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ABSTRACT Predicting an individual’s risk of getting a stroke has been a research subject for many authors
worldwide since it is a frequent illness and there is strong evidence that early awareness of having that risk can
be beneficial for prevention and treatment. Many Governments have been collecting medical data about their
own population with the purpose of using artificial intelligence methods for making those predictions. The
most accurate ones are based on so called black-box methods which give little or no information about why
they make a certain prediction. However, in the medical field the explanations are sometimes more important
than the accuracy since they allow specialists to gain insight about the factors that influence the risk level.
It is also frequent to find medical information records with some missing data. In this work, we present the
development of a prediction method which not only outperforms some other existing ones but it also gives
information about the most probable causes of a high stroke risk and can deal with incomplete data records.
It is based on the Dempster-Shafer theory of plausibility. For the testing we used data provided by the regional
hospital in Okayama, Japan, a country in which people are compelled to undergo annual health checkups
by law. This article presents experiments comparing the results of the Dempster-Shafer method with the
ones obtained using other well-known machine learning methods like Multilayer perceptron, Support Vector
Machines and Naive Bayes. Our approach performed the best in these experiments with some missing data.
It also presents an analysis of the interpretation of rules produced by the method for doing the classification.
The rules were validated by both medical literature and human specialists.

INDEX TERMS Dempster-Shafer theory, stroke, expert systems, interpretable classification.

I. INTRODUCTION
Cerebrovascular accidents, also known as strokes, are the sec-
ond leading cause of death worldwide and the third leading
cause of disability [1]. Stroke is defined as the sudden death of
some brain cells due to lack of oxygen and, inmany cases, it is
asymptomatic. Strokes have an enormous impact on coun-
tries’ socio-economic development. For example, according
to the American Heart Association, in the United States more
than 140 thousand people died due to stroke as underlying
cause in 2016. This means that stroke accounted for one of
every 19 deaths. The estimation for the sum of direct and
indirect costs of strokes in 2015 was $45.5 billion. This cost
is projected to double in the next 20 years, reaching a total
expenditure of $94.3 billion by 2035 [2]. The World Health
Organization (WHO) declares strokes as one of the growing
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crises having received very little attention to date [3]. Early
awareness of having this illness has proved to be beneficial
for prevention and treatment [4].

Middle- and high-income countries have developed health-
care systems that have been collecting patients’ data for years.
Some of them follow international standards for information
structure such as ICD codes or FHIR standard [5]. In addi-
tion, countries like Japan have strict policies requiring active
workers to have an annual checkup regardless if they are
healthy or not [6]. These protocols produce large datasets for
both healthy and sick cases, and they show the evolution of
the patient medical status through the years. This valuable
information can be applied to create a non-invasive method
to monitor patients. For example, we could use it to estimate
the risk of getting a stroke in the next few years. However,
it is common that these datasets contain missing or erroneous
data. The literature shows that there have been some efforts
in the past to tackle this problem developing models based
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on machine learning that use this data to assess the risk of a
patient of getting a stroke in the future (e.g. [7]). The literature
shows that the most accurate models belong to the so called
‘‘black-box’’ type [8] which do not give much information
about the reasons why they classify a person as risky or not.
This explanation is sometimes even more valuable infor-
mation than the accuracy of the prediction itself since this
leads to new knowledge discovery. This characteristic is often
named interpretability.

The objective of this work is to develop a new method for
automatic and individual stroke risk prediction within a year
using data from electronic health records (EHR) and exam
results. To accomplish this, we propose to use an interpretable
rule-based method like the one presented in our previous
work [9] but using rule mass optimization based on Gradient
Descent proposed by Peñafiel et al. [10] instead of statistical
analysis. The highlights of the new model are the ability of
handling missing data, the use of actual medical knowledge
encoded as rules for themodel and the automatic optimization
of rule values.

The developed model was applied to a dataset of Japanese
Electronic Health Records (EHR) from the Tsuyoyama
Hospital, Japan, which includes exam results and patient
attributes. We compare our method with others for screening
stroke and we discuss the most important attributes to assess
this risk. Results show that it outperforms other machine
learning models and stroke screening methods. In addition,
we validated the rules that our model found as the most
important ones for detecting stroke. We compared them to
medical studies and we applied an experts survey. Experts
agreed with most of the rules found by our model.

II. RELATED WORK
This section first reviews previous works on stroke risk
prediction which define baselines for comparison. Then
interpretable machine learning techniques are presented,
which can be suitable candidates as models for stroke risk
prediction.

A. METHODS FOR STROKE RISK PREDICTION
CHADS2 is a score metric to evaluate stroke risk prediction
proposed by Gage et al. [11]. The name CHADS2 is an
acronym for the method itself, the letter ‘‘C’’ assigns a point
to patients who have congestive heart failure, ‘‘H’’ assigns a
point to patients with hypertension, ‘‘A’’ is for patients aged
75 or older, ‘‘D’’ is for patients with diabetes mellitus and
finally ‘‘S2’’ assigns 2 points to patients who have had stroke,
ischemic attack or thromboembolism in the past. CHADS2
score is widely used in the medical field to predict stroke
occurrences because of its simple formulation and evaluation.
A drawback of this method is that it only uses five variables
for decision making.

Letham et al. [12] used Bayesian Rule Lists (BRL) to
develop an interpretable model to predict stroke risk within
a year for patients diagnosed with atrial fibrillation. The
method uses decision lists, which consist of a series of

‘‘if . . . then . . .’’ statements, then it uses a generative model
called Bayesian Rule Lists which automatically produces a
posterior distribution over possible decision lists allowing
inferences to be made about stroke risk.

Another approach to predict stroke risk was proposed
by Peñafiel et al. [9]. In their work, a model based on
Dempster-Shafer Theory was proposed; this model operates
using rules that were built using training data statistics; we
will call this model as DS-Stat. When evaluating a new case,
the corresponding rules are combined using the Dempster
Rule to provide a final mass assignment function, then the
belief for this assignment is computed and given as the
model response. This model achieves an accuracy of 61%,
An important feature of the model is that it is interpretable.
The authors showed the essential rules associated to stroke
and how they were verified with medical literature.

Teoh [13] also proposed a method to predict stroke risk.
In his work, a Recurrent Neural Network (RNN) [14] was
used in combination with a custom loss function. The model
uses all available data for a patient, such as exam results and
diagnosis structured like a time series for the RNN. Then,
fully-connected layers are applied to predict the class. The
custom loss function was tested and compared with classical
ones. This function was proven to behave better since it
takes into account the context of data more accurately. Inter-
pretability is also covered in this work by deleting specific
attributes from the feature vector and observing the change in
the accuracy indicator. The best result of the model achieves
an area under the receiver operator curve (AUC ROC) score
of 0.669.

Weng et al. [15] present another work on stroke risk
prediction using routine clinical data and machine learning
techniques. In their work, they analyze data from more than
380,000 patients who have 30 variables that could affect this
risk. They analyze four traditional machine learning meth-
ods: Logistic Regression, Random Forest, Gradient Boosting
and Neural Networks. The results show that all the methods
exceed the baseline that the authors propose, the best of which
are Neural Networks with an AUC ROC of 0.764. This work
also shows a typical example of the trade-off between inter-
pretability and performance in machine learning, because
random forest or logistic regression achieve less accurate
results but their results can be explained while Neural Net-
works, which are those that obtain the least error, behave like
black-boxes.

B. INTERPRETABLE CLASSIFICATION
Classification is the process of assigning a label to a study
object given its features or defining it as being of a certain
class. In machine learning, classification is usually called as
discrete supervised learning. Many methods to solve clas-
sification tasks, known as classifiers, have been proposed,
such as Support Vector Machine [16], Artificial Neural Net-
works [17], and Bayesian networks [18].

Classifiers can be divided into two groups: the ones that
behave like black-boxes and the ones that are interpretable.
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A black-box classifier is a model that uses the input to make
complex non-linear operations in order to get the output,
in many cases these computations are even data-dependant
thus it is nearly impossible to know exactly how a decision
was made by the model. The most remarkable black-box
classifiers are Artificial Neural Networks and specially Deep
Networks [19]. On the other hand, interpretable classifiers
give clear information about why a certain decision was made
and which is the importance of the features in the process.
The most known interpretable classifier is the Decision Tree.
Empirically, it is observed that there is a trade-off between
interpretability and accuracy, meaning that the most inter-
pretable methods are usually the ones with high error in
prediction.

The importance of having an interpretable decision sup-
port system is critical in many areas including the medical
one [20]. For a physician or an insurer it is much more
important to knowwhy a patient is classified as risky for a cer-
tain disease instead of having a machine telling his/her class
even if this machine is more accurate. Given explanations
alongside with decisions is richer for decision making and
prevention of future diseases. To illustrate this observation,
consider the work Deep EHR by Shickel et al. [21]. In that
work, a review of proposed Electronic Health Records (EHR)
representations mainly based on deep learning encoding tech-
niques are compared. One of the limitations of all proposed
representations is the lack of interpretability; the authors
emphasize that this is an important aspect in the medical
field but currently its coverage is very low among existing
proposed solutions.

In this work we opted for the Dempster-Shafer using
Gradient Descent Classifier (DSGD). This is an interpretable
tabular classifier that can handle missing values and intro-
duce expert knowledge for prediction. In order to under-
stand the model we will briefly explain the Dempster-Shafer
Theory (DST) and then we will explain the model itself.

C. DEMPSTER-SHAFER THEORY
The Dempster-Shafer Theory (DST) [22] is a mathematical
framework to reason with uncertainty and incomplete data.
It is often called a generalization of the Bayesian theory
because is more expressive than classical Bayesian models
due of the inclusion of uncertainty.

Let X be the set of all states of a system called frame of
discernment. A mass assignment function, or simply mass,
m is a function that satisfies:

m : 2X → [0, 1], m(φ) = 0,
∑
A⊆X

m(A) = 1 (1)

where A is a subset of X and φ is the empty set. The term
m(A) can be interpreted as the likelihood of getting exactly
the outcomes of the set A, and not a subset of A. Masses are
the elements that encode knowledge about the process.

The plausibility metric is defined as the total amount of
evidence that can support an outcome. This formulation is

the following:

Plm(A) =
∑

B∩A6=φ

m(B) (2)

Multiple evidence sources expressed by their mass assign-
ment functions of the same frame of discernment can be com-
bined using the Dempster Rule (DR) [23]. Given two mass
assignment functions m1 and m2, a new mass assignment
function mc can be constructed by the combination of the
other two using the following formula:

mc(A) = m1(A)⊕m2(A)

=
1

1− K

∑
B∩C=A6=φ

m1(B)m2(C) (3)

where K is a constant representing the degree of con-
flict between m1 and m2 and it is given by the following
expression:

K =
∑

B∩C=φ

m1(B)m2(C). (4)

D. DEMPSTER-SHAFER USING GRADIENT DESCENT
CLASSIFIER
The DSGD model uses DST principles in their computa-
tions which allows to express more complex scenarios while
remaining simple and interpretable. Like any other classifier,
given an input feature vector X , this model predicts the class
associated to this record y′ from a known set of possible
classes. To apply DST our frame of discernment is the set
of all classes. Then the DSGD model operates using masses
from this domain and combining them using the Dempster
Rule.

The model is based on rules that are composed by state-
ments that can be verified with data and a mass assignment
function which encodes the evidence for the records that
satisfy the statement. We denote these rules as pairs (m, s)
where m is the mass and s is the statement. An example of a
statement of a rule is ‘‘The patient has diabetes’’. Rules can
be defined by the user using his/her expert knowledge or can
be generated automatically using statistics from the train-
ing data, allowing totally automatic classification or expert
assisted classification. Just the statement must be provided to
create a rule; the values of the mass assignment functions are
initially set at random but with a high uncertainty.

To classify a record, the model looks for the rules in the
rule set RS whose statement is satisfied by the values record.
The mass assignment functions of these rules are combined
using the Dempster Rule [23], then the model computes the
plausibility of the combined mass. Finally, the predicted class
is the one with highest plausibility.

Mx = {m | (m, s) ∈ RS ∧ s(x)}

mf =
⊕
m∈Mx

m

y′ = argmax
class

Pl(mf ) (5)
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The model also provides a training algorithm in which it
‘‘learns’’ the optimal values of these mass assignment func-
tions producing the minimum error in classification. In the
training phase, the model computes the loss of the predictions
with the actual classes for all records in the training set. Then,
the model uses this error as a target function for optimization
and it applies Gradient Descent to update the values of the
masses. This process is very similar to the training process of
Neural Networks models; however, the model remains simple
by the fact of relying on DST rather than using complex
non-linear operations like those of Neural Networks.

Figure 1 summarizes the classification and training pro-
cess. The input is a set of rules, a feature vector X and an
actual class y. The model selects the rules which X satisfies;
these rules are combined using Dempster Rule and then the
plausibility for each class is computed, and the predicted
class y′ is the one with the highest value. Finally, the loss is
computed using the actual class y and the mass values are
updated by applying Gradient Descent.

FIGURE 1. Training process in DSGD model.

The model is also interpretable since it is built using the
meaningful rule statements which are not altered during train-
ing phase. The importance for prediction of each rule can
be computed once the optimal values for the masses are set.
In this work [10], the indicator γ measures rule importance
and it is defined as the geometric mean between the mass m
of the class k and the complement of the uncertainty.

γ (m, k) =
√
mk (1− mU ) (6)

If γ takes a value 0 for a rule, it means that this rule does
not contribute to the prediction of that class, while a value
of 1 means that the rule is essential for the prediction of this
class. After the γ values are computed we can sort the rules
and identify the most important rules for the prediction of a
particular class.

Finally, note that the model can handle missing data
because it considers only the rules for which their statements
can be verified. If an attribute of the statement is not present
in a data record, the model skips this rule for this record.

III. DATA DESCRIPTION
There are three main data sources containing useful patient
information which were used in our study:

1) Patient Checkups. This data source contains informa-
tion about results of exams all Japanese workers have to
undergo annually. Each exam record contains an exam
identifier code, the date when it was collected and the
result obtained. Examples of exams are LChO exam
and blood pressure. There are 23 different types of
exams.

2) Patient demographics. It contains general information
about patients such as height, weight, body fat, age,
gender, and waist measurement.

3) Patient disease history. This data source contains
information about medical receipts and patients’
diagnoses. The diseases are indexed according to
ICD-10 codes [24] and the date of each diagnosis is
also included.

These data sources are not completely robust; there are
many missing values and in many cases joining all the data
sources for a patient is not possible. If we completely exclude
incomplete data, then around 95% of the dataset will be lost.
If we decide to eliminate all this information then the method
will have scarce data for training, therefore a method to han-
dle missing values is required. However, data that cannot be
joined is useless, because we will miss almost all information
about the patient and because one of the goals of the study is
to relate exam result to stroke risk.

The impact of missing values can be observed in Figure 2.
It shows the 23 types of exams and the number of patients
in the dataset with at least one result for the corresponding
exam.

FIGURE 2. Types of exams and number of patient that have results for
that exam.

After applying the described filters we selected
27876 patients’ records, 22140 of them did not have strokes
(79.4%), and 5736 had (20.6%). All patients have at least one
checkup per year and patients who have more diseases tend
to have also more exam results as expected.
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IV. PROBLEM STATEMENT
The problem can be defined as follows: Determine
whether or not a patient will have a stroke in the next year
automatically using her/his historical medical information.
This problem can be seen as a binary classification problem,
where our input is the historical information defined in the
previous section and the outcome are two classes, namely
‘‘The patient will have stroke within the next year’’, and ‘‘The
patient will not have stroke within the next year’’.

The range of one year was chosen because it is a rea-
sonable period of time for taking preventive action in the
case there is high stroke risk. Concerning the data, there
is a trade-off between the number of years ahead for the
prediction (the higher, the better) and the amount of data
available for training (the higher, the better). For example,
if the model predicts a stroke within two years, at least
these two years of data should be used for validation, and
then less data will be available for learning the patterns and
training.

V. PROPOSED MODEL
In this section the proposed model for addressing the stroke
risk prediction problem is presented.

A. EMBEDDING
Embedding is the process of representing an observa-
tion or record as a structured data, typically, a vector. Con-
sidering the data sources already described, a straightforward
embedding is to consider each patient as an individual row
vector in a matrix. The column names are the attributes of
all sources, i.e. the exam results, the past diseases and the
demographics.

The problem with this representation is that for one patient
there are many records of exam results, diseases and demo-
graphics within the data history. In order to solve this problem
for the case of exam results and demographics, we propose
to use the most recent results only, since most recent results
should be most representative of the current condition of the
patient.

For the case of disease history, the data is presented like a
log showing the time when a patient was diagnosed with cer-
tain disease. This representation cannot be inputted directly
into the vector; instead we can consider to have a column for
each disease and mark it as 1 if the patient had the disease
in the past and 0 if not. A drawback of this approach comes
from the fact that ICD-10 defines more than 14000 different
codes, and then the dimensionality of the feature vector will
be very high thus slowing down the computations of any
method. Moreover, this representation is very sparse because
certain specific diseases occur only in few patients. To solve
this problem, we used expert knowledge to select a group of
diseases which are likely to be related with stroke occurrence;
these diseases are: Type 2 diabetes mellitus (ICD-10: E11),
Cerebrovascular diseases (ICD-10: I60-I69), Ischemic heart
diseases (ICD-10: I20-I25) andDiseases of arteries, arterioles
and capillaries (ICD-10: I70-I79).

B. CLASSIFIER AND RULES
The main features of the Dempster-Shafer Classifier using
Gradient Descent presented by Peñafiel et al. [10] are: it
can achieve similar accuracy compared to other classifica-
tion methods such as Support Vector Machines or Random
Forest; the model is rule-based and allows to generate rules
automatically or to define custom rules according to data; the
model can handle missing information which is a requirement
according to the chosen embedding; and the model is inter-
pretable which means that it can give an explanation of any
prediction.

The rules of the model were defined according to the
following process:
• For exams that are qualitative or semi-quantitative such
as protein qualitative, sugar qualitative and occult blood
reaction; also for past history of diseases such as dia-
betes, cerebrovascular diseases, cardiovascular diseases,
and arteries-related diseases; and for gender; we create
a rule for each possible outcome of these attributes.

• For quantitative exams and demographics, we used
expert knowledge to define the cutoff values between
normal values and abnormal values. These cutoff values
are also called reference interval and they are normally
used in the medical field for example the ones used
internationally by Medscape [25]. The values we used
are presented in Table 1.

TABLE 1. Cutoff values for attributes based on normal medical ranges.

Using these cutoff values we created a rule for each
interval defined by these values, for example, for LDL-C
there is a rule activated (this means, we apply the
rule) when LDL-C is smaller than 120, another rule is
activated when LDL-C is between 120 and 160, and
finally another rule is activated when LDL-C is greater
than 120.

• Finally, for quantitative measures we also created rules
to be activated when pairs of attributes are outside their
normal ranges in order to search for more complex
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relationships in data. An example of this kind of rules is
a rule activated when UA is greater than 7 (above normal
range) and PLT is smaller than 10 (below normal range).

This process generated a total of 558 different rules. The
classifier was trained using Mean Squared Error (MSE) as
loss function, and using ADAM optimizer [26] with a learn-
ing rate of 0.001.

VI. RESULTS
Results are divided in three parts. In the first part, the result
of the model predictions and their performance metrics are
shown. In the second part, the model is compared to the other
stroke risk prediction methods presented in the related work
and finally, an analysis of the interpretability of the obtained
result is presented in the third part.

A. MODEL PERFORMANCE
After defining the embedding and configuration for our
model in this problem, we tested the model performance
using a 5-fold experiment over the dataset. In other words,
we split the dataset into a training set (80%) and validation set
(20%) randomly. We repeated the process five times, varying
the data records belonging to the training and validation
sets. For each fold, the following indicators were calculated:
accuracy, sensitivity, specificity,F1 macro, and the area under
the ROC curve. Table 2 shows the average of these indicators
among all folds.

TABLE 2. Performance results for stroke prediction problem.

These results will be compared to other ones in two cases in
order to validate them. In the first case, we will compare our
results to those of other machine learning techniques using
the same embedding. In the second case, we will compare
our model to current methods for stroke risk prediction from
different sources such as clinical procedures and other data
science proposed solutions.

B. COMPARISON WITH OTHER MACHINE LEARNING
MODELS
We will compare our method to the following machine learn-
ing models: Random Forest with 100 trees, Naive Bayes,
K-Nearest Neighbors with K = 5, Multilayer Perceptron
with a single hidden layer of size 100, and SVM with RBF
Kernel.

These other benchmark methods do not support missing
values on data. This could be mentioned as an advantage of
our model over the others. We opted for filling the missing
values since removing data records changes the dataset, and
then results become incomparable. We will use the mean
imputation strategy for this task. This process consists of

assuming that the best estimation for a missing value is the
mean of the available data. Therefore within an attribute,
we compute the average for the available information and use
that value to fill the missing ones.

Table 3 shows the results of the different models and our
model for the validation set. Furthermore, Figure 3 shows the
ROC curve for all methods in the same chart to compare them
easily.

TABLE 3. Results of various methods for the stroke risk problem.

FIGURE 3. ROC curve for various methods in the stroke risk problem.

From the analysis of these results, we can observe that our
model is the one that achieves the best performance for this
problem in both accuracy and area under the ROC curve.
In the ROC curve chart, we can see that our model (blue line)
is always over the other model curves showing that it is the
most accurate in the prediction of both classes.

We identified two main reasons why our model outper-
forms the other models. First, our model can handle missing
values directly, which avoids the errors introduced by the
mean imputation. In fact, we can see that the models that
perform worst are KNN and SVM, which are based on geom-
etry. In these cases, mean imputation causes many records
to have a distance of 0 or colinearities in some dimensions,
which introduces difficulties to the methods for performing
correctly.

The second reason why we believe our method works
better is that the rules we used to construct the model are
meaningful and validated by medical studies. Every rule
statement represents an actual condition that patients can
have. This property helps the model to distinguish different
patients better than the rest of the models.
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C. COMPARISON WITH OTHER STROKE RISK
ASSESSMENT METHODS
As explained before, many models have been proposed to
evaluate the risk a patient has of getting a stroke. These
methods offer baselines for our model since they are created
with the same purpose. Some of them are very basic, but they
are widely applied by clinicians, while others are complex
and use state-of-the-art data science techniques.

In particular we tested the methods presented in section
2.1: CHADS2, Bayesian Rule Lists (BRL), Multi-layer
percetron (MLP) from Weng et al, Dempster-Shafer clas-
sifier using statistic estimation (DS-Statistical) and a RNN
with a custom loss function. Table 4 shows the area under
the receiver operator curve AUC score for each method
from the results reported in their works. Due to the differ-
ences on the data used as input, these results may not be
directly comparable but still they offer an approximation of
the performance. From this table, we observe that our method
outperformed other methods.

TABLE 4. Comparison of results for various stroke risk prediction
methods.

VII. INTERPRETABILITY
Besides the model performance and the reached accuracy,
our model is able to extract the most important rules while
predicting whether a patient will have a stroke.

In order to do this, all masses have been adjusted after
the training phase to find the values that minimize the
error when predicting stroke. Those values, according to
Dempster-Shafer Theory, are assignments to every subset
of possible outcomes; in our case, they will be the null
set, the singleton for ‘‘No stroke’’ class, the singleton for
‘‘Stroke’’ class and the complete set. The mass of a singleton
measures the contribution to a particular outcome, whereas
the mass of the complete set measures the uncertainty of any
outcome.

Having all these mass values, the procedure to extract the
most contributory rules for a specific class is to compute the
contribution score γ defined in Equation 6 as the geometric
mean between the singleton of the class and the complement
of the uncertainty.

Table 5 and Table 6 show the top 7 most important rules
for the prediction of the classes ‘‘Stroke’’ and ‘‘No Stroke’’
respectively according to γ indicator.

From these tables, we can observe that the model can
produce meaningful explanations for the whole problem and
clearly distinguish and sort the contributory rules from the
useless rules for each class.

TABLE 5. Most important rules for class ‘‘Stroke’’.

TABLE 6. Most important rules for class ‘‘No Stroke’’.

For the case of the ‘‘Stroke’’ class, the rule ‘‘HD
cerebrovascular = 1’’, which means ‘‘the patient had a cere-
brovascular disease in the past’’ is by far the most important
rule while predicting this class with a γ score of 0.755.
The second most contributory rule which relates the count
of platelets in the blood (PLT) to low range of values has a
contribution of 0.411, which is almost half of the contribution
of the first rule. The following rules decrease their contribu-
tion more slowly. For the case of ‘‘No Stroke’’ rules, there is
not a clear rule that defines that class. Alternatively, many
rules achieve high contribution values, meaning that there
exist many more distinct configurations for these variables
that determine a healthy patient.

Furthermore, many of the rules that appear for the
‘‘Stroke’’ class also appear in their contrary form for the
‘‘No Stroke’’ class. This is the case of the count of platelets
(PLT), which for lower values relates to the occurrence of
strokes and for higher values related to healthy patients.
Also, the higher values of Hemoglobin concentration (Hb)
are related to stroke, whereas lower and average values are
related to healthy patients.

Although the obtained rules that explain the decisions
made by the model seem to be meaningful and coherent,
we need to prove that. These interpretability results will be
tested concerning their applicability and correct meaning. For
that purpose, we will contrast the rules with current medical
knowledge in order to see whether they are in accordance by
presenting these rules to physicians and experts and ask them
about their correctness.

VIII. VALIDATION
In this section, the interpretability results presented in the
previous section will be compared to explanation models,
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FIGURE 4. Decision Tree for stroke risk problem.

medical literature and an expert survey to validate whether
these results are correct explanations for the problem.

A. DECISION TREE
The first benchmark model to compare our interpretability
results is a Decision Tree. As we mentioned before, Decision
Trees is one of the simplest and more interpretable models to
make inferences and predictions. Also, they are widely used
in non-computer science fields such asmedicine, wheremany
of the procedures to apply in certain cases are obtained from
the result of a Decision Tree.

We build a Decision Tree using the CART strategy to
find the splits [27]. We impose the condition that all nodes
must have at least 5% of the samples of the dataset, and the
maximum depth is 4.

The Figure 4 shows the resulting Decision Tree. In this
figure, each inner node present the following information:
the decision rule of the node, the impurity of the split,
the proportion of the samples that were used to generate the
split, the proportion of samples of each class (in the form
[pNo Stroke, pStroke]), and the predicted class if the process is
terminated up to this node. Leave nodes present the same
information except for the decision rule. The color of the
nodes are mapped to the classes. Green is for ‘‘No Stroke’’
class and red is for ‘‘Stroke’’ class, darker colors mean more
certainty in the prediction.

Comparing the interpretability, we can see that the first
node of the Decision Tree has a decision rule concerning the
‘‘HD cerebrovascular’’ attribute. This rule coincides with the
most important rule to predict the stroke class according to

our model (see Table 5). This result shows that our method
can find the same most important attribute as the CART
algorithm. Then, the next level of the tree shows two nodes
with the ‘‘RBC’’ attribute for the rule. According to the
Decision Tree, this is the second most important attribute for
prediction, but in this case this attribute does not appear in
our top 7 most important rules of either ‘‘Stroke’’ and ‘‘No
Stroke’’ classes. Thus, this result reveals that our model and
the Decision Tree differ. One explanation for this difference
is that our model does not separate the data, it applies all
rules evenly to patients that had stroke before or not. Then
it may be more difficult to find a rule regarding the ‘‘RBC’’
attribute because of that restriction. Finally, analysing the
deeper levels, we see that the features that appear are ‘‘Hb’’
and ‘‘WBC’’. The ‘‘Hb’’ also appears as the third most impor-
tant rule for both classes in ourmethod. The ‘‘WBC’’’ appears
as the seventh most important rule for the ‘‘No Stroke’’ class.

B. LIME
Second we will compare the explanations of our model with
the ones obtained using LIME [28]. LIME is a model able to
extract local explanations of any classified instance regardless
of the classification method. LIME has become widely used
for interpretability purposes because it works even for models
which behave like black-boxes such as complex Artificial
Neural Networks.

Since LIME gives an explanation for single instances
instead of the entire system, some data records (i.e., patients)
will be selected to produce the explanations. Then they will
be compared to our interpretability results. Also, as these
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FIGURE 5. LIME explanations for ‘‘Stroke’’ (first and second) and ‘‘No
Stroke’’ instances (third and fourth).

data records are part of our validation set, we know the class
they belong to, thus several experiments can be performed.
For example, explaining a true-positive or true-negative
or failure cases, i.e., the false-positive and false-negative
cases.

From the analysis of these results, we can observe that
in the ‘‘Stroke’’ cases, the most important attribute is
‘‘HD cerebrovascular’’ which is the attribute that indicates
whether or not the patient had a stroke in the past. When this
attribute has a value of 1, LIME assigns a high contribution
to the prediction of the Stroke class. The second most con-
tributory attribute in all cases was ‘‘PLT’’, which is the count
of platelets in the blood. In these cases, lower values of PLT
support the prediction of the Stroke class.

For the ‘‘No Stroke’’ case, the most useful feature for pre-
diction is ‘‘HD cerebrovascular’’ similar to the previous case.
However, in this case, a value of 0 indicates a low stroke risk,
being the opposite statement compared to the last example.
Although this is not a rule our model obtains from Table 6 for
the ‘‘No Stroke’’ class, it can be explained by the fact that it
is the opposite of the most important rule for the other class.
Moreover, we can observe in the explanations that high values
for PLT, GOT, and GPT, are related to the prediction of the
‘‘No Stroke’’ class, similar to the rules obtained by ourmodel.

C. CONTRASTING THE MODEL WITH MEDICAL
LITERATURE
The rules of our model describe medical statements or
hypotheses that can be verified or refuted based on real
medical works reflecting the current knowledge of stroke risk
in the medical field.

Wewill analyze from the medical point of view each one of
the rules presented in Table 5 reported as the most important
ones for predicting the ‘‘Stroke’’ class.

1) CEREBROVASCULAR DISEASE IN THE PAST
The first and most influential rule for classifying stroke is
‘‘HD cerebrovascular = 1’’. This rule states that patients who
had suffered a cerebrovascular disease, including a stroke
before, are more likely to have another one.

In the medical field, a recurrence of a disease happens
when a patient had a disease, and then he or she has it
again. Clinicians and experts study recurrence for most lethal
diseases, including stroke. They also define the recurrence
rate as the fraction of patients who suffered the illness again
within a specified period of time.

Stroke recurrence is a well-known and documented clin-
ical effect [29], [30]. Within two years, the recurrence rate
among these patients is about 14% [31], andwithin five years,
it increases to approximately 25%, which is at least five times
more likely compared to patients who had not experienced
a stroke before. Mortality also increases after a first stroke
episode. In ten years, patients with stroke have a relative risk
of death of 1.7 compared to healthy population [32].

All these facts point that knowing a patient has suffered a
stroke is a significant piece of evidence for increasing her/his
risk and then for the classification itself.

2) LOW VALUES OF PLATELETS
Rule 2 considers that a low platelet counting is related
to the stroke risk. Platelets play an important role after a
stroke occurs because experts believe that they participate in
the thromboembolic creation that may initiate stroke falls.
Although the relationship between the count of platelets in
blood and stroke is still unclear, several studies have found
that after the stroke occurred, the platelet count tends to
decrease significantly. For example, D’erasmo et al. find
an inverse correlation of -0.41 between platelets count and
Hyperfibrinogenemia, which is related directly to the stroke
event [33].
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3) HIGH VALUES OF HEMOGLOBIN CONCENTRATION
Rule 3 states that high values of Glycosylated Hemoglobin
concentration are associated with a high risk of stroke.

Like previous cases, there are prospective studies that val-
idate this conclusion. For example, Rocco et al. [34] present
a work which declares that a high concentration of Glyco-
sylated Hemoglobin (HbA1c) is an important factor for pre-
diction of symptomatic intracerebral hemorrhage and acute
stroke. The study also reports that Glycosylated Hemoglobin
is a better predictor for stroke than blood glucose or a history
of diabetes mellitus.

4) DIABETES CONDITION
Rule 4 is the next most influential rule for screening stroke
according to our model. This rule states that patients who
have been diagnosed with diabetes are more likely to have
a stroke. Like other rules, several studies validate it.

In particular, Abbott et al. [35] present a 12-year follow-up
study of 690 patients with diabetes and 6908 nondiabetic sub-
jects. They conclude that the relative risk of thromboembolic
stroke for those with diabetes compared with those without
diabetes was 2.0 (95% confidence limits, 1.4 to 3.0).

5) HIGH LEVEL OF BODY FAT
Rule 5 relates a high level of body fat with a high risk of
stroke. High levels of fat in blood and its accumulation is
often designated as a strong predictor for acute stroke. For
example, Walker et al. present a study relating obesity to
stroke risk among US men [36]. They found that the relative
risk of obesity patients is 1.29 relative to healthy patients.

As another example, Folsom et al. [37] performed a
prospective study with 191 patients in order to determine
associations of several factors, including fat distribution to
ischemic stroke. They conclude that there is a relative risk
of 1.74 when incrementing the body fat distribution. These
findings validate our rule.

6) HIGH RATES OF HDL-C
Rule 6 states that high values of HDL-C are related to the risk
of getting a stroke. This statement is the most controversial of
the presented ones since most medical studies conclude that
there is no evidence that high levels of HDL-C are related to
cerebrovascular diseases. Instead, several prospective studies
found that low concentration of HDL-C correlates with a
high risk of atherosclerotic diseases, even when the mecha-
nism of how this low concentration eases the disease occur-
rence is still unclear [38]. Therefore, these findings invalidate
our rule.

However, let us recall that the patients we are analyzing
are Japanese workers. Many medical findings are subject to
the population where the study takes place. Thus some of
these conclusionsmay not apply directly to other populations.
The two studies that we presented before are about western
people, which have different genetics and habits to east-
ern people. This fact of no representativeness could explain
why our model finds this rule as necessary. For example,

Saito et al. [39] say that despite low HDL-C is an established
risk factor, evidence regarding stroke and stroke subtypes is
very limited for Asian population. They hint that the relation-
ship is inverse, which coincides with the rule obtained by our
method.

Evenwhenwe can explainwhy this contradiction occurred,
we still need to perform further studies to understand this
causality correctly.

Finally, this example shows one of the most significant
characteristics of the interpretability proposed by our model
because any of the statements that do not have a clear inter-
pretation in the expert field of the problem can guide future
new research on that topic. This feature makes our model a
helpful tool for knowledge discovery.

7) HIGH VALUES OF WAIST MEASUREMENTS
The last of the top 7 rules for predicting stroke class, relates
high values of waist measurements with a high risk of stroke.

Unlike the previous cases, waist measurement is a metric
that helps to build or find problems with other indicators
such as body fat, cholesterol, and triglycerides. Hence, waist
measurement is not a condition that directly affects the risk
of cerebrovascular diseases.

For example, adiposity is a condition derived from the
abnormality of several indicators such as waist measure-
ments, and body mass index. Studies have confirmed that
adiposity was associated with a high risk of total and ischemic
stroke in men [40].

Moreover, it is valid to assume that high values of waist
measurements are related to other conditions such as high
weight, obesity, and high levels of body fat [41]. Then, as we
explained in the fifth rule, high levels of body fat are indeed
related to high stroke risk.

D. EXPERT SURVEY
Another test to assess the interpretability of the results of our
model is an expert survey. In this survey, we presented medi-
cal experts, mainly neurologists, the rules that increase stroke
risk according to the model results. For each of these rules,
we asked whether they consider their statements are true,
false, or if there is no correlation (NA) to stroke risk, accord-
ing to their experience and knowledge. Some of the condi-
tions were intentionally inverted to prevent biased answers to
one option (e.g., an expert that responds all questions as true).

Table 7 shows the questions of the test and our expected
results according to the interpretability results obtained. The
questionnaire was built using Google Forms, which is widely
used for this purpose and allows us to share it easily. The
survey is in Spanish because we requested Chilean physicians
and neurologists to respond to it, given our possibilities to
conduct this test.

Moreover, we added two other rules that are less con-
tributory to the estimation of stroke risk to check the ‘‘no
correlation’’ option and to verify that the most important
rules discovered by the model are also the most accepted
statements among experts.
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TABLE 7. Expert survey questions and results.

A total of 16 participants correctly answered the survey.
We appreciate the interest of these experts in answering the
survey. The last three columns of Table 7 present the results of
the relative frequency of each option for every rule. For each
row we highlight the highest value which is the most frequent
choice for this rule.

From these results, we can observe that all experts verify
Rule 1 regarding stroke recurrence and Rule 4 about diabetes
condition, since they all agree that these factors increase the
stroke risk.

Almost all experts also confirm that Rule 3 concerning high
levels of Hemoglobin raises the risk of getting a stroke, only
one of them chose the ‘‘no correlation’’ option.

Likewise, almost all specialists consider Rule 5 concerning
high values of body fat, as significant for the prediction of
stroke. In this case, two of them selected the ‘‘no correlation’’
choice.

The results about Rule 6 are the most controversial since
only one expert said that there is ‘‘no correlation’’ between
high levels of HDL-C and stroke occurrence. However,
the other experts had divided opinions about whether this
variable increases or decreases the risk of getting a stroke.
62.5% of them said that the statement is false, thus invali-
dating our result, and 31.25% said that the result obtained
by our method is valid. As we anticipated in the previous
section, HDL-C is usually known as the ‘‘good cholesterol’’,
then many clinicians consider that having a high value is
healthy, which explains why most of them invalidate our
finding.

Finally, Rules 10 and 11 concerning malnutrition and low
levels of white blood cells are included for validation. These
are rules that our model considers that are less important to
the classification, and our expected result for these cases is
that most experts choose the NA or False option. Looking at
the results for these rules, we can verify our expected results.
These are the rules with more NA choices, and in both cases,
the number of False answers is higher than the True option.

IX. CONCLUSION
In this work we presented a novel model for predicting stroke
occurrences within a year using data from electronic health
records. This article presents the continuation of the work
on stroke risk by Peñafiel et al. [9] and a use case for
the model proposed by the same authors [10]. The proposed
model achieves better performance metrics than our previous
model and even outperforms many of the proposed and most
used methods for stroke risk assessing in the case of some
missing data. Since absence of some data occurs frequently
in practice,the study asserts this model is a helpful tool for
predicting stroke risk based on EHRs. We also showed that
including expert knowledge for rule definition and using
Gradient Descent for rule mass optimization is a powerful
combination which may explain the model outstanding per-
formance.

Another important contribution of our model is that it can
extract the most contributory rules used for making predic-
tions. This feature has several advantages like increasing the
validity of the model, early detection of wrong inferences of
the model and it also helps us validate the model clinically.
We contrasted the 7 most important rules to medical litera-
ture. For the most influential rules, there were studies that
directly correlate these statements to a high risk of getting a
stroke. For the other rules there were studies that correlate
them indirectly by an intermediate variable. We also asked
experts through a survey whether they consider the rules
found by our model raise stroke risk. In this survey most of
the rules were verified.

Although the model achieves an outstanding performance,
it can be improved in several ways, for example, incorpo-
rating additional data sources like patient conditions such as
smoking habits or impairments, which are factors that other
studies consider in their models.

Also, we can achieve better performance by improving the
underlying model. One of the most important drawbacks of
the model is that it discretizes the data into groups. We can

1164 VOLUME 9, 2021



S. Peñafiel et al.: Predicting Stroke Risk With an Interpretable Classifier

get rid of that discretization by defining a score that expresses
the degree in which a patient belongs to certain rule. This
improvement could help the model differentiate more accu-
rately between two similar patients which, in the current
model, both patients may satisfy the same rules thus being
assigned to the same class.
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