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ABSTRACT

Weakly supervised semantic segmentation (WSSS) methods have received significant

attention in recent years, since they can dramatically reduce the annotation costs of fully supervised
alternatives. While most previous studies focused on leveraging classification labels, we explore instead
the use of image captions, which can be obtained easily from the web and contain richer visual information.
Existing methods for this task assigned text snippets to relevant semantic labels by simply matching
class names, and then employed a model trained to localize arbitrary text in images to generate pseudo-
ground truth segmentation masks. Instead, we propose a dedicated caption processing module to extract
structured supervision from captions, consisting of improved relevant object labels, their visual attributes,
and additional background categories, all of which are useful for improving segmentation quality. This
module uses syntactic structures learned from text data, and semantic relations retrieved from a knowledge
database, without requiring additional annotations on the specific image domain, and consequently can
be extended immediately to new object categories. We then present a novel localization network, which
is trained to localize only these structured labels. This strategy simplifies model design, while focusing
training signals on relevant visual information. Finally, we describe a method for leveraging all types of
localization maps to obtain high-quality segmentation masks, which are used to train a supervised model. On
the challenging MS-COCO dataset, our method moves the state-of-the-art forward significantly for WSSS
with image-level supervision by a margin of 7.6% absolute (26.7% relative) mean Intersection-over-Union,

achieving 54.5% precision and 50.9% recall.

INDEX TERMS Image captions, semantic segmentation, weakly supervised.

. INTRODUCTION

HE goal of semantic segmentation is to classify each
T pixel in an image with a unique label, chosen from a
fixed set of object categories. This task constitutes a funda-
mental step in a vast number of modern computer vision ap-
plications, including autonomous driving [[1]], medical imag-
ing [2]-[5]], scene understanding [6], and remote sensing [7]].
In recent years, remarkable success has been achieved in
semantic segmentation thanks to developments in the use
of Convolutional Neural Networks (CNNs) [8], [9], which
have revolutionized the state-of-the-art in this and various
other image processing tasks, such as object detection [10],
classification [I1], [12], and object recognition [13]], [I4].

However, large volumes of images are usually required to
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train these models effectively, which in the case of semantic
segmentation under a fully-supervised setting means annotat-
ing each image with pixel-accurate masks. The prohibitively
high cost of manually generating this type of supervision
for large datasets severely limits the expansion of modern
semantic segmentation models to more diverse and complex
application domains.

These limitations have motivated various recent publi-
cations that report attempts to train segmentation models
using weaker, less expensive supervision, including bounding
boxes [15]}, [16]}, scribbles [[17], points [18], or only image-
level supervision [19]-[27]]. The latter is particularly chal-
lenging, as no localization information is available, but it
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also presents the most dramatic reduction in annotation costs,
and consequently has received significant attention from the
research community. Most modern approaches that tackle
weakly supervised semantic segmentation (WSSS) with
image-level supervision employ a two-stage procedure [21[]—
[27]], leveraging Class Activation Maps (CAMs) [28] pro-
duced by a convolutional classifier to generate pseudo-
ground truth segmentation masks, and then using those masks
to train a supervised segmentation model. Development of
these methods has been largely motivated and driven by the
existence of several large-scale image datasets annotated with
classification labels, such as ImageNet [29], MS-COCO [30],
and PASCAL VOC [31]. However, this is not the case for
most image domains or object categories, and the cost of
annotating datasets of larger scales remains very high, even
for this weaker form of supervision.

In this paper, we investigate the use of natural language
captions as an alternative form of image-level supervision,
which has the advantage of being easily obtainable in large
quantities from the web for a wide range of image types [32].
Captions also contain additional information about context
and complementary visual attributes, which can be used to
improve localization cues. Despite these advantages, only
a small number of research initiatives have focused on this
task, and existing weakly supervised methods based on clas-
sification labels cannot be applied directly to work with
natural language supervision.

A possible way to generate localization cues similar to
CAMs utilizing image captions was proposed in [33]]. In-
spired by recent publications on the task of visual ground-
ing [34]-[37]], their model [33]] projects images and text
segments into a shared multi-modal embedding space, which
preserves semantic relations. The authors [33] then identi-
fied references to relevant object categories in the training
captions by simply detecting class names, and localized the
corresponding text snippets into the paired images by match-
ing representations in the embedding space. The resulting
activation maps were then applied analogously to CAMs to
train a supervised segmentation model.

However, by training their model [33]] to localize arbi-
trary text directly, non-visual and irrelevant information is
introduced into the supervision, which hinders training. The
model also has to learn that multiple grammatical struc-
tures can be equivalent, and that multiple different concepts
could refer to the same object category. For example, the
MS-COCO category “person” could be mentioned with a
synonym, e.g., “individual”’; a hyponym, e.g., “man”; or
a holonym, e.g., “baseball team”. In addition to the extra
burden that this imposes on the training of the localization
model, there is no direct way of retrieving this knowledge to
guide the generation of segmentation masks. Thus, a separate
method is required to associate text snippets to specific object
categories, or to use additional information during this stage.

In this paper, we present a method to address the previ-
ously mentioned problems, which is summarized in Fig. [1]
Instead of training a model to localize text directly in images,
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FIGURE 1. Overview of the proposed approach. A caption processing
module combines syntactic structures and knowledge-based semantic
relations to extract information from image captions that can be used for
semantic segmentation. The extracted supervision consists of foreground and
background object category labels, along with their respective visual attributes.
This supervision is used to train a localization network that learns separate
semantic embeddings for both single classes and compound class-attribute
pairs. All activation maps generated by the trained localization network can
then be leveraged to generate pseudo-ground truth segmentation masks.

we developed a caption processing module to first extract
a structured supervision from natural language descriptions.
This module uses the syntactic structures of the captions to
identify mentions of objects and their attributes, and takes
advantage of a general knowledge database to explicitly
assign words to useful semantic labels.

The resulting supervision is used to train a novel localiza-
tion network, that naturally extends the classifiers normally
used for generating CAMs. This model can then be used to
produce activation maps for relevant as well as contextual
object categories, in addition to categories enriched with spe-
cific visual attributes. Also, by simplifying the supervision
of the localization network, the training procedure can focus
on relevant, localizable information, improving the quality of
the generated maps. Finally, we propose a method that takes
advantage of all types of activation maps generated by our
model to obtain accurate segmentation masks on the training
set, substantially improving performance of the downstream
segmentation model.

In summary, the proposed approach presents the following
three main novel contributions: (1) A caption processing
module that extracts useful visual information from image
captions, including accurate labels for foreground as well as
background categories, and their respective visual attributes.
(2) A localization network that can be trained using the
extracted supervision to obtain activation maps for classes
and compound class-attribute pairs. (3) A methodology to
generate high-quality segmentation masks, taking advantage
of all activation maps produced by the proposed localization
network. We performed extensive experiments to validate
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all components of the proposed approach, and show that
our method outperforms the state-of-the-art for WSSS with
image-level supervision by a margin of 7.6% absolute mIoU
(26.7% relative) on the challenging MS-COCO dataset.

The rest of the paper is organized as follows: In Section
we present our literature review for WSSS and other re-
lated tasks. Our proposed method is described in detail in
Section [[TI] whereas the experimental setup used to evaluate
our approach is detailed in Section The results from our
experiments and the corresponding discussion are presented
in Section [V] Finally, a summary of the main conclusions
derived from the work is presented in Section [V1}

Il. RELATED WORK

In this section, we review previous studies from different
research areas, which relate to various aspects of our pro-
posed approach. For better understanding, and to highlight
some of the main contributions of our work, Table [I] sum-
marizes some significant characteristics of existing models
to compare with our method. This includes the ability to
use captions as supervision, the requirement of additional
supervision at either training or test time, and the capacity to
generate segmentation masks for novel images. For studies
that also proposed methods for extracting useful semantic
labels from captions, we indicate the general strategy used
in each case, and the types of semantic labels that can be
extracted with each method. For WSSS methods, we also
indicate which of these types of semantic labels can be used
to guide mask generation. The rest of this section presents
these comparisons in detail.

A. WSSS USING IMAGE CAPTIONS
In our literature review, we found only one previous
study [33] that tackled WSSS using image captions. Their
approach followed previous studies in WSSS with classifi-
cation labels by adopting a two-stage procedure, in which
a model trained with weak supervision was first used to
generate segmentation masks on the training set, and then
these masks served as supervision for training a segmentation
model. To implement the first stage, the authors followed
previous studies on visual grounding by training a model
to learn a visual-semantic embedding (VSE) space, opti-
mized to encode images and arbitrary text jointly. The text
is encoded using pre-trained word2vec [47]], and the model
was trained using binary cross-entropy loss, with negative
snippets from the dataset sampled randomly. Text segments
from input captions were assigned to relevant object classes
via exact matches of the class names, and were then projected
along with images into the VSE to generate activation maps,
which were combined to obtain the final segmentation masks.
The method proposed in [33] constitutes a promising ap-
proach for applying captions to WSSS, but also presents sig-
nificant drawbacks. The simple exact match heuristic used to
assign semantic labels fails to detect synonyms and subtypes
of classes, and can result in false positives for classes with
polysemic names. Our caption processing module is designed
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to handle these more complex cases, and, additionally, can
detect complementary visual information. On the other hand,
by training their model to localize arbitrary text, non-visual
information that hinders training is introduced into the super-
vision. Furthermore, false negatives can appear when sam-
pling short caption segments randomly, since these phrases
can often describe regions of unpaired images correctly. By
contrast, our localization network encodes only classes and
compound class-attribute pairs, which focuses training on
relevant visual information, while utilizing only the labels
produced by our caption processing module prevents label
multiplicity and false negatives during training.

B. WSSS USING CLASSIFICATION LABELS

Our work is also closely related to previous studies in WSSS
using classification labels. Most modern approaches to this
task use confident regions retrieved from Class Activation
Maps (CAMs) [28] produced by a convolutional classifier
to initialize segmentation masks, which are then used to
train a supervised segmentation model. As CAMs tend to
highlight only the most discriminative regions for each class,
most recent efforts have focused on refining the artificial
masks [22]], [25], [27], [39], [48]], or regularizing the seg-
mentation model to improve learning from incomplete or
imperfect supervision [21]], [23]], [49]], [50].

In [21], a combination of three loss functions was pro-
posed to train the segmentation model to simultaneously
classify labeled pixels correctly, expand foreground regions,
and constrain to low-level image boundaries. This approach
was later expanded in [23]] by utilizing the predictions of the
segmentation model to label confident pixels in the initially
sparse training masks iteratively. In [[22], an iterative training
procedure for the classifier was proposed, in which the most
confident pixels for each class were progressively erased
from the training images, thus forcing the model to expand to
less discriminative regions. Similar strategies have also been
used in more recent studies [39]], [48]]. In [39], the training
and erasing procedures were performed simultaneously in
an end-to-end fashion, whereas in [48]] a Self-Erasing Net-
work was introduced to prevent CAMs from expanding to
background regions in later erasing iterations. A different ap-
proach was explored in [24], which consisted of appending a
pyramid of atrous convolutions with different dilation rates to
the classifier to propagate activations from discriminative re-
gions to neighboring pixels. A generalization of this approach
was presented in [26], in which a stochastic dropout layer
was used to achieve a similar diffusion effect. In [51]], dilated
convolutions were combined with an attention mechanism
on features from different scales to improve the resulting
CAMs. In [25]], an additional model was trained using CAMs
to generate pixel affinity matrices, which were then used to
refine the CAMs using random walk optimization. A similar
approach was presented in [27]], in which an iterative training
procedure was employed to learn to generate segmentation
masks and pixel affinity matrices jointly.

In this work, we focus on a different but complemen-
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TABLE 1. Comparison of the proposed approach with previous state-of-the-art studies in related research areas.

Image-level Additional Caption to semantic labels Mask generation labels Test-time
Paper(s) . .. . Output
supervision supervision Method FG Attr. BG FG Attr. BG annotations
WSSS with labels
1191, [21], [25], [27], [38] labels - v X X - SM
122]-[24], [26], [39]-[43] labels saliency v X X - SM
Visual grounding
135]-137] captions - captions HM
WSOD with captions
Cap2Det [44] captions + labels - Classifier v X X . . . - BB
Scene Attributes [45]] captions - EM + SG v v X . . . - BB
ZSSS with captions
Cap2Seg [46] captions full masks captions SM
WSSS with captions
TAM-Net [33] captions - EM v X X v v X - SM
Ours captions - CPM (ours) v v v v v v - SM

EM: exact match
SG: scene graphs
CPM: caption processing module

FG: foreground class labels
Attr.: visual attributes
BG: background class labels

tary problem: generating accurate segmentation masks using
natural language captions instead of classification labels,
which is not possible using these previous methods. Our
method also introduces an effective way to take advantage of
complementary labels for background categories and visual
attributes for mask generation, which cannot be leveraged
with existing systems. Some of these previous studies also
used class-agnostic saliency maps to generate background
cues [22[]-[24], [26], [39], while others used saliency maps
to guide and refine foreground regions [40]-[43]]. However,
this introduces dependencies on off-the-shelf models that
require stronger supervision. Our method, by contrast, uses
only captions, and does not require any extra supervision.

C. VISUAL GROUNDING

Our work is also related to the task of visual grounding [34]-
[37], and particularly to those studies that model this problem
as finding a relevance heatmap in an image for a given query
phrase [35]-[37]]. Similar to these studies, we also train a
model to learn a VSE space, and then use this model to
generate localization heatmaps guided by semantic concepts.
However, unlike our approach, these models do not define
a way to generate segmentation masks on novel images,
and require input captions at test time to produce attention
heatmaps. We also restrict our VSE space to encode only
object categories and compound class-attribute pairs, which
allows us to dispense with the recurrent networks and con-
trastive losses used by these previous methods.

D. WEAKLY SUPERVISED OBJECT DETECTION USING
IMAGE CAPTIONS

Recent studies have also explored the related task of weakly
supervised object detection (WSOD) using only image cap-
tions as supervision [44]], [45[]. Similar in spirit to our pro-
posed caption processing module, these studies have ex-

4

v': supported
X: not supported
- not applicable

SM: segmentation masks
HM: attention heatmaps
BB: bounding boxes

* Implicit in text segments

plored methods for extracting useful visual information ex-
plicitly from captions as a structured set of labels. In [44],
a label inference module was proposed for detecting rel-
evant object categories mentioned in captions, which was
implemented as a classifier neural network with captions
as inputs. However, that model requires a dataset of paired
captions and ground truth classification labels for training,
which is expensive to generate, and cannot be used to ex-
tract visual attributes or to discover background categories.
In [45]], an approach similar to ours was used for detecting
objects and attributes in captions using a scene graph parser.
However, their model relies on the exact match heuristic to
assign semantic labels to objects, and, as such, cannot handle
more complex cases. Additionally, neither of the previously
mentioned studies presents a way for utilizing the extracted
information for segmentation, relying instead on bounding
boxes generated by off-the-shelf models to train a detection
model in a multiple instance learning (MIL) framework.

E. ZERO-SHOT SEMANTIC SEGMENTATION USING
IMAGE CAPTIONS

In [46], captions were used as supervision to train a novel
three-branch network for semantic segmentation under a
zero-shot setting, which aims to segment semantic categories
not seen during training. However, this method required full
supervision for most semantic categories during training, as
well as input captions at both the training and test times. We,
by contrast, focus on the weakly supervised setting, where
no pixel-level supervision is available, and our proposed
model does not require any type of annotations to generate
segmentation masks at test time.

F. SCENE GRAPHS

Scene graphs represent the contents of an image in terms of
a set of objects, their attributes, and their relations. These
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1. Extraction of structured
supervision from captions

2. Training of
localization network

3. Generation of pseudo-ground truth
segmentation masks

4. Training of supervised
segmentation model
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FIGURE 2. Overview of the full training procedure of the proposed approach. First, a novel caption processing module is used to extract structured visual
supervision from natural language descriptions, which is then used to train a proposed localization network. Once trained, the localization network generates
different types of activation maps, guided by the same structured supervision, which are then combined to obtain artificial segmentation masks on the training set.

Finally, these masks are used to train a supervised segmentation model.

representations have been used for multiple computer vision
applications, including image retrieval [52], image caption-
ing [53]], and image generation [54]. In our work, we employ
the rule-based scene graph parser from [55] to extract object
candidates and their corresponding attributes from captions,
and make use of this information to train a localization
network for WSSS.

G. WORDNET

WordNet [56] is a large lexical database for the English
language, structured as a graph in which nodes correspond to
synsets (sets of words sharing the same meaning), and edges
encode different types of conceptual-semantic relations, from
which our model leverages the following:

« Hyponymy: X is a hyponym of Y (equivalently, Y is a
hypernym of X) if X is a type of Y (e.g., “dog” is a
hyponym of “mammal”).

e Meronymy: X is a meronym of Y (equivalently, Y
is a holonym of X) if X is a part or member of Y
(e.g., “branch” is a meronym of “tree”, and “tree” is a
meronym of “forest”).

WordNet has also been applied to several computer vision
tasks, including object detection [57]], image retrieval [58],
and zero-shot segmentation [59]], [60]. In our work, we use
WordNet to assign object candidates to relevant semantic
labels for WSSS, and to easily construct a similar set of labels
for background categories discovered from the dataset.

lll. PROPOSED METHOD

Fig. 2] shows an overview of the training procedure followed
in the proposed approach. First, our caption processing mod-
ule extracts a structured representation of the relevant visual
information contained in image captions (Section [II-A).
Then, this supervision is used to train the proposed local-
ization network (Section [[II-B). Once trained, this model is
used to generate pseudo-ground truth segmentation masks on
the training set (Section [IlI-C). Finally, the generated masks
can be used to train any supervised segmentation model. The
details of the supervised model used in our experiments are
presented in Section
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A. CAPTION PROCESSING MODULE

Our aim in developing the proposed caption processing mod-
ule is to consolidate mentions of different object categories,
and their attributes, at a semantic level that is useful for
WSSS, while suppressing non-visual or ambiguous infor-
mation present in the image captions. For this purpose, a
syntactic parsing stage is applied to identify mentions of
objects and their attributes using a scene graph representa-
tion [52f], [55]]. This is followed by a semantic parsing stage
which takes advantage of WordNet [56] to assign semantic
labels to detected objects. Fig. [3| shows an overview of the
entire process. The syntactic and semantic parsing stages are
described in Sections [[II-AT| and [ITT-A2} respectively. The
resulting supervision is then formalized in Section

1) Syntactic Parsing

We implement the syntactic parsing stage of our module
using a modified version of a public Python implementatioﬂ
of the rule-based scene graph parser proposed in [55]]. This
parser is composed of the following two processing steps:

Dependency Parsing. The first step corresponds to a stan-
dard language processing pipeline, including tokenization,
part-of-speech tagging, and dependency tree parsing of the
input caption [|61]], as illustrated in Fig.

Scene Graph Parsing. The second step uses syntactic
patterns in the dependency tree to identify objects, their
attributes, and their relations explicitly. In particular, we
follow [55]] by identifying all noun phrases as potential object
candidates, and apply rules for parsing their corresponding
attributes, but skip node replication based on quantifiers, and
pronoun resolution. Relations between objects detected by
the parser are ignored. Instead of simply selecting the head
of each noun phrase as the class of the corresponding object,
as done in [55]], we identify an “extended head” of the phrase
as the longest substring that both (1) contains the head noun
of the phrase, and (2) is defined in WordNet. This extended
head is used later to infer the corresponding object category.

It should be noted that, contrary to the strategy of simply
identifying positive categories by matching class names [33],
our method allows filtering out cases where class names

Thttps://github.com/vacancy/SceneGraphParser

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3076074, IEEE Access

D. R. Vilar, C. A. Perez: Extracting Structured Supervision from Captions for Weakly Supervised Semantic Segmentation

Input Caption
“A man eating a hot dog enters a
yellow taxi on a beautiful day”
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FIGURE 3. Overview of the proposed caption processing module. First, a dependency tree is generated from the input caption, and a rule-based scene graph
parser is used to identify object candidates and their respective visual attributes. The extended heads of the objects’ noun phrases are then mapped into the
WordNet graph using a word sense disambiguation model. Finally, object candidates belonging to useful semantic categories are identified using the WordNet

graph, and the rest are discarded.

are used with different parts of speech (e.g.,
an adjective, or “train” as a verb, instead of using them
as nouns). Additionally, by considering only the extended
heads, we can handle cases in which compound nouns change
the meaning of the head (e.g., “microwave oven” refers to the
class “microwave” and not “oven”, whereas “hot dog” does

not refer to the class “dog”).

2) Semantic Parsing

“orange” as any label in C are discarded.

In practice, WSSS tasks define only a set of relevant
or “foreground” categories, Cy;. However, other categories
mentioned in the captions provide valuable contextual infor-
mation, and can be used to improve the segmentation masks.
Since all pixels that do not correspond to classes in Cg, should
be assigned to a special “background” category by the final
model, we call these “background” classes, and give them a
separate set of labels Cy,q. It is important to emphasize that
the definition of background is arbitrary and depends on the

Word Sense Disambiguation. For the purpose of identify-
ing the corresponding WordNet synset [56] for each object
candidate, we employ the state-of-the-art Word Sense Disam-
biguation (WSD) model from [62]. Concretely, we utilize the
pre-trained model based on BERT [63]], but modify it slightly
to handle compound nouns by restricting sense prediction for
each noun phrase to the set of possible synsets associated
with its extended head. We then choose the argmax over this
set, using the scores predicted for the leftmost token of the
extended head, following the strategy of the original authors
for handling words split in multiple tokens by BERT.

are detailed in Appendix [A-A]

This step is crucial both for preventing false positives (e.g.,
depending on the context, “mouse” could refer to a rodent
instead of an electronic device, as is intended for the class
“mouse”), and for identifying synonyms (e.g., class “couch”
could be denoted equivalently as “sofa”).

Labeling and Filtering. Finally, we leverage the WordNet
graph to assign each object proposal to a semantic label,
selected from a pre-defined set C. Each label in C is asso-
ciated with a specific synset, such that any candidate with
a synonym, hyponym, or holonym of a labeled synset can
be assigned to the same class. For example, “penguin” can
be identified as a subtype of the class “bird”, and “people”
as a collection of objects in the class “person”. Hyponymy
conflicts are resolved by choosing the labeled hypernym with

als (e.g., “wooden”, “plastic”,

Appendix [A-B]

3) Generated Supervision

the shortest path distance in the graph, whereas holonymy form:

relations are only considered if all meronyms of the labeled

synset belong to the same class. Objects that do not match D = {(1,,C'®,C% { A, }eee, )}y,
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application. Thus, C can be obtained as the union of both sets,
C = Ciz U Cg. The set Cpy could be constructed manually
by selecting useful background categories similarly to Cyg.
We also propose a simple assisted procedure to facilitate this
process, which takes advantage of the WordNet graph to filter
out non-visual synsets easily, and to assign useful semantic
labels iteratively. The details of this procedure, as well as the
final list of 72 background classes used in our experiments,

In addition to categories, visual attributes are also mapped
to a set of pre-defined labels, A, and unlabeled attributes
are discarded. Since our goal is to use attributes to guide
localization, we restrict attributes to a set of 40 words de-
scribing low-level visual features, such as colors, materi-
“metal”), and textures (e.g.,
“striped”, “dotted”, “furry”). This type of low-level informa-
tion has been extensively used in image processing applica-
tions such as segmentation [64], retrieval [[65]], and classifi-
cation [66]. The full list of selected attributes is included in

After processing all captions using the proposed procedure,
the resulting dataset D can be defined as a set of tuples of the
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where I,, is the n-th image of the dataset; NV is the total
number of images; C,f{g C C¢; and chs C Cpg are the sets
of positive foreground and background category labels for
the n-th image, respectively; C, = C& U CP# is the set of all
positive classes for the n-th image; and A,, . C Ais the set of
positive attributes for a given class ¢ € C,,. We alternatively
refer to the set of all positive class-attribute pairs for a given
image as P,, i.e.,

Pn=A{(c,a)[ceCprac A} )

B. LOCALIZATION NETWORK
1) Architecture
Following previous studies [33]], [35]-[37], the proposed
localization network learns to map images and semantic
concepts into a shared multi-modal embedding space. To do
this, we first assign each object category c to a semantic
embedding e € R9, and each attribute a to an em-
bedding e'** € Rat. Compound category-attribute pairs
(¢c,a) € C x A are encoded using compound embeddings
esomp ¢ Reeome | computed as:

ecomp — Wcomp [ecls, ezttr] + bcompa (3)

c,a c

where Weopp € RicompX(detstdacer) and beoyy,, € Rdcomr
are, respectively, the weights and biases of an affine transfor-
mation, and [ - ; -] denotes vector concatenation.

The input image I, is encoded into a feature map
F € Rlencxhxw yith d,,. channels and spatial dimen-
sions (h,w), using a fully-convolutional neural network
dcenn( -3 0cnn) parameterized by Ocnn. We evaluate sev-
eral standard convolutional architectures for implementing
¢cNN, as detailed in Section [[V-C2

We then employ two independent 1 x 1 convolutional
layers to project F' into separate embedding spaces for single
classes and compound class-attribute pairs, to avoid compe-
tition between the two types of representations. This results
in a class feature map Fos = fus(F;0q) € Reisxhxw,
and a compound feature map Feomp = feomp (F; Ocomp) €
Réeompxhxw A global pooling operation is then applied
separately over Fs and Fon to obtain the final visual
embeddings v s € R and Veomp € Rcomp respectively.
Following [36], we employ a WELDON pooling layer to
leverage both positive and negative evidence [67].

Given a pair of corresponding visual and semantic em-
beddings, we can then compute their similarity score using
a simple inner product:

1 1
52 S - <vCISa eg S>7 (4)
Seva " = (Veomp, €50")- (5)

It is worth noting that this model is reduced to the usual
classification network used for generating CAMs when only
foreground object categories are used, except for an extra
projection layer, since the class embeddings are mathemat-
ically equivalent to a fully-connected layer without bias.
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2) Training
The training procedure of the proposed localization network
is supervised by the following loss function:

= )\fgéfg + Abgébg + )\compgcompa (6)

where f¢; and f,, supervise single class predictions for
foreground and background classes, respectively; {comp Su-
pervises compound pair predictions; and Agg, Abg, and Acomp
are scalar parameters that balance the contribution of each
component.

For /¢, we adopt the following weighted variation of the
usual Binary Cross-Entropy (BCE) loss:

1 cls
lg =57 | D wi log(o(s¢))
| fg‘ cects
+ > wylog(l—o(seF)) 7
C/GCfg\Cng

where o(-) represents the sigmoid function, such that
o(z) = 1/(1 + e~ *). The scalar weights w! and w_
are inversely proportional to the frequency of positive and
negative examples for class ¢, respectively. These weights
are normalized to ensure that all classes contribute the same
accumulated weight across the dataset as in the unweighted
case, where w} = w_, = 1. Similar approaches have been
used previously for classification and detection [68], [69],
and we find that this simple strategy leads to better results
in practice.

lyg is computed in the same way as /g, but using back-
ground categories, i.e., by replacing Cg; by Chg and C8 by
CEg in . Similarly, £¢omp 1S computed as:

1
gcomp - d}j log(o_(sgo(inp))
|Pn| + ‘Pn | (C@)Ze'pn
+ Z w,, log(1 — a(si?ﬁp)) . ¥
(c¢',a’)ePr

In this case, we consider only a subset 75,,7 of negative
compound pairs, constructed as follows: for each positive
compound (c,a) € P,, we select all pairs with negative
attributes given by {(c,a) | a € A\ A, .}, and randomly
sample 10 pairs with negative classes from {(¢,a) | ¢ €
C\ C,}. This strategy lowers the penalty for erroneous class
prediction in compound pairs, enabling the model to rely
on low-level attributes to highlight less discriminative, but
relevant regions. The weights w] and w, are computed
analogously to wl and w_, respectively, but considering
the total number of non-empty A,, . that contain attribute a
across the dataset, instead of the number of images labeled
with a given class. In this case, class frequency is ignored.

C. MASK GENERATION
In this section we describe how to generate segmentation
masks using the outputs of the trained localization network.

7
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Similar to CAMs [28]], we obtain localization heatmaps
H¢s ¢ R for each positive class ¢ € C,, by computing
a weighted sum over the channels of the feature map Fjs. In
our case, the weights are given by the elements of the corre-
sponding class embedding e, instead of a fully-connected
classifier. Analogously, we can compute compound heatmaps
HZ™ by projecting embeddings ec”,"? over the feature
map Feomp in the same way. We then combine all maps
associated with a given class c via pixel-wise sum, such that:

M.(i.j) = H®(,5) + Y HO™0)), O

a€An o

where ¢ and j indicate spatial coordinates. The resulting maps
are thresholded at 0, and normalized by dividing its maxi-
mum activation to obtain the final class maps M, € R"*%:

ReLU(M. (i, j))
HllgaiXReLU(Mc(k‘, )

M. (i, j) = (10)

For the purpose of computing the activation map for the
background class, we combine two different types of cues.
First, we follow previous work [25], [33] by computing a
background map M @g> using negative information given by
the activation maps of foreground categories:

M@g>(i7j):{1—$‘g§M( )} : (11)

such that pixels with low scores for all foreground categories
are assigned higher background probabilities. The parameter
a > 1 controls the magnitude of the activations.
Additionally, we compute a second activation map M. (bg)
using positive information given by the predicted maps for
background categories. For this, we first compute M (bg)
the pixel-wise sum over the unnormalized background maps:

Mg (ird) = > Mefi-). (12
cecr®
M <—~l_>g) is then normalized as in to obtain M <4t_>g>’ which

is combined with M &,g> via pixel-wise maximum to obtain
the final background map M ), such that:

M(bg) (4,7) = maX{M(bg>(Z J) M<bg)(2 7} (13)

The scalar parameter v < 1.0 is added to prevent background
classes from dominating over foreground objects.

The localization maps are then upscaled to the resolution
of the input image I,,, and refined using dense Conditional
Random Fields (dCRF) [70]]. Finally, the segmentation mask
S is obtained by selecting the argmax for each pixel:

S(i,j) = argmax M.(i,j). (14)
ceC®u{(bg)}

The complete procedure is summarized in Algorithm|[I]
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Algorithm 1 Segmentation Mask Generation

Input: Class heatmaps {HS® | c € C,}
Compound heatmaps { HZO™ | (c,a) € Py}
Output: Segmentation mask S

1: for each c € C,, do

2: Compute M., from Hs {H™Pla € Ay o} (Eq.@)
3: end for

4: for each c € Cf¢ do

5: Normalize M, to obtain M, (Eq.: .

6: end for

7: Compute M, , from {M_, | c € Cg} (Eq.: i

8: Compute Mj from {M., | ¢ € Cig} (Eq.: .|

9: Normalize M} (bg) 1O obtain M be) (Eq.:

10: Compute M 1,gy from M< be) and M<bg (Eq :

—_
—_

. Upscale all score maps { M, | c € C!2 U {(bg)}}

12: Refine score maps { M. |c € C8 U {(bg)}} using dCRF
13: Compute S from {M., | c € C'8 U {(bg)}} (Eq.:

IV. EXPERIMENTS
A. DATASETS

MS-COCO. Most of the reported experiments were per-
formed using the MS-COCO dataset [30], which contains
123k images, each annotated with 5 different textual cap-
tions, as well as instance-level segmentation masks for 80
object categories. Following previous studies [23]], [27]], [33]],
[43]], we used the train2014 split with 83k images for training,
and reserved the val2014 split with 41k images exclusively
for testing. To adjust the hyperparameters of our model,
we followed the same validation strategy as in [33]], which
consisted in evaluating the quality of the generated masks
on the training set. However, we restricted this evaluation
to use only a subset of 4k images from train2014 (less than
5% of the total), to reduce the dependency on the ground
truth masks of the training set. To prevent confusion with
the val2014 set used for evaluation, we refer to this set
exclusively as trainvaldk.

Unless stated otherwise, all reported experiments with
MS-COCO used the 2014 splits, as described above. How-
ever, to facilitate the comparison with [[71] and future studies,
we also report results using the 2017 splits. These 2017 splits
assign 118k images for training, leaving 5k for testing.

PASCAL VOC. With the purpose of evaluating the perfor-
mance of our approach further, we also performed additional
experiments using the PASCAL VOC 2012 dataset [31]]. This
dataset is annotated with segmentation masks for 20 object
categories, that correspond to a subset of the classes from
MS-COCO. Since this dataset is not annotated with captions,
we use PASCAL VOC only for evaluation, employing its
validation set with 1449 images.

YouTube-Objects. The YouTube-Objects [72] dataset is
composed of videos collected from YouTube, which were
retrieved by querying 10 object classes from PASCAL VOC.
Since YouTube-Objects is not annotated with captions, we
use this dataset only for evaluation, as in the case of PAS-
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CAL VOC. For this evaluation we use the subset of frames
manually annotated with pixel-level masks provided by [73]].

B. EVALUATION

As in previous studies [23[], [27], [33], [43]], performance is
reported in terms of pixel-wise mean Intersection-over-Union
(mloU), averaged across all categories.

C. IMPLEMENTATION DETAILS

1) Caption Processing Module

All MS-COCO object categories were mapped to their
corresponding WordNet synsets, with ambiguity resolved
manually for class names with more than one possible
meaning. In cases where a single category is assigned in
practice to objects of more than one type, all relevant
synsets were annotated (e.g., objects tagged as class “tv” in-
clude instances of both “television_receiver.n.01” and “com-
puter_monitor.n.01”). In the case of categories without a
corresponding synset in WordNet (“stop sign” and “potted
plant”), only exact matches were used for detection. We also
extended WordNet by mapping a few common neologisms
to their closest synsets, such as “smartphone” to “cellu-
lar_telephone.n.01”, and “macbook” to “laptop.n.01”.

2) Localization Network

We used the slightly modified ResNet-50 [74]] architecture
from [75]] as the backbone for the localization network for
most of our experiments, since it presents a good trade-
off between performance and model size. For a more direct
comparison with previous studies, we also report results
using the VGG-16 [76] and ResNet-38 [77] architectures,
adapted for WSSS with dilated convolutions as described
in [25]]. All reported results used the ResNet-50 backbone,
unless stated otherwise, and all backbones were initialized
from weights pre-trained on ImageNet [29].

The model hyperparameters and training details used in
our experiments are summarized in Table 2] We multiplied
the learning rate by a factor of 10 for all parameters in 6,
0comp> Weomps beomp, and the semantic embeddings, which
were all trained from scratch. The first two convolutional
blocks of all backbones were not modified during training.

Following standard practice for data augmentation [22]],
[[24]], [26]], [33]], a random transformation was applied to each
image before being passed as input for the model during
training. In each case, a rectangular crop was generated by
choosing a random scale between 60% and 100% of the area
of the original image, with a random aspect ratio between
3/4 and 4/3, and a random position within the image. The
resulting cropped region was then resized to a square of size
321 x 321 pixels. Horizontal flipping was also applied with
a probability of 50%. For testing and validation, only the
original images were used as inputs for the model The sets
of images used for training and testing remained disjoint, as

explained in Section
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TABLE 2. Localization network hyperparameters and training details.

Parameter Symbol Value
Class embedding size des 512
Attribute embedding size dattr 512
Compound embedding size dcomp 512
Number of training epochs - 15
Minibatch size - 18
Weight decay - 0.0005
Optimizer - SGD
Initial learning rate - 0.01
Learning rate policy - poly
Polynomial scheduling momentum - 0.9
Foreground classes loss weight Afg 1.0
Background classes loss weight Abg 0.1
Compounds loss weight Acomp 0.1
Random crop scale range - [60%, 100%)]
Random crop aspect ratio range - [3/4,4/3]

Random flip probability - 50%
Training input size - 321 x 321

3) Mask Generation

The parameter « from (TT) was set independently for each
backbone, following the strategy described in Section [[V-Al
resulting in a value of 8 for ResNet-50, of 4 for VGG-16,
and of 5 for ResNet-38. The value of v for computing the
background map was set to 0.7 in all experiments. The CRF
parameters were all set to their default values [[70].

4) Segmentation Network

We use the pseudo-ground truth masks generated by our
model to train the VGG-16-based DeepLab-ASPP model pre-
sented in [[9] with single-scale input, re-implemented in Py-
Torch. We trained this model for 10 epochs using minibatches
of size 18 and the balanced seed loss from [23]], but with
all pixels labeled. The base learning rate was increased from
0.001 to 0.01, and we added 2k steps of linear warm-up [/78]]
at the start of training to prevent instability early on. We find
that this setting improves model performance significantly,
as is shown in Section[V-F3| All other hyperparameters were
the same as in the original implementation [9].

V. RESULTS

In this section we present and discuss our experimental re-
sults. We begin by reporting our main results in Section[V-A]
in which we present the comparison of our full method with
the current state-of-the-art for WSSS. The following sub-
sections then report complementary experiments performed
to assess the impact of each of the main novel components
of the proposed approach. In Section [V-B] we evaluate the
quality of the labels for foreground objects extracted by our
model. Then, in Section we evaluate the impact of each
supervision component produced by our caption processing
module in terms of segmentation quality on MS-COCO. This
analysis is expanded in Section[V-D] in which we evaluate the
generalization ability of our model across various datasets
under a transfer learning setting. In Section we report
experiments in which we replaced our localization network
with a visual grounding model, to evaluate the impact of our
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approach on model training and mask generation separately.
In Section [V-H we report additional ablation studies to
evaluate the impact of several design choices, and parameter
settings. Finally, in Section [V-G] some qualitative results for
our approach are presented.

A. COMPARISON WITH THE STATE-OF-THE-ART
1) MS-COCO 2014

Table [3] summarizes our main results, together with previous
state-of-the-art results for WSSS on MS-COCO using the
2014 splits for training and evaluation.

WSSS with image captions. The results most directly
comparable to those of our proposed approach are those
reported for TAM-Net [33]], since this is the only previously
published method for addressing WSSS using only image
captions. We observe that our VGG-16-based model outper-
forms their TAM-Net based on the same architecture by a
margin of 5.3% mloU, even without the use of Deep Seeded
Region Growing (DSRG) [23]], which is a technique used to
expand confident seed regions iteratively through an expen-
sive retraining scheme. Even more notably, the version of our
model with a ResNet-38 backbone improves the state-of-the-
art for this task substantially, by a margin of 7.6% mloU,
from 0.285 to 0.361 mloU. Our model based on the much
smaller ResNet-50 also reaches a very similar mloU, offering
a good balance between performance and model size. These
results demonstrate the effectiveness of our approach for
leveraging image captions for WSSS.

WSSS with other types of supervision. For a more com-
plete evaluation of our method, we also present state-of-the-
art results for models trained using other types of weak super-
vision. In particular, we observe that even our VGG-16-based
model outperforms all previous methods trained using only
ground truth classification labels, showing the effectiveness
of our approach, and of image captions as supervision for this
task. Our method also presents comparable results to those
reported in [43] for SGAN, despite the fact that this model
leverages much stronger supervision extensively in the form
of class-agnostic saliency maps, generated by a model trained
with pixel-level supervision.

2) MS-COCO 2017

To complement our analysis, and facilitate comparison
with [[71], as well as for future work, we also present results
using the 2017 splits of MS-COCO, which are summarized
in Table @l We observe that the results for VGG-16 and
ResNet-50 remain similar to those obtained with the 2014
splits, whereas the results for ResNet-38 improve further
to 0.370 mloU. This indicates that the larger ResNet-38
architecture benefits the most from the increased number of
training images. Additionally, we observe that our approach
outperforms [71]] even using the smaller ResNet-50, again
showing the effectiveness of the proposed method.

TABLE 3. Comparison of weakly supervised semantic segmentation methods
on the MS-COCO 2014 validation set in terms of mloU.

Image-level ~ Additional

Method Backbone . .. mloU
supervision  supervision

Journal articles
BFBP [|19] VGG-16 labels - 0.204
WAILS [38] VGG-16 labels - 0.225
TAL [27] VGG-16 labels - 0.277
SGAN [43] VGG-16 labels saliency 0.336

Conference articles
SEC [21] VGG-16 labels - 0.224
DSRG [23] VGG-16 labels saliency? 0.260
TAM-Net (33| VGG-16 captions - 0.216
TAM-Net [33] . . a

+DSRG [23] VGG-16 captions saliency’ 0.269
TAM-Net [33] ResNet-38 captions - 0.285
TAM-Net [33] . . N

+DSRG [23] ResNet-38 captions saliency’ 0.277
Ours VGG-16 captions - 0.322
Ours ResNet-50 captions - 0.357
Ours ResNet-38 captions - 0.361

2Background cues only.

TABLE 4. Comparison of weakly supervised semantic segmentation methods
on the MS-COCO 2017 validation set in terms of mloU.

Method Backbone Image—_l eyel Addlt]ppal mloU
supervision  supervision
Journal articles
MGCEFF [71]  ResNet-101 labels - 0.281
Ours VGG-16 captions - 0.324
Ours ResNet-50 captions - 0.356
Ours ResNet-38 captions - 0.370

TABLE 5. Evaluation of foreground class labels retrieved from captions of the
train2014 set of MS-COCO using the proposed caption processing module,
compared with the exact match baseline.

Method mloU  Precision Imagerecall Pixel recall
Baseline  0.521 0.904 0.560 0.762
Proposed  0.579 0.911 0.616 0.826

B. EVALUATION OF GENERATED SEMANTIC LABELS
We begin our ablation studies by evaluating the quality of
the labels for foreground categories retrieved from captions
by our model. We use the ground truth classification labels
from MS-COCO as reference, and present results in terms of
mloU, precision, and (image) recall. We also report results
using pixel recall, which takes the sizes of the objects into
account by considering the number of pixels annotated with
a given label across ground truth masks, instead of the
number of images. As shown in Table[3} the proposed caption
processing module improves performance for all metrics with
respect to the exact match baseline [33]], especially in terms
of mloU and recall. The large margins between image and
pixel recall also indicate that captions are significantly more
likely to mention larger objects, as is expected.

For a more detailed comparison of both methods, we also
present the differences in IoU for each class in Fig. @ It
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FIGURE 4. Difference in label detection loU by class when using the proposed caption processing module instead of the exact match strategy of previous methods.

For clarity, only the 35 classes with largest absolute difference are shown.

TABLE 6. Effect of different supervision components over model performance on MS-COCO.

Foreground . Background ~ Generated supervision (train set) ~ Segmentation model (val set)
Attributes

classes classes Precision  Recall mloU Precision  Recall mloU
Baseline - - 0.454 0.558 0.324 0.440 0.536 0.308
Proposed - - 0.492 0.589 0.359 0.507 0.513 0.338
Proposed v - 0.491 0.611 0.368 0.505 0.524 0.344
Proposed - v 0.547 0.526 0.359 0.554 0.491 0.352
Proposed v v 0.549 0.543 0.369 0.560 0.497 0.357
GT - - 0.429 0.674 0.349 0.448 0.536 0.330

can be observed that the proposed method improves IoU
for almost all MS-COCO classes. It is especially useful
for increasing recall for categories with multiple common
synonyms and hyponyms, such as “sports ball” or “person”,
and for improving precision for classes with names that are
often used to form compounds that do not belong to the same
class, such as with “bear” in “teddy bear”, “oven” in “toaster
oven”, or “dog” in “hot dog”. The syntactic parsing step can
also improve precision for classes with names that can be
used as attributes, such as “orange” as a color, or “apple” as
the brand. Only a small fraction of the classes show slight
drops in IoU, corresponding mostly to names with multiple
meanings that the syntactic parsing model can sometimes
assign to erroneous part-of-speech tags, such as “tie”, “sink”,
or “book”.

C. ANALYSIS OF SUPERVISION COMPONENTS

We experimented by training our localization network using
different supervision components produced by our caption
processing module, namely foreground categories, back-
ground categories, and visual attributes. Table [6] summarizes
the results, both for the generated supervision on the training
set, as well as for the final segmentation model on the valida-
tion set. As a baseline, we consider only labels for foreground
classes, retrieved from captions by detecting mentions of the
class name, or its plural form, as in [33]. We also present
results using the ground truth classification labels.

VOLUME XX, 2021

1) Foreground Categories

As shown in Table [6] using the improved labels for fore-
ground object categories produced by our method results in
a substantial improvement in the quality of the final seg-
mentation model compared to the exact match strategy. This
corresponds to a 9.7% relative improvement, from 0.308 to
0.338 mIoU on the validation set. The classes with the largest
increase in segmentation IoU, such as “person” (+54.4%
IoU), “dining table” (4+25.6% IoU), and “orange” (+21.0%
IoU), also usually correspond to those with the largest gain
in label IoU. These results highlight the effectiveness of
our approach for extracting relevant object categories from
captions and improving segmentation performance.

2) Attributes

By introducing attributes, the quality of the generated masks
improved to 0.368 mloU, boosting performance on the val-
idation set to 0.344 mloU. Fig. [j] illustrates the effect of
this supervision. Qualitatively, we observe that compound
activation maps can help to extend single class maps to
less discriminative parts and instances of the same category
guided by low-level visual features, improving the coverage
of the resulting masks. For example, in the second row of
Fig. [5| we observe that the activation map for the class “cat”
highlights only the most discriminative parts of the head,
resulting in an incomplete mask. However, by including
the map for the compound concept (“cat”, “furry”), which
highlights mostly the fur of the animal, the resulting mask
is expanded to cover a larger portion of the object. This
is especially useful for categories with a large number and
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(“dog”, “brown”)

(“sink”, “steel”)

(“horse”, “brown”)

(“ bus”, “white”)

(“horse”, “white”)

(“bus”, “green”)

white”)

(“dog”, “black”)

(a) Input image (b) Activation maps

(c) Generated mask (d) Generated mask (e) Ground truth
(class maps only)  (with comp maps)

FIGURE 5. Visualization of the effect of compound activation maps over the generated segmentation masks.

variety of associated attributes, that also correspond to large
and complex objects such as “cow” (+4.2% IoU on the
validation set), “train” (+3.1% IoU), and “horse” (+2.5%
IoU), or small, harder to localize objects such as “frisbee”
(+4.7% IoU) and “donut” (+3.3% IoU). We note that the
model can sometimes incorrectly highlight objects of similar
categories guided by their attributes, as shown in the last
row of Fig. [5] with the map for (“dog”, “black™), which also
partially highlights the black bear in the foreground. This is
a consequence of primarily penalizing attribute predictions
during training of the compound embeddings. In these cases,
we rely on single class activation maps and dCRF to correct
mislabeled regions. In practice, we observe that compound
maps increase recall and mloU of the generated masks,
without hurting precision significantly.

3) Background Categories

We observe that attention maps for complementary cate-
gories help to separate foreground objects from their sur-
roundings, especially in cases with many instances of the
same class cluttered together. It is also particularly useful for
refining foreground classes that present high co-occurrence
with specific background objects, such as “train” with “train
track”, or “surfboard” with “water”. In these cases, CAMs
for the foreground category will tend to highlight the back-
ground objects as well, as these provide useful information
for classification, despite being undesirable for segmentation.
By including the background class explicitly, the model can
take advantage of examples in which the objects appear
separately to learn to differentiate both classes. This results in
overlapping but distinct activation maps that can be combined
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to better localize the foreground category. Several examples
of this are shown in Fig. [6] Despite the fact that includ-
ing background categories mostly improved the precision
of the generated masks, while roughly preserving mloU on
the training set, the results on the validation set improved
significantly, from 0.344 to 0.357 mloU. This result could
indicate that removing consistently erroneous regions from
the supervision has a greater impact over the learned model
than removing some correct foreground regions randomly.

4) Comparison with Ground Truth Labels

We also experimented by training our model using ground
truth classification labels, obtaining 0.330 mIoU on the vali-
dation set, as shown in Table@ This result is better by a mar-
gin of 2.2% mloU than that obtained by using the exact match
baseline, but is surprisingly worse than training with class
labels retrieved by our caption processing module, despite
their relatively low recall, as is discussed in Section
This could be because classes that are missing from image
captions tend to be harder to identify, such as when there
are small or partially occluded objects. If the model fails to
localize an object, its label acts essentially as a false positive,
adding erroneous foreground regions that hurt segmentation
quality. These results indicate that the proposed approach
is robust to incomplete captions, and can, in fact, benefit
from the information about object saliency that is encoded
implicitly in this type of supervision. By leveraging visual
attributes and background categories we can further improve
results to 0.357 mloU, showing the potential of the richer
visual and contextual information present in image captions
as supervision for this task.
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FIGURE 6. Visualization of the effect of background class activation maps over the generated segmentation masks.

TABLE 7. Transfer learning experiment results, in terms of segmentation
performance on the validation set of PASCAL VOC 2012, and
YouTube-Objects datasets. All models were trained on the MS-COCO
train2014 set using all 81 MS-COCO semantic categories.

Foreground Attr Background Test mloU
classes classes  pASCAL VOC  YouTube-Objects

Baseline - - 0.448 0.528
Proposed - - 0.512 0.538
Proposed v - 0.524 0.550
Proposed - v 0.533 0.584
Proposed v v 0.548 0.597

GT - - 0.503 0.517

D. TRANSFER LEARNING EXPERIMENTS

For evaluating the performance of our approach further,
we performed additional experiments using the PASCAL
VOC, and YouTube-Objects datasets. Since these datasets are
not annotated with image captions, which are required for
training our model, we performed these experiments under
a transfer learning setting. More precisely, we trained our
model using the train2014 set of MS-COCO as reported in
the previous sections, and then evaluated its performance on
the validation set of PASCAL VOC, and YouTube-Objects.
For adapting our model to the new datasets, we simply
discarded all the weights in the final segmentation layer that
did not correspond to any of the semantic categories in the
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target domain, without performing any additional re-training
stages. We did not find any previous work that had reported
results under this setting to use as comparisons, so we trained
several different baselines based on our proposed approach to
serve as references, as shown in Table

1) PASCAL VOC Dataset

We observe that all the models achieve significantly better
results on PASCAL VOC than on MS-COCO, as is expected,
since PASCAL VOC contains fewer classes, and objects
are usually larger, and easier to identify than those in MS-
COCO. We obtained similar performance improvements for
the various components of the proposed approach, further
validating the conclusions derived from our experiments on
MS-COCO. In particular, we observed that using our cap-
tion processing module to detect relevant object categories,
instead of the exact match baseline used in previous studies,
improved performance substantially, in this case from 0.448
mloU to 0.512 mloU. Using the relevant categories detected
by our model also led to better results than using the ground
truth classification labels, which in this case yielded 0.503
mloU. Our results were further improved by leveraging both
attributes and background categories, with our full model
achieving 0.548 mlIoU on the validation set of PASCAL VOC
in this transfer learning setting.
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TABLE 8. Results on MS-COCO validation set for experiments combining the
visual grounding model from |36] with our proposed caption processing
module.

Foreground Full Background

Precision  Recall ~mloU

classes phrases classes
Baseline - - 0.436 0.539  0.307
Proposed - - 0.460 0.536  0.321
Proposed v - 0.484 0.529  0.334
Proposed v v 0.510 0511 0.342

2) YouTube-Objects Dataset

In the case of the YouTube-Objects dataset, using the fore-
ground labels detected by our model also improved perfor-
mance compared to the case using the exact match baseline,
but by a smaller margin of 1.0% mloU. This is because the 10
semantic categories defined in this dataset have unambiguous
names that usually work well with the simple exact match
strategy. Taking advantage of complementary information
extracted by our model improves performance substantially,
in this case resulting in a relative increase in mloU of 11.0%.
These results are also 15.5% higher than those obtained using
the ground truth labels, further underscoring the usefulness of
image captions as supervision for WSSS, and of our approach
for taking advantage of this information.

Finally, these transfer learning results show that the pro-
posed approach also improves the generalization ability of
the final model to different datasets.

E. EFFECT OF EACH MODULE
For the purpose of understanding the effect of each proposed
module better, we performed additional experiments employ-
ing the pre-trained model from Engilberge et al. [|36], which
constitutes the state-of-the-art in heatmap-based weakly su-
pervised visual grounding. We first experimented by ground-
ing class names using the method described in the orig-
inal paper, and adapted the resulting heatmaps to WSSS
following [33|] by subtracting the average of the min and
max values for each heatmap, setting background scores to
0, and selecting the argmax for each pixel. Applying this
method to categories retrieved from captions with the exact
match heuristic yielded an mIoU of 0.234 on the trainvaldk
set. We also experimented using the pipeline described in
Section for grounding, normalizing, and generating
negative background cues from the embeddings produced by
this model. The parameter « from (IT)) was set to 4 following
the same strategy used for the localization network. This
method improved mloU to 0.272. Refining the maps using
dCREF further improved mloU on the training set to 0.309. We
therefore used this setting as baseline for our experiments,
which are summarized in Table

By using the foreground class labels produced by our
caption processing module, performance on the validation
set improved from 0.307 to 0.321 mloU compared to the
baseline. This can be improved further to 0.334 mloU by
also grounding the full noun phrases associated with each
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TABLE 9. Effect of different attribute types over semantic segmentation
performance on MS-COCO.

Attribute type:  None Low-level ) All' All All comp.
only adjectives  verbs nouns

mloU (train): 0.359 0.368 0.355 0.356 0.357

mloU (val): 0.338 0.344 0.337 0.336 0.337

TABLE 10. Effect of balanced binary cross-entropy loss over segmentation
performance on the MS-COCO validation set.

Loss function Precision  Recall ~mloU

Standard BCE 0.586 0.466  0.351
Balanced BCE 0.560 0.497  0.357

TABLE 11. Effect of learning rate and warm-up phase during training of the
segmentation model, in terms of mloU over the MS-COCO validation set.

Learning rate  Warm-up  Precision = Recall ~—mloU
0.001 - 0.526 0.470  0.326
0.001 2Kk steps 0.525 0.468  0.328

0.01 2k steps 0.560 0.497 0357

label, and combining the resulting maps following the strat-
egy proposed for handling compound maps, as in (9). By
additionally leveraging maps for background categories as
described in Section [[II-C| results were improved to 0.342
mloU. In total, taking full advantage of the information
extracted by our caption processing module resulted in a
relative improvement of 11.4% mIoU on the validation set,
showing the effectiveness of the extracted supervision, and
of the proposed combination strategies.

Furthermore, we observe that this final result is still sig-
nificantly lower than the 0.357 mloU obtained with our
localization network. This is despite the fact that the model
from Engilberge et al. [36] uses a much more powerful
ResNet-152 architecture, and is significantly more expensive
to train due to the use of recurrent networks and a hard-
negative mining contrastive loss. These results highlight the
importance of filtering caption information for learning to
generate high-quality activation maps for WSSS.

F. ADDITIONAL ABLATION STUDIES

1) Effect of Attribute Types

Most of our experiments were performed using a subset of
visual attributes describing low-level visual features, such as
colors, materials, and textures. Table E] shows segmentation
results on the training and validation sets when employing
other types of attributes detected by our caption processing
module, such as all the adjectives, verbs, and compound
nouns. We observe that all other unfiltered attribute types
actually hurt performance slightly compared to when only
class labels are used. This can be explained by the fact
that these attributes describe mostly non-local information,
such as quantities or actions, that the model fails to localize
accurately, thus degrading the quality of the generated masks.
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FIGURE 7. Effect of the number of training epochs on the performance of the
final segmentation model.

2) Effect of Weighted BCE Loss

With the purpose of assessing the effect of the proposed
weighted binary cross-entropy loss, we retrained our model
based on ResNet-50 using regular BCE loss (equivalent to
setting w = w; = 1in (7) and ¥} = w7 = 1 in (8)).
The results are presented in Table [I0] showing a drop of
0.6% mlIoU on the validation set when employing standard
BCE loss, mostly affecting a small subset of less frequent
classes, showing the effectiveness of this simple strategy to
handle class imbalance. Qualitatively, the weighted BCE also
allows the model to learn to localize compound pairs with
infrequent attributes, although this has little impact over the
performance of the final model.

3) Effect of the Learning Rate on the Segmentation Model
Table[IT]shows the results over the validation set for different
settings of the learning rate during training of the segmen-
tation model. We observe that by increasing the learning
rate used in [9]] from 0.001 to 0.01 and adding 2k steps of
linear warm-up at the beginning of training, we were able
to improve the performance of the final model substantially.
Adding the warm-up phase by itself had little impact over
performance, but prevented the model from diverging early
on when increasing the learning rate. These results show that
this is a simple and inexpensive way of boosting performance
on the validation set. It is worth noting that, even without
this modification, our ResNet-50 model still outperforms the
previous state-of-the-art by a margin of 4.3% mloU.

4) Effect of the Number of Training Iterations on the
Segmentation Model

Fig. [7] shows the effect of the number of training epochs
on the performance of the final segmentation model on the
validation set of MS-COCO. We observe that increasing the
total number of iterations generally improves performance,
but stabilizes after the 10 epochs used in our experiments.

G. QUALITATIVE RESULTS

Fig. [8|shows some qualitative results on the validation set of
MS-COCO, obtained using the segmentation model trained
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(b) Ground truth

(c) Predicted (ours)

FIGURE 8. Examples of segmentation results on the MS-COCO 2014
validation set obtained using the proposed approach.

with the pseudo-ground truth masks generated by our local-
ization network with the ResNet-38 backbone. We observe
that the resulting model is capable of localizing a wide range
of object categories accurately across different scales. The
last two rows show typical failure cases, in which the model
fails to localize small or less prominent objects that appear
in cluttered scenes, which are frequently omitted from the
training captions, and consequently from the training masks.
This includes the baseball glove and ball in the penultimate
row, and the cups and bottles in the last row.

VI. CONCLUSIONS AND FUTURE WORK
A. CONCLUSIONS

In this paper, we presented a comprehensive methodology to
tackle weakly supervised semantic segmentation using only
image captions. The key component of our approach is a cap-
tion processing module, that leverages syntactic structures
and knowledge-based semantic relations to extract visual
information from captions, without requiring any additional
annotations. We presented a novel localization network that
can be trained using the extracted supervision to generate
activation maps both for single classes, and for class-attribute
compound pairs. Finally, we described a method to leverage
all types of maps generated by this network to obtain high-
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TABLE 12. List of all 72 WordNet synsets used for defining background categories in the reported experiments, that extend the 80 foreground object categories

defined in MS-COCO.

Index Synset Index Synset Index Synset Index Synset Index Synset
81 street.n.01 96 tray.n.01 111 shower.n.01 126 painting.n.01 141 egg.n.02
82 plate.n.04 97 snow.n.01 112 lamp.n.02 127  engine.n.01 142 rice.n.01
83 tree.n.01 98 meat.n.01 113 cart.n.01 128  candle.n.01 143 goat.n.01
84 grass.n.0l 99 ramp.n.01 114  tarmacadam.n.02 | 129  trail.n.02 144 hay.n.01
85 body_of water.n.01 | 100  rock.n.01 115  curb.n.01 130  branch.n.02 145  pool.n.01
86 sky.n.01 101 shelf.n.01 116 rug.n.01 131 rack.n.05 146  ceiling.n.01
87 sidewalk.n.01 102 runway.n.04 117 basket.n.01 132 tile.n.01 147 roadway.n.01
88 floor.n.01 103  cabinet.n.01 118  home_plate.n.01 133 graffito.n.01 148  leash.n.01
89 pole.n.01 104  cheese.n.01 119  streetlight.n.01 134  curtain.n.01 149  roof.n.01
90 mirror.n.01 105  bathtub.n.01 120  step.n.04 135  potato.n.01 150  pepper.n.04
91 flower.n.01 106  pan.n.01 121  tomato.n.01 136  crossing.n.05 151  chest_of _drawers.n.01
92 track.n.09 107  shrub.n.01 122 bun.n.01 137  onion.n.01 152 soup.n.01
93 box.n.01 108  platform.n.01 123 post.n.04 138  highway.n.01
94 railroad_track.n.01 109  countertop.n.01 | 124  pot.n.01 139  carriage.n.02
95 light.n.02 110  pen.n.01 125  doorway.n.01 140  platter.n.01

TABLE 13. List of all 40 visual attributes used in the reported experiments.

white pink tile/tiled furry leafy
black grey/gray wood/wooden | cloudy | glass
red purple grass/grassy paved | brick
blue gold/golden rusty/rusted snowy | dirt
green beige ceramic muddy | stone
brown | silver rock/rocky fluffy steel
yellow | checkered metal/metallic | plastic | cement
orange | stripe/striped | concrete sandy | leather

quality segmentation masks, that are effective to train a
supervised model.

We presented several experimental results that show the
advantages of our approach. Using the proposed caption
processing module to detect foreground categories, the im-
provement relative to the exact match heuristic used in
previous methods was 9.7% mloU on the validation set of
the MS-COCO database. We also showed that by including
complementary visual information in the form of attributes
and background categories, results were further improved by
5.6% relative mIoU. Additional experiments showed that, by
restricting its supervision to relevant visual information, our
simple localization network can outperform a much more
complex visual grounding model trained to localize arbitrary
text, by 4.4% relative mloU. Finally, we showed that our best
model advances the state-of-the-art for WSSS with image-
level supervision on MS-COCO significantly, by a margin
of 7.6% absolute (26.7% relative) mIoU. The proposed ap-
proach constitutes a powerful framework for utilizing image
captions as supervision to train segmentation models. It could
increase the effective number of training examples available
for this task dramatically, by enabling the use of images
paired with this type of annotation which are freely available
on the web.

B. FUTURE WORK

The proposed approach could be improved in the future by
addressing the problem of correcting mislabeled images that
arises from incomplete or incorrect captions, and that cur-
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rently results in inaccurate pseudo-ground truth masks. Thus,
an interesting line of research would be to model the training
of the localization network as a problem of classification with
noisy labels [79], [80], using the predictions of the same
model to iteratively refine the labels initialized from captions.

Another promising improvement could be extending the
proposed approach to the more complex problem of weakly
supervised instance segmentation. Whereas existing ap-
proaches for this task are based on splitting class masks
obtained from CAMs into instance-level segments [[75], mod-
els based on captions could take advantage of attribute and
hyponym information to obtain activation maps closer to
the instance-level, facilitating the mask generation proce-
dure. Additionally, the presence of explicit quantifiers could
be exploited to introduce information about the number of
instances for each class to be segmented in each training
image.

APPENDIX A DETAILS OF MS-COCO ATTRIBUTES AND
BACKGROUND CATEGORIES

A. BACKGROUND CATEGORIES

We propose a simple iterative procedure to initialize the set
of background categories Cp using the initially unlabeled
synsets present in the dataset, i.e., those not assigned to any
foreground class in C, as described in Section [[lI-A2] Given
that these synsets initially contain non-visual information, as
well as excessive granularity, further filtering is required to

construct Cy,, which is performed as follows:

1) We discard all hypernyms of labeled synsets in Cyg,
since these describe categories of objects that are too
diverse visually (e.g., “furniture”, “animal”, etc.), as
well as all of their meronyms, given that these refer
to parts of labeled objects (e.g., “wing”, “wheel”, etc.).

2) We also discard hyponyms of synsets for “abstraction”
(describing mostly non-visual information), “part”
(since these refer to incomplete objects), as well as
“room” and “location” (which usually describe whole

scenes).
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3) We select the remaining unlabeled synset with the

highest frequency in the dataset, and assign it to a
new label, extending Cp,. We then assign all of its
hyponyms and holonyms to the same label, and discard
all of its hypernyms and meronyms, as explained in
step 1).

4) Step 3) is repeated until no synset in the dataset exceeds

a certain frequency threshold, 7', which is set at 7' =
200 for MS-COCO.

This procedure prioritizes labeling at semantic levels
which are most frequently used by annotators to describe ob-
jects, while preserving consistency by exploiting the Word-
Net graph. The resulting set can then be further refined
according to the application. For example, in the case of
MS-COCO we also discard all hyponyms of “clothing.n.01”,
as these are labeled together in practice with the person
or animal wearing them. To make replication easier, we
include the final list of 72 background categories used in our
experiments in Table [I2]

B.

ATTRIBUTES

Additionally, Table[T3]includes all the selected attribute types
describing low-level visual information, which are used in
most of our experiments.
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