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Abstract: The aim of this work was to study the impact of the methodology of in vitro gastric
digestion (i.e., in terms of motility exerted and presence of gastric emptying) and gel structure
on the degree of intestinal proteolysis and lipolysis of emulsion gels stabilized by whey protein
isolate. Emulsions were prepared at pH 4.0 and 7.0 using two homogenization pressures (500 and
1000 bar) and then the emulsions were gelled by heat treatment. These gels were characterized in
terms of texture analysis, and then were subjected to one of the following gastric digestion methods:
in vitro mechanical gastric system (IMGS) or in vitro gastric digestion in a stirred beaker (SBg). After
gastric digestion, the samples were subjected to in vitro intestinal digestion in a stirred beaker (SBi).
Hardness, cohesiveness, and chewiness were significantly higher in gels at pH 7.0. The degree of
proteolysis was higher in samples digested by IMGS-SBi (7-21%) than SBg-SBi (3-5%), regardless
of the gel’s pH. For SBg-SBi, the degree of proteolysis was not affected by pH, but when operating
the IMGS, higher hydrolysis values were obtained for gels at pH 7.0 (15-21%) than pH 4.0 (7-13%).
Additionally, the percentage of free fatty acids (%FFA) released was reduced by 47.9% in samples
digested in the IMGS-SBi. For the methodology SBg—SBi, the %FFA was not affected by the pH,
but in the IMGS, higher values were obtained for gels at pH 4.0 (28-30%) than pH 7.0 (15-19%).
Our findings demonstrate the importance of choosing representative methods to simulate food
digestion in the human gastrointestinal tract and their subsequent impact on nutrient bioaccessibility.
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1. Introduction

Nowadays, the main nutritional problems of the world population, such as obesity or
undernutrition, could be overcome by the adoption of different technological solutions [1].
These nutritional problems are directly linked to food intake, but it is not only the amount
of food consumed that matters. Interactions between proteins, lipids and carbohydrates
form the basis of the food matrix facing the digestive system. After digestion in the
gastrointestinal tract (GIT), the release of the building blocks of macronutrients (e.g., amino
acids, free fatty acids and/or glucose) is dependent on the food matrix structure and the
complex processes occurring in the GIT [2]. This explains why, over the years, there has
been increasing interest in understanding the behavior of food through the GIT [3].

Food digestion in humans or animals has traditionally been studied with in vivo ap-
proaches, but these approaches are expensive, invasive, and have ethical restrictions [3,4].
Consequently, various in vitro digestion systems that attempt to simulate the dynamic,
physical and biochemical complexity of the GIT, and particularly systems that mimic the
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human stomach, have been developed: human gastric simulator (HGS) [5]; TNO gastric
small intestinal model (TIM-1) (TNO: Nederlandse Organisatie voor Toegepast Natuur-
wetenschappelijk Onderzoek) [6-8]; dynamic gastric model (DGM) [9]; gastric digestion
simulator (GDS) [10]; rope-driven in vitro human stomach model (RD-IV-HSM) [11]. How-
ever, some of these systems (HGS, TIM-1, DGM and GDS) have the disadvantage that
they do not consider human stomach morphology and, during food digestion, simulated
peristaltic movements are not realistically applied. This last point becomes a limitation
when the results obtained from these digestion models are interpreted, since the enzyme
activity is affected by the mixing of gastric contents and the exposed surface area available
for the enzymatic attack, which is itself generated by the disintegration process caused by
peristaltic movements. In the case of RD-IV-HSM, although its design considers the human
stomach morphology, the gastric contractions generated are produced only at the antral
zone. The in vivo contractions that occur throughout the body of the stomach cause the
mixing of food with digestive fluids which are then transported by these same peristaltic
movements to the small intestine [3,12].

Based on the previous literature, this study focuses on the use of an in vitro mechan-
ical gastric system (IMGS) designed by our research group [13], which has comparative
advantages to the systems that are currently available. These advantages are found in the
simulation of the peristaltic movements that occur in an adult human stomach (peristaltic
frequency and force magnitude), the J-shaped stomach, and reproduction of the gastric pH
curve. In this work, the gastric emptying process was incorporated in the operation of the
IMGS by applying a controlled pumping process, in order to obtain a greater precision of
the digestion kinetics of solid food matrices, such as emulsion gels, as reported by in vivo
studies [12]. In particular, emulsion gels are semisolid foods containing emulsified fats and
oils [14,15]. In fact, it is known that the distal stomach regulates the rate of gastric emptying
of solid meals by coordinated processes involving the antrum, pylorus and duodenum [16].
According to these characteristics, the IMGS can be a useful tool to establish a better under-
standing of the relationship between the physicochemical properties of foods, its digestion
and the subsequent absorption of nutrients. The objective of this work was to study the
impact of the methodology of in vitro gastric digestion, analyzed in terms of a system with
realistic gastric peristalsis and emptying (IMGS) in comparison with a conventional system
based on a stirred beaker operated at constant speed (SB), and gel structure, on the degree
of intestinal proteolysis and lipolysis of emulsion gels stabilized by whey protein isolate
(WPI). It is important to mention that in this work, measurements of gastric lipolysis of
the emulsion gels were not considered because only 5 to 30% of ingested triglycerides are
hydrolyzed in the human stomach [17-20]. Besides, gastric proteolysis was not considered,
because a similar degree of gastric protein hydrolysis was found for different whey protein
isolate emulsion gels using electrophoresis or titration [21,22], although the degree of gel
fragmentation was different between “soft” and “hard” whey protein emulsion gels [21],
depending on their structure (fine-stranded or particulate).

2. Materials and Methods
2.1. Fabrication of Emulsion Gels

Sunflower oil (Natura, Cérdoba, Argentina) was purchased from a local supermarket.
The major fatty acids of the sunflower oil used in this study were: 6.5% C16:0; 3.9% C18:0;
26.3% C18:1 w9 cis; 57.3% C18:2 w6. Whey protein isolate (WPI) (BIPRO™, Davisco Foods
International Inc., Le Sueur, MN, USA) was used as emulsifier and gelling agent. Emulsion
gels were prepared from a lipid and an aqueous phase, mixing 30% (w/w) lipid phase
(sunflower oil) with 70% (w/w) aqueous phase (protein dispersion). Protein dispersions
were prepared at 9.0% (w/w) into phosphate—citrate buffer at pH 4.0 and 7.0, which were
subjected to continuous stirring for at least 1 h and at 25 °C. pH 4.0 and 7.0 were chosen
because it is widely known that whey proteins form different gel structures (coarse and
fine-stranded gels, respectively) at these pHs [23-25]. The dispersions were kept overnight
at 5 °C to ensure complete hydration of proteins.
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Pre-emulsions were elaborated at room temperature by dispersing the lipid phase into
the aqueous phase using a rotor-stator homogenizer (Kinematica Polytron®, PT 2500 E,
Luzern, Switzerland) operated at 6000 rpm for 5 min. The pH of the pre-emulsions was
adjusted to 7.0 if required. These pre-emulsions were processed in a high-pressure homog-
enizer (Gea Niro Soavi, model Panda Plus, Parma, Italy) operating at 500 or 1000 bar and
at 3 homogenization steps. Afterwards, the emulsions were subjected to thermal treatment
for the formation of the emulsion gels. Emulsions were heated in 50 mL plastic centrifuge
tubes in order to set the gels. The tubes were immersed in a water bath (Memmert, model
Basic WNB, Schwabach, Germany) at a constant temperature of 90 °C for 30 min. After
the heat treatment, samples were cooled to ambient temperature (25 °C) and then were
maintained for 24 h at 5 °C for further study.

2.2. Characterization of Particle Size of the Emulsions

Mean particle size, particle size distribution and polydispersity index (Pdi) of the
emulsions were evaluated using a dynamic laser light scattering instrument (Zetasizer
Nano-ZS, Malvern Instruments, Worcestershire, UK). To avoid multiple scattering, emul-
sions were diluted with phosphate—citrate buffer at a ratio 1:5000 (v/v) before measurements.
The results were calculated by the instrument software (Zetasizer software, version 6.10).

2.3. Textural Characterization of the Emulsion Gels

Cylindrical samples of gels (2.5 cm diameter; 3 cm height) were subjected to texture
profile analysis (TPA) and compression test, using a texture analysis machine (Zwick/Roell,
model Z0.5, Zwick GmbH & CO, Ulm, Germany). For TPA, gel samples were compressed
up to 20% of their original height using an aluminum cylinder probe (5 cm diameter)
operated at 0.1 mm/s. After assays, the parameters determined were: hardness (i.e.,
maximum force during the first cycle of compression), cohesiveness (i.e., related to the
internal forces that maintain the structure of a food prior to rupture), and chewiness (i.e.,
work required to masticate the sample before swallowing) [26,27]. For the compression tests,
gel samples were placed between two lubricated plates (5 cm diameter) and compressed at
25 °C at a constant deformation speed of 0.1 mm/s until break [28]. Gel deformation was
expressed as the Hencky’s or true strain (efy) (Equation (1)) described by:

ey = — ln(HEO) 1)
where H and Hj) (m) are the final and initial height after deformation, respectively. The over-
all stress acting on the sample during compression was expressed as the true normal stress,
which is the normal force to the cylinder cross section divided by the initial area of the
sample [28]:

_F
A

where 0 is the true normal stress (Pa), F is the normal force acting over the gel (N) and Ay
is the cross-sectional area of the gel (m?).

Ot

@

2.4. In Vitro Digestion Assays of Emulsion Gels

The standardized digestion method proposed by the COST Infogest network [29,30]
was used as the basis to perform the in vitro digestion assays, with some modifications.
Three phases of in vitro digestion were simulated: oral, gastric and intestinal phase. For gas-
tric digestion, two methodologies were used: (i) IMGS, system composed by a human
stomach model and a mechanical system with realistic peristalsis) [13], or (ii) SBg, gastric
stirred beaker operated at 150 rpm. The impact of gastric emptying on the in vitro intestinal
lipolysis and proteolysis of emulsion gels was studied. After gastric digestion using the
IMGS or SBg, the chyme obtained was subjected to intestinal digestion in a double-jacketed
glass beaker under continuous stirring (called SBi). The gastric and intestinal digestion
times were of 90 and 120 min, respectively.
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2.4.1. Preparation of Simulated Digestion Fluids

The preparation of digestive juices was described in our previous works [13,31,32].
The enzymes used here were: x-amylase (porcine pancreas, Sigma-Aldrich, St. Louis,
MO, USA), pepsin (porcine gastric mucosa, Sigma-Aldrich, St. Louis, MO, USA), lipase
(porcine pancreas, Sigma-Aldrich, St. Louis, MO, USA), pancreatin (porcine pancreas,
Sigma-Aldrich, St. Louis, MO, USA), trypsin (porcine pancreas, Fermelo Biotec, Santiago,
Chile), and chymotrypsin (bovine pancreas, Fermelo Biotec, Santiago, Chile). Bile extract
(porcine, Sigma Aldrich, St. Louis, MO, USA), soy lecithin (Blumos, Santiago, Chile), 1 N
HC1 (Fisher Chemical, Pittsburg, PA, USA) and 1 N NaOH (Heyn, Santiago, Chile) were
also used. Purified water was used for the preparation of all solutions. To simulate the
gastrointestinal fluids, simulated salivary fluid (SSF), simulated gastric fluid (SGF) and
simulated intestinal fluid (SIF) were prepared, which were adjusted to pH values of 7.0, 3.0
and 7.0, respectively. Simulated fluids were made up of the corresponding electrolyte stock
solutions, enzymes, CaCl, and water, according to the standardized digestion method.
The concentration of the stock solutions was based on the method proposed by the COST
Infogest network [29,30] (Table 1). For all assays, freshly prepared simulated digestion
fluids were used.

Table 1. Concentration of stock solutions of simulated digestion fluids.

Stock Concentration Concentration in Concentration in Concentration in

Constituent (mol/L) Simulated Salivary Simulated Gastric Fluid, Simulated Intestinal

Fluid, SSF (mmol/L) SGF (mmol/L) Fluid, SIF (mmol/L)
KC1 0.5 15.1 6.9 6.8
KH,POy 0.5 3.7 0.9 0.8
NaHCO3 1.0 13.6 25.0 85.0
NaCl 2.0 - 47.2 38.4
MgCly(H;O)g 0.15 0.15 0.12 0.33

(NHy4),COg3 0.5 0.06 0.5 -

HCl 6.0 1.1 15.6 8.4

Data based on [29,30].

2.4.2. In Vitro Oral Digestion

In total, 150 g of emulsion gel (~150 mL; pH 4.0 or 7.0) was mixed with 150 mL of
SSF (divided into 5 charges, 30 g gel + 30 mL SSF each one), following the mix 1:1 with
SSF-containing amylase (75 U/mL) [29,30]. Each charge of this mixture (emulsion gel and
SSF) was deposited in dialysis bags. After that, the bags were sealed tightly with adhesive
tape, and then were chewed by a human volunteer. As oral residence time depends on the
nature and textural characteristics of the material [12], the crushing times were 40 and 60 s
for the samples at pH 4.0 and pH 7.0, respectively.

2.4.3. In Vitro Gastric Digestion

As previously mentioned, these assays were carried out in the IMGS or SBg. In both
cases, 300 mL of bolus from the in vitro oral digestion was mixed with 300 mL SGF, follow-
ing the mix 1:1 with SGF-containing pepsin (2000 U/mL) [29,30]. For each methodology
(IMGS or SBg) and type of sample (emulsion gel at pH 4.0 and 7.0), a gastric pH curve
was performed (Figure 1), since it is known that when a food enters the human stomach,
a buffering effect is induced by the food, after which acid secretion produces an exponential
decrease in pH. This pH change has been described for in vivo [33,34] and in vitro [5,35]
studies, which were used as a reference to build up a programmed pH curve. The pH
curve developed for the IMGS considered the gastric-emptying process.
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Hoebler & coworkers, 2002
Malagelada & coworkers, 1976
Kong & Singh, 2010

Krul & coworkers, 2000

5 ----pH4SBg
—— pH 4 IMGS

- 4 ----pH7SBg
-3 ——pH 7 IMGS

0 10 20 30 40 50 60 70 80 90
Gastric digestion time (min)

Figure 1. Variation of gastric pH during the in vitro digestion in the IMGS and in a stirred beaker
(SBg) of the emulsion gels stabilized by whey protein isolate (WPI), in comparison with the literature
data.

The gastric digestion procedures applied were:

SBg. The bolus was mixed with SGF (37 °C; pH 3.0) and the pH of this mixture was
immediately controlled by a pH-Stat automatic titration unit (Metrohm, 902 Titrando,
Herisau, Switzerland). In its software (Tiamo 2.4), the parameters were adjusted in order to
obtain the expected gastric pH curve by adding defined volumes of 0.5 N HCl solution at
different time intervals, until completing the test period (90 min).

IMGS. The bolus was deposited in the simulated stomach of the IMGS, and the SGF
was added at a rate of 3.33 mL/min by pumping (Surefusion™, Nipro, Osaka, Japan). The
rate of flow of gastric juice was representative of that found in in vivo studies [9,34,36].
Simultaneously, the IMGS operation started, exerting the peristalsis in the stomach at a
frequency of 3 cycles/min, physiological value of the human stomach [37,38]. For simula-
tion of the gastric pH curve, the same method used for SBg was applied (Figure 1). After
the first 15 min, the gastric emptying valve placed at the pyloric section of the simulated
stomach was opened. The gastric emptying was performed intermittently every 10 min
using a peristaltic pump (Fisherbrand™ 13-876-2, Fisher Scientific, Suwanee, GA, USA),
until completing the whole digestion period (120 min), following the phenomenology
reported by in vivo studies [12]. The gastric chyme was transferred at a rate of 10 mL/min
to the intestinal phase [36,39], with previous adjustment of pH to 7.0. At the pyloric zone,
a membrane (pore size: 2 mm) was incorporated to control the particle size of the chyme
passing to intestinal digestion [5]. During IMGS digestion, the overall mechanical force
exerted on the emulsion gels samples at pH 4.0 and 7.0 was measured as reported previ-
ously [13], obtaining values between the ranges of 0.2-1.2 N and 0.2-1.5 N, respectively.
These results are in line with those found in an adult human stomach [37,40].

2.4.4. In Vitro Intestinal Digestion

The intestinal phase was carried out in a double-jacketed beaker at 37 °C subjected
to continuous agitation at 150 rpm (SBi). After digesting in the SBg, the gastric chyme
obtained (650 mL; pH ~2.0 as shown in Figure 1) was adjusted to pH 7.0 with 1 N NaOH
solution. Immediately after that, the chyme was transferred to the SBi and then mixed with
650 mL of SIF (37 °C; pH 7.0), following the mix 1:1 with SIF-containing enzymes [29,30].
For the studies of intestinal proteolysis, the SIF was only composed by trypsin (100 U/mL),
pancreatin based on trypsin activity at 100 U/mL, and chymotrypsin (25 U/mL); however,
for the intestinal lipolysis assays, the SIF also contained lipase (2000 U/mL) [29,30].

When digesting in the IMGS, the gastric chyme at pH ~2.0 (see Figure 1) was emptied
at 10 mL/min into the SBi [36,39], with previous adjustment of pH to 7.0 with 1 N NaOH
solution as mentioned previously. The neutralized chyme was then mixed with SIF (37 °C;
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pH 7.0) pumped (Surefusion™, Nipro, Japan) at a rate of 5.4 mL/min into the SBi, until
it reached the total volume (650 mL). The flow rate of the simulated intestinal fluid is
in accordance with previous studies reporting values of intestinal secretion in the small
intestine ranging from 0.3 to 20.8 mL/min, measured from human volunteers [41-44].

During intestinal digestion, and after neutralizing the gastric chyme, sample pH
was monitored by using an automatic titration unit (Metrohm, 902 Titrando, Herisau,
Switzerland) and maintained at a value of 7.0 by adding 0.7 N NaOH solution during the
120 min of digestion. The volume of NaOH solution added to the digested mixture was
recorded and used to calculate the intestinal hydrolysis of proteins and lipids.

2.5. Quantification of the Intestinal Proteolysis and Lipolysis of Emulsion Gels
2.5.1. Intestinal Proteolysis

After hydrolyzing a peptide bond, one carboxylic group and one o-amino group
are produced. During the in vitro digestion at pH 7.0, carboxylic groups release their
proton, which can be titrated by NaOH solution using a pH-stat automatic titration [45].
The volume of NaOH solution added can be converted into the degree of intestinal protein
hydrolysis (DH), as follows [45,46]:

VNaOH proteolysis (t) X NNaoH

%DH =
“X(RNHZ) X Mprotein X htot

x 100% 3)

where VNaOH proteolysis(t) is the volume of NaOH consumed during a t protein digestion
time (L), Nnaon is the NaOH normality (eq/L), Mprotein is the initial protein mass in the
sample (g), hiot is the number of peptide bonds in the protein substrate (8.8 meqv/g for
whey proteins [47]), and «(RNH3) is the mean degree of dissociation of o« amino groups,
which can be calculated as follows:

10(PH—PK)

1+ 10(PH-PK) @)

«(RNH,) =

As pK is dependent on the working temperature (37 °C, physiological temperature)
and pH (7.0), its value for this study was 7.4, and therefore «(RNH;) corresponds to
0.285 [46,48].

2.5.2. Intestinal Lipolysis

Each triacylglycerol (TAG) molecule generates two free fatty acids (FFA) when fully
digested. The FFA released from a sample can be calculated from the total amount of TAG
present in the original sample, according to [13]:

[VNaOH lipolysis (t) — VNaOH proteolysis (t)] X Myaom % MMhpid
Myipid X2

%FFA = x100%  (5)

where VNaoH lipolysis(t) is the volume of NaOH solution required to neutralize the FFA
produced at lipid digestion time t (L), Mn,01 is the molarity of the NaOH solution (mol/L),
MM;jpiq is the molecular mass of the TAG oil (g/mol), and my;pq is the total mass of TAG
oil initially present in the sample (g). When lipolysis was analyzed, the final %FFA was
obtained by subtracting the respective volume of NaOH solution used in the proteolysis
calculation. The times used to estimate the FFA released were the same as those from the
degree of intestinal protein hydrolysis. Control runs without enzymes were also performed
and subtracted from the reported values.

2.6. Statistical Analysis of Data

All experiments were carried out in triplicate using freshly prepared samples. Results
are presented as mean values with standard deviations. Analysis of variance was carried
out when required using Statgraphic Centurion XVI (version 16.1, Statistical Graphics
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Corporation, Rockville, MD, USA), including multiple range tests (p < 0.05) for separation
of the least square means.

3. Results and Discussion
3.1. Characterization of Emulsions and Emulsion Gels

The oil droplet sizes and the size distributions for the four oil-in-water (O/W) emul-
sions stabilized by WPI are presented in Table 2 and Figure 2. Both particle size and Pdi
of the emulsions were not significantly affected (p > 0.05) by the homogenization pres-
sure, reaching values of 302-328 nm and ~0.19 for emulsions at pH 4.0, and ~275 nm and
0.10-0.17 for emulsions at pH 7.0, respectively. The decrease in o0il droplet diameter by
increasing the homogenization pressure (500 bar vs. 1000 bar) was only observed in pH 4.0
emulsions (328 nm vs. 302 nm, respectively), whereas in emulsions at pH 7.0, the droplet
diameter ranged from 260 nm to 271 nm, respectively. The latter can be attributed to the
limited amount of surfactant present to stabilize the droplets formed [49]. It is proba-
ble that disruptive forces would be able to generate smaller drops at 1000 bar, but even
when there is a sufficient amount of surfactant for emulsion formation, it did not adsorb
quickly enough during homogenization. Under turbulent flow conditions, as expected in
high-pressure homogenization, newly formed droplets collide, which may lead to rapid
recoalescence depending on the extent to which droplets are readily covered by emulsifier
molecules [50]. Very short timescales are involved in droplet coverage, and whey proteins
were presumably unable to completely stabilize small droplets at 1000 bar.

Table 2. Mean oil droplet diameter and polydispersity index (Pdi) of O/W emulsions stabilized by
WPI at different pH and elaborated at different homogenization pressures.

pH Homogenization Mean Oil Droplet Pdi
Pressure (bar) Diameter (nm)
4 500 327.8 £22.9°3A 0.20 4 0.04 27
1000 301.8 £ 7.13A 0.18 4 0.02 37
7 500 260.4 + 21.7 bA 0.10 + 0.03 b2
1000 270.8 + 0.7 bA 0.17 £ 0.01 bA

Different lowercase letters indicate significant differences (p < 0.05) between pH of the O/W emulsions, and dif-
ferent capital letters indicate significant differences (p < 0.05) between homogenization pressures.

25
Emulsion pH 4 / 500 bar
= Emulsion pH 4 / 1000 bar
20 1 Emulsion pH 7 / 500 bar
—_ = Emulsion pH 7 / 1000 bar
X
5 15 1
£
=
o
> 10 A
5
0 v
10 100 1000 10,000

Oil droplet diameter (nm)

Figure 2. Influence of pH and homogenization pressure on the oil droplet size distribution of O/W

emulsions.
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Unlike the pressure factor, the pH of the emulsions affected the particle size and Pdji,
both being significantly lower (p < 0.05) at pH 7.0. This can be explained by the lower
stability of whey proteins in dispersion at pH 4.0, since when they are in an environment
close to its isoelectric point (pH 5.2), they tend to aggregate, giving way to destabilization
phenomena (e.g., coalescence or flocculation). Thus, oil droplets would form larger droplets
or aggregates in the dispersion [51,52]. All the samples presented Pdi < 0.20 (Table 2),
which indicates monodisperse size distributions (Figure 2) [53].

With respect to the textural characterization of the emulsion gels, results from the
TPA test (Table 3) indicate that the hardness and cohesiveness were affected only by pH.
In the case of hardness, the values were ~10 N for gels at pH 4.0, and ~12 N for gels at
pH 7.0. In turn, gels at pH 4.0 and 7.0 presented values of cohesiveness of ~0.45 and
0.87, respectively. Both properties were significantly higher (p < 0.05) for pH 7.0 emulsion
gels. It is known that fine-stranded WPI gels are formed at pH 7.0, which gives them
a more rigid conformation generated by disulfide bonds (covalent interactions) [54-56].
This would explain the harder and more cohesive structure of these gels. In addition, it has
been indicated that an increase in rigidity of emulsion gels prepared from WPI-stabilized
emulsions can be obtained by lowering the emulsion oil droplet size [14]. At pH 4.0, whey
proteins tend to aggregate and a coarse (particulate) gel structure with fewer covalent
binding points is generated [57], decreasing the hardness and cohesiveness of these gels.

Table 3. Textural properties of emulsion gels stabilized by WPL

Texture Profile Analysis (TPA) Compression Analysis
Pressure

pH (bar) Hardness Cohesiveness Chewiness Stress at Break Strain at Break
(N) (Dimensionless) (N) (kPa) (Dimensionless)

4 500 10.81 & 0.55 34 0.44 4 0.01 37 457 4+ 0.10 24 21.70 + 0.83 24 0.21 +0.04 24

1000 8.97 £+ 0.34 34 0.46 + 0.02 24 3.77 +0.53 2B 23.43 + 1.49 2B 0.24 £ 0.01 24

7 500 11.31 £ 0.12bA 0.89 + 0.02 bA 8.52 + 0.38 bA 76.21 &+ 2.34 PA 0.75 £ 0.12 bA

1000 13.27 4+ 0.28 bA 0.86 & 0.01 bA 7.40 + 0.40 bB 94.96 + 2.51 PB 0.76 + 0.21 bA

Different lowercase letters indicate significant differences (p < 0.05) between pH of the emulsion gels, and different capital letters indicate
significant differences (p < 0.05) between homogenization pressures.

Table 3 shows a congruence between the TPA results and the stress at break values.
The pH of the emulsion gels significantly affected (p < 0.05) the stress at break, where
lower compression stresses (21.7-23.4 kPa) were needed to break the pH 4.0 samples. For
pH 7.0 emulsion gels, higher stresses were required (76.2-95.0 kPa) to deform and break up
the sample, which can be associated with a longer period of chewing during the in vitro
oral digestion (40 s for gels at pH 4.0 vs. 60 s for gels at pH 7.0, as described previously).
Accordingly, the chewiness of the emulsion gels was significantly different (p < 0.05) when
changing the pH from 4.0 to 7.0 and by varying the homogenization pressure. Emulsion gels
at pH 7.0 had a higher hardness and were more elastic; hence, a greater force (8.5 N /500 bar
vs. 7.4 N /1000 bar) was needed to chew the food and turn it into a bolus, so that there is a
proportional relationship between both parameters [58]. The deformation of the samples
was significantly affected (p < 0.05) only by pH, resulting in a greater deformation before
rupture for samples at pH 7.0 due to its structural conformation induced by disulfide
bonds, generating stronger and more elastic gels [56].

3.2. In Vitro Digestibility of Emulsion Gels

The impact of the type of gastric digestion (IMGS vs. SBg) of emulsion gels elaborated
at different pH and homogenization pressures on the in vitro intestinal proteolysis (%DH)
and lipolysis (%FFA) was evaluated. pH curves were constructed for both methodologies
of gastric digestion to simulate more realistically food digestion in the stomach.
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3.2.1. Gastric pH Curves

The gastric pH curves obtained during digestion of emulsion gels in the IMGS and
SBg systems are shown in Figure 1. When beginning the digestion, the gastric pH was ~3.8
and 6.5 for gels fabricated at pH 4.0 and 7.0, respectively. Later, a decrease in pH of the
gastric content digested using the IMGS and SBg methodologies was observed. Both gastric
digestion systems showed pH changes similar to those reported for in vitro [33,34] and
in vivo studies [5,35], with pH values decreasing to ~2.0 after 90 min of digestion. From
Figure 1, it is evident that the mixing process in the SBg is faster, because smoother pH
curves were obtained in comparison with the noisy pH curves observed when digesting in
the IMGS. In the SBg system, continuous agitation was used (similar to a perfectly stirred
reactor), which promoted a more homogeneous mixture of the gastric content, independent
of gel size resulting from the oral phase by crushing or chewing. In fact, pH 4.0 gels
subjected to oral digestion resulted in a paste-like consistency bolus with respect to the
particulate state found for gels at pH 7.0 (Figure 3). Regardless of the physical state of
the gels after oral digestion, there are no drastic variations in pH during digestion given
the effect of the gastric mixing or homogenization. For the IMGS, it should be noted that
the pH curves were performed applying realistic peristalsis and gastric emptying. Thus,
the mixture of the gastric content (digested gel, SFG and HCl solution) is less homogeneous
than in the SBg, which leads to oscillations in the gastric pH curves. These oscillations
were less marked for pH 4.0 gels, since the respective bolus formed after oral digestion
presented a paste-like consistency (Figure 3), which facilitates the passage of chyme into
the intestinal phase (SBi) by action of the gastric emptying process.

Figure 3. Images of the bolus obtained after oral digestion of the different emulsion gels stabilized
by WPI. (A) pH 4/500 bar, (B) pH 4/1000 bar, (C) pH 7/500 bar, and (D) pH 7/1000 bar.

3.2.2. Impact of the Type of In Vitro Gastric Digestion of Emulsion Gels on the Degree of
Intestinal Proteolysis

The kinetics of proteolysis of the emulsion gels during their in vitro intestinal digestion
(SBi system) are shown in Figure 4. The nomenclature SBg-SBi refers to the gastric and
intestinal digestion assays performed in a stirred beaker, whereas IMGS-SBi refers to the
assays of gastric digestion in the IMGS and subsequent intestinal digestion in a stirred
beaker. As is clear from Figure 4, the kinetics of intestinal proteolysis of the emulsion
gels are markedly different among methodologies. While in the SBg-SBi systems these
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kinetics are very similar for all samples and do not present a lag phase, the kinetics obtained
by the methodology IMGS-SBi showed a difference in shape according to the pH of the
studied sample, and showed the existence of a lag phase whose extent was dependent on
pH sample.
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Figure 4. Kinetics of in vitro intestinal proteolysis using the systems IMGS-SBi and SBg-SBi for
emulsion gels stabilized by WPI and fabricated at 500 bar (A) and 1000 bar (B). IMGS: In vitro
mechanical gastric system; SBg: in vitro gastric digestion in a stirred beaker; SBi: in vitro intestinal
digestion in a stirred beaker.

After gastric digestion, the total chyme obtained is transferred to the intestinal phase,
which results in the absence of a lag phase for the samples subjected to digestion SBg—SBi.
Accordingly, all the substrate (undigested protein or proteolytic fragments) is available
to be hydrolyzed by trypsin and chymotrypsin, and consequently immediate intestinal
proteolysis can occur. On the contrary, the lag phase observed for samples assayed with
the methodology IMGS-SBi, where the substrate is not hydrolyzed immediately, can be
explained by the application of the gastric-emptying process. When the gastric emptying
begins, the chyme transported to the intestinal phase is a liquid that contains little substrate
available because in the first minutes of gastric digestion, the disintegration of the gels is
still reduced. Whether it is hydrolyzed by pepsin or not, the amount of protein that passes
to the intestinal phase is low, resulting in the presence of this lag phase. In fact, it has been
demonstrated that proteins behave differently at different digestive phases, such as gastric
emptying rate [59]. Alternatively, significantly higher percentages of proteolysis (p < 0.05)
were obtained using IMGS-SBi, with values ranging from ~7.0% to 21.5% with respect to
SBg-SBi (Table 4). This may indicate an underestimation of the hydrolysis degrees reported
when studying intestinal proteolysis using digestion systems that operate as batch perfectly
agitated vessels. From Figure 4, it can be seen that all the samples tested using SBg-SBi
quickly increase their digestion rate, but this rate decreases in a short time until reaching
a plateau period in which the generated proteolytic products remain constant. Notably,
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low final extent of proteolysis was found for all samples, with values ranging between 2.4%
and 4.8% (Table 4). The rapid decrease in the rate of protein digestion can be caused by
the possible inhibition of enzymes due to the effect of the substrate or hydrolytic products
accumulated in the system during digestion time [60,61]. Thus, in this study it is possible
to infer that the low proteolysis values reached for the SBg—SBi system could be due to
trypsin and/or chymotrypsin inhibition during the intestinal digestion of the samples,
where the enzymes lose their activity and therefore no reaction products continue to be
generated after ~10 min of substrate/enzyme contact. The above is possible because, as
already mentioned for this system, after gastric digestion all the chyme is subjected to
intestinal digestion. For this reason, the enzyme will be in contact with all the available
substrates from the beginning, which induces its possible inhibition.

Table 4. Final extent of intestinal lipolysis and proteolysis using different methodologies of in vitro digestion for emulsion

gels stabilized by WPIL.
Fabrication Conditions of the Emulsion Gels Methodol ¢ Final Extent of Intestinal Digestion
ethodology o - - -
In Vitro Digestion Lipolysis Proteolysis
pH Pressure (bar) (Gastric-Intestinal) (Free Fatty Acids (Protein Hydrolysis
Released %) %)
20 500 43.92 4+ 0.48 A 3.01 +0.22b4A
' 1000 SB._SB. 46.74 & 1.74 24 4.78 +0.36 A
70 500 & 42,59 + 24334 239 £0.19 2B
: 1000 4451 4+ 3.3534 3.93 4+ 0.30 2B
40 500 28.24 + 553 bA 6.97 + 0.60 @A
' 1000 IMGS-SB: 29.85 + 4.87 bA 13.43 +0.83 2B
70 500 ! 19.41 + 3.76 24 14.95 4 1.29 bA
: 1000 15.16 + 2.09 @A 21.54 & 0.26 >B

Different lowercase letters indicate significant differences (p < 0.05) between pH of the emulsion gels, and different capital letters indicate
significant differences (p < 0.05) between homogenization pressures.

In a study of enzymatic hydrolysis of lactalbumin, Gonzalez-Tello et al. [62] demon-
strated that there was inhibition of different enzymes by increasing the amount of substrate
for the reaction. They concluded that the hydrolysis of whey protein can be explained by
an instantaneous and irreversible union of the enzyme with an inhibitor present in the
substrate or generated by the instantaneous hydrolysis of some minor component of the
protein to be hydrolyzed. This can be corroborated since this phenomenon does not occur
in the IMGS-SBi where the substrate is gradually released to the intestinal phase, which
is similar to what occurs during an in vivo digestion. Here, we can see how the rate of
hydrolytic product release increases according to the amount of substrate that is being
transferred and, therefore, the inhibition previously described for the SBg—SBi system is
not present when the IMGS-SBi system is used for in vitro digestion assays.

Finally, the type of gastric motility exerted in an in vitro digestion process is fundamen-
tal for obtaining values of proteolysis much more representative than using conventional
systems (stirred beaker) that may lead to the underestimation of the digestion rate, due to
certain phenomena such as the inhibition of proteolytic enzymes.

3.2.3. Influence of the pH of the Emulsion Gels on Intestinal Proteolysis

For the SBg-SBi system, those samples at pH 4.0 showed a significantly higher per-
centage of hydrolysis (p < 0.05) (3.0% and 4.8% at 500 and 1000 bar, respectively) than those
at pH 7.0 (2.4%/500 bar and 3.9% /1000 bar) (Table 4). As previously discussed, this can be
explained as a consequence of the fact that in these latter samples the gel structure formed
is more cohesive and of greater hardness, and therefore after the gastric phase, larger gel
particles are still observed (Figure 5). This agrees with the results obtained by Guo and
co-workers [21,63], where a higher degree of gel fragmentation was found for “soft” emul-
sion gels in comparison with “hard” emulsion gels after gastric digestion. In consequence,
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the attack of hydrolytic enzymes on the protein substrate during the intestinal digestion
will be more difficult for gels formed at pH 7.0, resulting in less hydrolysis. Furthermore,
possible substrate inhibition can occur as it has already been described.

Figure 5. Images of the chyme obtained after in vitro gastric digestion in the SBg system of the
different emulsion gels stabilized by WPI. (A) pH 4/500 bar, (B) pH 4/1000 bar, (C) pH 7/500 bar,
and (D) pH 7/1000 bar.

When analyzing the IMGS-SB;, a lag phase for all samples was observed, with times of
25 and 40 min for gels at pH 4.0 and 7.0, respectively. As in the gastric digestion, the gels at
pH 7.0 have a higher time of disintegration induced by peristaltic forces, so the amount of
protein that passes into the intestinal digestion at the beginning of gastric emptying is lower
and, therefore, the time at which the proteolysis begins is later than in samples at pH 4.0.

For the IMGS-SBi system, significantly lower percentages of protein hydrolysis
(p < 0.05) were obtained in the samples at pH 4.0 (7.0% and 13.4% at 500 and 1000 bar,
respectively), in comparison with samples at pH 7.0 (15.0%/500 bar and 21.5%/1000 bar)
(Table 4). This difference can be attributed to the structure of the emulsion gels at pH 7.0,
since compared to smaller aggregates, the larger aggregates provide less cleavage sites for
digestive enzymes due to the lower total area, thus showing lower degradation rates [64].
In addition, the tendency of the digestion kinetics differed with the pH of the samples,
where at pH 4.0 a plateau phase was reached at the end of the digestion time, but not so in
samples at pH 7.0 where the highest values of proteolysis were obtained without reaching
a plateau. This is also related to the fact that after gastric digestion, the pH 7.0 samples
maintained small fragments of gel that went towards intestinal digestion, during which
they disintegrate and release a greater amount of substrate at 80 min. During this time,
the rate of digestion increases without reaching a plateau and, therefore, said samples will
need more time for a complete digestion. Figure 6 shows a representative image of the
structural and physical state of the chyme formed by digesting emulsion gels at pH 7.0 in
the IMGS and emptied into the intestinal vessel for subsequent digestion.
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In vitro mechanical
gastric system (IMGS)

\ Experimental set-up for gastric
emptyinginthe IMGS

Silicone tubing
(internal diameter: 6.4 mm)

Structural and physical state of the chyme formed
after digesting emulsion gels at pH 7.0 in the IMGS

Figure 6. Representative scheme of the gastric emptying process in the IMGS and the chyme formed by digesting emulsion

gels at pH 7.0 and emptied into the intestinal vessel for subsequent digestion.

3.2.4. Effect of the Type of In Vitro Gastric Digestion of Emulsion Gels on the
Intestinal Lipolysis

The intestinal lipolysis of the emulsion gels was measured by the percentage of free
fatty acids (%FFA) released. This percentage was higher for gels digested in the SBg-SBi
system than IMGS-SBi, as shown in Figure 7. The final extent of FFA released from gels at
500 bar using SBg-SBi was 43.9% and 42.6% for samples at pH 4.0 and 7.0, respectively,
whereas these values were 28.2% and 19.4% when using IMGS-SBi (Table 4). Similar values
were obtained for emulsion gels at 1000 bar. These findings reflect the impact that gastric
motility and emptying have in food digestion, particularly for solid and semisolid matrices.
Here, the type of motility exerted by the IMGS does not induce such a homogeneous chyme,
since the peristaltic movements generated in a more realistic way retard the breakdown of
emulsion gels (semisolid food matrices) during gastric digestion. This is because, in the
human stomach, the maximum destructive force is ~1.9 N; therefore, it is difficult for this
one to fragment the food particles with greater hardness into smaller pieces [63]. Then,
under these conditions, the size of the pieces of emulsion gel that pass to the intestinal
digestion is larger than in the conditions granted by the SBg system, where there is a
more homogeneous mixture, so that there is limited access of the enzymes to the surface
of oil droplets, decreasing the rate of the release of fatty acids in these samples. Since
the rate of lipolysis is controlled by the interfacial area available for the binding of lipase
and pancreatin and not by the amount of these [65], lipid digestion can be modulated by
designing the structure of the gel around the oil droplets [66].
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Figure 7. Kinetics of in vitro intestinal lipolysis using the systems IMGS-SBi and SBg-SBi for
emulsion gels stabilized by WPI and fabricated at 500 bar (A) and 1000 bar (B).

In addition, the shape of the lipolysis kinetics obtained (Figure 7) agrees with those
found for intestinal proteolysis (Figure 4), when comparing both gastric digestion method-
ologies (S5Bg vs. IMGS) and subsequent SBi. Thus, when digesting in the IMGS, which
involves a mechanism of gastric emptying, the amount of chyme that passes into the in-
testinal phase is limited, so that the enzymes have less substrate to hydrolyze, resulting in
a low rate of FFA release. The latter causes the plateau not to be generated during the 2 h of
digestion, requiring a longer time for a complete digestion. This last resembles the kinetics
of digestion studied by Barros and co-workers [13], where the lipolysis of WPI-stabilized
O/W emulsions was analyzed, which, although it was higher in the IMGS compared to
the SBg system, it did not achieve a definitive plateau at the end of the digestion. This has
been evidenced by in vivo studies of solid foods (e.g., rice), where at 3 h of digestion, 60%
of the dry solids were obtained in the gastric emptying, so a longer time is needed for a
gastric digestion of all the content [5]. The same phenomenon was observed in previous
in vitro digestion studies of emulsions based on WPI and soybean oil. On the one hand,
in the case of emulsions with palm, sunflower and linseed oil, it is only after 200 min of
intestinal digestion that a decrease in the rate of fatty acids release is observed [67,68].
Lipolysis kinetics of all samples digested in the SBg-SBi system do not present a lag phase
during intestinal digestion. This indicates that an enzymatic attack occurs immediately
after starting the intestinal phase. This could be justified by the existence of proteolysis
during gastric digestion, where the whey proteins that stabilized the O/W emulsion were
exposed to an enzymatic attack by pepsin. Consequently, the stabilizing action of WPI in
the emulsion could be altered during gastric digestion, which impacted the subsequent
intestinal lipolysis by facilitating the access of lipolytic enzymes to their substrate, attacking
them instantaneously.
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3.2.5. Influence of pH of Emulsion Gels on Lipid Digestion

The final extent of FFA generated after intestinal digestion in the SBg-SBi system did
not show significant differences (p > 0.05) with the pH of the gels, reaching a value of
~43.0% FFA (Figure 7; Table 4). When testing in SBg—SBi, a linear rate of lipolysis during
the first 65 min of digestion of emulsion gels at pH 4.0 and 500 bar is observed, always with
a released %FFA that is lower than the pH 7.0’s gel. After that time, a plateau is reached,
which for gels at pH 7.0 this equilibrium stage occurs at 45 min. The result obtained for
emulsion gels at pH 4.0/500 bar shows that during gastric digestion, this sample behaved
similar to a liquid emulsion (Figure 5), even when it entered the oral phase as an emulsion
gel. Therefore, this sample forms a homogeneous and stable matrix, and although there is
a greater interfacial area, pepsin action is difficult. This is corroborated with the results
of proteolysis for this sample, where less protein hydrolysis was observed. This implies a
greater amount of non-hydrolyzed proteins, thus allowing the lipids to be less exposed
to an enzymatic attack and also the proteolytic products of the protein to maintain their
potential action as a surfactant.

In the case of the kinetics obtained in the IMGS-SBi, it is observed that the four
samples under study followed a similar trend during intestinal digestion, presenting a
lag phase until approximately 5 min. This is because when gastric emptying in the IMGS
begins, the chyme transported to SBi is a liquid with little substrate. Given that during
the first minutes the gel disintegration is slow, the available amount of lipids for intestinal
hydrolysis is consequently low, resulting in the presence of this lag phase. The digestion
trends for these samples did not show significant differences (p > 0.05) until the 80 min of
digestion, at which time those samples of pH 4.0 began to increase their rate of digestion
with respect to the samples of pH 7.0.

The final %FFA obtained in IMGS-5SBi is considerably affected by pH, with values
of 29.1% and 17.2% for pH 4.0 and 7.0, respectively (Table 4). This difference is due
to how the structure of gel was affected by the pH during its elaboration, since at a
higher pH, the internal structure of the gel is held together by disulfide bonds, which
makes it less susceptible to subsequent mechanical and enzymatic action [54,55]. It is
known that in the presence of pepsin, the disintegration rate of a soft gel is higher than a
hard gel [63]. Consequently, it can be seen that gels made at pH 7.0 presented values of
hardness, cohesiveness and chewiness significantly higher than pH 4.0 gels. Due to these
characteristics, during gastric digestion in the IMGS, the disintegration of the structure
by the peristaltic action becomes more difficult. As they have a more cohesive internal
structure, the enzymatic attack by pepsin is difficult, so that the pieces of gel that finally
pass through the pylorus to the intestinal phase are larger. The latter has an impact on
intestinal digestion, and although the enzymatic attack of lipase and pancreatin is almost
immediate, the rate of fatty acids release is low, achieving a lower final released %FFA than
gels at pH 4.0.

Finally, the type of gastric motility and the incorporation of the gastric emptying
process during digestion of emulsion gels severely impacts both the kinetics of released
FFA and their final extent, which is reflected in the reduction of ~47.9% between the fatty
acids released by the IMGS-SBi compared to those obtained by the SBg-SBi system.

4. Conclusions

In this work, we studied the impact of the methodology of in vitro gastric digestion
and gel structure on the in vitro intestinal proteolysis and lipolysis of emulsion gels. For
this, two systems of in vitro gastric digestion were used: a system with realistic gastric
peristalsis and emptying (IMGS) and a conventional system based on a stirred beaker
operated at constant speed (SBg). After gastric digestion, assays of in vitro intestinal
digestion were carried out in a stirred beaker (SBi). Emulsion gels stabilized by WPI were
fabricated at different pH (4.0 and 7.0) and homogenization pressures (500 and 1000 bar).
The textural characteristics of the gels were determined by the pH of their fabrication,
with values of hardness and cohesiveness of ~10 N and 0.45, and 12 N and 0.87 for gels at



Foods 2021, 10, 321

16 of 19

References

pH 4.0 and 7.0, respectively. These textural characteristics significantly impacted how the
emulsion gels were digested later.

Both intestinal proteolysis and lipolysis of the emulsion gels result in a great difference
when using in vitro digestion systems with different operating characteristics. The kinetics
of intestinal proteolysis of the gels were markedly different among methodologies. When
using the system SBg-5SBi, the kinetics were similar for all samples and did not present
a lag phase; however, the kinetics obtained by the methodology IMGS-SBi showed a
difference in shape according to the pH of the sample, and a lag phase whose extent was
dependent on pH sample. In addition, significantly higher percentages of proteolysis
(p < 0.05) were obtained using IMGS-SBi, with values ranging from ~7.0% to 21.5% with
respect to SBg-SBi (~2.4-4.8%). On the other hand, the %FFA released during the intestinal
lipolysis of the gels was higher for gels digested in stirred beakers, in comparison with the
system IMGS-SBi. The final extent of FFA released from gels at 500 bar using SBg-SBi was
43.9% and 42.6% for samples at pH 4.0 and 7.0, respectively, whereas these values were
28.2% and 19.4% when using IMGS-SBi. Similar values were obtained for emulsion gels at
1000 bar. These findings reflect the impact that gastric motility and emptying have in food
digestion, particularly for solid and semisolid matrices.

It is important to understand that the results of in vitro digestion will not only depend
on an initial characterization of the food matrix that will be digested (regardless of whether
it is in the oral, gastric and intestinal phase), but also on how that matrix disintegrates
in each stage of digestion, since the way in which this action occurs in one phase will
influence the digestion behavior in the next one. In consequence, the in vitro evaluation of
nutrient release should not only be conducted considering the system to be used, but also
the structural changes throughout the digestion, thus being able to contribute to the rational
design of foods with improved nutritional properties.
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