
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7762  | https://doi.org/10.1038/s41598-021-87365-x

www.nature.com/scientificreports

Comparison of Argentinean 
microbiota with other geographical 
populations reveals different 
taxonomic and functional 
signatures associated with obesity
Susana A. Pesoa1*, Nestor Portela1, Eduardo Fernández1, Osvaldo Elbarcha1, 
Martin Gotteland2,3 & Fabien Magne4* 

Accumulating evidence suggests that various genetic and environmental factors contribute to the 
development of obesity. Among the latter, the gut microbiota has emerged as a critical player in the 
regulation of human metabolism and health and the development of non-communicable chronic 
diseases. Considering that no information on this matter is available in Argentina, our aim was to 
identify the microorganisms associated with obesity as well as their potential functionality. Using 
high throughput sequencing of 16SrRNA bacterial gene and diverse bioinformatics tools, we observed 
that the gut microbiota of obese and overweight individuals differs qualitatively and quantitatively 
from that from their lean counterparts. The comparison of the gut microbiota composition in obese 
subjects from Argentina, US and UK showed that the beta diversity significantly differs among the 
three countries, indicating that obesity-associated microbiota composition changes according to 
the geographical origin of the individuals. Moreover, four distinct microbiotypes were identified in 
obese individuals, whose prevalence and metabolic pathway signature differed according to the 
country, indicating that obesity associated dysbiosis would comprise several structures. In summary, 
identification of distinct taxonomic signatures associated with obesity might be a novel promising 
tool to stratify patients based on their microbiome configuration to design strategies for managing 
obesity.

Overweight and obesity have reached epidemic proportions worldwide, currently affecting more than 600 million 
adults and 100 million children1,2. These conditions predispose to the development of severe complications such 
as type 2 diabetes, cardiovascular diseases, and non-alcoholic fatty liver diseases, ultimately leading to the deg-
radation of quality of life and life expectancy3,4. Obesity results from complex interactions between genetic and 
environmental factors including dietary factors, physical activity, and modern lifestyle. More recently, gut micro-
biota has also been involved in the development of obesity and other noncommunicable diseases in humans4,5. 
This dynamic ecosystem, mainly inhabiting the colon, is considered a key player in the regulation of energy 
metabolism and inflammatory processes in the host. Changes in its composition and diversity, called dysbiosis, 
have been associated with obesity6–8. Microbiota alterations are important considering that the gut microbiome 
presents a vast repertoire of genes coding for enzymes involved in metabolic pathways which can be considered 
as complementary to those expressed by the host, performing functions essential for human physiology.

The involvement of gut dysbiosis in energy metabolism disturbances was described for the first time in germ-
free mice. In their seminal study, Turnbaugh et al. reported that these animals, when transplanted with the fecal 
microbiota of obese mice, gained twice as much weight as those receiving the microbiota from lean donors. 
Metagenomic and biochemical studies showed that the microbiota of obese individuals had increased capacity to 
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extract energy from foods9. In addition, the microbiota was shown to inhibit the intestinal expression of Fasting-
Induced Adiposity Factor (FIAF), a hormonal factor acting as an inhibitor of lipoprotein lipase (LPL) in adipose 
tissue and promote adipocyte fat storage. Other mechanisms involve changes in the profile of secondary bile salts 
and the release, by enteroendocrine cells, of digestive hormones with anorexigenic and incretin effects7,10–14. On 
the other hand, obesity is also associated with alterations of the gut barrier function, which favor the transloca-
tion of proinflammatory bacterial components such as lipopolysaccharide (LPS) and flagellin, resulting in the 
so-called metabolic endotoxemia. Increased plasma LPS activates the innate immune system through Toll-like 
receptor 4 (TLR4) in white adipose tissue, amplifying the inflammatory tone and the subsequent development of 
metabolic complications15,16. Although a consensus has emerged on the involvement of the microbiota in obesity 
development, there is not yet a clear picture of the bacterial taxa involved in this condition.

While the microbiota of healthy subjects has been shown to differ according the country, it is not clear 
whether the same occurs for the microbiota of obese subjects17. Studies evaluating the association between 
gut microbiota and obesity have mainly focused on people living in industrialized countries of the northern 
hemisphere, while data from Latin America are scarce. In particular, the role of ethnicity/ancestry, lifestyle and 
genetic factors in the gut microbiota-obesity relationship is not yet clearly established.

In this context, the aim of this study was to describe changes in the gut microbiota composition of lean, 
overweight and obese Argentinean subjects, and to compare the results with those from people living in other 
countries to better understand how gut microbiota contributes to obesity.

Materials and methods
Subjects.  The study was approved by the Institutional Review Board of the Romagosa-Oulton Medical Cent-
ers (Córdoba, Argentina). All the participants had to give a written informed consent prior their enrollment. 
Research was performed in accordance with relevant guidelines and regulations. Seventy-three volunteers were 
recruited in this study, who fulfilled the following inclusion criteria: BMI > 18.5 kg/m2 according to WHO cri-
teria, age > 18 years, without diagnostic of gastrointestinal disease, medical treatment including intake of anti-
biotics, drugs or supplements that could affect gut microbiota in the last 3 months. Individuals participating in 
weight reduction programs and those with neuropsychological disorders, immunosuppression, tumoral and 
autoimmune diseases were excluded from the study.

Fecal sample collection.  A sterile and hermetic collection kit was provided to the volunteers for the col-
lection of a fresh stool at home. The stools were frozen, brought to the laboratory within 24 h of collection, and 
stored at − 40 °C until analysis.

DNA extraction.  Stool samples were handled under a laminar flow hood using sterile technique. Microbial 
DNA was isolated from 220 mg of stool using the QIAmp DNA Stool Mini Kit (Qiagen, Germantown, MD) fol-
lowing the manufacturer’s standard protocol. DNA concentrations were measured using fluorometric quantita-
tion with a Qubit 2 and the Qubit dsDNA high-sensitivity kit (Thermo Fisher Scientific Carlsbad, CA, USA) and 
the extracted DNA was stored at − 80 °C.

16S rRNA gene amplicon library preparation sequencing and taxonomic identification of bac-
teria.  Sequencing was performed using Ion 16S Metagenomics Kit (Thermo Fisher Scientific, Carlsbad, CA, 
USA) on the Ion Torrent Personal Genome Machine (PGM) platform (Thermo Fisher Scientific Carlsbad, CA, 
USA). Briefly, libraries were generated from 20 ng of fecal DNA with the Ion 16S Metagenomics Kit, using a 
combination of two pools of primers targeting the V2, V4 and V8 hypervariable regions of 16S rRNA gene with 
the pool 1, and the V3, V6-7 and V9 regions with the pool 2. Primers were partially digested and bar-codes were 
ligated to the amplicons, purified using the Agencourt AMPure XP beads (Beckman Coulter; Pasadena, CA, 
USA) according to the manufacturer’s protocol, and stored at − 20 °C. The concentration of each 16S library was 
determined by qPCR using the Ion Universal Library Quantitation Kit (Thermo Fisher Scientific Carlsbad, CA, 
USA). The library was diluted to ~ 10 pM before template preparation. Template preparation of the barcoded 
libraries was performed using the Ion PGM Hi-Q View OT2 kit (Thermo Fisher Scientific Carlsbad, CA, USA) 
and the Ion OneTouch 2 System (Thermo Fisher Scientific Carlsbad, CA, USA). Mock community dataset was 
generated from a mixed bacterial genomic DNA from ATCC strains including Escherichia coli ATCC 25922, 
Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis ATCC 29212 
and Streptococcus group B, the latter isolated and typified in LACE Laboratory. A maximum of 9 barcoded 16S 
samples was sequenced on a Ion 316v2 chip using the Ion PGM Hi-Q view Sequencing Kit (Thermo Fisher 
Scientific; Carlsbad, CA, USA) according to the manufacturer’s instructions. Automated analysis, annotation, 
and taxonomical assignment were generated by Qiime tools Metagenomics 16S w1.1 version 5.10 workflow in 
Ion Reporter SW. Curated Greengenes version 13.5 and MicroSEQ(R) 16S Reference Library v2013.1 database 
were used.

United States (US) and United Kingdom (UK) datasets.  Sequences of the hypervariable region V4 
of the 16S rRNA gene from studies carried out in the United States18 and United Kingdom19 for which the data 
relative to the nutritional status of the subjects (MBI) were available.

Comparison of different populations.  From the whole PGM sequencing reads obtained in this study, 
only those targeting the V4 region were selected and used to compare the gut microbiota composition among 
the three countries. Briefly, an amplicon sequence variant (ASV) Table was built for each selected study using 
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the DADA2 pipeline in R environment (https://​benjj​neb.​github.​io/​dada2/​tutor​ial.​html). DADA2 performs qual-
ity trimming and filtering (truncQ = 2, maxN = 0, maxEE = 2), dereplication of sequences, learns the error rates 
and removes sequences containing potential/probable errors using default settings (denoising). The sequences 
from the different ASV Tables were extracted, aligned and trimmed at the same length using the mother pipeline 
(using the align.seqs, filter.seqs and pcr.seqs commands). Next, ASV Tables including the trimmed sequences 
were merged into a full-study sequence Table. Chimeras were identified and removed, and finally taxonomy was 
assigned. The full-study ASV Table was imported into phyloseq v.1.28.0 R Package, for further analysis20.

“Microbiotype” classification.  The probabilistic modelling of exclusive microbial metagenomics data was 
done by clustering the microbiome communities into exclusive metacommunities, with the Dirichlet Multino-
mial Mixtures Model (DMM) in the R Platform21. The DMM approach describes each community by a vector 
of taxa probabilities. These vectors are generated from the optimal number of Dirichlet mixture components 
selected using the minimum Bayesian Information Criterion approximation (BIC). The mixture components 
cluster the microbial communities into distinct groups of samples with similar composition, named from now 
on “microbiotype” in our study. The distinct populations were stratified according to the obesity status and 
geographical factor. Chi-square test was performed to compare the microbiotype frequencies between the dif-
ferent populations. Subsequently, the microbiotypes were imported in the phyloseq v1.28.0 R package and the 
abundances of the main bacterial families were determined.

Statistical data analysis.  Statistical analysis were carried out and visualized using the R version 3.6.1 
software22. The Argentinean subjects were stratified according to their obesity status. The geographical factor 
was also considered for the comparison between the different populations. Alpha-diversity (Observed ASVs and 
Shannon index) and Beta-diversity (Bray–Curtis distances) were calculated based on the ASV Table represent-
ing the relative abundances of bacterial taxa from the microbiome v1.6.0 R package23. The association between 
BMI status and the overall microbiota composition was tested using Adonis test through the Adonis function 
in vegan v2.5.6 R package24. Differential abundance analysis was performed using the Kruskal–Wallis tests at 
phylum, class, order, family, genus, and species levels. False discovery rate (FDR) control based on the Benjamin-
Hochberg procedure was used to correct for multiple testing. Correlation between bacterial taxa abundances 
and BMI values was calculated using the function “associate” in the microbiome v1.6.0 R package23. All data 
were highlighted on boxplot or heatmap using the ggplot2 v3.2.125 and Complex Heatmap v2.0.0 R package26.

PICRUSt analysis.  PICRUSt approach was used to evaluate the functional potential of the different 
microbiotypes27. The full-study ASV Table was converted to BIOM format using the biomformat v1.12.0 R 
package28 and was processed with PICRUSt229. EC number, KO metagenomes, as well as MetaCyc pathway 
abundances were predicted. Differences in MetaCyc pathway abundances between microbiotypes were further 
analyzed using the DESeq2 v1.24.0 R package30. A p-value of < 0.05 after Bonferroni’s multiple test correction 
was considered statistically significant.

Results
Subject characteristics.  Seventy-three Argentinean subjects were enrolled in this study, who were classi-
fied as normal weight (n = 32), overweight (n = 12), or obese (n = 29). Group characteristics are shown in Table 1.

Alpha‑ and beta‑diversity within and among Argentinean BMI groups.  Comparative analysis 
revealed that beta-diversity significantly differs among the three BMI groups (Fig. 1A,B), indicating dissimilari-
ties in the composition and taxa abundance of their microbiota. In contrast, alpha-diversity, which reflects the 
richness of gut bacterial communities and was measured as observed ASVs and Shannon index, did not differ 
among the three BMI groups (Fig. 1C,D).

Taxa associated with obesity in Argentinean subjects.  The relative abundance of bacterial taxa in 
the 3 BMI groups was compared by Kruskal–Wallis test (Supplementary data, Table S1). Though the abundance 
of the phyla Bacteroidetes and Firmicutes and the ratio Firmicutes/Bacteroidetes did not fluctuate (Fig. 1E), 
differences in some bacterial taxa were observed between BMI groups. Within the Bacteroidetes phylum, the 
abundances of Porphyromonadaceae and Rikenellaceae were significantly lower in the obese than in the normal 
weight subjects (p = 0.023 and p = 0.016, respectively; Supplementary data, Fig. S1), and correlated inversely with 
BMI (R = − 0.35, p = 0.0021 and R = − 0.37, p = 0.0015, respectively; Supplementary data, Fig. S2). When looking 
at lower taxa level, Barnesiella sp. from the Porphyromonadaceae family, Alistipes shahii, and Alistipes sp. from 

Table 1.   Clinical characteristics of the Argentinean population. N population size, f female, m male. Age and 
BMI expressed as mean and 95% CI.

N (f/m)

Lean Overweight Obese

N (f/m) Age (year)
BMI (kg/
m2) N (f/m) Age (year)

BMI (kg/
m2) N (f/m) Age (year) BMI (kg/m2)

73 (45/28) 32 (22/10) 40.2
[34.8–45.6]

22.5
[21.8–23.2] 12 (5/7) 41.5

[32.9–50.1]
27.4

[26.6–28.2] 29 (18/11) 49.1
[46.25–55.0]

33.2
[32.0–34.4]

https://benjjneb.github.io/dada2/tutorial.html
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the Rikenellaceae family were significantly lower in obese subjects than in normal weight individuals (p < 0.040, 
p < 0.011, and p < 0.006, respectively). Two species of the Bacteroidaceae family, B. caccae and B. dorei were less 
abundant in the obese subjects (p = 0.011 and p = 0.026, respectively). Notably, overweight subjects also showed 
most of the differences observed in the obese group.

Various taxa of the Firmicutes phylum also differed in the obese individuals. Specifically, higher abundances 
of Roseburia (p = 0.006), Ruminococcus sp. (p = 0.042) and Blautia producta (p = 0.011) from the Lachnospiraceae 
family were detected. Furthermore, genera/species from Erysipelotrichaceae, Clostridiaceae, and Ruminococ-
caceae families such as Eubacterium biforme (p = 0.015), Clostridium lactatifermentans (p = 0.008) and Rumin-
iclostridium sp. (p = 0.007), were more abundant in the obese subjects. Interestingly, only the abundance of 
Roseburia was significantly higher in the overweight subjects compared to lean individuals. Remarkably, the 
abundances of other taxa such as R. gnavus (p = 0.040) and Lactobacillus (p = 0.004), mainly L. rogosae (p = 0.024) 
remained unaltered in obese subjects but were higher in the overweight group. Gracilibacteraceae (p = 0.002) 
and Peptococcaceae (p = 0.002) were significantly depleted in both overweight and obese subjects. Additionally, 
a lower abundance of Oscillibacter sp. (p = 0.048) from the family Oscillospiraceae, was observed in obese but 
not in overweight subjects.

Figure 1.   Analysis of the microbiota in the Argentinean population according to their BMI status. (A,B) 
Comparison of the microbiota profiles using the Principal Coordinates Analysis (PCoA) and the Canonical 
Correspondence Analysis method (CCA) based on the Bray–Curtis distance. The ellipses represent the standard 
deviation (C–E) Box-plots showing the Observed ASV diversity (B), the Shannon diversity (C), the Firmicutes/
Bacteroidetes ratio (D). The solid black lines indicate medians, and the lower and upper bounds of the box 
represent the 25 and 75% quartiles. Outliers are indicated as black circles and represent samples falling outside 
the 10 and 90% quartiles. Statistical analysis was performed using the ANOVA test. Each color represents a 
specific BMI group population: blue box (Lean), green box (Overweight) and red box (Obese).
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Finally, lower proportions of the phyla Tenericutes (p = 0.007), represented by the Mollicutes class (p = 0.005), 
and Verrucomicrobia (p = 0.029) were observed in obese and overweight subjects. Noteworthy, the abundance 
of these two phyla inversely correlated with BMI (R = − 0.33, p = 0.0048 and R = − 0.37, p = 0.0011, respectively; 
Supplementary data, Fig. S2).

Gut microbiota in obese subjects from different geographical populations.  To detect specific 
features in the obesity associated gut microbiota structure, the bacterial community composition of obese Argen-
tinean was compared to that of individuals from different geographic origins18,19. High-throughput sequences 
of the 16S rRNA gene corresponding to the V4 hypervariable region and clinical data from previous studies 
carried out in UK and US were collected (Table 2). Samples with less than 10,000 reads were removed by quality 
filtering, so that finally 63 Argentinean subjects were compared with 1,150 individuals from UK and US. These 
studies were selected based on the number of analyzed samples, free access to sequencing data and availability 
of individual clinical data (i.e. age, sex, BMI). To allow direct comparison among sequences from different stud-
ies, all the reads in the V4 hypervariable region were aligned and trimmed to the same length (100 bp), then 
analyzed using the DADA2 pipeline based in the identification of Exact Sequence Variants. Although it has been 
reported that a sequence length of 100 bp in the V4 region is adequate for the correct analysis of the microbial 
communities31, we limited the identification of reads to the level of family/genus, the rate of identification of 
lower level taxa being not appropriate. For each BMI group the similarity in overall bacterial composition among 
individuals from the three countries was determined using Principal Coordinates Analysis (PCoA) (Fig. 2A–C) 
and Canonical Correspondence Analysis (CCA) (Fig. 2D–F). As shown in these graphics, the gut microbiota of 
the lean, overweight and obese subjects clustered separately according to the geographic origin of the subjects 
(Fig. 2D–F), indicating significant differences in their microbiota composition. The analysis revealed that 25 
bacterial families exhibited different abundances between BMI groups, (Supplementary data Fig. S3), 17 of them 
differed significantly when comparing between countries within each BMI Group. To investigate whether the 
changes in these bacterial taxa were dependent or independent of the BMI status, we compared the countries two 
by two in each BMI group and calculated the log2 (relative abundance ratio) for these Families (Fig. 2G). Bacte-
rial differences were considered as independent of the BMI status whether similar changes were observed for the 
same countries in all BMI groups. Results showed that the increase/decrease log2(foldchange) were similar for 
8/17 families: Actinomycetaceae, Streptococcaceae, Barnesiellaceae, Erysipelotrichaceae, Acidaminococcaceae, 
Akkermansiaceae, Coriobacteriaceae and Burkholderiaceae. For example, in the lean group, the microbiota of 
the English subjects was impoverished in Coriobacteriaceae compared with that of the Americans, and these 
differences persisted in the overweight and obese subjects from both countries. In contrast, some discrepan-
cies in the overweight or obese groups were noted for the others 9/17 families, although the global profiles of 
increased/decreased log2(relative abundance ratio) among BMI groups were close. Together, these data indicate 
that the geographical origin of the subjects affects in a comparable way the composition of their gut microbiome, 
independently of the BMI status. 

Obese from distinct geographic population present different taxonomic signature.  A proba-
bilistic method, the Dirichlet Multinomial Mixtures (DMM), was applied to determine whether the microbiota 
of the obese subjects from the three countries might be stratified in specific microbial communities. DMM 
is generally used for clustering microbial community data by examining the frequency of bacterial taxa and 
determining the number of “metacommunities” or microbial community states (MCS) present in the dataset. 
Based on BIC approximation, which specifies that a lower value indicates a better fitting model, four distinct 
microbiotypes were identified in the 3 BMI groups (Fig.  3A–F). Taxa contributing to the microbiotypes are 
presented in Supplementary data, Table S2. Three bacterial Families (Ruminococcaceae, Lachnospiraceae and 
Bacteroidaceae) determined the difference between the four microbiotypes (Fig. 4). While none of these fami-
lies was dominant in Microbiotype-1, Microbiotype-2 was dominated by Ruminococcaceae, Microbiotype-3 
by Lachnospiraceae and Microbiotype-4 by Bacteroidaceae. Interestingly, the alpha-diversity and Firmicutes/
Bacteroidetes ratio significantly differed among the four microbiotypes (Fig. 5A–C). Alpha-diversity (Observed 
ASVs and Shannon Index) was higher in Microbiotype-1 and -2 compared to Microbiotype-3 and -4 (Fig. 5A,B). 

Table 2.   Description of studies considered to compare geographical population. N population size, f female, m 
male. Age and mean expressed as mean and 95% CI. NI not informed.

Country Study
Accession 
number N (f/m)

Lean Overweight Obese

N (f/m) Age (year)
BMI (kg/
m2) N (f/m) Age (year)

BMI (kg/
m2) N (f/m) Age (years)

BMI (kg/
m2)

US 18 PRJNA290926 172 
(111/61) 68 (49/19) 53.1 

[50.5–55.7]
22.0 

[21.5–22.5] 57 (31/26) 55.1 
[53.2–57.0]

27.1 
[26.7–27.4] 47 (31/16) 55.0 

[51.6–58.4]
35.0 

[33.1–34.0]

UK 19 PRJEB6702 507 (NI) 230 (NI) 61.2 
[59.9–62.5]

22.3 
[22.1–22.6] 174 (NI) 62.9 

[61.7–64.1]
27.3 

[26.9–27.1] 103 (NI) 59.7 
[58.2–61.2]

34.0 
[33.3–34.7]

UK 19 PRJEB6705 471 (NI) 220 (NI) 60.0 
[58.8–61.3]

22.3 
[22.0–22.5] 162 (NI) 62.7 

[59.5–61.1]
27.2 

[27.0–27.5] 89 (NI) 60.2 
[58.2–62.2]

34.6 
[33,0–33.8]

Argentine This study This study 63 (41/22) 28 (20/8) 39.0 [33.3–
44.73]

22.3 
[21.5–23.1] 11 (4/7) 41.0 

[31.6–50.5]
27.4 

[26.5–28.3] 24 (17/7) 49.1 
[44.3–54.0]

33.2 
[31.7–34.6]
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Figure 2.   Differences in the microbiota composition among Argentinean, US and UK populations for each 
BMI group. (A–F) Comparison of microbiota profiles in Lean (A,D), Overweight (B,E) and Obese (C,F) using 
the Principal Coordinates Analysis (PCoA) (A–C) and the Canonical Correspondence Analysis method (CCA) 
(D–F) based on the Bray–Curtis distance. Each color represents a specific population (i.e. Argentine, UK 
and US). (G) Heat map representing the differential log2 (relative abundance ratio) changes of bacterial taxa 
common to the 3 groups, lean, overweight and obese, in populations of different geographic origins. Heatmap 
color (blue to dark red) displays the row scaled log2 (relative abundance ratio) of each taxon.
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The Firmicutes/Bacteroidetes ratio was < 1 for Microbiotype-4 and > 1 for Microbiotype-1, -2 and -3. Moreover, 
it was higher in Microbiotype-3 compared to the others (Fig. 5C).  

On the other hand, the prevalence of the microbiotypes differs according to the country (Fig. 3G–I). When 
considering healthy subjects, Microbiotype-4 was more frequent in the Argentineans, Microbiotype-3 in the 
Americans and Microbiotype-1 and -2 among the English (Fig. 5A). Nevertheless, when all individuals from 
these countries were taken together and stratified according their BMI, the prevalence of Microbiotype-3 and -4 
was higher in the obese groups compared to lean groups (19.7% vs. 30.1%; 15.8% vs. 24.4% respectively) while 
the prevalence of Microbiotype-2 was lower (31.9% vs. 16.5%) (χ2 = 32.8, p = 0.000011) (Fig. 3J–L).

Microbiota functionality differs between microbiotypes.  To explore the metabolic pathways asso-
ciated to the different microbiotypes, we carried out a metagenome functional prediction using PICRUSt227. 
For this analysis, we considered the 20 bacterial families previously identified as the main contributors to the 
different microbiotypes. This approach allowed the identification of 362 metabolic pathways whose abundances 
among the four microbiotypes were compared using the R DESeq2 package. Multiple separate tests were per-
formed on the metabolic pathways showing log2(Fold Change) lower or upper than 1.5. As depicted in Fig. 6, 
twenty-eight metabolic pathways significantly altered in at least one of the microbiotypes were identified.

Microbiotype-1 exhibited similar abilities than Microbiotype-2; although in lesser extent. In general, they 
were characterized by an improved capacity of degradation and biosynthesis compared to the Microbiotype-3 and 
4, with higher capacity of amino acids degradation (Tryptophan, Tyrosine and Leucine) as well as amine com-
pounds, nucleosides and nucleotides, aromatic and organic compounds (taurine and sulfolactate). Additionally, 

Figure 3.   Analysis of microbiotypes distribution in the different subject population according their BMI 
status. (A–F) Clustering of the microbiotypes according to the distinct population in Lean (A,D), Overweight 
(B,E) and Obese (C,F) groups using the Principal Coordinates Analysis (PCoA) (A–C) and the Canonical 
Correspondence Analysis method (CCA) (D–F) based on the Bray–Curtis distance. (G–I) Distribution of 
Microbiotypes inside the distinct populations in Lean (G), Overweight (H) and Obese (I) groups. (J–L) Total 
distribution of Microbiotypes in Lean (J), Overweight (K) and Obese (L) groups. Each color represents a 
Microbiotype (i.e. Microbiotype-1, -2, -3 and -4).
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carboxylase degradation pathway were also increased (i.e. glutaryl-CoA and 2-amino-3-carboxymuconate semi-
aldehyde). Consistently, these degradation pathways were associated with a better capacity of energy production 
(i.e. aerobic respiration and methylaspartate cycle).

On the other hand, Microbiotype-3 and -4 exhibited lower capacity of protein degradation (i.e. amino acids, 
aromatic compounds, taurine and sulfolactate), increased abundance of pathways involved in the metabolism of 
lactose/galactose and chitin derivatives, and decreased ability of quinol, quinone, fatty acids and lipids synthe-
sis. Compared to the others, Microbiotypes 3 and 4 seem to have particularly increased biosynthetic pathways, 
including those implicated in the synthesis of a variety of terpenes, terpenoids, and 2,3-butanediol through the 
super-pathways of geranylgeranyl diphosphate and 2,3-butanediol, respectively. Finally, is important to remark 
that Microbiotype-3 showed increased abundance of pathways involved in the biosynthesis of peptidoglycan 
and mevalonate, but was deficient in those linked to l-tryptophan biosynthesis.

Discussion
The aim of this study was to characterize the gut microbiota of Argentinean individuals with different nutritional 
status using 16SrRNA gene sequencing. Our results confirm that increased BMI is associated with alterations in 
gut microbiota composition. The obese and overweight Argentinean subjects exhibited significant differences 
in the abundance of various bacterial taxa, compared with the lean individuals. Thus, the families Rikenellaceae, 
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Figure 4.   Abundance of the main families involved in the building of Microbiotypes. Boxplot representing the 
abundances of the Ruminococcaceae (red box), Lachnospiraceae (green box) and Bacteroidaceae (blue box) 
in the Microbiotype-1 (A), -2 (B), -3 (C) and -4 (D). The solid black lines indicate medians, and the lower and 
upper bounds of the box represent the 25 and 75% quartiles. Outliers are indicated as black circles and represent 
samples falling outside the 10 and 90% quartiles.
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Figure 5.   Ecological characteristic of the distinct microbiotypes. Box-plots show the Observed ASV diversity 
(A), Shannon diversity (B), Firmicutes/Bacteroidetes ratio (C) for each microbiotypes. The solid black lines 
indicate medians, and the lower and upper bounds of the box represent the 25 and 75% quartiles. Statistical 
differences (*) between microbiotypes were determined using ANOVA or Kruskal Wallis test supported by 
Tukey or Dunn test respectively (p < 0.05).
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Bacteroidaceae, Porphyromonadaceae (Bacteroidetes phylum), Gracilibacteraceae and Peptococcaceae (Firmi-
cutes phylum) were decreased, while the Lachnospiraceae, Erysipelotrichaceae, Clostridiaceae and Ruminococ-
caceae families (Firmicutes Phylum) increased. Interestingly, several populations of butyrate-producing bacteria 
including Alistipes, Oscillibacter and Faecalibacterium, and members of the phylum Verrucomicrobia, whose main 
representant in the human colon is Akkermansia muciniphila, were less abundant in the obese group, confirming 
previous studies in other populations. Some authors have described an association among obesity, lower bacterial 
diversity and higher Firmicutes/Bacteroidetes ratio6,32,33. In contrast, negative correlations among microbiota 
diversity and BMI, body fat content, dyslipidemia, impaired glucose homeostasis and low-grade inflammation 
have also been described7,8,34. Nevertheless, several studies did not confirm these results or reported contrary 
findings, so the use of bacterial richness and Firmicutes/Bacteroidetes ratio as marker of obesity is currently 
excluded6,35–41. Consistent with these results, our study did not observe any differences in alpha diversity and 
Firmicutes/Bacteroidetes ratio in the gut microbiota of the overweight and obese groups, compared with the 
lean. As described elsewhere, it is therefore probable that other factors including geographical location, physi-
cal activity, lifestyle, cultural and dietary habits, increase the variability of the Firmicutes/Bacteroidetes ratio in 
healthy subjects17,42–45.

Our second aim was to compare the gut microbiota composition of obese and overweight Argentinean sub-
jects with the microbiota structure from UK and US individuals. A limitation in the comparison of sequencing 
data from different studies is that it is influenced by several factors including sample processing, DNA extrac-
tion method, primer selection, sequencing method, and bioinformatic analysis45. It is therefore challenging to 
consider all these sources of bias that can result in the over- or under-representation of individual taxa within the 
bacterial community. To overcome this limitation, all reads were re-analyzed using a unique pipeline (DADA2), 
then aligned and trimmed to the same length (100pb) for limiting bias in the assignment of the taxonomy and 
allow direct comparisons among sequences from different studies. Our analysis revealed that gut microbiota 
composition differed according the country, not only for healthy individuals but also for overweight and obese 
subjects. The taxa involved in these differences were similar when results were compared by BMI group. Among 
the 17 bacterial families whose abundance significantly differed between countries, eight increased or decreased 
in a similar way in the three BMI groups. These data indicate that the microbiota composition of lean, overweight 
and obese people changes in the same way depending on their geographical location. Then the geographical 
location could act as an environmental factor driving the composition of the obese gut microbiota. However, 
the fact that some changes in bacterial family abundances differ in the BMI groups suggests that other factors 
probably interfere, that have not been considered or identified in the three studies currently analyzed.
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Figure 6.   Prediction of the metagenomic functions in the different microbiotypes. Heatmap representing 
the metabolic pathways, predicted using PICRUSt2, in the four microbiotypes, higher and lower than 1.5 fold 
changes statistically different [DESeq2 (FDR < 0.05)].
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Although numerous factors have been shown to affect the mammalian gut microbiota composition, dietary 
habits have been reported as the most important in shaping the diversity of the community46–48. Even if dietary 
intake was not determined in the obese individuals participating in these 3 studies, it probably explains part of 
the differences observed among the obese groups of the different geographical populations49,50. Additionally, 
metabolic complications such as insulin resistance, fatty liver disease and low-grade inflammation might also 
influence the differences in the gut microbiome of obese among the different populations. However, our study 
cannot confirm this hypothesis, as clinical and nutritional data were not registered.

Subsequently, we determined that BMI status was associated with specific microorganism consortia (defined 
as microbiotype in our study) rather than individual bacterial taxa. According to the geographic origin of the sub-
jects, gut microbiota clustered in four microbiotypes, harboring mainly three different bacterial families: Rumino-
coccaceae, Lachnospiraceae and Bacteroidaceae representing the most dominant taxa, whose abundance is prob-
ably related to dietary intake. Ruminococcaceae and Lachnospiraceae enrichment has been previously associated 
with high fat diets while high intakes of carbohydrates and fibers were also associated with increases of these 
same families accompanied by decreased Bacteroidaceae51. Although Bacteroidaceae are capable of degrading 
various plant polysaccharides, human studies showed they do not respond effectively to fiber supplementation52. 
Indeed, the fermentative activity of SCFA-producing bacteria, mostly represented by Ruminococcaceae and 
Lachnospiraceae (from the Firmicutes phylum), reduces the colonic pH, inhibiting the growth of acid-sensible 
bacteria such as the Bacteroidaceae, and increasing acid-tolerant bacteria51. On the other hand, the growth of 
bacteria from the Bacteroidaceae family is favored by high-protein, low fermentable fiber diets51. Ruminococ-
caceae, Lachnospiraceae and Bacteroidaceae were previously shown to discriminate populations according to 
their diet49,53–55. In contrast to other studies, we did not identify the genus Prevotella as a key determinant of 
microbiota structure49,53–56. Although Prevotella is an important fiber degrader, it has been mainly identified as 
a member of the microbiota of non-Westernized populations49,53–55, not included in our study. Interestingly, in 
Western populations, the abundance of Prevotella correlates negatively with fiber intake56. Therefore, it appears 
that diet could contribute in the establishment of the microbiotypes identified in our study, acting as a driver of 
inter-individual microbiota differences.

A microbiotype can be considered as a functional, harmonious, association of several bacterial species driven 
by host dietary habits and nutritional status. Indeed, a positive relation was observed between microbiotypes 
and BMI groups. Likewise, Microbiotype-1 which exhibits similar abundance of the three bacterial families, 
and Microbiotype-2 with higher abundance of Ruminococcaceae, harbored higher bacterial diversity and were 
more abundant in the UK population, compared to other microbiotypes. The frequency of both Microbiotypes 
-1 and -2 was lower in overweight and obese subjects. This finding confirm a previous study reporting that gut 
microbiota with high diversity and enriched in Ruminococcaceae and Lachnospiraceae were associated with 
lower weight gain at long-term57. Microbiotype-3 displayed higher abundance of Lachnospiraceae and was more 
represented in the US subjects while Microbiotype-4, enriched in Bacteroidaceae, was more representative of 
the Argentinean subjects, what could be explained by their habitual meat-oriented diet. Additionally, Microbio-
type-3 and -4, which had low bacterial diversity and high Firmicutes/Bacteroidetes ratio, were more abundant 
in overweight and obese individuals. An increased risk of weight gain has been associated with low diversity (as 
in Microbiotype-3 and -4), and enrichment in Bacteroides species (as in Microbiotype-4)57. Together these data 
support that the composition of the microbiota results from a close interaction between diet and BMI status, 
making difficult to define a specific obesity-associated microbiota signature.

Our study also explored the metabolic activities of the different microbiotypes through PICRUST2 which 
predicts metabolic pathways based on 16S rRNA data. PICRUST only predicts the portion of the metagenome 
corresponding to the set of microorganisms identified in our study. Whether a bacterial taxon is not identified, 
due to misamplification for example, its contribution will not be predicted. Another limitation is that this strategy 
only predicts gene families already known and included in the reference database. Therefore, bacterial genes not 
included in the database will not be predicted, despite their potential importance in the ecosystem27. Consider-
ing these limitations, PICRUST2 analysis attributed distinct functional profiles to the different microbiotypes. 
Compared to other microbiotypes, microbiotypes 3 and 4 seem to have a lower capacity of protein degradation, 
which might be a contradictory result since the microbiotype 4 was predominant in Argentinean population 
known by the intake of a high-meat diet. Even though individual food consumption surveys were not available, 
it is known that dietary polyunsaturated fatty acid intake could reduce the protein fermentation. In fact, it has 
been shown that dietary polyunsaturated fatty favor the growth of Lachnospiraceae, as they can degrade these 
compounds58,59. Accordingly, some specific dietary components, such as fatty acids, can influence the microbial 
metabolism of other components. These results might explain the lower capacity of protein degradation observed 
in the microbiotype 3.

Taken together, these observations suggest that diet shapes the composition and functionality of the gut 
microbiota not only in healthy subjects but also in obese. There is not a unique microbiota structure associ-
ated with obesity but a set of microbiota differing in their composition. The contribution of the microbiome to 
obesity is determined through interactions among different factors including geographical, dietary, genetic and 
environmental. Indeed, the type of diet that shapes microbiota composition might additionally contribute to 
the pathological functioning of the obesogenic microbiome. Although these results need to be confirmed, they 
may explain the discrepancies in the microbiome composition of obese reported in a number of studies48,49,57.

Conclusion
As shown in the Argentinean population, it is undeniable that gut dysbiosis is associated with obesity; our study 
also revealed that geographical factors affect the composition of obese microbiota, preventing the identifica-
tion of a global taxonomic signature. Indeed, the analysis of different geographical populations suggests that 
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obesity associated dysbiosis would comprise several gut microbiota structures. In addition, we showed that 
the microbiota structure is determined in part by the abundance levels of Ruminococcaceae, Lachnospiraceae 
and Bacteroidaceae, which might be an important factor of human health. Identification of distinct taxonomic 
signatures and the metabolic pathways associated with obesity may be a novel promising tool to stratify patients 
based on their microbiome configuration to design treatment or prevention strategies focusing gut microbiota 
manipulation for obesity management.
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