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Abstract

By early May 2020, the number of new COVID-19 infections started to increase rapidly in

Chile, threatening the ability of health services to accommodate all incoming cases. Sud-

denly, ICU capacity planning became a first-order concern, and the health authorities were

in urgent need of tools to estimate the demand for urgent care associated with the pan-

demic. In this article, we describe the approach we followed to provide such demand fore-

casts, and we show how the use of analytics can provide relevant support for decision

making, even with incomplete data and without enough time to fully explore the numerical

properties of all available forecasting methods. The solution combines autoregressive,

machine learning and epidemiological models to provide a short-term forecast of ICU utiliza-

tion at the regional level. These forecasts were made publicly available and were actively

used to support capacity planning. Our predictions achieved average forecasting errors of

4% and 9% for one- and two-week horizons, respectively, outperforming several other com-

peting forecasting models.

Introduction

The first cases of the COVID-19 pandemic were detected in Chile by early March 2020. A few

days later, all schools were closed, and a few counties with relatively high numbers of cases

were quarantined. By the end of April, the available data showed that the outbreak was kept

relatively under control, with a few hundred confirmed new cases every day. However, by

early May, the infection rate started to increase rapidly, threatening the ability of health ser-

vices to accommodate all incoming COVID-19 cases. In the middle of May, the Chilean Soci-

ety of Intensive Medicine (SOCHIMI) reported a worrisome occupation rate of ICU beds of

more than 95% in the capital city of Santiago, where most of the cases were concentrated. Sud-

denly, ICU capacity planning became a first-order concern. On May 12th, the Instituto Siste-

mas Complejos de Ingenierı́a (ISCI), which was already working on analytics related to

mobility, was urged to prepare short-term forecasts of ICU bed occupancy rates for those

regions with the highest utilization rates. Within 24 hours, we submitted our first report. From

then on, we prepared forecasts every two days for several weeks, and then we reduced the
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frequency and began reporting every four days. These reports were sent directly to the authori-

ties –particularly those on the coronavirus response committee– and to SOCHIMI. Addition-

ally, we published the reports on ISCI’s website (https://isci.cl/covid19/). The reports grew in

complexity and regional coverage over time based on what decision makers deemed to be

most pressing.

We developed a solution for generating predictions of the number of ICU beds that were

going to be required by COVID-19 patients for every region in the country with a time horizon

of 14 days ahead. Our methodology was based on an ensemble of a variety of forecasting mod-

els that capture different components of the evolution of the outbreak. The first model we built

was a compartmental model that described patient flow as a stochastic progression through

different clinical states. Here, we contemplated that new patients would require an ICU bed

after a specific number of days with a given probability, and they would be discharged after a

given number of days according to a certain distribution. Compartmental models have been

some of the most popular approaches for characterizing the evolution of epidemics [1, 2], but

they have limited flexibility to accommodate dynamic variations in the environment. In the

context of COVID-19, the delay between the identification of a new case and the requirement

of an ICU bed, the duration of mechanical ventilation, and the likelihood of requiring urgent

care are some of the critical parameters that might change over time, and these are not prop-

erly captured by this kind of model. Therefore, we included several autoregressive and

machine learning models that could better capture dynamic variations in the environment.

Then, we combined the forecasts output by the different models using a trimmed mean

ensemble. Our approach could generate accurate forecasts, achieving average prediction errors

of 4% and 9% for one- and two-week horizons, respectively. These predictions were informa-

tive for supporting decision makers during the sanitary crisis, and our approach outperformed

other competing ensembles of forecasting models.

In this article, we describe in detail the methodology we used to generate forecasts for this

very urgent problem, showing how the use of analytics provided relevant support for decision

making in critical times, even with incomplete data and without enough time to fully explore

the numerical properties of all available forecasting methods. Using this methodology, we pro-

duced predictions with small forecast errors that not only were useful for supporting decision

making in critical times but could also be informative with regard to resource planning for

potential new outbreaks. Most importantly, our approach may be easily replicated in other

countries facing acute capacity constraints with respect to ICU beds.

The rest of the article is structured as follows. In Section 2, we describe the context and the

data we had available, and we provide some institutional background that imposed some con-

straints on the design of the forecasting methodology. In Section 3, we review the relevant fore-

casting literature, and then we describe the statistical models we used and how we combined

them to produce our forecast. In Section 5, we discuss some adjustments we introduced to

accommodate changing conditions in the spread of COVID-19 and present our forecasting

results. Section 6 contains a nontechnical summary of the methodology, its results and its

advantages over other approaches, and we discuss possible implementations in other parts of

the world. Thus, Sections 2 through 5 are devoted to providing a comprehensive technical doc-

umentation of the underlying methods we used, while readers more interested in results and

implementations may read Sections 2, 6 and 7.

The rest of the article is structured as follows. In the next section, we describe the context

and the data we had available, and we provide some institutional background that imposed

some constraints on the design of the forecasting methodology. In the following three sections,

we present the technical elements of the forecast: (i) we review the relevant literature, (ii) we

describe the statistical models we used and how we combined them to produce our forecasts,
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(iii) we discuss some adjustments we introduced to accommodate changing conditions in the

spread of COVID-19 and (iv) we present our forecasting results. These sections are devoted to

providing a comprehensive documentation of the underlying methods we used. Readers more

interested in results and implementations can go directly to the nontechnical summary of the

methodology and results, where we present a summary of the methodology, its results and its

advantages over other approaches and discuss possible implementations in other regions. We

conclude with a discussion on the implications of our findings and avenues for future

research.

The urgent problem of forecasting ICU beds

The first COVID-19 cases were detected in Chile by early March 2020, and for the first two

months, the number of new infections was relatively under control, with a few hundred con-

firmed new cases every day. However, by early May, the number of new COVID-19 cases

increased rapidly, creating numerous and complex challenges for the country. A graphical

illustration of the evolution of the pandemic in Chile is displayed in Fig 1. In the left panel, we

display the series of newly confirmed cases, and in the right panel, we display the series of new

deaths. In both cases, we highlight the state of the series at the time we started producing the

forecasts, which was a few days after the country entered a severe exponential growth phase.

By looking at the international experience and learning from the problems faced by other

countries that were affected earlier by the pandemic, it was clear that the management of hos-

pital capacity was going to be a critical decision [3]. Furthermore, upon following the exponen-

tial trend of new cases, it was concluded that there was a serious concern that the capacity of

ICU beds could be dramatically surpassed, leading to greatly increased mortality rates.

To increase ICU capacity, hospital management can follow a number of complementary

strategies with different levels of complexity. A simple mechanism to increase hospital capacity

is through the release of medical resources by rescheduling nonurgent procedures. Other strat-

egies require more time for implementation. For example, pediatric rooms could be converted

to receive adult patients, or anesthetic machines could be adapted to provide mechanical venti-

lation. As most of these mechanisms could be implemented within a time span of a few days,

we decided to provide forecasts for a 14-day horizon. Despite generating forecasts of ICU utili-

zation for each of those fourteen days, in the reports, we highlighted the number of beds that

would be required in exactly one and two weeks.

Chile is administratively divided into sixteen regions, and in terms of geographical aggrega-

tion, forecasts were produced at the regional level. The country’s population is very unevenly

distributed, and the Metropolitan Region, which includes the capital city of Santiago, contains

near half of the national population. Despite this heterogeneous population distribution, our

decision to produce regional demand forecasts is justified for two reasons. First, consistent

with the administrative division, budgets are executed at the regional level. Second, from an

operational perspective, if needed, patients can be transported from one hospital to another

within the region, and therefore, the capacity at the regional level provides the most useful

aggregation for decision making.

To estimate the models, we used data that were publicly available. Given the crucial impor-

tance of the consequences of the pandemic for the whole nation, the Ministry of Health pro-

vided frequent epidemiological reports starting on the day of the first infection. Later, the

Ministry of Science consolidated all available information and created a public repository with

an extensive list of statistics reported in a time series format (http://www.minciencia.gob.cl/

covid19). The data series were reported at either the national, regional or county level, with

only a few statistics available at a more disaggregated level. Throughout the whole process, we
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tried to include different covariates in the model, but the results we generated are based on the

list described in Table 1. The main series we studied was the Regional Number of COVID-19

Patients in the ICU. The other series were used as additional explanatory variables.

At the beginning of our study, the repository had information on the total daily number of

new infections by region, but a few weeks later, the repository started reporting the number of

new cases while distinguishing between symptomatic and asymptomatic cases. As the latter

Fig 1. Evolution of new confirmed cases and new deaths from COVID-19 at the national level. The large peak of

new cases registered in late June corresponds to a change in the governmental procedures to count cases, and this

added a large number of cases that were not previously considered.

https://doi.org/10.1371/journal.pone.0245272.g001
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did not require ICU beds, from then on, we decided to only consider the series of symptomatic

cases.

With these data in hand, we embarked on the challenging task of producing demand fore-

casts for ICU beds. Certainly, accurate predictions could assist decision makers in effectively

preparing for the large number of expected hospitalizations. However, the exponential nature

of the infections generated large variations in the expected numbers of patients in different sce-

narios. As we were urged to do, our goal was to create robust predictions and deliver them to

health officials, with the aim of supporting them with information that could help them under-

stand the rate at which they should be increasing ICU capacity.

Literature review

Our work is related to two streams of research. First, our research is related to the use of ana-

lytics in health care and, in particular, to the use of forecasting methods for planning health-

care capacity. Second, our research is related to the use of pooled forecasting and the

combination of multiple methods to generate robust predictions. Next, we discuss both

streams of literature with a special focus on other recent works in the context of COVID-19.

Analytics have been shown to be relevant for supporting decisions in different components

of healthcare systems [4, 5]. In recent years, we have seen an explosive growth of analytics

applications in diverse facets of health care, including medical diagnosis, human resources,

supply chain management, and the design of health care insurance (to name a few) [6, 7].

Although the use of mathematical modeling in this area has brought a number of challenges,

there are ample opportunities to generate essential and timely knowledge to support decision-

making [8]. In the context of the control of infectious diseases, the combination of big data

and tractable analytical techniques has provided new tools to fight against pandemics [9]. The

global impact of COVID-19 has motivated numerous modeling efforts to provide guidelines

for the control and management of the outbreaks. Certainly, there is a close relationship

between the spread of the infection and the demand for medical resources. Therefore, mathe-

matical models that describe the evolution of the pandemic can provide a first-order approxi-

mation of the demand for ICU beds. For this reason, we were especially concerned about the

modeling effort needed to forecast the spread of the outbreak for the purpose of estimating the

requirements of hospital resources. For example, [1, 2] used different nonpharmaceutical

intervention scenarios in the UK and Italy, respectively. Similarly, [10, 11] evaluated the

impact of mobility and traveling on the spread of the virus, while [12] assessed the effect of age

structures on fatality rates.

Similar to our study, other works have proposed different models to forecast the number of

infections. For instance [13], used logistic growth models and a sub-epidemic wave model,

and [14] used autoencoders to provide short-term forecasts for the total cumulative and newly

confirmed cases in several provinces of China. [15] used an exponential growth model that

included recovery and fatality rates to analyze the evolution of the total number of cases in the

Table 1. Publicly available data used in the forecasts.

Aggregation

Since Geographical Time

Number of PCR tests 2020-04-09 Regional Daily

Number of COVID-19 patients in the ICU 2020-04-01 Regional Daily

Number of COVID-19 patients in the ICU by age group 2020-04-01 National Daily

Number of new symptomatic cases 2020-03-03 Regional Daily

https://doi.org/10.1371/journal.pone.0245272.t001
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US, Slovenia, Iran and Germany. Finally [16], introduced a state-space hierarchical model to

generate short-term daily forecasts considering the relations between the series of different

countries. These investigations have advanced our understanding of how the pandemic

spreads, but they are silent about the use of hospital resources.

The use of forecasting methods to aid hospital resource planning has been an active area of

research. In this regard, time-series analysis has been one of the most widely used approaches

for generating short-term demand forecasts because it provides a comprehensive treatment for

seasonality and serial correlations. For example [17], assessed the prediction accuracy of short-

term emergency bed occupancy for different time-series methods and historical average mod-

els [18]. Analyzed different time-series methods to forecast emergency bed occupancy and

showed that they can provide meaningful information up to one week ahead.

To predict medical requirements with a longer time horizon [19], proposed a seasonal

ARIMA to characterize the volatility of a series. They found that the model produces good

forecasts most of the time, but it breaks down during a crisis. On a different line of research

[20], employed individual patient-level data in a computationally intensive model to forecast

the demand for beds at different units in a hospital.

Since the start of the COVID-19 pandemic, there have been several attempts to estimate the

demand for hospital resources. However, as most of this work is devoted to describing the

aggregated evolution of such requirements, the results are useful for anticipating global policy

making but not for supporting tactical decisions. For example [21], used simple Gaussian

curve fitting to predict the number of ICU beds and mechanical ventilators used at the peak of

the outbreak and the cumulative use of bed days. Highly complex epidemiological models

have also been used extensively in this context. Cancino and Rainisch [22, 23] used compart-

ment models with age structures to simulate the spread of the virus and evaluate the impact of

mitigation strate-gies on the healthcare demand at the peak of the epidemic.

Similar to these investigations, for our predictions, we developed a compartmental model,

but we tailored it to the prediction of the demand for ICU beds in the short term. To do so, we

limited our attention to the progression of patients after they had been diagnosed, and we con-

sidered a parametric distribution for patients requiring an ICU bed. Here, we incorporated

clinical parameters that describe the clinical evolution of patients, and we derived detailed pre-

dictions for critical medical resources. An important drawback of compartment models is that

they have limited ability to accommodate dynamic changes in key parameters; therefore, their

predictions may fail to capture important variations in a given process, such as congestion or

delays in testing. To overcome this limitation, we relied on ensemble forecasting models, where

we combined compartment model predictions with those derived from autoregressive and

machine learning models; these can effectively capture dynamic variations in the environment.

To integrate different forecasting models, we used an ensemble approach. Previous works

offered strong evidence supporting the idea that combining forecasts can improve the accuracy

of the output predictions [24, 25]. The literature on pooled forecasting indicates that the simple

average of predictions performs well, but in our case, we used a special form of the trimmed

mean to accommodate some specific features of our problem [26].

Pooled forecasting has been applied in many diverse domains [27], but its applications in

the context of the pandemic are scarce.. [28]. Combined a logistic growth model with machine

learning predictions to estimate the epidemic curve and predict the overall trends of the epi-

demic [29]. Applied a wide variety of forecasting models, including autoregressive models,

random forests, ridge regression and support vector regression, to provide very short-term

forecasts of the cumulative number of confirmed cases in Brazil, and they compared the per-

formances of individual models against an ensemble prediction. Similarly [30], used an opti-

mization-based ensemble to find the best combination over a family of machine learning
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predictions and applied this methodology to predict the cumulative number of hospitalized

patients in Andalusia. Following a different approach [31], used neural networks to extract fea-

tures from time-series data and then used those features to feed standard compartment models

for the purpose of describing the aggregated spread of the pandemic.

There are two main elements that differentiate our research from other works using multi-

ple models. First, our method combines different predictions to produce robust estimations of

the required number of ICU beds. These models can capture different components of the

spread of COVID-19. For example, we considered machine learning models that can provide a

great deal of flexibility to accommodate short-term variations in the environment, but we also

included compartment models that provide a more detailed description of the clinical compo-

nents of the disease. The second distinctive feature is that our approach is specifically devoted

to supporting ICU capacity decisions; therefore, we tailored our predictions to estimate the

number of beds that would be required at each point in time rather than only aggregated met-

rics, such as the number of beds at the peak or the cumulative number of beds that would be

required over the whole duration of the pandemic.

Models

The most widely used approach for describing the evolution of infectious diseases is compart-

mental models, where the population dynamically evolves through different stages [2, 32, 33].

In one of the simplest versions, healthy (and susceptible) people become infected when they

are in contact with an infectious individual, after which they eventually recover or die. These

models have been extended to include clinical stages, providing a first approximation for the

use of hospital resources [34, 35]. In addition, as compartmental models directly describe the

dynamics of the disease, they can be suitable for guiding the evaluation of mitigation policies

[1]. Nonetheless, these models require precise estimations of the relevant epidemiological and

clinical parameters, which have been proven to be difficult to estimate in practice [36, 37]. Fur-

thermore, for the specific problem of forecasting the COVID-19-related demand for ICU

beds, we had good reasons to believe that several of the key parameters could change rapidly

over time, generating biased predictions. We identified at least three reasons why epidemiolog-

ical parameters could be nonstationary:

1. The proportion of symptomatic patients requiring mechanical ventilation can change over

time, and similarly, clinical criteria for releasing patients from the ICU can be adjusted

dynamically depending on the actual usage of the existing capacity. This is not only because

hospitals can relax nominal criteria but also because SARS-CoV-2 is a new virus that

involves continuous learning by medical teams. For instance, the head of the Chilean Soci-

ety of Intensive Medicine stated that “Patients initially stay in the ICU between 10 and 11

days, and now they are staying between 14 and 16 days. This is because, with everything we

learned, we intubated less and selected more serious patients“(https://bit.ly/2BTAuJK).

2. Despite governmental efforts to provide timely access to relevant information, a large por-

tion of the system for generating the data was under constant stress, and therefore, the

information that we had available for any single day could be lagged. Among other issues,

the results of lab tests exhibited important delays worldwide (https://www.usatoday.com/

story/news/health/2020/07/11/COVID-19-test-results-delayed-labs-struggle-cases-surge/

5406936002/); hence, the number of new cases might be more or less informative depend-

ing on the congestion of the laboratories.

3. The data were not always available at the patient level, and there are important factors

that were never observed. For example, every day, the government reported the number
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of new cases and the current occupation of ICU beds per region, but there was no infor-

mation about how many patients entered or exited or on the lengths of the stays of

patients in intensive care. Likewise, when the capacity was lacking in some regions, the

government had the ability to move patients between regions, and this was not systemati-

cally reported.

To overcome the limitations of compartmental models and properly capture short-term

dynamics, we combined these models with other time-series models that could be better suited

to capture those dynamics. From a theoretical point of view, the use of combinations of fore-

casts is justified because they can lead to smaller forecasting errors and can even reduce the

biases of individual forecasts [38–40]. Beyond theory, combined forecasts have been shown to

lead to improved performances in a wide range of applications [25, 27, 41].

Previous studies have offered several reasons to justify the empirical success of combin-

ing forecasts; these include model misspecification, changes in the underlying parameters

and the heterogeneous use of different information sets [42]. As we have explained, several

of these reasons were present in our setting, and consequently, our general approach was

based on an ensemble of different forecasting models. Next, we briefly discuss the individ-

ual models we included in the ensemble. To organize the discussion, we group the list of

models into three categories: autoregressive models, artificial neural networks and com-

partment models.

Autoregressive models

ARIMAX. We start with a classic autoregressive integrated moving average (ARIMA)

approach [43]. In this model, the values of the time series on day t (yt) depends on their lagged

values and its lagged errors, and the series are further differentiated to estimate stationary pro-

cesses. The ARIMAX variant is the result of considering an additional set of exogenous explan-

atory variables xt. In the vector xt, we considered the whole series of new cases and the

positivity rate. By introducing the backward shift operator B, the model can be expressed in a

compact form as:

�pðBÞð1 � BÞ
dyt ¼ b

0xt þ y0 þ yqðBÞεt ð1Þ

The model depends on the relative weight of its own values (ϕ), the weights of the errors

(θ), the weights of the exogenous variables (β), and the constant term (θ0). The model also

depends on the number of lags (p, q) and the number of difference operations (d). To deter-

mine the value of (p, d, q), we used stepwise selection based on the AIC [44].

In our analysis, we considered ARIMA and its ARIMAX variants, but the forecasts of both

were fairly similar; therefore, to create our ensemble forecast, we only considered one of the

two. For ARIMAX, we included the number of new symptomatic infections in previous days

as one of the key explanatory variables. For more flexible models, we considered the whole

sequence of new symptomatic infections; in this case, we only included a few values in the [6–

12] range that were shown to provide more stable estimates than those obtained by feeding the

model with the complete series.

TBATS. We then looked at a trigonometric seasonality, Box-Cox transformation, ARMA

errors, and trend seasonal components (TBATS) model. This model uses a combination of

exponential smoothing and Box-Cox transformations to automatically accommodate multiple

seasonal components. Each of these seasonalities is modeled by a trigonometric representation

based on a Fourier series. Although this model considers a series of nested equations to repre-

sent a detailed decomposition of the series, using the backward shift operator, the model can
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also be expressed in a reduced form as:

�pðBÞZðBÞy
ðoÞ
t ¼ yqðBÞdðBÞεt ð2Þ

Here, yðoÞt is the Box-Cox transformation of the series. The operators η(B) and δ(B) are reduced-

form expressions summarizing local levels, short- and long-term trends and the sequence of sea-

sonality components. For a description of the extensive form of this model, see [45].

One of the advantages of this model is that it provides a great deal of flexibility to automati-

cally accommodate a large number of seasonal and trend components. However, unlike the

previously discussed ARIMAX model, TBATS does not include exogenous variables and

hence has limited ability to anticipate how variations in infections can be translated into differ-

ent requirements of ICU beds.

Time-delay artificial neural networks

In our approach, we included several neural network models. To accommodate the time series

structure, we used a special class called time-delay neural networks (TDNNs). In this class, the

inputs to any node can include outputs of earlier nodes not only during the current time step

but also from previous time steps [46].

As is common in neural network learning, we trained the model structure by adjusting its

parameters to minimize the induced error using a generalized feed-forward network. Thus,

without loss of generality, the predictions are given by:

yt ¼ g
Xq

j¼0

vj f
Xp

i¼0

wij�iðyt� i; xt� iÞ

 ! !

ð3Þ

In this expression, f is the activation function for the hidden layers, and g is a nonlinear

transformation in the output layer. Additionally, the ϕi(x) are the basis functions, and (v, w) is

the list of weights that are calibrated during the training process. Neural networks have been

shown to exhibit superior forecasting power to other methods in different settings [47]. The

TDNN models we present next vary in their structures (numbers of input nodes p and hidden

nodes q), as well as in the pruning criteria used to reduce the dimensionality of the network

and avoid overfitting.

MLPR. A perceptron is a classifier that maps a vector of inputs to a single binary value

through a threshold activation function. A multilayer perceptron is a network of individual

classifiers that enables learning about complex processes, and it is one of the most commonly

used perceptron-based learning algorithms [48]. The flexibility of an MLPR algorithm allows

for the inclusion of an arbitrary set of input variables, such as the lagged values of the series and

other explanatory factors. In our implementation of MLPR, we followed the general expression

of (3) with logistic activation functions and four hidden layers. We tried different numbers of

nodes per layer but ended up using a {5:10:10:5} architecture, which performed well.

ELM. An extreme learning machine is a special feed-forward neural network that only

uses a single hidden layer. In this layer, nodes are randomly chosen, and the weights of the out-

puts are analytically determined [49]. Unlike those of other back-propagation learning algo-

rithms, the parameters of the hidden layer of an ELM do not need to be tuned. In fact, an ELM

aims to not only minimize the training error but also to reduce the norm of the output weights.

Thus, ELM models tend to achieve good generalization performances with much faster train-

ing processes than those of other artificial networks [50].

We implemented an ELM following the general TDNN expression in (3). The norm of the

output weights was controlled by the LASSO, where the norm of the weights was imposed to
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be smaller than a given threshold. We decided to use 11 nodes in the single hidden layer

because that resulted in good performance and small prediction errors.

GMDH. A “group method of data handling” approach involves the successive selection of

models based on external prediction criteria. Starting with a simple set of models, the method

constructs new generations of increasingly complex models and combines them to maximize

the forecasting performance [51]. In our case, we organized the sequence of models in a neural

network, where each layer corresponds to a new generation of models. Following other

GMDH applications in the literature, we considered polynomial models as follows [52]:

yt ¼ aþ
Xm

i¼1

biyt� i þ
Xm

i¼1

Xm

j¼1

cijyt� iyt� j ð4Þ

The GMDH method allows for the inclusion of an arbitrary set of covariates in the polyno-

mial, but in the context of time series, we only considered the lagged values of the series. Our

motivation to include this model in the pool of forecasts was that it was conceived to learn

complex relationships when lacking detailed knowledge about the fundamentals of the given

process. In our case, we had epidemiological theory characterizing the evolution of the pan-

demic, but the observed data were mediated by a number of unobservable processes that

might require additional layers of complexity. Another strength of GMDH is that recent

computational implementations of the algorithm include automatic normalizations of the var-

iables [53].

ICD compartment model

The goal of our compartment model is to predict the future utilization of ICU beds by critically

ill patients due to cases of COVID-19. Thus, our model aims to replicate the behavior of the

ICU process, balancing inbound and outbound flows of patients in different stages of the pro-

cess. Our model considers three compartments through which the patients evolve. For each of

them, we tracked the number of patients in each stage as follows:

• I: The number of infectious individuals who show symptoms of COVID-19.

• C: The number of critically ill people who need an ICU bed.

• D: The number of individuals who are discharged from the ICU.

The number of infected, critically hospitalized and discharged patients fluctuated over time;

therefore, we made the state variables dependent on time. Thus, the variables It, Ct and Dt rep-

resent the number of new symptomatic cases, the number of critical patients and the number

of discharged cases on day t, respectively. We describe the transitions between states using a

probabilistic approach. These probability distributions consider not only how likely it is that a

given patient evolves to another state but also the expected duration of that transition, as illus-

trated in Fig 2.

Fig 2 illustrates that the number of ICU beds that will be used on day t depends on the num-

ber of beds used the previous day, the number of new cases that require critical care and the

number of patients that will be discharged. Here, a fraction a of the symptomatic cases require

an ICU bed, but they only demand beds l days after they are diagnosed. Acknowledging that

there are variations in the delays since the diagnoses, we considered that patients requiring a

new ICU bed on day t could have been diagnosed between l −m and l +m days before that

day. While our model allows for any arbitrary distribution to characterize the requirements of

beds over time, in this work, we only considered uniform distributions; therefore, a fraction
a

2mþ1
of new symptomatic cases detected on t − l will require an ICU bed on t. The logic for
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discharging patients is similar, but we know that sooner or later, all patients will be discharged;

therefore, all uncertainty is associated with the duration of bed usage. We assumed that on

average, patients are discharged after k days, but as before, we allowed for dispersion and let

patients complete their clinical cycle in the [k − h, k + h] range. If the lengths of stay were uni-

form, the fraction of patients entering the ICU on day t who were discharged within time t + k
was 1

2hþ1
. In the empirical application, we used a bimodal distribution with a fraction d of mod-

erately severe cases staying in the ICU between k1 − h1 and k1 + h1 days and more severe cases

staying between k2 − h2 and k2 + h2 days. Formally speaking, the equations describing the evo-

lution of patients over time are given by:

Ct ¼ Ct� 1 � Dt þ
a

2mþ 1

Xt� lþm

i¼t� l� m

Ii ð5Þ

Dt ¼
a

2mþ 1
�

d
2h1 þ 1

Xðt� lþmÞ� k1þh1

j¼ðt� l� mÞ� k1 � h1

Ij þ
ð1 � dÞ
2h2 þ 1

Xðt� lþmÞ� k2þh2

j¼ðt� l� mÞ� k2 � h2

Ij

 !

ð6Þ

In these equations, the series of ICU utilization and the number of new symptomatic cases

are the data, while (a, d, l,m, k1, h1, k2, andh2) are parameters to be estimated. These parame-

ters are disease-specific, and we could retrieve their values from the medical literature on

SARS-CoV-2. For example, the mean duration of symptoms before hospital admission was

reported to be 10±2 days [54, 55]. Similarly, medical reports have indicated that the length of

stay depends on how severe the disease manifests in the patient, and it is estimated to be 21±7

for those who show extremely severe symptoms and 14±3 for those who do not [55]. In our

model, we used these clinical estimates as references, but we conducted an exhaustive search

over a grid centered around those values to choose the parameters that minimized the forecast-

ing error for a holdout sample.

Ensemble

An extensive body of literature has shown that combining forecasts can improve prediction

accuracy and that a simple average often performs better than highly complex combination

Fig 2. Compartment model diagram.

https://doi.org/10.1371/journal.pone.0245272.g002
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schemes [56]. However, as the mean can be sensitive to extreme values, recent studies have

suggested that deleting the most extreme predictions might further improve pooled forecast-

ing. For example, the median forecast might be less susceptible to being affected by outliers

than the mean forecast [24].

In our application, we used a trimmed mean approach [26], where we used the simple forecast

mean after discarding the two most extreme predictions. We introduced two variations to this

procedure to accommodate our forecasting needs. First, as the predictions of ARIMA and ARI-

MAX were highly correlated, in the pool of selected forecasts, we only considered at most one of

them. Second, as the medical personnel in charge of facilitating new ICU beds had a highly intui-

tive interpretation of the ICD model, we always included it in the pool. To rank the forecasts, we

considered the prediction of ICU beds over a two-week horizon. Thus, if yðkÞt was the k-th order

statistic for the series, then our forecast was given by the following trimmed mean:

ytrimt ¼
1

n � 2
yICDt þ

Xn� 1

k¼2

yðkÞt

( )

ð7Þ

Thus, our forecast was composed of an average of four models (including ICD). Consider-

ing that these predictions directly inform health officials about critical decisions, we visually

inspected all forecasts before producing the final reports. In these inspections, in very excep-

tional cases, when more than one forecast dramatically deviated from the mean, we overruled

our trimmed criteria and included both ARIMA and ARIMAX in the forecasting pool.

Implementation

When inspecting the series, we found no evidence of seasonality for any variable; therefore, all

models were estimated using no seasonal components. To determine the number of observa-

tions to use in every forecast, we considered information starting from April 1st, when the

accumulated number of symptomatic patients reached three thousand cases. Later, when more

data were accumulated, we only considered the previous sixty days of data to estimate the

models.

All models were estimated using daily data. During the pandemic, the Ministry of Health

provided an updated report on the evolution of the most critical variables, such as the number

of new infections, the positivity rate and the number of fatal cases. All this information is

uploaded to the public repository of the Ministry of Sciences and Knowledge, from which we

downloaded the information automatically. The data presented very few missing values, and

to address them, we used a Kalman smoothing approach [57]. The parameters were indepen-

dently calibrated for each model.

To determine the optimal values of (p, d, andq) for the ARIMA and ARIMAX models, we

proceeded iteratively. If the value d was known, the model selected the orders of p and q via

the AIC. For nonseasonal data, d was selected based on the successive KPSS unit-root test [58],

which stops when finding a nonsignificant result [44]. In the case of TBATS, the general

model considered several components; therefore, several variations were estimated (e.g., with

and without trends, with and without Box-Cox transformations), and the final model was also

chosen using the AIC [45].

Models based on artificial neural networks can be estimated using standard back-propaga-

tion learning algorithms. However, given the time-series structure, the estimation process ben-

efits from using automatic feature selection [59]. For the case of GMDH, the weights of the

polynomial were calibrated using a regularized least squares estimation method (RLSE),

thereby reducing the potential problems of multicollinearity [53].

PLOS ONE Short-term forecast of ICU beds

PLOS ONE | https://doi.org/10.1371/journal.pone.0245272 January 13, 2021 12 / 24

https://doi.org/10.1371/journal.pone.0245272


In terms of computational tools, data aggregation and preprocessing were conducted using

R libraries. To normalize the data, we used Z-scores for the neural network models and Box-

Cox transformations for the artificial neural networks and autoregressive models. When avail-

able, we use predefined libraries with forecasting methods. A table with the specific functions

and parameters we used to implement each forecast is available in the S1 Table. For the com-

partment model and the ensemble, we coded our own routines to accommodate the specific

requirements of the problem.

Timeline of events and methodological adjustments

In the previous section, we described the general methodology we employed to produce daily

forecasts for ICU beds. However, a key premise of this work is that the situation required

urgent predictions. Moreover, the general environment was constantly changing, and there-

fore, we had to continuously update our methodology to accommodate the evolution of the

pandemic and the information needs of health officials. The following is the list of the most rel-

evant events that required adjustments to the methodology.

• We generated our first solution only a few hours after the government realized that ICU

planning was going to be a key element in mitigating the consequences of the pandemic.

These early solutions only considered reduced-form models with no epidemiological consid-

erations. However, we quickly realized that we needed to complement these models with

others that could capture the medical structure of the problem. This is because a large frac-

tion of the decision makers who were actively reading our reports were healthcare profes-

sionals who needed a medical narrative to explain the variations in the demand for ICU

beds. This narrative was only provided by a compartment model, and therefore, in all public

reports we generated, we always included those models. We also tried using a linear regres-

sion model that could provide intuitive results; however, we found that for our particular

case, the linear regression model had low predictive power.

• During the first two weeks, we used the series of newly confirmed cases regardless of whether

the patients exhibited symptoms since that was the only information readily available. For

the prediction of ICU beds, only patients with symptoms have a positive probability of

requiring intensive care; therefore, the number of cases with symptoms should provide the

most direct signal of the requirement for ICU beds. When the series of new cases was sys-

tematically reported depending on the existence of symptoms, we started to use symptomatic

cases only.

• The first two reports we generated only considered the Metropolitan Region because it con-

tained the largest number of cases by far; consequently, it was the most urgent concern for

local authorities. After a week, we added reports for three other regions (Tarapacá, Antofa-

gasta and Valparaiso) that also showed an alarming rise in new cases. At this point, our

model was completely automated to generate predictions for all regions in the country, but

we only progressively added more regions as they became more worrisome. By early July, we

started reporting forecasts for all sixteen regions of the country.

• The GMDH model was not considered in the original list of models and was only introduced

on June 11th. Since then, this model was been considered in the ensemble.

• In early July, we identified that most models were starting to show that the rate at which

additional ICU beds were going to be needed for the Metropolitan Region was somewhat

slowing down. However, the ICD compartment model did not show any sign of saturation.

After interviewing medical personnel, we realized that some patients were starting to be
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mechanically ventilated in emergency rooms (ERs), and so they were not counted in the

nominal series of ICU utilization. Thus, in terms of capacity planning, we were required to

report how many beds should be made available to cover both new cases and ventilated cases

in emergency rooms. Therefore, we complemented the series of ICU beds with the number

of patients ventilated in ERs. Notice however, that the number of patients ventilated in ERs

decreased to almost zero by late July, and therefore, we did not report them in the final two

reports.

• As laboratories reached their testing capacities, the variation in the number of reported new

cases increased significantly in mid-June. As a consequence, the forecasts were less stable. To

overcome this problem, we preprocessed the series of new cases and used a five-day moving

average instead of the raw series.

The results that we present in the next section are devoted to representing what we reported

at each point in time, and they already include all methodological changes we introduced dur-

ing the process.

Results

Starting from May 16th, we generated standardized and frequent reports containing the two

weeks ahead forecasts. The reports were made publicly available at https://isci.cl/covid19/ and

were generated regularly every other day, except for the last two weeks of July, when the

reports were generated only twice a week. The first reports only provided forecasts for the

most critical regions, but we later provided reports for the whole country. In the analysis we

present here, we only consider results since May 20th, when our routines were fully automa-

tized to generate predictions for all regions.

The main body of each report consisted of a summary of the number of beds that were

going to be required for each region for a time horizon of two weeks, followed by a graphical

summary of the forecast. A very important requirement for these reports was that they had to

be concise and easy to read. The crisis committee had a very short time to evaluate all the infor-

mation, so our reports were tailored to consider this situation. In Fig 3, we display the predic-

tions reported for the Metropolitan Region on July 24th. Graphical reports for two other

regions and the national summary are available in the S1 Fig.

Fig 3. Government report: 24 July—Metropolitan Region.

https://doi.org/10.1371/journal.pone.0245272.g003
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At the bottom of this figure, we show the forecasts provided for the models that survived

the removal of the most extreme predictions, and then, in the upper part, we present the com-

bined forecast. For all models, we presented both the predictions and the actual series of ICU

occupancy. Furthermore, to facilitate the interpretation of the results, we highlighted the pre-

dicted numbers of beds that would be required in exactly seven and fourteen days. For the

example presented in Fig 3, the reports indicated that the Metropolitan Region was going to

require 937 beds within a week (172 beds less than occupation at that date) and 802 beds

within two weeks (307 beds less than the occupancy on that date). For this particular example,

the ensemble was produced with the MLPR, ELM, TBATS and ICD models, but those changed

depending on the values of the forecasts. For a detailed count of the frequency with which each

model was used in the ensemble, see the S3 Table.

For a systematic evaluation of our forecasts, we decompose the analysis into two parts. We first

compare the performance of each model and the ensemble in terms of their forecasting errors,

and then we discuss how our ad hoc trimmed algorithm fares against other pooling criteria.

Model evaluation

From May 20th to July 28th, we produced 30 ICU utilization reports. In each report, we pre-

sented daily forecasts of the demand for ICU beds for the next two weeks in the regions con-

sidered in that instance. In every case, we generated predictions for different forecasting

models, and we built our best guess through a conditional trimmed mean ensemble. A visual

representation of all forecasts we reported for the Metropolitan Region is displayed in Fig 4. In

this figure, we display the actual series of ICU occupancy with a black line, and each of the

thirty fourteen-day ahead forecasts is presented with a different color. These results indicate

that except for a few cases in early June, when we overestimated the demand for ICU beds, the

predictions were, at least visually, quite accurate.

To summarize all these daily forecasts, we compute the mean absolute percentage error

(MAPE) for each model, as displayed in Table 2. To simplify the exposition, we only report the

performances of the models for the Metropolitan Region because this region required by far

the most ICU beds in the country. For example, at the peak of the outbreak, the Metropolitan

Region demanded more than 11 times more beds than the second-most congested region. An

analogous table illustrating the errors for the Valparaiso Region (the second largest) is available

in the S2 Table. Further metrics for other regions are available upon request.

In Table 2, we further decompose the performance metrics into two blocks corresponding

to the prediction vectors for 7 and 14 days ahead. It is expected that the predictions for the first

Fig 4. Forecasting iterations—Accuracy performance (ensemble).

https://doi.org/10.1371/journal.pone.0245272.g004
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week should have smaller errors than those of the second week. This is because more distant

forecasts are associated with greater volatility and more degrees of freedom to drift away from

the current value. The results from Table 2 confirm this idea and indicate that on average, our

forecasts exhibited a 4.11% error rate in the first week and a 9.03% error rate in the second

week. We believe these figures demonstrate that our forecasting approach provided good accu-

racy regarding capacity planning information in the context of the COVID-19 pandemic. Our

view is confirmed by the assessment of the Minister of Science, who stated that our reports

were “tremendously important to support decision making in difficult times“.

It is important to evaluate the performance of our forecasting approach in the context of a

pandemic characterized by phases of exponential growth that can lead to large prediction

Table 2. Historical MAPE per model—Metropolitan Region.

1st week 2nd week

Date Ensemble ARIMAX MLPR ELM TBATS GMDH ICD Ensemble ARIMAX MLPR ELM TBATS GMDH ICD

2020-05-20 2.34 4.79 2.37 6.64 1.38 4.21 5.59 14.70 15.45 4.19 7.36 22.24

2020-05-22 5.15 4.68 7.21 8.21 7.63 6.86 6.95 4.00 3.03 9.91 3.30 37.49

2020-05-24 4.94 1.86 0.96 2.60 2.27 19.32 25.09 5.65 5.56 2.46 10.07 85.79

2020-05-26 8.64 4.42 3.33 4.68 4.29 21.55 25.57 14.51 12.13 16.99 14.21 57.76

2020-05-28 7.22 2.70 4.00 2.54 3.35 19.94 24.28 11.09 12.48 10.92 12.47 62.65

2020-05-30 7.00 2.94 2.91 2.24 2.54 21.41 22.99 12.75 6.50 10.59 10.38 62.11

2020-06-01 8.06 6.91 6.98 5.83 5.21 12.52 24.63 18.97 23.78 15.78 14.95 40.01

2020-06-03 9.74 3.80 7.74 3.74 3.33 23.81 23.62 11.02 14.57 9.50 8.06 59.39

2020-06-05 7.26 6.85 3.65 2.79 3.80 17.71 12.41 11.43 9.10 3.01 4.15 29.63

2020-06-07 6.31 4.40 9.38 3.19 2.83 14.80 7.64 4.75 19.77 2.56 3.11 27.66

2020-06-09 1.87 1.19 3.08 1.19 1.84 7.75 1.75 2.94 1.68 6.97 10.85 16.39

2020-06-11 3.70 2.88 6.45 4.58 5.31 1.53 2.46 10.23 5.75 16.44 12.22 14.99 5.41 7.96

2020-06-13 6.60 4.97 8.12 5.33 7.07 4.40 5.88 10.02 5.36 13.78 7.88 12.87 7.24 5.65

2020-06-16 6.31 1.39 7.93 5.69 6.29 7.42 6.36 4.27 7.78 8.26 3.65 5.24 5.36 2.37

2020-06-18 0.94 2.66 1.99 1.42 2.92 1.55 2.02 2.68 13.38 10.09 6.55 14.31 2.61 7.82

2020-06-20 4.32 6.09 7.37 3.44 6.60 2.56 4.36 8.03 18.85 14.82 10.91 20.00 8.65 2.66

2020-06-22 2.43 5.23 3.85 3.56 4.73 1.47 2.54 5.55 18.36 14.94 12.19 14.54 6.46 13.91

2020-06-24 0.90 1.64 7.37 5.38 1.24 3.13 6.58 3.35 7.20 20.61 17.28 4.10 12.59 35.56

2020-06-26 3.18 2.23 3.28 4.66 1.17 3.77 10.29 7.23 10.52 2.99 17.21 1.63 12.91 41.43

2020-06-28 1.25 8.03 3.12 9.17 6.23 7.87 12.23 0.66 20.76 11.03 23.01 15.49 19.75 44.11

2020-06-30 2.34 6.14 2.71 5.83 1.03 4.75 19.30 3.49 19.42 5.20 19.37 4.39 13.76 49.93

2020-07-02 3.04 5.71 1.85 7.26 1.08 4.77 21.82 4.94 19.64 14.47 23.15 5.77 14.10 57.32

2020-07-03 1.58 3.96 3.04 8.26 3.18 5.70 21.35 3.07 13.49 17.54 25.09 10.95 16.14 56.06

2020-07-07 2.00 1.03 6.85 6.30 1.67 5.81 22.81 5.01 9.92 27.33 27.88 11.99 20.55 50.17

2020-07-10 3.05 2.99 4.66 7.71 3.55 10.20 24.43 1.44 12.19 21.93 29.64 13.59 25.77 53.79

2020-07-14 4.00 6.69 9.56 12.81 7.02 16.80 19.80 8.16 14.84 23.18 33.07 16.38 33.26 54.20

2020-07-17 2.69 6.02 1.77 4.62 1.31 12.37 23.20 4.72 12.84 5.84 17.07 1.50 25.17 53.88

2020-07-21 1.37 6.91 2.04 9.47 4.88 14.59 14.72 2.67 13.29 5.99 18.57 7.53 32.82 38.47

2020-07-24 2.50 3.70 3.07 7.89 4.59 10.97 7.46 3.73 4.27 4.07 10.01 2.72 25.32 23.36

2020-07-28 2.59 1.60 3.39 4.51 2.11 9.64 4.56 1.26 2.74 6.74 10.34 2.76 29.24 3.47

min 0.90 1.03 0.96 1.19 1.03 1.47 2.02 0.66 2.74 1.68 2.46 1.50 2.61 2.37

max 9.74 8.03 9.56 12.81 7.63 16.80 24.43 25.57 20.76 27.33 33.07 20.00 33.26 85.79

mean 4.11 4.15 4.67 5.38 3.68 6.80 13.40 9.03 11.41 12.31 13.93 9.32 16.69 36.77

std 2.52 2.01 2.54 2.65 2.04 4.54 7.75 8.28 5.45 6.95 8.34 5.23 9.73 22.24

https://doi.org/10.1371/journal.pone.0245272.t002
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errors. For example, consider the case of the U.K., where early epidemiological models initially

projected approximately 500,000 deaths, a number that was updated to under 20,000 deaths

just two weeks later [31]. For an additional discussion regarding the challenges in predicting

the spread of COVID-19, see [60].

To further understand how individual models performed relative to the ensemble, we plot

the series of MAPEs for all models in Fig 5. From this figure, we observe that the precision

rates of the models are not uniform over time. With the exception of ICD, all models per-

formed well early in the process and at the end, where the pandemic was either steadily on the

rise or in decline. However, the ICD model was shown to be most accurate in the middle of

the process. Interestingly, the ensemble was frequently associated with smaller errors than

those of the individual models. In the next section, we provide a more comprehensive discus-

sion about this pattern, evaluating how our ensemble compares to other methodologies pro-

posed in the literature.

Validation of the ensemble

To complete the analysis, we discuss how our conditional trimmed mean ensemble performed

against other criteria for combining forecasts. As we forced our predictions to include the ICD

compartment model regardless of the value of its predictions, it is possible that our ensemble

might lead to a worse performance than those of other criteria that are not subject to this

restriction. By design, we were willing to sacrifice precision to gain interpretability, but it is

worth exploring whether our predictions were deteriorated by considering this interpretability

constraint.

Fig 6 displays the root mean square error (RMSE) and mean absolute percentage error

(MAPE) for our conditional trimmed mean, along with those of two other commonly used

ensembles: themean and themedian forecasts. For simplicity, in these series, we only report the

errors for the whole forecasting horizon with no distinction between the first and second weeks.

Instead, in these plots, we highlight three stages depending on whether the series of ICU occu-

pancy exhibited positive, neutral or negative trends; we label them ascending, plateau and

descending phases, respectively. Although the definition of the exact time when the series changes

its slope is somewhat discretionary (in this exercise, the second phase starts on June 23rd, and

the third phase is determined to start on July 8th.), this qualitative decomposition helps us under-

stand the role of the compartmental model in the forecasts. Summaries of the comparisons

between the ensemble criteria are displayed in Table 3, where we report the RMSEs and MAPEs

for all ensembles and break them down into the three aforementioned stages.

Fig 5. MAPEs across time for each iteration.

https://doi.org/10.1371/journal.pone.0245272.g005
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From Table 3, we observe that forcing the inclusion of the ICD model did not induce any

deterioration in the forecasting precision, and our ensemble forecast exhibited the smallest

prediction errors overall. The comparisons by stage shed further light on understanding the

performance of the trimmed mean approach.

In the early stages of the pandemic, our trimmed mean criteria were outperformed by the

standard mean and median ensembles. However, after a few iterations, our predictions consis-

tently exhibited the smallest errors. This result can be explained by the fact that the ICD model

produced prediction errors with opposite signs that canceled out the errors induced by other

models. We believe that feeding the model structural information about the clinical evolution

of COVID-19 patients can provide a useful forecasting signal and provide additional support

for the convenience of using combined forecasts.

Fig 6. Forecasting errors by ensemble type across iterations. RMSEs are the upper panel and MAPE are in the bottom panel.

https://doi.org/10.1371/journal.pone.0245272.g006

Table 3. Error metrics per combination across iterations.

Metric Tmean Median Mean

RMSE (overall) 96.91 115.81 102.92

Ascending 140.90 97.29 105.50

Plateau 52.37 163.65 106.82

Descending 38.95 101.38 90.85

MAPE (overall) 6.78 7.53 6.97

Ascending 9.87 6.49 7.94

Plateau 3.22 9.55 5.38

Descending 3.26 7.60 6.48

https://doi.org/10.1371/journal.pone.0245272.t003
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Nontechnical summary of the methodology and implementation

The epidemiological literature has offered a variety of tools for understanding the dynamics of

infectious diseases. In this study, we built upon these epidemiological models, and we tailored

them with the specific goal of producing accurate forecasts of ICU utilization, as these has

been critical components for mitigating the negative impacts of the COVID-19 pandemic. In

this regard, there are three key conditions that differentiate our forecast from traditional epide-

miological models.

1. As we only focused on patients who required hospital resources in the short term, instead

of forecasting the evolution of the pandemic through the reproduction number R, we

directly used the number of symptomatic cases. This information is readily available and

easy to process. More importantly, the usage of the actual number of symptomatic cases

instead of a projection of the infections had a material impact in terms of improving the

forecasting accuracy.

2. We were specifically interested in characterizing ICU utilization; therefore, our model was

tailored to capture the most relevant dynamics of this problem. These include the persis-

tence of bed utilization and flexible distributions for the duration of the stay of each patient.

These dynamics can be captured by two simple conservation law equations that indicate the

new daily requirements of beds and the number of discharged patients. The rates at which

customers arrive and leave the ICU can be derived from clinical sources, or they can be esti-

mated from the data as we do in our application.

3. In our model, we combined the standard epidemiological approach with time series and

machine learning models that bring additional flexibility to the forecast. Importantly, our

results indicate that this additional flexibility is critical to obtain highly precise estimates.

This is because standard epidemiological models do not properly capture dynamic varia-

tions in how patients evolve during critical care. This is particularly relevant for a new dis-

ease for which medical teams are continuously learning about improved treatments.

Methodologically speaking, we show that the combination of different models can be

achieved through a simple linear combination of forecasts.

Since epidemiological models do not incorporate detailed modeling of the dynamics of ICU

requirements, they tend to have large forecasting errors. For the case of Chile, even the most

sophisticated compartment models exhibited prediction errors that were up to three times

larger than what we reported here (http://covid-19vis.cmm.uchile.cl/forecast). Furthermore,

these models are rather sensitive to the underlying assumptions about the infection rates and

can present more than a 500% difference between their conservative and pessimistic scenarios

(http://www.saludpublica.uchile.cl/noticias/163921/informe-covid-19-chile-al-31052020).

Our numerical analysis indicates that the most classical epidemiological approach by itself

produces large forecasting errors. In fact, the compartment model generated predictions with

a mean error rate of 13.4% (sd of 7.75), while the methodology we proposed led to a mean

error rate of 4.11% (sd of 2.52). Some of the time series and machine learning models per-

formed reasonably well, but they failed to anticipate changes in trends. The combined forecast

in general produces the most accurate predictions and it correctly anticipates when the num-

ber of ICU beds will decrease. Thus, our analysis demonstrates that a simple combination of

different forecasts can generate much better predictions in the context of planning emergency

resources than those of single models.

Our model may be implemented by health authorities rather easily. Indeed, the logic of our

compartment model can be summarized into two flow conservation equations, and the time
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series and machine learning models can be estimated using standard statistical packages. All

forecasts can be combined using a linear combination of the individual forecasts. To facilitate

the implementation of the method for other countries or regions, in S4 Table, we provide a

summary of the methodological steps and data requirements (which in most countries are

already available).

Conclusions

In this research, we proposed a methodology to produce short-term forecasts for ICU beds in

the context of the COVID-19 epidemic in Chile. Our algorithm is based on an ensemble

method that combines autoregressive neural networks, artificial neural networks and a com-

partment model to generate our best prediction of ICU utilization for a time horizon of four-

teen days. This algorithm captures the epidemiological dynamics of the disease with a

compartmental model and is complemented by time-series models that capture short-term

changes in the clinical parameters. This approach resulted in very accurate predictions, with a

mean error rate of 4% for the first week and 9% for the second week. An analysis of the perfor-

mance over time indicates that, in relative terms, the proposed model produced larger errors

earlier in the process. This can be explained by the fact that in the early stages of the pandemic,

each individual model had less data to learn from. However, we believe that a more fundamen-

tal reason is that after a few iterations, different models produced complementary results;

therefore, the trimmed mean we used to ensemble the forecast generated a better forecast than

that of any single model in isolation. Hence, every model contributed a different key signal

that increased the accuracy of the ICU bed predictions in most of our reports. In this regard,

the inclusion of a compartmental model helped to generate highly precise predictions, despite

being the least accurate single model overall.

In terms of the application, the reports we made publicly available were a very useful tool

for anticipating the availability of critical resources in hospitals. We generated consistent infor-

mation to characterize the progression of the pandemic, providing health officials with a data-

driven tool to make quick decisions about ICU planning. These reports enabled the Ministry

of Health to implement a progressive increase in the number of beds, and this resulted in more

than doubling the capacity in the most congested regions. We heard from health and science

authorities and from SOCHIMI how these forecasts were useful for letting them know what

was coming and so they could better focus their resources and efforts across the country.

Importantly, the messages we were sending were well received because, following our interac-

tions with authorities, we tailored the reports to ease communications.

We are confident that our model contributed to better planning during a critical situation

where the lives of many were at risk. However, as the COVID-19 pandemic is still a major

threat in many countries around the world, we consider it important to discuss potential ideas

to further improve the methodology. In our work, we used the data that were available and

that we identified as having predictive power. However, the use of additional disaggregated

data is likely to further improve the forecasting accuracy. For example, more detailed informa-

tion on patient demographics and medical histories could further help to identify what fraction

of patients might require mechanical ventilation and thus provide more detailed guidelines

about focused mitigation policies.

The proposed methodology can also be improved by adding additional forecasting methods

into the pool of models. Although we used a wide variety of models, there are others that we

did not try. For example, the recently developed prophet forecasting model [61] has been

shown to produce proficient predictions for the number of active cases [62]. Our methodology

could benefit not only from the addition of more forecasting models but also the addition of
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other ensemble criteria. For example, recent studies have shown that combining forecasts

through ordinary least squares and least absolute deviations can lead to further improvement

in the ensemble [63].

To produce our predictions, we treated different regions independently. Although this is a

reasonable assumption for the case of Chile where commuting between regions was limited, it

might not be a good assumption when replicating our work in other geographies. In such

cases, a hierarchical model allowing for spatial correlation might be more appropriate [16].

Finally, in our work, we focused on forecasting the demand for ICU beds with no comprehen-

sive exploration of the underlying mechanisms. A detailed analysis of the parameter estimates

could help to understand critical factors are accelerating or decelerating the use of critical

resources.
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