in a case study of battery
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discharge, explaining both the offline and online stages. Finally, Chapter VII summarizes the
work and discusses some future extensions.
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Chapter 2

Background and Literature Review

2.1. Failure Prognostics

Failure prognostics aims to predict a future time when a dynamical system can present
a catastrophic failure, meaning that it will no longer perform its intended function [1]. The
importance of this problem arises from some areas of applications, including to prevent the
excessive expenditure on maintenance of equipment or components, to avoid the loss of
production in industry due to the detention of machinery, and to reduce the risk of loss of
human life (failure in transport systems, medical equipment, among others) [10].

More precisely, failure prognostics consist on the extrapolation of system health indica-
tors into the future, providing information about the risk of catastrophic failures and helping
to take preventive measures and maximize the system performance within a given predic-
tion horizon. Figure 2.1 illustrates graphically this problem, where Xk corresponds to the
state-space variable and Yk to the observation variable. At time tp, after a fault is detected
and diagnosed, the posterior PDF for Xtp –given measurements until tp– is estimated and
propagated over time using the system model. A failure is detected when the system state
reaches a failure set (or hazard zone) L, typically characterized by a threshold representing
a maximum or minimum admissible value of the state Xk. This defines the ToF variable, τL,
which is associated to the hazard zone L. Regardless of the application, the objective of any
failure prognostic algorithm is to estimate the probability distribution of the ToF τL [10].

ToF estimation is relevant as it provides information about the operational continuity
of a system, i.e., it allows knowing for how much time the system can be operated before
incurring a failure that could be catastrophic. Given the complexity of industrial systems,
in general it is not possible to calculate the ToF with arbitrary precision, and thus, it is
relevant to properly characterize the uncertainty associated with ToF estimates [11]. Accor-
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Main Uncertainty Sources: 

• Model uncertainty 

• Future usage profile 

• Prognostic Algorithm 

  Failure Threshold 

𝑡𝑝 𝑘 

𝑃̂ (𝑋𝑡𝑝|𝑌1:𝑡𝑝) 

Main Uncertainty Sources: 

• Model uncertainty 

• Measurement noise 

𝑃 (𝑋𝑡𝑝|𝑌1:𝑡𝑝) 

State Estimation 

(Fault Diagnostics) 

𝑃 (𝜏𝐿 = 𝑘|𝑌1:𝑡𝑝) 

Time-of-Failure Estimation 
(Failure Prognostics) 

𝑃̂ (𝑋𝑡𝑝+𝑘|𝑌1:𝑡𝑝) 

𝑃 (𝑋𝑡𝑝+𝑘|𝑌1:𝑡𝑝) 
Posterior State Estimate 

True Posterior PDF Predicted State PDF 

True State Prediction PDF 

Figure 2.1: The Failure Prognostics Problem. Prognostics are executed at time tp, after a fault is
diagnosed. Xk corresponds to the system state variable. Yk is the observation variable. The posterior
PDF for Xtp –given measurements until tp– is estimated and propagated over time using the system
model. A failure is detected when the system state reaches a failure set L, typically characterized by
a threshold representing a maximum or minimum admissible value of the state Xk. This defines the
ToF variable, τL, which is associated to the hazard zone L. The objective of any failure prognostic
algorithm is to estimate the probability distribution of τL. Figure extracted and adapted from [10].

ding to [12], ToF prediction methods can be broadly classified in two groups: offline and
online schemes. Offline methods typically utilize computationally expensive algorithms that
offer highly accurate (or precise) results. In contrast, online methods should offer a delicate
balance between efficiency and efficacy. In [12] some examples of offline methodologies are
mentioned for the characterization of uncertainty related to crack growth dynamics [13, 14],
structural damage [15, 16], electronics [17], and mechanical bearings [18]. Examples for the
implementation of online prognostic and RUL estimation schemes can be found in [7, 19].
Also, various efforts aimed at quantifying the uncertainty associated with ToF estimates are
found for the problem of energetic autonomy and capacity degradation of lithium-ion bat-
teries [20, 21, 22, 23], and degradation of pneumatic valves [24]. Methodologies inspired on
efficient sampling techniques [25] and analytical methods [26] have also been explored.
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2.1.1. Particle-filtering-based failure prognostics

Failure prognostic algorithms typically use information provided by Bayesian filtering mo-
dules to determine a reasonable initial condition for the long-term predictions needed to
characterize the ToF distribution adequately. Bayesian filters are able to fuse prior informa-
tion of the system (for example, the degradation model structure) with real-time observations
acquired once the fault has been diagnosed [27]. However, it is important to note that Baye-
sian filters are not used for prognostics but for state estimation [8] since prognostic algorithms
need to characterize future sequences of state vector PDFs [9], assuming no new measure-
ments have been acquired. Thus, their implementation implies challenges that are beyond
the typical Bayesian filtering schemes.

In this regard, particle filters are a class of Bayesian filtering algorithms that has been
widely accepted within the PHM community to tackle the failure prognostic problem. Moreo-
ver, PF-based prognostic approaches are considered as the state-of-the-art for model-based
failure prognostics by many PHM researchers [8]. As a result, they have motivated an ex-
tensive number of publications in different applications [10] such as State-of-Charge and
State-of-Health prognostics of batteries [22, 28, 21, 29, 30], prediction of crack faults [31],
analysis of haul trucks failures based on the oil total base number [32], prediction of failures
on analog electronic circuits [33], analysis of the power degradation phenomena in proton
exchange membrane fuel cells [34, 35, 36, 37], design of fault-tolerant components [38], elec-
trical machines failure prediction [39], micro-electro-mechanical systems failure prognostics
[40], wind turbines shaft bearing degradation tracking [41], diesel motors health prediction
[42], RUL prediction for automated machines [43], among others [44, 45, 46].

A particle-filtering-based prognostic algorithm is a method for future uncertainty charac-
terization that uses sequential Monte-Carlo techniques to obtain a state posterior PDF during
the filtering stage. These algorithms use a particle population to represent the state PDF
and provide a way to propagate the particles to the future to characterize the evolution of
the state distribution within a prediction horizon [9]. Formally, particle filter algorithms are
designed to obtain samples sequentially from a target state probability distribution P (X0:Ph

)
[47]. This algorithms generate a set of Np � 1 weighted particles {wik, xik}

i=1...Np

k=0...Ph
, with wik ≥ 0

and
Np∑
i=1

wik = 1, ∀k ≥ 0, satisfying that [22]:

Np∑
i=1

wikψk
(
xik
)
−−−−→
Np→∞

∫
ψk (xk)P (xk) dxk , ∀k ∈ {0, . . . , Ph}, (2.1)

in probability, where ψk is any P -integrable function. In the most basic PF implementation
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–the sequential importance sampling [47]–, these particles are propagated through time using
the prior state transition PDF P (xik|xi0:k−1), given by the degradation model dynamics.

On the other hand, the weights update and propagation depend on the availability of
measurements at a particular time. Suppose that there are observations until time tp ≤ Ph,
namely {yk}k=0,...,tp . For 0 ≤ k ≤ tp, it is possible to evaluate the weight wik based on the
measurement likelihood P (yk|xi0:k) and the previous weight wik−1 in the form wik ∝ wik−1 ·
P (yk|xi0:k), ∀i = 1, . . . , Np. In contrast, for tp < k ≤ Ph there are no measurements available,
but it is still important to propagate weights for the prognostic task. In this case, the future
weights are inherited from the filtering stage in the form wik = wik−1, ∀i = 1, . . . , Np.

Based on this, it is possible to obtain an empirical representation of the state distribution
[27]:

P̂Np(Xk = x) ≈
Np∑
i=1

wik · δ
(
x− xik

)
, ∀k ∈ {0, . . . , Ph}, (2.2)

where δ(·) is the Dirac delta function. The weight updating and particle propagation processes
are schematized in Figure 2.2

Focusing on the prognostic task, the objective is to estimate the ToF probability distribu-
tion based on these empirical state distributions and the system hazard zone L. Considering
that the ToF is the first time when the system state reaches the hazard zone, it is possible
to approximate the ToF distribution using the expression [7]:

P
(
τL = k

)
≈

Np∑
i=1

wik · P (τL = k|X = xi0:k) , ∀k ∈ {0, . . . , Ph}, (2.3)

where P (τL = k|X = xi0:k) = 1 if and only if the trajectory xi0:k reaches L at time k (not
before). Otherwise, P (τL = k|X = xi0:k) = 0.

As stated before, the filtering stage provides the initial condition for the prediction stage.
For each new measurement acquired in real-time, a new filtering step is applied and, hence,
it is possible to update the prognostic stage. This procedure may improve the estimation of
the ToF distribution because of the better characterization of the posterior state PDF. On
the other hand, updating the prognostics every time a new measurement is available requires
high computational resources to be executed [9].

To address this computational burden issue, some authors have explored variations of
PF-based prognostic algorithms. Sbarufatti et al. [48] propose an algorithm that combines
PF and radial basis function neural networks. Chang et al. [49] explore a hybrid prognostic
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Figure 2.2: Illustration of the particle filter algorithm. A particle population represents the prior
state distribution. Given measurements, weights are updated based on the likelihood of the parti-
cles. Then, the particles are propagated through time utilizing the system dynamics. If new new
measurements are available, the weights are updated again, and so on.

scheme with the capability of uncertainty assessment that combines PF and Relevance Vec-
tor Machines (RVMs). Another interesting approach to deal with real-time prognostics was
introduced in [50] and then extended in [51, 52]: it computes prognostic through Lebesgue
sampling-based procedure, wherein prediction steps are discretized in the state space instead
of the time axis. Although significant computation burden can be saved [51, 52], this approach
requires a dynamic model in Lebesgue space that is extremely difficult to identify in the case
of a complex engineering system. On the other hand, Rozas et al. [9] proposed a method
based on a time-variant prognostic update, in which the sample time is decided according to
a novel metric to evaluate the performance of prognostic algorithms in real-time.

While the computational savings obtained by the mentioned methods are valuable, it is
important to note that they still require a powerful computational platform to execute their
predictive algorithms in real-time.
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2.1.2. Markov chain-based failure prognostics

Considering the objectives of this work, it is important to note that other research efforts
have incorporated Markov chain models in failure prognostics. Please refer to Appendix A
to review some definitions and properties regarding Markov chains.

In [22], a two-state Markov chain characterizes the discharge profiles of a battery, where
one state represents a high energy consumption profile and the other one a low energy con-
sumption profile. Maximum likelihood estimators were used to estimate the transition matrix.
Geramifard et al. [53] used a stationary hidden Markov model (HMM) to explore a represen-
tation for the failure, establishing an explicit relationship between the hidden states values
and the actual health states of the system. This relationship is then exploited for formulation
and parameter estimation in the proposed approach. A Mixture of Gaussians Hidden Markov
Model (MoG-HMM) is utilized in [54] to model the degradation phenomenon of bearings.
This model is trained with features extracted from a Wavelet packet decomposition (WPD)
applied to raw data. On the other hand, Tang et al. [55] proposed an approach to estimate
the RUL of a degrading system under dynamic operational conditions, which are represented
with a discrete-time Markov chain. In addition, the RUL prediction problem is formulated
as a semi-Markov decision process framework. Chiachío et al. [56] use a multi-state Markov
chain to represent the damage sates, with an invariant approximation of the transition pro-
babilities. They tested the proposed methodology in a case study about stochastic fatigue
damage evolution in metallic materials. Finally, in [57] a stochastic working mode is modeled
through a flexible two-state semi-Markov model with phase-type distributed interval times.
This is utilized to predict the RUL in batteries, where the system performance degrades with
usage and recovers in storage.

In summary, while other works have used Markov chain models to represent the health sta-
tes of a system, most of them use a multi-state homogeneous process (or a static approxima-
tion) for this representation. In contrast, the proposed approach utilizes a non-homogeneous
two-state Markov chain to capture the failure dynamics, enhancing the model, and then provi-
ding an online-efficient prognostic algorithm to update the ToF distribution given new online
measurements. This algorithm allocates most of the computational burden to the offline sta-
ge, leaving few computations to the online stage. Therefore, this approach has the potential
to alleviate the online computational cost without substantially sacrificing the prognostic
quality.
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Chapter 3

Markov Chain Representation for Failure
Prognostics

One of the main objectives of this work is to represent the degradation process of a dynamic
system with a simpler model that reduces the dimension of the relevant variable. Until now,
researchers from the PHM community have approached the failure prognostic problem by
focusing their attention on a proper characterization of the future system state sequence.
Although this approach is theoretically correct, it becomes impractical, even intractable,
in the context where the dimension of the state vector or the prognostic horizon is large.
Under the observation that the objective is to estimate the ToF, this work aims to obtain a
representation independent of the system’s complexity.

To develop the proposed methodology, the following random vectors are defined. Let
(Ω,F , P ) be a probability space. Then:

Xk : (Ω,F , P )→ (Rnx ,B(Rnx)),
Uk : (Ω,F , P )→ (Rnu ,B(Rnu)),
Yk : (Ω,F , P )→ (Rny ,B(Rny)),

where B(Rn) is the Borel σ-algebra on Rn. These random vectors represent the system state
variable, the exogenous input, and the observation variable, respectively, at some discrete
instant k ∈ N. Also, consider that the high-dimensional state-space model that characterizes
the degradation process at the system level is given by:

Xk+1(ω) = f(Xk(ω), Uk(ω),Wk(ω)), (3.1)
Yk(ω) = g(Xk(ω), Vk(ω)) , ∀k ∈ N. (3.2)
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In Eqs. (3.1) and (3.2), f(·) and g(·) are time-invariant functions, and Wk(ω) ∈ Rnx , Vk(ω) ∈
Rny are random vectors representing the process model uncertainty and the observation
noise at time k, respectively. Consider that Wk(ω) and Vk(ω) are independent of each other
and independent of (Xk(ω), Yk(ω), Uk(ω)). Also, it is assumed that Wk(ω) and Wj(ω) are
independent if k 6= j, and the same goes to Vk(ω). Eqs. (3.1) and (3.2) generate the discrete-
time stochastic processes {Xk(ω)}k≥0 ⊂ Rnx and {Yk(ω)}k≥0 ⊂ Rny , which depend on the
input random sequence {Uk(ω)}k≥0 ⊂ Rnu . The sequence {Uk(ω)}k≥0 is known as the usage
profile or the exogenous input, and it represents the manner the operator uses the system.

Next, the failure event binary random variable at each discrete instant k is defined by:

ΘL
k (ω) : (Ω,F , P )→ ({0 , 1},P({0 , 1})). (3.3)

ΘL
k (ω) represents a failure event in the form that the system state Xk(ω) ∈ L ⊆ Rnx . In

other words, L corresponds to the system failure set that parameterizes the hazard zone of
the problem. If the system state Xk(ω) has reached L, the state-space model indicates that
the system has failed catastrophically up to time k, and then ΘL

k (ω) = 1. On the other
hand, ΘL

k (ω) = 0 if the system model is degrading but has not failed catastrophically at time
k. Note that this generates the discrete-time random process {ΘL

k (ω)}k≥0 ⊂ {0, 1}. If it is
assumed that the system is not catastrophically failed at k − 1, the following conditional
probabilities are known:

P (ΘL
k (ω) = 1|Xk(ω) ∈ L,ΘL

k−1(ω) = 0) = 1, (3.4)
P (ΘL

k (ω) = 0|Xk(ω) ∈ Lc,ΘL
k−1(ω) = 0) = 1.

Modeling the catastrophic nature of the failure set, 1 is considered an absorbent state of the
model. This means that if the system reaches the failure state, the system cannot recover
back from the failure state. Therefore:

P (ΘL
k+1(ω) = 0|ΘL

k (ω) = 1) = 0 , ∀k ≥ 0. (3.5)

Importantly, ∀k ≥ 1, the prior transition probability at time k (given that no failure has
happened before) is defined by:

pLk , P (ΘL
k (ω) = 1|ΘL

0 (ω) = 0, . . . ,ΘL
k−1(ω) = 0). (3.6)

It is assumed that the system has not failed at time k = 0, i.e., pL0 , 0.

Finally, the Time-of-Failure is defined as a random variable τL(ω) : (Ω,F , P )→ (N). This
object measures the first discrete instant at which a failure occurs in the process {Xk(ω)}k≥0,
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which is typically called the first passage time [11]. As the failure state is absorbent, then
ΘL
k (ω) = 1 ,∀k ≥ τL(ω). Therefore:

τL(ω) , min{k ≥ 1 : ΘL
k (ω) = 1}. (3.7)

From Eq. (3.7), τL(ω) is a function of the stochastic process {ΘL
k (ω)}k≥0 and behaves as

a stopping time variable [58] (see Appendix A).

In summary, there are 4 layers that are illustrated in Figure 3.1. This diagram shows the
statistical relationships between the stochastic processes that have been defined so far.

...

...

...

...

Figure 3.1: Illustration of statistical dependencies between the system state stochastic process
(see Eq.(3.1)), the observation variable (Eq. (3.2)), the failure variable (Eq. (3.4)), and the
time of failure random variable (Eq.(3.7)).

The following probabilistic relationships between layers are established:
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Xk(ω)↔ Yk(ω): ∀k ≥ 0 and ∀xk ∈ Rnx , yk ∈ Rny . From Eq. (3.2):

P (Yk(ω) = yk|Xk(ω) = xk) = P (Vk(ω) = yk − g(xk)). (3.8)

Xk(ω)↔ Θk(ω): This relationship is given by Eq. (3.4).

Xk+1(ω)↔ Xk(ω) , Uk(ω): ∀k ≥ 0, ∀xk, xk+1 ∈ Rnx , and ∀uk ∈ Rnu . From Eq. (3.1):

P (Xk+1(ω) = xk+1|Xk(ω) = xk, Uk(ω) = uk) = P (Wk(ω) = xk+1 − f(xk, uk)). (3.9)

Below, a relevant property of the stochastic process {ΘL
k (ω)}k≥0 is presented.

PROPOSITION 1 The stochastic process {ΘL
k (ω)}k≥0 is a non-homogeneous Markov chain

of order 1.

Proposition 1 derives from the absorbent condition of state “1”. The proof of this result
is presented in Appendix B.1. Using Proposition 1, ∀k ≥ 1:

pLk = P (ΘL
k (ω) = 1|ΘL

0 (ω) = 0, . . . ,ΘL
k−1(ω) = 0) = P (ΘL

k (ω) = 1|ΘL
k−1(ω) = 0). (3.10)

Therefore, the sequence {pLk }k≥0 represents the time-variant transition probabilities of the
Markov chain that characterizes the failure condition and, thus, the ToF prior probability
distribution. Fig. 3.2 illustrates the transition between time instants k − 1 and k.

0 1
pk

1− pk 1

Figure 3.2: Diagram that describes the transition probabilities of the Markov
chain {ΘL

k (ω)}k≥0 between time instants k − 1 and k.

Importantly, the transition matrix of this non-homogeneous Markov chain is time-variant,
and it is given by:

PL
k :=

P (ΘL
k (ω) = 0|ΘL

k−1(ω) = 0) P (ΘL
k (ω) = 1|ΘL

k−1(ω) = 0)
P (ΘL

k (ω) = 0|ΘL
k−1(ω) = 1) P (ΘL

k (ω) = 1|ΘL
k−1(ω) = 1)

 =
1− pLk pLk

0 1

 , ∀k ≥ 1.

(3.11)

Consequently, {ΘL
k (ω)}k≥0 is a non-homogeneous Markov chain, in general.
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3.1. Characterization of τL(ω) in Eq. (3.7)

In this section, the previously defined stochastic processes are related with the time of
failure random variable τL(ω). This variable is the most important one when executing the
prognostic task. From (3.7), the following property holds.

PROPOSITION 2 Suppose that P (ΘL
0 (ω) = 0) = 1 and P (∃k ∈ N, Xk(ω) ∈ L) = 1.

Then, ∀k ≥ 1:

P (τL(ω) = k) = pLk ·
k−1∏
j=1

(1− pLj ). (3.12)

The proof of Proposition 2 is presented in Appendix B.2. The important point of this
result is that this representation just needs to know the transition probabilities {pLk }k≥0 of
the Markov chain {ΘL

k (ω)}k≥0 to characterize the probability mass function of τL(ω). Note
that, if {pLk }k≥0 is known, Eq. (3.12) offers an implementable closed-form expression.

The hypothesis behind Proposition 2 are not too strong in a degrading system. It can
easily be assumed that the system has not failed catastrophically at the beginning of the
analysis, hence P (ΘL

0 (ω) = 0) = 1. On the other hand, P (∃k ∈ N, Xk(ω) ∈ L) = 1 follows
from the fact that a non-regenerative degrading system reaches the failure condition at some
point (as the time tends to infinity), almost-surely.

In many contexts, the cumulative distribution of τL(ω) is also useful for decision-making
purposes. By definition:

P (τL(ω) ≤ k) =
k∑
j=1

P (τL(ω) = j) ,∀k ≥ 1. (3.13)

Then, the following result holds:

PROPOSITION 3 The cumulative probability distribution of τL is characterized by the
stochastic process {ΘL

k }k≥0 through the following equation:

P (τL(ω) ≤ k) = P (ΘL
k (ω) = 1) , ∀k ≥ 1. (3.14)

Proof. The proof follows directly from:

P (τL(ω) ≤ k) = 1− P (τL(ω) > k) = 1− P (ΘL
k (ω) = 0) = P (ΘL

k (ω) = 1).
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Note that the events {τL(ω) > k} = {ΘL
k (ω) = 0} from the definition of τL(ω) in Eq.

(3.7). If the failure occurs after time k, then ΘL
k (ω) = 0; the opposite is also true due to the

absorbent condition of state 1 �

Regarding Proposition 3, using the Markovian property (see Proposition 1) and denoting
the initial distribution as µ = [1 , 0], it is easy to compute P (ΘL

k (ω) = 1) from the linear
relation:

[P (ΘL
k (ω) = 0) , P (ΘL

k (ω) = 1)] = µ · PL
1 · ... · PL

k ,∀k ≥ 1. (3.15)

3.2. Characterizing the transition probabilities
of {ΘL

k (ω)}k≥0

In the previous analysis, the sequence {pLk }k≥0 was needed, which describes the transition
probabilities of {ΘL

k (ω)}k≥0. It is clear that the dynamics of this Markov chain depend on
trajectory of the system state. Indeed, the following result holds:

PROPOSITION 4 The transition probabilities of {ΘL
k (ω)}k≥0 can be obtained from the

space-state probability distribution. Indeed, ∀k ≥ 1:

pLk =
P
(
Xk(ω) ∈ L, (X1(ω), . . . Xk−1(ω)) ∈ (Lc)k−1

)
P ((X1(ω), . . . Xk−1(ω)) ∈ (Lc)k−1) . (3.16)

The proof of this result is presented in Appendix B.3. Then, pLk measures the proportion
of system state trajectories that have not failed until time k − 1, but fail catastrophically
at k. Note that the system dynamics given by the degradation model (3.1)-(3.2) allow to
compute (3.16), given an initial state X0(ω) and an usage profile {Uk(ω)}k≥0 through the
total probability law. In other words, the transition probabilities {pLk }k≥0 of the Markov chain
process {ΘL

k (ω)}k≥0 are completely determined by the system dynamics, the initial state, and
the usage profile.

Proposition 4 is the most important result of this work since it links both the state-
space model given by Eqs. (3.1)-(3.2), and the proposed Markov chain model {ΘL

k (ω)}k≥0.
While conventional prognostic algorithms focus on the state-space model to estimate the
ToF, Proposition 2 indicates that it is enough to characterize the sequence {pLk }k≥0, and
Proposition 4 express how to accomplish this. Therefore, if the objective is to determine the
ToF distribution, then describing the trajectory of the system state is equivalent to studying
{pLk }k≥0. These ideas are illustrated in the scheme of Figure 3.3.
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Failure Threshold

0 1

Proposition 4

Proposition 2

Figure 3.3: General scheme of the reduced representation and its use. Typically, space-state trajec-
tories are used to compute the ToF distribution. In the proposed approach, the state trajectories are
projected onto a two-state non-homogeneous Markov chain based on Proposition 4. Then, this redu-
ced model is used to estimate the ToF distribution applying Proposition 2. The idea is to characterize
the Markov chain model without predicting the state distributions, reducing the computational cost
of the prognostic task.

Motivated by this observation, this formalization is used in the next chapter to propose a
prognostic algorithm for degrading systems.
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Chapter 4

Fast-Running Markov Chain-based Prognostic
Algorithm

A new model representing the degradation process using a non-homogeneous Markov
chain has been developed. Moreover, an explicit, closed, and simple equation to calculate the
time of failure (ToF) mass probability distribution based on that model has been derived.
This thesis proposal is to utilize this new representation to predict the ToF distribution and
update this prediction as new measurements of the observation variable are received during
the real-time operation of the system. With this aim, this chapter proposes a prognostic
algorithm that comprises two stages: an offline stage (or learning stage) and an online stage
(or evaluation stage). The algorithm is called Fast-Running Markov Chain-based Prognostic
Algorithm (FRMC-PA).

For all practical purposes, consider a time instant tp. Then, ∀k ≥ tp, the posterior
transition probability at time k, given measurements up to time tp, is defined by:

pLk|tp , P (ΘL
k (ω) = 1|ΘL

k−1(ω) = 0, Y1:tp(ω) = y1:tp). (4.1)

In other words, the posterior transition probabilities in Eq. (4.1) correspond to the transition
probabilities in Eq. (3.10), conditional on measurements of the observation variable Y1:tp(ω).
In this case, we are also interested in characterizing them utilizing the space-state trajectories.

PROPOSITION 5 The posterior transition probabilities of {ΘL
k (ω)}k≥0 can be computed

from the conditional space-state distributions through the following relation. Let tp ∈ N.
∀k ≥ tp:

pLk|tp =
P
(
Xk(ω) ∈ L, (X1(ω), . . . Xk−1(ω)) ∈ (Lc)k−1|Y1:tp(ω) = y1:tp

)
P
(
(X1(ω), . . . Xk−1(ω)) ∈ (Lc)k−1|Y1:tp(ω) = y1:tp

) . (4.2)
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The derivation of this result follows the same arguments used in the proof of Proposition
4. Now, the stages of the proposed FRMC prognostic algorithm are presented.

4.1. Offline learning stage

The offline stage is executed before the system begins its operation. Its purpose is to build
a function ϕ that takes a measurement of the observation variable ytp at time tp and returns
a posterior estimate sequence of transition probabilities {p̂Lk|tp}k=tp...tp+Ph

, where Ph is the
prediction horizon. ϕ is then utilized in the online stage to execute real-time prognostics of
the time of failure distribution.

More generally, ϕ can also use a prior sequence {pLk }k=tp...tp+Nprior
as an argument, where

Nprior < Ph is an hyper-parameter that determines the length of the prior sequence that is
considered to compute the posterior sequence {p̂Lk|tp}k=tp...tp+Ph

. If that is the case, ϕ acts as a
Bayesian processor because it combines prior knowledge

(
{pLk }tp...tp+Nprior

)
and measurements(

ytp
)
to obtain an estimate of the posterior sequence {p̂Lk|tp}k=tp...tp+Ph

.

Supposing that the state-space model that describes the degradation process dynamics
(3.1)-(3.2) is known, the offline stage includes the following steps:

A1) Use the model (3.1)-(3.2), an initial distribution P (Xtp(ω)) and a probabilistic charac-
terization of the usage profile {Ûk(ω)}k=tp...tp+Ph−1 (which may depend on Xtp(ω)) to
compute a sequence of prior distributions denoted by P (Xk(ω))k=tp...tp+Ph

. Formally,
using the law of total probabilities, ∀xk ∈ Rnx , ∀k such that tp < k ≤ tp + Ph:

P (Xk(ω) = xk)

≈
∫

xtp∈Rnx

∫
uj∈Rnu ,

tp≤j≤tp+Ph−1

[
P
(
Xk(ω) = xk|Xtp(ω) = xtp , Ûtp:tp+Ph−1(ω) = utp:tp+Ph−1

)

· P
(
Ûtp:tp+Ph−1(ω) = utp:tp+Ph−1|Xtp(ω) = xtp

)
· P

(
Xtp(ω) = xtp

)]
du(tp:tp+Ph−1) dxtp . (4.3)

Note that the first term of the integral can be calculated using Eq. (3.9), the second
term from the probabilistic characterization of the usage profile, and the third term
from the given initial distribution. Eq. (4.3) is an approximation since we are using a
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probabilistic characterization of the exogenous input {Ûk(ω)}k=tp...tp+Ph
instead of the

real distribution, which may be unknown.

A2) Use the sequence of prior distributions for {Xk(ω)}k=tp...tp+Ph
and the failure set L to

compute a sequence of prior transition probabilities {pLk }k=tp...tp+Nprior
based on Eq.

(3.16).

A3) Utilize the model (3.1)-(3.2), an initial distribution P (Xtp(ω)), a probabilistic characte-
rization of the usage profile {Ûk(ω)}k=tp...tp+Ph−1 and measurements y1:tp to compute a
sequence of model state conditional distributions P

(
Xk(ω)|Y1:tp(ω) = y1:tp

)
k=tp...tp+Ph

.
Formally, ∀xk ∈ Rnx , ∀k such that tp ≤ k ≤ tp + Ph:

P (Xk(ω) = xk |Y1:tp(ω) = y1:tp

)
≈

∫
xtp∈Rnx

∫
uk∈Rnu ,

tp≤k≤tp+Ph−1

[
P
(
Xk(ω) = xk|Xtp(ω) = xtp , Ûtp:tp+Ph−1(ω) = utp:tp+Ph−1,

Y1:tp(ω) = y1:tp

)
· P

(
Ûtp:tp+Ph−1(ω) = utp:tp+Ph−1|Xtp(ω) = xtp

)
·P
(
Xtp(ω) = xtp |Y1:tp(ω) = y1:tp

)]
du(tp:tp+Ph−1) dxtp (4.4)

=
∫

xtp∈Rnx

∫
uk∈Rnu ,

tp≤k≤tp+Ph−1

[
P
(
Xk(ω) = xk|Xtp(ω) = xtp , Ûtp:tp+Ph−1(ω) = utp:tp+Ph−1

)

·P
(
Ûtp:tp+Ph−1(ω) = utp:tp+Ph−1|Xtp(ω) = xtp

)
·P
(
Xtp(ω) = xtp |Y1:tp(ω) = y1:tp

)]
du(tp:tp+Ph−1) dxtp . (4.5)

In this case, the first term of the integral is simplified since Xk(ω) is independent of
Y1:tp , conditional on Xtp . This term can be calculated utilizing Eq. (3.9). The second
term is the same as in Eq. (4.3). The third term can be calculated using Eq. (3.8) and
the Bayes theorem.

A4) Utilize the sequence of conditional distributions P
(
Xk(ω)|Y1:tp(ω) = y1:tp

)
k=tp...tp+Ph

and
the failure set L to compute a sequence of posterior transition probabilities {pLk|tp}k=tp...tp+Ph

based on Eq. (4.2).

A5) Gather the triplet
(
ytp , {pLk }k=tp...tp+Nprior

, {pLk|tp}k=tp...tp+Ph

)
as a data point.

A6) Using different prior initial distributions P (Xtp(ω)) and measurements y1:tp , iterate the
previous steps to generate the data set:

D =
{(
yjtp , {p

L
k }

j
k=tp...tp+Nprior

, {pLk|tp}
j
k=tp...tp+Ph

)
: j ∈ {1 . . . Ndata}

}
. (4.6)

A7) Utilize the data set D as supervised data to train a multivariate regression model ϕ of
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the form:
ϕ :

(
ytp , {pLk }k=tp...tp+Nprior

)
7→ {p̂Lk|tp}k=tp...tp+Ph

. (4.7)

Consider the restriction p̂k|tp ∈ (0, 1) during the training process.

4.2. Online evaluation stage

The objective of this stage is to utilize the model ϕ trained during the offline stage to
execute the prognostic task in real-time. The idea is to avoid predictions on the space-state
variable every time a new measurement is received (like in particle filter algorithms [7, 47])
and to use ϕ as a look up table to update the time of failure distribution, saving computational
time in the process.

Let t0 be the time when a fault is detected and diagnosed. The online stage comprises
the following steps. Steps B1 and B2 are only necessary when a prior transition probabilities
sequence is used as an input of the regression model ϕ.

B1) Use model (3.1)-(3.2), the initial condition xt0 (for example, an estimation or a PDF
obtained from the fault diagnostics) and a probabilistic characterization of the exoge-
nous input {Ûk(ω)}k=t0...t0+Ph−1 to compute a sequence of prior transition probabilities
{pLk }k=t0...t0+Ph

.

B2) Use {pLk }k=tp...tp+Ph
and Eq. (3.12) to compute the prior ToF distribution {P (τL(ω) =

k)}k=t0...t0+Ph
.

B3) Utilize the measurement of the observation variable at time t0 + 1 –namely yt0+1– and
the regression model ϕ to compute posterior estimates of the transition probabilities in
the form of:

{p̂Lk|t0+1}k=t0+1...t0+1+Ph
= ϕ

(
yt0+1, {pLk }k=t0+1...t0+1+Nprior

)
. (4.8)

B4) Update the ToF distribution using {p̂Lk|t0+1}k=t0+1...t0+1+Ph
and Eq. (3.12), obtaining

estimates {P̂ (τL(ω) = k|Y1:t0+1(ω) = y1:t0+1)}k=t0+1...t0+1+Ph
.

B5) For t ≥ t0+2, utilize the measurement yt and the model ϕ to compute posterior estimates
in the form of:

{p̂Lk|t}k=t...t+Ph
= ϕ

(
yt, {p̂Lk|t−1}k=t...t+Nprior

)
. (4.9)
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B6) Update the ToF distribution using {p̂Lk|t}k=t...t+Ph
and Eq. (3.12), obtaining estimates

{P (τL(ω) = k|Y1:t(ω) = y1:t)}k=t...t+Ph
.

To better understand the implementation of the proposed algorithm, Figure 4.1 summari-
zes the main steps of both the offline and the online stages, as well as the flux of information
between them.

After Fault Diagnostics

Compute ToF:

Offline Stage Online Stage

System
State-Space

Model

Usage Profile
Characterization

Synthetic

Save:

Train:

Prior State
Distribution

Online
Measurement

R
ep

ea
t

Figure 4.1: Graphical abstract of the proposed FRMC prognostic algorithm. The objective
of the offline stage is to train the regression model ϕ, whereas the online stage utilizes ϕ to
estimate the ToF distribution during the real-time operation of the system.

Remarks: Some of the steps of the proposed algorithm imply the calculation of probability
distributions during the offline stage. For instance, Eqs. (3.16), (4.2), (4.3), (4.5). However,
in practice, this is an expensive task because it implies the computation of multiple integrals.
Appendix C details some numerical methods to approximate the desired distributions.

Note that failure prognostic algorithms that focus on the state-space model execute step
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A3 online, every time a new measurement is received. This step is demanding in terms
of computational efforts, becoming one of the main difficulties in conventional prognostic
algorithms. On the other hand, the FRMC-PA executes step A3 during the offline stage,
and captures the relevant information in the sequence {pLk|tp}k=tp...tp+Ph

. In other words, the
proposed algorithm transfers most of the computational burden to the offline stage, leaving
few computations to the online stage and speeding up the update of the ToF distribution.

Regarding the regression model ϕ, it only uses the last measurement yt (see Eq. (4.7)) ins-
tead of every previous measurement y1:t. Nevertheless, as noted in Eq. (4.9), the information
of the system up to time t − 1 (including the previous measurements y1:t−1) is incorpora-
ted in the sequence {p̂Lk|t−1}k=t...t+Nprior

. Combining this with the new measurement yt, the
transition probabilities are updated using ϕ, obtaining the posterior sequence {p̂Lk|t}k=t...t+Ph

.

Finally, it is important to mention some of the challenges that this proposal demands.
To obtain good estimates of the posterior transition probabilities, it is essential to utilize an
adequate regression model and generate a data set as diverse as possible. The quality of the
obtained model ϕ is determinant in the performance of the prognostic algorithm during the
online stage. Additionally, even that the computational burden is not as significant during the
offline stage as it is in the online stage, a high-dimensional state could hinder the generation
of the data set D in step A6.

In the same line, regarding the challenges, an important assumption is that the behavior
of the degradation during the online stage should not be significantly different from the one
learned in the training stage. Indeed, the usage profile stochastic characterization that is
used during the offline training stage should remain valid during the online operation of the
system. This way, it is possible to predict the behavior of the degradation using the built
model ϕ. If there were different usage profiles (each of them characterized by a stochastic
model), it would be necessary to train a regression model for each. Then, during the online
stage, the algorithm should detect the most likely usage profile (from the last inputs, for
example) and use the most adequate regression model to estimate the posterior transition
probabilities.

In the next chapter, the FRMC-PA is applied in a synthetic scenario.
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Chapter 5

Synthetic Example

This chapter illustrates the implementation of the proposed algorithm in a simple synthetic
one-dimensional dynamic model that characterizes a degradation process. The focus is on
the offline stage, explaining the training steps of the function ϕ in Eq. (4.7). The state-space
equations of this model are:

Xk+1(ω) = Xk(ω) + Uk(ω) +Wk(ω) (5.1)
Yk(ω) = Xk(ω) + Vk(ω) , ∀k ∈ N. (5.2)

Consider the initial condition X0 = 0.1 and a deterministic usage profile Uk = 1/30 , ∀k ≥ 0.
Hence, the only sources of uncertainty are the process and observation noises, Wk and Vk.
Both are considered Gaussians with mean 0 and standard deviations σw = 0.03 and σv = 0.05,
respectively. All the previous characterizes the dynamics of the degradation process. On the
other hand, the failure condition is set as L = {x ∈ Rnx : x ≥ 0.9}, which means that the
system fails when the state reaches the threshold Th = 0.9.

Given that the degradation process dynamics are known, the off-line stage includes two
sub-stages. First, the transition probabilities of the Markov chain {Θk(ω)}k≥0 are computed
based on a probabilistic characterization of the state and a given measurement. Then, based
on a generated data set, the regression model ϕ is trained to use it during the online stage.
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5.1. Obtaining the transition probabilities
of {Θk(ω)} [FRMC-PA steps A1-A5]

Based on the synthetic model of Eqs. (5.1)-(5.2), the degradation process can be repre-
sented with the non-homogeneous Markov chain proposed in Chapter 3. For this purpose, a
particle-filtering-based algorithm –detailed in Appendix C– was used to compute the sequence
{pLk }k=tp...tp+Ph

in Eq. (3.16). It is important to mention that this step can also be performed
using Monte Carlo simulation, since this is an offline stage in the process of implementing
the proposed prognostic method.

In this example, the number of particles was Np = 5000. Initializing every trajectory on
the initial state X0 = 0.1, the particles were propagated through the system dynamics given
by (5.1), using different realizations of the process noise for each particle. Based on this, the
prior distribution of the state was obtained (step A1). Figure 5.1 shows the mean value of the
distribution at each time k, and an error bar corresponding to double the standard deviation
of the particles. Note that it is enough to consider a prediction horizon of Ph = 40 time steps
to characterize adequately the time of failure distribution because at that moment the failed
condition is widely surpassed.
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Figure 5.1: Evolution of the system state in the synthetic example, considering the mean and
double the standard deviation.

Using the method explained in Appendix C, the transition probabilities {pLk }k=1...40 were
computed based on the prior distribution of the system state (step A2). Then, from Eq.
(3.12) the prior ToF distribution was obtained. The effects of an observation of the variable
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Yk on the transition probabilities {pLk }k=1...40 were also explored. Specifically, the posterior
sequence {p̂Lk|1}k=1...40 after a measurement of Y1 was obtained. This measurement modifies
the estimation of the state distribution at k = 1, obtaining the posterior, and consequently
modifies every future state distribution (step A3). To illustrate, let Y1 = y1 = 0.4. Considering
(5.2), this measurement indicates that at k = 1 the system state is closer to the failure set
than what is suggested by the prior particles distribution observed in Figure 5.1. Hence, it
is expected that the posterior sequence {pLk|1}k=1...40 (obtained in step A4) steeps up before
the prior {pLk }k=1...40, and that the posterior ToF distribution concentrates on smaller times
than the prior ToF distribution. This is exactly what was obtained, as shown in Figures 5.2
and 5.3. Finally, the triplet

(
y1, {pLk }k=1...40, {pLk|1}

j
k=1...40

)
was gathered as a data point (step

A5) for the training process of ϕ.
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Figure 5.2: Prior and posterior sequences in the synthetic example. The posterior sequence consi-
dered a measurement at k = 1 given by y1 = 0.4.

5.2. Training ϕ [FRMC-PA steps A6-A7]

The previous section explained how to compute the failure prior transition probabilities
based on the system dynamics, an initial condition and a future usage profile. Then, using
these transition probabilities, the ToF distribution was obtained. The transition probabilities
and the ToF prior distribution were also updated given a measurement of the observation
variable.

However, to generate the sequence {pLk }, a particle-filtering-based algorithm was used
(details in Appendix C). As explained before, it is desirable to avoid using this type of
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Figure 5.3: Prior and posterior time of failure distribution in the synthetic example. The posterior
distribution considered a measurement at k = 1 given by y1 = 0.4.

algorithms during the online stage, given their high computational cost and the need for
update the prognostics every time a new measurement is observed. Hence, the objective now
is to learn a regression model ϕ that takes a measurement of the observation variable Ytp
and a portion of the prior transition probabilities {pLk }k=tp...tp+Nprior

, and returns a posterior
sequence of transition probabilities {p̂Lk }k=tp...tp+Ph

directly, without going through a particle
filter algorithm. Then, during the online stage, ϕ is used to handle the measurements at any
time k and update the transition probabilities and, more importantly, the ToF distribution.
ϕ is in the form:

ϕ :
(
ytp , {pLk }k=tp...tp+Nprior

)
7→ {p̂Lk|tp}k=tp...tp+Ph

. (5.3)

To learn the regression model ϕ, a Recurrent Neural Network (RNN) was used, since
there are temporal features between the variables intended to learn. Indeed, the sequence
{pLk }k=tp...tp+Ph

can be seen as a time series, since each pk value is related to its neighbours
and there are not large variations between them. In particular, a Gated Recurrent Unit
(GRU) was implemented [59].

To train this model, it is important to generate data points
(
ytp , {pLk }k=tp...tp+Nprior

,

{pLk|tp}k=tp...tp+Ph

)
as diverse as possible (step A6). To do this in the example, different

prior distributions of the system state Xk at k = tp were considered, represented which
Np particles. For each prior distribution of the state, different measurements of the observa-
tion variable Ytp were simulated based on Eq. (5.2). Then, the prior distribution

(
P (Xtp)

)j
was used to generate the prior sequence {pLk }

j
k=tp...tp+Nprior

as explained in the previous sec-
tion. On the other hand, the prior distribution

(
P (Xtp)

)j
and the measurement yjtp we-
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re used to generate the posterior sequence {pLk|tp}
j
k=tp...Ph

. By doing this, the data triplet(
yjtp , {pLk }

j
k=tp...tp+Nprior

, {pLk|tp}
j
k=tp...tp+Ph

)
was obtained. This way, Ndata = 40000 data points

were generated, obtaining the data set:

D =
{(
yjtp , {p

L
k }

j
k=tp...tp+Nprior

, {pLk|tp}
j
k=tp...tp+Ph

)
: j ∈ {1 . . . Ndata}

}
. (5.4)

This data set is then used to train the GRU ϕ (step A7). In the example,Nprior = 20, which
means that the 20 first transition probabilities of the prior sequence {pLk } were considered
to estimate the posterior. Then, considering that Yk ∈ R, the GRU had 21 inputs. The
output size corresponded to the complete prediction horizon Ph = 40. Hence, a many-to-
many structure was used for the GRU. The GRU was trained in Python 3.7 by Keras at the
CPU of a Laptop computer with an Intel i5 2.5[GHz] processor and 16[GB] of RAM. The
number of units of the GRU was set to 50, using ReLU as the activation function. After the
GRU, a dense-connected layer was added to obtain an output of size 1. Iterating the cell
Ph = 40 times, the desired dimension of the output is obtained. The data was split in 70 %
train and 30 % test. Test data was used to monitor the learning process. Although 200 epochs
were considered, an Early Stopping criterion was used to terminate the training process if
the test loss (Mean Squared Error) showed no improvements with respect to its best value
after 10 consecutive epochs. The batch size was fixed at 500 and the optimization algorithm
was Adam.

The loss progression per epoch of the training process in the example is shown in Figure
5.4. Thanks to the early stopping criterion, the loss for the test set does not increase, hence
there is no over-fitting. Figure 5.5 shows an example of the performance of the model given
a prior distribution and a measurement at k0 = 15. The prior and posterior sequences are
obtained using a particle filter, whereas the predicted sequence is obtained using the GRU
ϕ, which uses the prior sequence and the measurement to predict the posterior sequence.
Figure 5.6 shows a comparison of the resulting time of failure distribution. As we can see,
the regression model ϕ adequately predicts both the posterior transition probabilities and
the time of failure distribution.
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Figure 5.4: Evolution of the loss in the synthetic example during the training process.
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pLk sequence.

29



15 20 25 30 35 40
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P(
L
=

k)

Prior, Posterior and Predicted Time of Failure Distribution, considering L = 0.9
Prior
Posterior
Predicted

Figure 5.6: Performance of the GRU ϕ in the synthetic example, considering the prior distribution
of the state from Figure 5.1 at k0 = 15, and a measurement y15 = 0.7. Prior, posterior and predicted
ToF distribution. ϕ predicts the transition probabilities in Figure 5.5, which are used to compute
tho predicted ToF distribution using Eq. (3.12).

To evaluate the model, a mean sequence-by-sequence RMS test error is proposed. For every
sequence in the test set, the norm-2 error between the real sequence and the predicted one
was calculated. Then, the mean of the norm-2 error over all the test sequences was computed.
Formally:

RMSEϕ ,
1

Ndata

Ndata∑
j=1

∥∥∥∥(pLk|tp)jk=tp...tp+Ph

− ϕ
(
yjtp , {p

L
k }

j
k=tp...tp+Nprior

)∥∥∥∥
2
. (5.5)

Using this approach, a mean test sequence-by-sequence RMS error of 0.1362 was ob-
tained for the transition probabilities sequences. On the other hand, for each sequence
{pLk|tp}

j
k=tp...tp+Ph

and its estimation using ϕ, the corresponding ToF distribution was cal-
culated utilizing Eq. (3.12). In this case, the mean sequence-by-sequence RMS error was also
calculated, obtaining a test RMS error of 0.0402 for the time of failure distribution.

Once the regression model ϕ has been trained, it can be used during the online stage. In
this case, this stage was not implemented since this is a synthetic example and there is not
a ToF ground truth value. In the next chapter, the proposed prognostic algorithm is applied
to a case study of battery discharge of an electric bicycle, where real-world data is available
and it is possible to implement and test the online stage.
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Chapter 6

Experimental Validation

In this section, the implementation of the FRMC-PA in a battery discharge problem is
illustrated [60]. In particular, the aim is to predict the end-of-discharge (EoD) time of the
battery when it is powering an electric bicycle. The associated database includes voltage and
current measurements acquired during 5 different routes of real operations of the bike. Before
using the bike, the battery was always fully recharged. In this case, the degradation process
corresponds to the discharge of the battery given the energy consumption of the bike. The
failure condition is given by a cut-off voltage of 34[V ]. This means that a failure occurs when
the voltage at the battery terminals is under 34[V ]. Note that this definition of the failure is
used to apply the proposed framework to predict the battery EoD time and does not mean
that the discharge condition corresponds literally to a catastrophic failure of the battery.

The complete data set is summarized in Fig. 6.1. The focus was on analyzing the data set
#5, using data sets #1-4 as training data to learn the degradation model. For illustration
purposes, the data until time Tp = 18230[s] –in data set #5– was considered known, which
implies a prognostic horizon of roughly 1200[s] (considering the failure condition of the sys-
tem). In a real-world scenario, however, no observations of data set # 5 would be available
considering that most of the learning process must be done offline and not during a particular
route.

In this real-case scenario, a state-space model based on the law of energy conservation was
utilized [61], and it is presented in Eqs. (6.1)-(6.2). In this model, the delivered energy co-
rresponds to the state variable, the voltage is the observation variable, and the instantaneous
power is the exogenous input. Formally, the state-space model corresponds to the following
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Figure 6.1: Measurements of current and voltage collected throughout the five discharge cycles
in the electric bike. Each of the zones #1-5 corresponds to a discharge cycle. At the beginning
of each, the battery was fully recharged.

equations:

State transition equation: Ek+1 = Ek + Pk ·∆t+Wk, (6.1)
Measurement equation: Vk = g(Ek, Pk) +Nk, (6.2)

where Ek corresponds to the cumulative energy delivered by the battery from time 0 to k;
Pk is the instantaneous power demand at time k; ∆t is the sampling period (1[s] in this
particular case); Vk is the voltage measured at the battery terminals at time k. Note that
Pk = Vk ·Ik, where Ik is the instantaneous current delivered by the battery. Hence, Ik can also
be considered as the exogenous input. Wk and Nk are the process and the observation noises,
respectively. Finally, g(·) is an unknown non linear function that describes the relationship
between the measured voltage Vk and the system state Ek.

The next sections present the different steps of the proposed methodology to learn the
regression model ϕ needed to execute the prognostic algorithm. During the offline stage, first
the state-space model of the system is learned, in particular the function g in (6.2). Then,
these dynamics are projected onto a two-state non-homogeneous Markov chain, obtaining the
transition probabilities. Finally, the regression model ϕ is built to use it during the online
stage, where the prognostic task is performed.
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6.1. Offline stage

First, the offline stage is tackled. Its aim is to learn a regression model ϕ that takes
a measurement of the observation variable Vtp at time tp and returns a posterior estimate
sequence of transition probabilities {p̂Lk|tp}k=tp...tp+Ph

, where Ph is the prognostic horizon. In
this case, the variable that defines the failure –Vk– depends on the other variables of the
problem according to (6.1) and (6.2), where g is an unknown non-linear function. Hence, first
the function g is represented using data-driven models.

6.1.1. Learning the degradation dynamics

To learn the observation relationship in (6.2), the available data was utilized to train an
Artificial Neural Network (ANN). Recurrent Neural Networks were chosen because of the time
dependencies observed in the voltage behaviour (see Figure 6.1). In addition, these models
have been reported to provide positive results in terms of the prediction error [62, 63, 64].
Hence, they are appropriate to build the voltage predictive model ĝ. In particular, a Gated
Recurrent Unit (GRU) was implemented, because of its simple structure and reasonable
results [61, 59]. In this specific case study, the input of the GRU ĝ at time k is structured as
follows [61]:

Γk =



Ik−4 Ek−5 Pk−5 ∆Ik−4 ∆Vk−5

Ik−3 Ek−4 Pk−4 ∆Ik−3 ∆Vk−4

Ik−2 Ek−3 Pk−3 ∆Ik−2 ∆Vk−3

Ik−1 Ek−2 Pk−2 ∆Ik−1 ∆Vk−2

Ik Ek−1 Pk−1 ∆Ik ∆Vk−1


, (6.3)

where ∆Ik = Ik − Ik−1, ∆Vk = Vk − Vk−1. This input is passed through the GRU, obtaining
as a result the predicted battery voltage V̂k = ĝ(Γk).

For the training process, the available data set –shown in Figure 6.1– was split into 70 %
train and 30 % test. The GRU was trained in Python 3.7 by Keras at the CPU of a Laptop
computer with an Intel i5 2.5[GHz] processor and 16[GB] of RAM. In this case, the hidden
size of the GRU unit was set at 64 and the activation function was ReLU. The batch size
was fixed at 30. After the GRU, a linear dense-connected layer of 1 neuron was added.

Figure 6.2 shows the performance of the voltage prediction model when applied to the
train and test data sets, including the absolute prediction error. In addition, Table 6.1 shows
the performance of the model in terms of the Mean Absolute Percentage Error (MAPE)
index. This index is evaluated in the train set, the test set, and the prognostic set. The last
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corresponds to the data after time Tp, which is not considered for training purposes during
the offline stage and will be used in the online stage.
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Figure 6.2: Operational data collected during usage of the electric bike, used to train and
test the GRU model ĝ. The predicted voltage values are shown, as well as the absolute error
between the real and predicted voltages.

Train set Test set Prognostic set
MAPE [%] 0.2150 0.1750 0.3109

Table 6.1: Performance of the GRU model ĝ in terms of the MAPE index. This index is
evaluated in the train set, the test set and the prognostic set.

To obtain reliable predictions of the future voltages, the future usage profile needs to be
characterized adequately. To do this, a probabilistic characterization based on an homogeneo-
us Markov chain that considers different discharge current profiles was used [22]. In this case
study, environmental temperature is relatively constant during the trip; hence, this variable
was not considered during the analysis. To train the Markov chain that characterizes the usa-
ge profile, the latest 1000 acquired measurements of the current were utilized and 10 states
were considered for the Markov chain. Additionally, the maximum likelihood criterion was
used to estimate the transition matrix [22]. This stochastic characterization of the discharge
current is denoted as {Îk}k≥0.
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6.1.2. Obtaining the transition probabilities of {Θk(ω)} [FRMC-PA
steps A1-A5]

Once the model to predict the voltage in Equations (6.1)-(6.2) has been built and the future
usage profile has been characterized, the degradation process can be represented with the non-
homogeneous Markov chain proposed in Chapter 3. For this purpose, the particle-filter-based
algorithm detailed in Appendix C was used to compute the sequence {pLk }k=tp...tp+Ph

in Eq.
(3.16).

In this particle-filtering-based implementation, the prognostic horizon was fixed at Ph =
1200 steps, corresponding to 1200[s]. The number of particles, on the other hand, corresponds
to Np = 3000. Particles help to characterize the uncertainty associated with the future
evolution in time of the battery terminal voltage Vk, since the failure event is defined by a
condition where this voltage drops below a given threshold. Every particle xik is associated
to a weight wik and an input of the GRU ĝ, Γik, defined in Eq. (6.3). This is important due
to the need for the previous input of the ĝ to define the next voltage value.

To propagate each of the particles, a usage profile must be simulated for each. As a proba-
bilistic characterization of the usage profile is available ({Îk}k≥0), the following relationship
given by the law of total probabilities was utilized. ∀j ≥ 0:

P (Vk+j|Vk,Γk) =
∫
P (Vk+j|Vk,Γk, Îk+1...k+j) · P (Îk+1...k+j|Vk,Γk)dÎk+1...k+j (6.4)

≈
Np∑
i=1

P (Vk+j|Vk,Γk, Î ik+1...k+j) · P (Î ik+1...k+j|Γk), (6.5)

≈ 1
Np

Np∑
i=1

P (Vk+j|Vk,Γk, Î ik+1...k+j), (6.6)

where P (Îk+1...k+j|Vk,Γk) = P (Îk+1...k+j|Γk) since the future usage profile does not depend on
the present voltage. The integral in (6.4) is defined over all feasible usage profiles given Γk,
which provides the initial state of the Markov chain {Îk+j}j≥0 that characterizes the discharge
current profile. In practice, calculating this integral is computationally expensive; hence, the
approximation in (6.5) can be used, where a future current trajectory is sampled from the
{Îk+j}j≥0 for every particle. Moreover, if Np is sufficiently large, each sampled Markov chain
trajectory has a similar probability of P (I ik+1...k+j|Γk) ≈ 1/Np since every particle has the
same weight. Therefore, the expression can be reduced to the sum in (6.6). The propagation
process of the particles is illustrated in Figure 6.3.

In this case study, given that the sensors were sufficiently precise, it was supposed that
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Figure 6.3: Illustration of the particles propagation for the FRMC-PA step A3 in the battery dis-
charge case study. A current profile is sampled from the Markov chain {Îk}k. Then, the input Γtp
is updated to predict the voltage Vtp using the GRU ĝ. Finally, the energy is propagated using the
system dynamics in Eq. (6.1).

there is no uncertainty in the initial condition for the prognostic. This means that, if prognos-
tics are executed at time k, the measurement Vk and the input (Γk) were considered known.
This implies that there is no need to include a prior sequence {pLk }k=tp...tp+Nprior

as an input
of the function ϕ, because there is no uncertainty in the initial condition and the sensors
measurements are enough to estimate the posterior transition probabilities with reasonable
precision (steps A1, A2 of the FRMC-PA are avoided).

Under the above considerations, particles were propagated from an initial condition (step
A3) and then the transition probabilities {pLk|tp}k=tp...tp+Ph

were computed using Eq. (3.16)
(step A4). For illustration, let consider an initial condition of Etp = 1031666.5[J ] and a
measurement of Vtp = 34.51[V ]. The obtained sequence estimate is shown in Figure 6.4.
Finally, the triplet (Vtp ,Γtp , {pLk|tp}k=tp...tp+Ph

) was gathered as a data point (step A5) for the
training process of ϕ.
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Figure 6.4: Transition probabilities pLk|tp in the battery discharge case study, considering an
initial condition Etp = 1031666.5[J ] and a measurement of Vtp = 34.51[V ].

6.1.3. Training ϕ [FRMC-PA steps A6-A7]

In the previous subsection, a posterior sequence estimate of the transition probabilities
was generated based on an initial condition given by a voltage measurement Vtp and an
input Γtp . To do this, particle-filtering-based approach was used. Hence, it was necessary to
propagate the system dynamics given by Eqs. (6.1)-(6.2) for several simulated realizations of
the discharge process. This implies a high offline computational burden, because the system
state is propagated over a large prognostic horizon using the built model ĝ. Therefore, this
subsection explains the steps to learn the function ϕ that maps (Vtp ,Γtp) to {pLk|tp}k=tp...tp+Ph

directly.

To learn the regression model ϕ, a Recurrent Neural Network (RNN) was utilized since
there are temporal features between the variables we want to learn, as explained in Chapter
5. In particular, a Gated Recurrent Unit (GRU) was implemented [59].

The GRU input considered the voltage measurement Vtp and the last input values from
Eq. (6.3), given by (Itp , Etp−1, Ptp−1,∆Itp ,∆Vtp−1). Thus:

ϕ :
(
Itp , Etp−1, Ptp−1,∆Itp ,∆Vtp−1, Vtp

)
7→ {p̂Lk|tp}k=tp...tp+Ph

. (6.7)

Then, given measurements of the sensor, the GRU ϕ returns a sequence of length Ph =
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1200. Hence, a many-to-many structure is considered. To train the GRU, Ndata = 2412 data
pairs were generated considering different simulated initial conditions, as explained in Section
4 (step A6). By doing this, the following data set was obtained:

D =
{((

Itp , Etp−1, Ptp−1,∆Itp ,∆Vtp−1, Vtp
)j
, {pLk|tp}

j
k=tp...tp+Ph

)
: j ∈ {1 . . . Ndata}

}
. (6.8)

This data set was then used to train the GRU ϕ (step A7). Initially, the GRU cell has an
input size of 6 (see Eq. (6.7)). However, after trying different configurations, it was determined
that just considering the energy input is more adequate for the learning process. The other
variables did not provide relevant information, and made the learning process more difficult.
Additionally, a hidden size of 200 was considered, using ReLU as the activation function.
After the GRU, a dense-connected layer was added to obtain an output of size 1. The cell
is iterated to obtain a total Ph = 1200 output size. The data set in Eq. (6.8) was split in
70 % train and 30 % test, using a batch size of 128. 20 epochs were considered using an Early
Stopping criterion. The optimization algorithm was Adam.

To evaluate the model, the mean sequence-by-sequence RMS error presented in Chapter
5 was calculated. Formally, in this case:

RMSEϕ ,
1

Ndata

Ndata∑
j=1

∥∥∥∥(pLk|tp)jk=tp...tp+Ph

− ϕ
((
Itp , Etp−1, Ptp−1,∆Itp ,∆Vtp−1, Vtp

)j)∥∥∥∥
2
.

(6.9)

Using this approach, a mean test sequence-by-sequence RMS error of 0.075 was ob-
tained for the transition probabilities sequences. On the other hand, for each sequence
{pLk|tp}

j
k=tp...tp+Ph

and its estimation using ϕ, the corresponding ToF distribution was calcu-
lated from Eq. (3.12). In this case, the sequence-by-sequence RMS error was also calculated,
obtaining a test RMS error of 0.01533 for the time of failure distribution.

Once the regression model has been trained, it can be utilized during the online stage. For
the sake of clarity, Table 6.2 summarizes the different statistical models obtained through
this section.

Type of space State space Reduced representation
Model notation ĝ {Îk}k ϕ {Θk}k

Type of model GRU Homogeneous GRU Non-homogeneous
Markov chain Markov chain

Model function Voltage Usage profile To obtain To represent
prediction characterization transition probabilities the failure phenomenon

Table 6.2: Summary of the models obtained during the offline stage. State-space models are used
to train the reduced-representation models, which are utilized during the online stage.
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6.1.4. Analysis of the offline stage computational burden

The offline stage is super heavy in terms of computational burden. Indeed, as the offline
stage intends to train a regression model, it needs to generate a big data set beforehand.
For this, parallelization methods were used to make the synthetic generation of state trajec-
tories more efficient. The synthetic trajectories were generated in groups of 120 data pairs((
Itp , Etp−1, Ptp−1,∆Itp ,∆Vtp−1, Vtp

)
, {pLk|tp}k=tp...tp+Ph

)
. The simulation of each group took

approximately 23000 seconds. Since the total amount of data pairs was roughly 2400, 20
groups were generated. Therefore, the total computational time of the data set generation
was approximately 128 hours.

On the other hand, the time used to train the regression model ϕ was 720 seconds, or 12
minutes. This is negligible compared with the time used to generate the data set. In summary,
the offline stage took roughly 128 hours.

6.2. Online stage

As explained in Chapter 4, in the online stage the model ϕ is used to execute the prognostic
task during the real-time operation of the system. To test the performance of the FRMC
prognostic algorithm, the last portion of the bicycle circuit #5 was considered, starting
from Tp = 18230[s] (within data set 5). In this case, there is no need for a prior transition
probabilities sequence since the model ϕ do not take prior sequences as arguments (steps B1,
B2 are avoided). Then, at every time tp ≥ Tp, new measurements of Vtp and Itp are received.
The other variables are updated step-by-step using Eq. (6.1) to gather the inputs of ϕ in
(6.7), evaluating them to obtain the posterior sequence estimate {p̂Lk|tp}k=tp...tp+Ph

(step B5).
Finally, the ToF distribution is updated using (3.12) (step B6). This process is executed every
sample time, in this case, every second.

Figure 6.5 shows the performance of the FRMC-PA. For every time instant, the RUL
distribution was estimated. Then, the mean value and the intervals of confidence of 30 % and
80 % were computed. This intervals are compared with the Alpha-Lambda performance index
using α = 15 % [65]. λ is the proportion of time from Tp = 18230[s] to reach the ground truth
EoD time, corresponding to Tfailure = 19428[s]. Specifically, λ = (tp − Tp)/(Tfailure − Tp).

One important aspect to emphasize from the obtained results is the remarkable accuracy
of the obtained RUL estimates that can be seen in Figure 6.5. It is worth pointing out that
there is a small bias on the estimate of the true RUL. but most of the time the true RUL is
underestimated. In other words, the algorithm is underestimating the EoD time. This bias
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is not problematic because it makes the algorithm more robust to unexpected changes in
the discharge current demand. It would be more problematic to overestimate the EoD time
because, in that case, the failure condition could be reached without preventing it adequately.
On the other hand, the uncertainty of the ToF distribution reduces slightly in time. However,
this reduction is not enough to maintain the confidence interval within the cone given by α.
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Figure 6.5: Alpha-Lambda performance index for the prognostic algorithm. α = 15 %. λ =
(t − Tp)/(Tfailure − Tp). The expected RUL and the intervals of confidence of 30 % and 80 %
were added.

6.2.1. Analysis of the online stage computational burden

Once the quality of the prognostics has been checked with the Alpha-Lambda index, the
computational burden of the FRMC-PA is evaluated. Every simulation was executed in the
CPU of a Laptop computer with an Intel i5 2.5[GHz] processor and 16[GB] of RAM. The
proposed method took 0.215 seconds in average every time the ToF distribution was updated,
which is less than the sample period. Hence, it is possible to update the prognostics every
time a new measurement arrives in a real-time operation.

Additionally, we compared the FRMC-PA with a prognostic module strategy based on
Monte-Carlo simulation –called Monte-Carlo based Prognostic Algorithm (MC-PA). Each
Monte-Carlo simulation is initiated with the same initial condition at time t, while the exoge-
nous input of the battery (the battery discharge current) is computed as a realization of the
model {Îk}k that characterizes future discharge profiles. Then, the initial battery state is
propagated over time based on Eqs. (6.1)-(6.2) until the predicted voltage drops below the
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cut-off voltage. This simulation is iterated Nr times, obtaining Nr EoD times (one for each
simulation), which are used to empirically approximate the EoD time distribution.

For this particular implementation, Nr = 1000 was chosen. This value was selected after an
analysis of the obtained ToF probability distributions forNr ∈ {10, 50, 100, 200, 500, 800, 1000,
1500, 2000, 2500, 3000}, some of which are shown in Fig. 6.6. Each distribution was compa-
red with the Monte-Carlo simulation under Nr = 10000 (namely MC(10000)) using the
Kullback-Leibler Divergence [66]. This comparison is shown in Fig. 6.7. While, in general,
the divergence decreases with Nr (which means that the empirical distribution is more similar
to MC(10000)), executing more than 1000 simulations does not show significant improve-
ments.
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Figure 6.6: Empirical ToF distribution obtained with the Monte-Carlo-based prognostic mo-
dule for different numbers of simulations (Nr).

To compare this thesis proposal with the Monte-Carlo prognostic module strategy, different
values of λ ∈ {0.2, 0.4, 0.6, 0.8} were considered, representing different time instants when
the prognostic task is executed. Fig. 6.8 shows the corresponding distributions obtained with
both methods. On this, the MC-PA approximates the ToF probability distribution using
a histogram. On the other hand, the FRMC-PA computes the complete probability mass
function of the ToF since it is based on an estimation of the transition probabilities (see
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Figure 6.7: Analysis of the number of simulations for the Monte-Carlo-based prognostic mo-
dule using the KL divergence. While, in general, the quality of the approximation increases
with Nr, executing more than 1000 simulations does not show significant improvements.

Eq.(3.12)). Fig. 6.8 also shows the ground truth value of the time of failure (Tf ), the mean
value obtained with the Monte-Carlo prognostic module (MeanMC), and the mean value
obtained with the FRMC-PA (MeanFRMC).

Complementing the results, Table 6.3 summarizes the comparison, where the expected
values, the standard deviations, the sum of the obtained distributions, and the computation
times of both methods were calculated .

In general, it is observed from Figure 6.8 that the proposed approach is very competitive
in the sense that it offers an accurate representation of the ToF distribution for different
regimes of λ when compared with the MC empirical estimation of that distribution. As seen
in Figure 6.8 and Table 6.3, if the true value of the ToF is considered as a reference, the
Monte-Carlo simulation is only marginally superior in terms of the expected value (bias)
and the uncertainty (variance) in the prediction (see Figure 6.8). This indicates that the
uncertainty of the prognostics observed in Figure 6.5 is due to the nature of the system itself
–for instance, the uncertainty of the future usage profile–, and not an exclusive problem of
the FRMC-PA.

However, this marginal gain of MC with respect to the proposed solution comes at a very
high computationally cost. In fact, the gain of the FRMC-PA regarding the computational
burden is remarkable, as we can be seen in Table 6.3. While the Monte Carlo simulation
requires at least 150 seconds –2.5 minutes– to estimate the ToF distribution, the FRMC-PA
completes this task in less than 1 second. This corresponds to a reduction of the computation
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Figure 6.8: Comparison of the ToF probability distributions obtained with our proposal
(FRMC) and a Monte-Carlo-based prognostics (MC), considering different values of λ. The
ground truth value of the time of failure (Tf ), the mean value obtained with the Monte-Carlo
prognostic module (MeanMC), and the mean value obtained with our proposal (MeanFRMC)
are also illustrated.

time of more than 99 % during the online stage. This impressive reduction is because the
proposed method transferred most of the computational burden to the offline learning stage,
leaving few computations to the online stage.

Ground truth 19428[s]
λ 0.2 0.4 0.6 0.8

Methodology MC FRMC MC FRMC MC FRMC MC FRMC
Expected value [s] 19418.1 19349.9 19426.8 19376.1 19413.7 19369.9 19407.3 19363.4

Standard Deviation [s] 77.808 111.730 76.350 106.743 71.943 84.539 69.901 86.044
Sum of the distribution 1.000 0.995 1.000 0.999 1.000 0.999 1.000 1.000
Computation time [s] 196.4366 0.173 177.844 0.125 167.939 0.126 154.907 0.127

Table 6.3: Comparison of the time of failure distributions obtained using the MC-PA and the FRMC-
PA, considering different values of λ. The expected values, the standard deviations, the sum of the
distributions and the computation times were compared. The FRMC-PA achieves a remarkable
reduction of the computational burden of the prognostic task without significantly reducing the
prognostic quality.

In summary, the proposed method achieves a massive reduction in the computational
burden of the prognostics during the real-time operation of the system. The drawback is that
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the quality of the prediction is slightly deteriorated compared with a Monte-Carlo simulation
in terms of accuracy and precision. Based on this, a proposed strategy is to combine both
approaches, using the FRMC-PA to execute the prognostic task during most of the real-
time operation of the system. This way, computational efforts can be saved while obtaining
an adequate prognostic quality. Then, when the system is near the failure event, and the
prognostic accuracy becomes more critical, the prognostic methodology can switch to the
Monte-Carlo prognostic module until the failure occurs or the operation of the system is
interrupted. The determination of the optimal moment to switch between both approaches
will be part of future research efforts.
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Chapter 7

Conclusions

This thesis proposed a change of paradigm to address the problem of computational burden
in failure prognostics. Instead of focusing our attention on the state-space trajectory (as
conventional approaches), a novel degradation process representation using a two-states non-
homogeneous Markov chain was proposed, which is entirely characterized by its transition
probabilities. It was shown that this new approach is equivalent to studying the state-space
trajectory if the focus is on characterizing the ToF distribution. Based on this model, the
Fast-Running Markov Chain based Prognostic Algorithm (FRMC-PA) was presented, which
comprises an offline training stage and an online inference stage. The algorithm aims at
transferring most of the computational cost associated with the prediction to the offline
stage, leaving few computations to the online stage.

FRMC-PA was implemented, tested and validated in a case study related to battery dis-
charge prognostics. Obtained results show that the proposed strategy significantly reduces
the computational cost during the real-time operation of the system, without substantially
worsen the prognostic quality in terms of the estimated ToF distribution. Hence, this metho-
dology is adequate for applications with limited on-board computational resources.

7.1. Future Work

Future research efforts will be oriented to explore the implementation of the FRMC-PA
on more complex systems, with a higher dimensional state. This involves new challenges,
including the offline computational cost of generating the training data set and the need for
more sophisticated regression models to capture the transition probabilities.

If the previous implementation succeeds, the reduced representation of the degradation
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process could enable the implementation of real-time failure prognostic schemes even in com-
plex engineering systems, with dozens of components interacting. This would allow to scale
up the quality and significance of the impact associated with the results already obtained by
the PHM community in terms of the implementation of failure prognostic algorithms at a
component level.

Other natural extensions of this work would be to obtain the transition probabilities from
operational data directly, without training a state-space model for the system (as it was
done in Section 6). This would accelerate the offline stage for degradation processes where
monitoring data constitute the only available source of information of the system. A possible
approach to achieve this is to use a deep learning method that fulfills the training of the
degradation model, the estimation of the transition probabilities, and the prediction of the
RUL directly.

On the other hand, developing the proposed strategy in systems with regeneration pro-
perties would also be challenging, since the Markovian property of the model holds under
the absorbent condition. Additionally, it would be necessary to introduce backward transition
probabilities, which would lead to a more complex model.

Finally, it would be interesting to explore the prognostic strategy proposed at the end of
Chapter 6 and exploit the advantages of both the implemented methods: the efficiency of the
FRMC-PA and the accuracy of the Monte Carlo-based technique. In normal conditions, it
is preferable to use the FRMC-PA since it implies fewer computational resources. However,
at some point –when the system is near the failure– it is relevant to obtain a more accurate
estimation of the ToF distribution, which can be achieved using the Monte Carlo-based
prognostic. Future research efforts will explore the optimal time to switch between both
methods.
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Appendix A

Discrete-time Markov Chains

Definition 1 (Stochastic Process) Let I be a countable set. Let (Ω,F ,P) be a probability
space. A stochastic process indexed by Λ ⊆ [0, ∞) is a family of random variables X =
(Xλ)λ∈Λ, where:

Xλ : Ω→ I

is F −P(I)-measurable, ∀λ ∈ Λ. If Λ is a countable set, (Xλ)λ∈Λ is a discrete-time stochastic
process.

Notation. P denotes the probability measure induced by P on I. This means that, for A ⊆ I:

P (Xλ ∈ A) = P(X−1
λ (A)) = P ({ω ∈ Ω : Xλ(ω) ∈ A}) . (A.1)

Definition 2 (Discrete-time Markov Chain) A discrete-time Markov Chain of order 1 with
values on I is a discrete-time stochastic process X = (Xn)n∈N that satisfies:

P (Xn+1 = in+1|X0 = i0, X1 = i1, . . . , Xn = in) = P (Xn+1 = in+1|Xn = in), (A.2)

∀i0, i1, . . . , in+1 ∈ I with P (X0 = i0, X1 = i1, . . . Xn = in) > 0.

In other words, in a Markov chain stochastic process the future is independent of the
past, conditional on the present. (A.2) is known as the Markov property. A Markov chain
also satisfies that:

P (Xn+1 ∈ A|X0 = i0, X1 = i1, . . . , Xn = in) = P (Xn+1 ∈ A|Xn = in), ∀A ⊆ I. (A.3)

Definition 3 Let X be a discrete-time Markov chain with values on I. Let µ = (µi)i∈I such
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that:
µi = P (X0 = i), (A.4)

Then µ is called the initial distribution of X. Let P k be a matrix, ∀k ∈ N\{0}, such that
P k = (pki,j)i,j∈I , with:

pki,j = P (Xk = j|Xk−1 = i). (A.5)

Then P k is called the transition matrix of X at time k.

Definition 4 A Markov chain is said to be homogeneous if ∀n,m > 0 and ∀i, j ∈ I:

P (Xn = j|Xn−1) = P (Xm = j|Xm−1 = i). (A.6)

In this case, P k = P q, ∀k, q ∈ N, and the transition matrix of the Markov chain is simply
noted by P .

Notation. If (Xn)n∈N is an homogeneous Markov chain with initial distribution µ and
transition matrix P , it is said that (Xn)n∈N is Markov(µ, P ).

Notation. For i ∈ I, δi = (δij : j ∈ I) is the unit mass at i, where:

δij =

 1 if i = j

0 otherwise.
(A.7)

THEOREM 1 (Characterization of Markov chains) X = (Xn)n∈N is a discrete-time Markov
chain with initial distribution µ and transition matrices (P k)k∈N if and only if:

∀n ≥ 0 , ∀i0, i1, . . . , in+1 ∈ I :
P (X0 = i0, X1 = i1, . . . , Xn+1 = in+1) = µi0 · p1

i0,i1 · p
2
i1,i2 . . . p

n+1
in,in+1 . (A.8)

Note that if X is an homogeneous Markov chain, the previous expression reduces to:

P (X0 = i0, X1 = i1, . . . , Xn+1 = in+1) = µi0 · pi0,i1 · pi1,i2 . . . pin,in+1 . (A.9)

Definition 5 (Stopping Time) A random variable τ : Ω → {0, 1, 2, . . . } ∪ {∞} is called a
stopping time if, for n ≥ 0, the event {ω : τ(ω) = n} depends only on X0, X1, . . . , Xn.

Intuitively, by watching the process, it is possible to determine the time when τ occurs.
In other words, the event {ω : τ(ω) = n} depends only on the past and the present, and not
on the future.
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THEOREM 2 (Strong Markov Property) Let (Xn)n∈N be Markov(µ, P ). Let τ be a stop-
ping time of (Xn)n∈N. Then, conditional on τ <∞ and Xτ = i, (Xτ+n)n∈N is Markov(δi, P ),
and independent of X0, X1, . . . Xτ .

To review the proofs of Theorems 1 and 2, and get deeper into Markov chains and its
properties, please refer to [58].
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Appendix B

Proof of Propositions

B.1. Proof of Proposition 1

Given i0, . . . , ik+1 ∈ {0, 1} such that P (Θ0 = i0,Θ1 = i1, . . . ,Θk = ik) > 0, the objective
is to prove that:

P (Θk+1 = ik+1|Θ0 = i0, . . . ,Θk = ik) = P (Θk+1 = ik+1|Θk = ik). (B.1)

Given the assumption that it is not possible to have a catastrophic failure and then recover
from it, P (Θ0 = i0,Θ1 = i1, . . . ,Θk = ik) = 0 if ∃n0,m0 ∈ {0, . . . , k} such that n0 < m0

and in0 = 1, im0 = 0. Then, those cases cannot be considered as conditioning events, by
definition.

Considering the previous observation, the proof demonstrates the Markov property in two
different cases: the system has failed before time k+ 1, or not. Then, it concludes on the full
stochastic process.

Consider the case where the system fails at time n0 < k + 1, i.e., in0 = 1. Then, all
future states are failed ones. Hence:

P (Θk+1 = ik+1|Θ0 = i0, . . . ,Θin0
= 1, . . . ,Θk = ik︸︷︷︸

1

) =

 1 , if ik+1 = 1
0 , if ik+1 = 0.

(B.2)

Note that in this case it is sufficient to observe the last failure state variable Θk. Indeed,
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Θk = 1 indicates that the system has already failed, whenever it happened. Then:

P (Θk+1 = ik+1|Θk = 1) =

 1 , if ik+1 = 1
0 , if ik+1 = 0.

(B.3)

Therefore, from (B.2) and (B.3):

P (Θk+1 = ik+1|Θ0 = i0, . . . ,Θin0
= 1, . . . ,Θk = 1) = P (Θk+1 = ik+1|Θk = 1). (B.4)

Therefore, the Markov property holds in this case.

Now, suppose that the system has not failed up to time k. This means that every previous
failure state Θj = 0, ∀j ≤ k, due to the absorbent property of state “1”. In this case,
the next failure state Θk+1 is not a deterministic variable, because the system may fail
or not at that instant. Then, by definition:

P (Θk+1 = ik+1|Θ0 = 0, . . . ,Θk = 0) = P (Θ0 = 0, . . . ,Θk = 0,Θk+1 = ik+1)
P (Θ0 = 0, . . . ,Θk = 0) . (B.5)

Both terms in the right side of (B.5) are analysed. By definition of conditional probabi-
lity:

P (Θ0 = 0, . . . ,Θk = 0) = P (Θ0 = 0, . . . ,Θk−1 = 0|Θk = 0)︸ ︷︷ ︸
1

·P (Θk = 0) = P (Θk = 0).

(B.6)

The conditional probability is 1 because of the absorbent property of the failure state
“1”. In other words, if the system has not failed at time k, then with probability 1 it has
not failed before.

Similarly:

P (Θ0 = 0, . . . ,Θk = 0,Θk+1 = ik+1)
= P (Θ0 = 0, . . . ,Θk−1 = 0|Θk = 0,Θk+1 = ik+1)︸ ︷︷ ︸

1

·P (Θk = 0,Θk+1 = ik+1)

= P (Θk = 0,Θk+1 = ik+1). (B.7)
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Hence, combining Eqs. (B.5), (B.6) and (B.7):

P (Θk+1 = ik+1|Θ0 = 0, . . . ,Θk = 0) = P (Θ0 = 0, . . . ,Θk = 0,Θk+1 = ik+1)
P (Θ0 = 0, . . . ,Θk = 0)

= P (Θk = 0,Θk+1 = ik+1)
P (Θk = 0)

= P (Θk+1 = ik+1|Θk = 0). (B.8)

Therefore, the Markov property holds also when the system has not failed previously.

It has been proved that in both cases where the condition event probability P (Θ0 =
i0, . . . ,Θk = ik) 6= 0, the Markovian property is satisfied, concluding that the process is a
Markov chain of order 1. �

B.2. Proof of Proposition 2

Considering that P (∃k0 ∈ N, Xk0(ω) ∈ L) = 1, then P (τL(ω) <∞) = 1. Hence, from the
definition of the random variable τL(ω):

P (τL(ω) = k) = P (min{j ≥ 1 : ΘL
j (ω) = 1} = k) = P ({0 0 . . . 0 1

↑k
1 . . . })

= P ({0 0 . . . 0 1
↑k
}) = P (Θ0 = 0, . . . ,ΘL

k = 1)

= P (ΘL
k = 1|ΘL

0 = 0, . . .ΘL
k−1 = 0) · P (ΘL

0 = 0, . . .ΘL
k−1 = 0).

Conditioning the second term iteratively and considering that the process is a Markov chain,
then:

P (τL(ω) = k) = P (ΘL
k (ω) = 1|ΘL

0 = 0, . . .ΘL
k−1 = 0)

·
k−1∏
j=1

P (ΘL
j = 0|ΘL

0 = 0, . . .ΘL
j−1 = 0) · P (ΘL

0 = 0)

= P (ΘL
k = 1|ΘL

k−1 = 0)︸ ︷︷ ︸
pL

k

·
k−1∏
j=1

P (ΘL
j = 0|ΘL

j−1 = 0)︸ ︷︷ ︸
1−pL

j

·P (ΘL
0 = 0)︸ ︷︷ ︸
1

This implies that:

P (τL(ω) = k) = pLk ·
k−1∏
j=1

(1− pLj ). � (B.9)
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B.3. Proof of Proposition 4

By definition, ∀k ≥ 1:

pLk =P
(
ΘL
k (ω) = 1|ΘL

k−1(ω) = 0
)

=
P
(
ΘL
k (ω) = 1,ΘL

k−1(ω) = 0
)

P
(
ΘL
k−1(ω) = 0

) .

This implies that: pLk =
P
(
Xk(ω) ∈ L, (X1(ω), . . . Xk−1(ω)) ∈ (Lc)k−1

)
P ((X1(ω), . . . Xk−1) ∈ (Lc)k−1) ,

since the events:

{ω ∈ Ω : ΘL
k (ω) = 1,ΘL

k−1(ω) = 0} = {ω ∈ Ω : Xk(ω) ∈ L, (X1(ω), . . . Xk−1(ω)) ∈ (Lc)k−1},
and {ω ∈ Ω : ΘL

k−1(ω) = 0} = {ω ∈ Ω : (X1(ω), . . . Xk−1(ω)) ∈ (Lc)k−1}. �
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Appendix C

Algorithmic Solutions to Compute
Probability Distributions

Theoretically, it is possible to calculate the sequence {pLk }k=tp...tp+Ph
(prior or posterior)

using Equation (3.16) or (4.2). However, in practice this is an expensive task because it
implies the computation of multiple integrals. Alternatively, this task can be approximated
either using Monte Carlo simulation or executing particle filter algorithms [7] to estimate the
distributions P (Xk(ω)), k ∈ {tp, . . . , tp + Ph}. As explained in Chapter 2, particle filters are
a class of algorithms proposed to obtain samples sequentially from a target state probability
distribution P (Xtp:k) [47]. This algorithms generate a set of Np � 1 weighted particles

{wik, xik}
i=1...Np

k=tp...tp+Ph
, with wik ≥ 0 and

Np∑
i=1

wik = 1, ∀k ≥ tp, satisfying that [22]:

Np∑
i=1

wikψk
(
xik
)
−−−−→
Np→∞

∫
ψk (xk)P (xk) dxk, (C.1)

in probability, where ψk is any P -integrable function. These particles are propagated through
time using the system dynamics given by Eq. (3.1). Based on this, it is possible to obtain an
empirical representation of the state distribution:

P̂Np(Xk = x) ≈
Np∑
i=1

wik · δ
(
x− xik

)
. (C.2)

As explained in Chapter 2, particle filters can also be used to estimate the posterior
distribution of the state given a measurement yk at some time k, updating weights based on
the measurement likelihood obtained from (3.2). This way, wik ∝ wik−1 ·P (yk|xik). Additionally,
a resampling of the particles can be executed to keep diversity in the population and to
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not concentrate the mass of the distribution on few particles. The resampling consists of
selecting new particles from the current population randomly. Each particle xik is selected
with probability wik. After this process, all the weights are reset to wik = 1/Np, ∀i ∈ {1 . . . Np}
and the particles can continue their propagation [47].

Hence, whether measurements are available or not, it is possible to estimate the transition
probabilities in (3.16) or (4.2). Note that, given an initial condition x0 and an usage profile
{uj}k−1

j=0 , it is possible to generate a sequence of particles that approximate the state distri-
bution trough time using Eq. (C.2). Based on this empirical distribution, both conditional
probabilities on (3.16) are approximated. Both terms consider particles that have not fai-
led until k − 1, which means that the particle has never reached the failure set L before k.
Formally, it is said that a particle i has not failed before k if xij ∈ Lc , ∀j < k. Denote by
Hk−1 ⊆ {1, . . . , Np} the set of particles that have not failed before k. On the other hand,
Fk ⊆ Hk−1 denotes the set of particles that have failed at k, but not before. Formally:

Hk−1 =
{
i ∈ {1, . . . , Np} : xij ∈ Lc , ∀j ≤ k − 1

}
(C.3)

Fk =
{
i ∈ {1, . . . , Np} : i ∈ Hk−1 ∧ xik ∈ L

}
.

Using this, pLk can be approximated by the following expression [67]:

p̂Lk =

∑
i∈Fk

wik∑
i∈Hk−1

wik
≤ 1. (C.4)

In other words, p̂Lk is the weighted proportion of particles that have not failed before k
and fail at k. Using these approximations, it is clear that the particles that have already
failed before k are not useful to calculate any future p̂Lj , j ≥ k. Each particle is useful until
it fails because after that it will not be used to estimate p̂Lj , j ≥ k. Moreover, at some point
there will not be enough useful particles to obtain and adequate estimation of pLk because
most of the particles will be in the failure set. To address this under-sampling issue, a major
resampling process is proposed.

The major resampling consists of selecting new particles from not failed ones when neces-
sary. At time k, a major resampling is executed after calculating p̂Lk if few non-failed particles
remain for the next time step. A minimum proportion of non-failed particles ηmr = Nmr/Np

is established. Hence, if |Hk| < Nmr, a major resampling is executed. In this process, each

particle xik , i ∈ Hk, is selected with probability wik∑
i∈Hk

wik
. After this, every weight is reset to

wik = 1/Np and every particle is a non-failed one. By doing this, the particle filter loses the
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correct characterization of the system state distribution over time because particles are being
forced to remain around the hazard zone to measure how many of them surpass the failure
threshold at every time instant. It is worth pointing out that this is not an issue for the pro-
blem itself because the objective is to characterize the transition probabilities {pLk }k=tp...tp+Ph

,
instead of the future state probability distribution {P (Xk(ω))}k=tp...tp+Ph

.

The implementation of this process is summarized in Algorithm 1. For explanatory pur-
poses, an given that the system is time-invariant, it is assumed that tp = 1.
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Algorithm 1: Particle filter with major resampling
Input : system dynamics f(·), observation relationship g(·), process model uncertainty

distribution {Wk}k≥0, observation noise distribution {Vk}k≥0, failure set L,
prognostic horizon Npred, number of particles Np, initial distribution of x0,
measurement y1 (optional), usage profile probabilistic characterization {Ûk}k≥0,
minimum proportion of non-failed particles ηmr.

Output: prior transition probabilities {pLk }k≥1, if y1 was not included. Otherwise, posterior
transition probabilities {pLk|1}k≥1.

Initialization;
for i = 1 to Np do

xi0  Initial condition of particle i sampled from the prior distribution of x0;
wi0 ← 1

Np

end
Recursion;
for k = 1 to Npred do

Particles propagation;
for i = 1 to Np do

uik−1  Exogenous input sampled from the usage profile characterization {Ûk}k≥0;
ωik−1  Process uncertainty sampled from Wk−1;
xik ← f(xik−1, u

i
k−1, ω

i
k−1);

if k = 1 and y1 was included then
Weights update ;
wi1 ∝ wi0 · P (y1|xi1)← likelihood obtained from g(·) and the observation noise
distribution V1;

Resampling ;
xi1  Sampled from particles {xi1} with mass probability distribution {wi1};
wi1 ← 1

Np

end
else

Weights update ;
wik ← wik−1

end
end
pLk computation ;
pLk ← from Eq. (C.4) ;
Major resampling ;
if |Hk| < ηmr ·Np then

xik  Sampled from particles {xik : i ∈ Hk} with mass probability distribution given
by
{

wi
k∑

i∈Hk
wi

k

: i ∈ Hk

}
wik ← 1

Np

end
end
return {pLk }k≥1 or {pLk|1}k≥1, as appropriate.
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