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Abstract: In underground mining, the design of rock pillars is of crucial importance as these are
structures that allow safe mining by maintaining the stability of the surrounding excavations. Pillar
design is often a complex task, as it involves estimating the loads at depths and the strength of
the rock mass fabric, which depend on the intact strength of the rock and the shape of the pillar
in terms of the aspect ratio (width/height). The design also depends on the number, persistence,
orientation, and strength of the discontinuities with respect to the orientation and magnitude of the
stresses present. Solutions to this engineering problem are based on one or more of the following
approaches: empirical design methods, practical experience, and/or numerical modeling. Based on
the similarities between masonry structures and rock mass characteristics, an equivalent approach
is proposed as the one commonly used in masonry but applied to rock pillar design. Numerical
models using different geometric configurations and state of stresses are carried out using a finite
difference numerical approach with an adapted masonry model applied to rocks. The results show
the capability of the numerical approach to replicate common types of pillar failure modes and
stability thresholds as those observed in practice.

Keywords: rock pillar; design numerical model; mining; underground stability

1. Introduction

Rock pillars are generally left in underground mines to safely and economically extract
as much of the orebody as possible, by stabilizing the mine openings and withstanding the
in situ and induced stresses of the rock mass. In [1], rock pillars are defined as “the in situ
rock between two or more underground openings.” Pillars are composed of an intact rock
substance and naturally occurring discontinuities such as joints, fractures, and bedding
planes. From field experience, it is well known that the wider the pillar, the more stable they
are. However, a wider pillar becomes inefficient in terms of economic revenue as more ore
will be left unmined. The design of pillars has been done using different methods such as
experience and empirical design, analytical design and numerical analysis using different
constitutive rock models. Each method of design has advantages and disadvantages, as
they require different input information of the rock mass strength, geometry of the pillar
and surroundings, and in situ and induced stresses. The many input parameters, some
unknown at the time of design, makes this process very difficult to undertake. It is essential
to apply more than one method that results in an equivalent conclusion, to be able to take
correct decisions of the dimensions and geometry of pillars and mined areas.

Underground rock design considers structural-controlled instability mechanisms
and stress-controlled instability mechanisms. Structural-controlled mechanisms take into
account the presence of discrete blocks formed by discontinuity planes that intersect the
excavation contour. This type of failure may occur under low or high stress conditions and
is usually stabilized by use of ground support with a combination of shotcrete, anchors,
and wire meshes.

On the other hand, stress-controlled instability mechanisms must take into account
the in situ and induced stresses before and after mining activities. Stress on pillars have
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been estimated by a relatively simple tributary area approach or a more precise solution
with the use of numerical modeling.

Rock Pillar design is usually divided according to the type of rock in coal pillar and
hard rock. Due to its lower intact strength, coal pillars generally have a larger width to
height ratio (>1); on the other hand, hard rock pillars have width to height ratios usually
less than 2 and even as small as 0.3. Therefore, they experience different problems during
its design. Improved hard rock design and coal design have been proposed by different
authors for example as shown in [2,3].

To estimate pillar strength, an empirically developed method is frequently used (see
Equation (1)) which will be discussed in detail later. In this work, an alternative and novel
modeling approach of rock pillars is performed by using failure mechanisms developed for
masonry applications. The similarities between masonry structures and rock mass fabric
are pointed out, and the failure mechanism of both materials is also highlighted. In total,
167 simulations were run varying the aspect ratio and strength parameters of the assessed
pillars. The results are compared with field data obtained from the literature. The effect
on the stability of pillar geometry, span between pillars, strength parameters, influence of
discontinuity spacing and orientation, and buckling effects is analyzed. A new numerical
modeling approach based on the theory derived from masonry structures shows to be
a promising alternative to other numerical modeling approaches as it captures different
modes of failure observed in the field and also allows to notice other aspects that are
important but are not considered in the proposed model.

2. Design of Rock Pillars for Underground Mining and Methods

The geological conditions of the mine control the strength of pillars and their potential
failure modes; therefore, it is not realistic to apply a generalized pillar design method to
every mine scenario. The potential failure modes considered for pillar design are spalling
(hourglassing), shear fracturing, bulking/bulging/slabbing, and foundation failure. It is
well known that the pillar strength is proportional to the pillar width and the strength of
the intact rock and inversely proportional to the pillar height. Thus, in the general form,
the equation that relates the pillar strength is given as follows:

σp = UCS·
(

A + B·Wα
p /Hβ

p

)
(1)

where:

- σp = Strength of the pillar;
- UCS = Unconfined compressive strength of the intact rock;
- Wp = Width of the pillar;
- Hp = Height of the pillar;
- A, B, α, and β = Constants obtained from field observations.

As an example, the following equation was proposed by [4]:

σp = 0.65·UCS·LDF
(

W0.3
p /H0.59

p

)
(2)

where the LDF factor relates the orientation of rock structures with respect to the orientation
of the load being applied. The LDF factor is explained later in this paper.

On the other hand, the pillar stress is determined from the depths of the overburden,
the unit weight of the rock, and the extraction ratio. The pillar stress can be obtained using
tributary theory and numerical modeling.

Most of the design criteria available for underground hard-rock pillars are based on
empirical studies [5–14]. The design criterion is derived from the pillar width-to-height
ratio and the average pillar stress over the UCS strength of the rock. The strength of pillars,
fitted from the available data as an empirical strength curve where the abovementioned
constants are derived, is based on back analysis of stable, unstable, and failed pillars.
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In [15], a new convergence-confinement approach was proposed which makes use of
the pillar reaction curves for predicting the axial stress acting on the pillar. An interaction
diagram, comprising a ground reaction curve (also called the ground characteristic curve)
and a support reaction curve, needs to be built. The ground reaction curve describes the
response of the excavation walls to the pressure the rock mass exerts and the support
reaction curve describes the response of the support to the pressure the rock mass exerts.
The convergence–confinement equilibrium conditions are obtained at the intersection
of these two curves. This approach to pillar design requires numerical stress analysis
to produce the proper ground reaction curves which take into consideration the pre-
mining stress state, the elastic constants of both the host and the pillar rocks, the pillar
dimensions (width and height), their location within the mine, and the mutual interaction
with other pillars.

3. Similarities between Masonry and Proposed Masonry Model for Rock Pillars

In [16], it was shown that there are similarities between rock mass and masonry. The
present work expands these similarities through the construction of a numerical model
that has been adapted from masonry theory as in [17]. Three different modes of failure
are considered for masonry structures; these modes depend on the strength of the mortar
(discontinuity) and the brick (intact rock) and the stresses being applied. These modes of
failure are:

- Adherence failure;
- Failure by diagonal traction;
- Compression failure.

When analyzing a segment of a masonry wall, it is considered that normal stresses are
acting on its horizontal faces and shear stresses are acting on its four faces. In rock pillars,
this could be interpreted such that the horizontal loads are much lower than the vertical
loads. When analyzing a single unit (or brick), it will be necessary to consider additional
stresses over the horizontal faces of the brick, in order to maintain the moment equilibrium,
as shown in Figure 1. In this case, b is the height and d is the length of the brick, σx is the
normal stress, and τ is the shear stress acting on the panel.
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In the following paragraphs are briefly mentioned the three modes of failure consid-
ered in masonry theory. Additional details can be found in [17].
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3.1. Adherence Failure

In this failure mode, a stepped failure surface is observed as shown in Figure 2a.
Along this failure surface, the shear stress is equal to the strength of the joint between
bricks (equivalent to the strength of discontinuities in a rock mass). Shear strength can be
expressed by the equation:

τ = τ0 + µ·σn (3)

where µ is the friction coefficient between the mortar and the brick and τ0 is the adherence
or cohesion.
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3.2. Failure by Diagonal Traction

In this case, traction over a brick unit must be considered and compared with its
tensile strength. A schematic representation is shown in Figure 2b.

3.3. Compression Failure

This mode of failure depends on the compressive strength of the brick itself. This
strength must be compared with the compressive stresses on the brick. A schematic of this
type of failure is shown in Figure 2c.

Altogether, these three modes of failure for masonry enable to generate a failure
envelope, as shown in Figure 3. For low normal stresses it would be expected to have
adherence failure for medium stress diagonal traction failure and for larger normal stresses
compression failure. In Figure 3, fcb is the tensile capacity of the brick, σx is the normal stress,
µ is the friction between mortar and brick, τ0 is the adherence or cohesion between mortar
and brick, Fm is the compression resistance of the brick, and d and b are the dimensions of
the brick.
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4. Proposed Failure Criteria for Rock Pillars Based on Masonry

Considering the three modes of failure observed in masonry, a failure envelope is
proposed for the 2D analysis of rock masses. To obtain this envelope, it is necessary to know
the strength of the intact rock and discontinuities. The intact rock between discontinuities
is considered equivalent to a brick unit, and the discontinuities on the rock mass as the
mortar between bricks. The main restrictions of the proposed model are:

- Two-dimensional analysis;
- Discontinuities in the rock mass are solely considered to dip vertically and horizon-

tally; these correspond to the border of an element in the numerical mesh where
stresses are calculated;

- Intact rock strength is constant in the rock mass;
- Discontinuity strength is constant in the rock mass.

In order to closely represent the stress state in the rock mass, it is assumed that the
normal and shear stresses in the rock units vary linearly and not in steps, as shown by [17]
and Figure 4.
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Normal and shear stresses required for defining the stability condition will be deter-
mined at the nodes of the numerical mesh. Descriptions of pillar failure modes is explained
in the following paragraphs.

4.1. Adherence Failure in the Rock Mass

Shear strength is compared with the applied shear stress on each face (discontinuity)
of every unit of rock. This is done on all nodes of every rock unit, where every face has two
nodes, one on each side (right and left). Therefore, for each unit, a total of eight equations
are verified to establish if the unit is stable. These equations are of the form:

τ < c + σn· tan(∅) (4)

This is done using a function within a loop that accesses and checks constantly the
whole mesh of the problem being solved. In a unit, it will be considered an adherence
failure only if its four faces have failed.

4.2. Failure by Diagonal Traction of the Rock Mass

For the diagonal traction failure mode, Mann and Muller [17] considered assessing
the strength at the center of the unit. However, in this model, the vertical and horizontal
stresses could be different, considering that the stresses must be checked at eight different
locations of the unit, as shown in Figure 5.
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Both masonry structures and rock masses have a low tensile strength (in the order of
10% to 15% of its compressive strength). Figure 5b diagram shows that the tensile stress is
given by:

σ2j = σxj + σyj/2 −
√(

(σxj − σyj)/2
)2

+ τ2
j (5)

where σxj and σyj are the horizontal and vertical normal stresses and τj is the shear stress
acting on point j.

Before the onset of failure, the tensile stress cannot exceed the tensile capacity of the
intact rock (ftb), therefore:

σ2j = − ftb =
(
σxj + σyj

)
/2 −

√((
σxj − σyj

)
/2
)2

+ τ2 (6)

τ ≤ ftb·
√

1 +
(
σxj + σyj

)
/ ftb + σxj·σyj/ ftb

2 (7)

where τ is the shear strength on the rock unit where diagonal traction failure occurs.
This formula is checked for all eight points of the rock unit shown in Figure 5. In this
case, failure of the unit is established if at least one of the eight points fail according to
previous equations.

4.3. Compression Failure

This type of failure depends directly on the unconfined strength of the intact rock
(UCS). Maximum compressive stress in the rock unit should not exceed this value. This
will be checked for all eight points shown in Figure 5, and therefore, in this case, the major
principal stress should consider:

τ ≤ UCS·
√

1 −
(
σxj + σyj

)
/UCS + σxj·σyj/UCS2 (8)

Similarly, if one or more of the eight points is in a state of failure, the rock unit will be
considered to have failed by compression.

As the masonry model does not take into account the frequency and inclination of the
discontinuities, they will be considered with the use of the LDF factor, due to the presence
of large discontinuities dipping at an angle, as described by [18]:

LDF = 1 − DDF·FF (9)

where:
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- LDF: Large Discontinuity Factor;
- DDF: Discontinuity Dip Factor;
- FF: Frequency factor.

DDF is an inclination adjustment factor that represents the strength reduction due to a
single discontinuity that intersects the pillar at or near its core. Table 1 shows the DDF for
a range of discontinuity dips with respect to the pillar’s width-to-height ratio, and Table 2
shows the FF for a range of average frequencies of large discontinuities per pillar.

Table 1. Discontinuity dip factor (DDF). Table extracted from [18].

Discontinuity Pillar Width-to-Height Ratio
Dip (◦)

≤0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 >1.2

30◦ 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.16
40◦ 0.23 0.26 0.27 0.27 0.25 0.24 0.23 0.23 0.22
50◦ 0.61 0.65 0.61 0.53 0.44 0.37 0.33 0.30 0.28
60◦ 0.94 0.86 0.72 0.56 0.43 0.34 0.29 0.26 0.24
70◦ 0.83 0.68 0.52 0.39 0.30 0.24 0.21 0.20 0.18
80◦ 0.53 0.41 0.31 0.25 0.20 0.18 0.17 0.16 0.16
90◦ 0.31 0.25 0.21 0.18 0.17 0.18 0.16 0.15 0.15

Table 2. Frequency factor (FF). Extracted from [18].

Average Frequency of Large
Discontinuities per Pillar 0.0 0.1 0.2 0.3 0.5 1.0 2.0 3.0 >3

Frequency factor (FF) 0.00 0.10 0.18 0.26 0.39 0.63 0.86 0.95 1.00

5. Numerical Results for Rock Pillars

FLAC 2D was the numerical code employed for modeling and estimating the stability
of pillars under different geometries and varying strength properties [19]. FLAC uses a
finite difference approach that allows the use of different constitutive models to represent
rock mass or other materials as a continuum and determine its behavior under the loads
being applied. In a first stage, the model is run using a linear-elastic constitutive model that
gives the initial stresses that are subject the considered pillars according to its geometry,
but prevents failure of the material. Posteriorly, three modes of failure, as described in
Figure 3, with their respective strength envelopes are accounted for through the use of
strength functions (fish functions in FLAC), which are compared to the stresses and derived
from the model. Different pillar geometries were considered: width and height, width of
opening, and strength parameters of the intact rock and discontinuities. For each mesh
element (brick unit), when one of the three types of failure is reached, they get removed
from the mesh and the model tries again to reach equilibrium. Size of the mesh was chosen
as the biggest one possible but obtaining repeatable stresses and deformations of thinner
size mesh. This process continues until the pillar is stable or complete failure is observed.
The applied in situ stresses correspond to what has been observed at El Teniente Mine and
are defined such that σh = 40 MPa (maximum horizontal stress) and σv = 25 MPa (vertical
stress) [20]. Rock mass parameters are given by: K = 18.4 GPa (bulk modulus), G = 13.2 GPa
(shear modulus), ρ = 28 kN/m3 (unit weight), and UCS = 119 MPa. Discontinuity strength
was obtained from [20–22], and it is estimated to have an average cohesion of 0.6 MPa and
a friction angle (φ) of 38◦. However, a sensitivity analysis was performed to determine the
effects of changing these values.

The following stages are executed through the numerical modeling process carried out:

- Creation of mesh;
- Applying properties to the strength function used for characterizing the masonry

failure envelope in the rock mass;
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- Solving the initial stage for boundary loads until equilibrium is reached;
- Performing excavations using the null model. This creates the pillar geometry. This

stage is solved until equilibrium is reached using the elastic model;
- While stepping, each element of the mesh is constantly checked using the masonry

failure envelope explained previously;
- Mesh elements that fail, according to any of the failure modes explained previously,

are extracted (defined as null elements);
- With the remaining elements, the model continues to run and failure modes are

checked until no more elements fail (stable pillar) or the pillar fails completely.

A total of 167 models were run with overburden depths of 390 and 870 m with varying
widths and heights of pillars and widths of openings. Firstly, the UCS value is adjusted in
order to find the onset of failure. In the following stage, the discontinuity strength values
are modified to check their influence on pillar stability.

6. Results and Discussion on the Validity of the Use of Masonry-Type
Constitutive Model

Figure 6 shows the empirical developed database and strength envelopes [14] com-
piled from published sources and field observations from Canadian hard-rock mines.
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Figure 6. Empirically developed Pillar Stability Graph [12].

From Figure 6, it can be deduced that the strength of the pillar in function of its UCS
increases as the ratio of W/H of the pillar increases. Figure 7 shows the results from FLAC
numerical modeling used in this research, with vertical stress changes along a horizontal
plane on the pillar are shown; a similar effect can be observed for the horizontal stress. For
comparison with Figure 6, the stress applied on a pillar is considered as the average stress
on a horizontal plane measured at the middle height of the pillar obtained from numerical
modeling. Boundary conditions on the boundary vertical sides of the model are restrained
in the x position, on the base of the model, x and y movements are restrained. Vertical
stress to simulate depth of the rock mass is added at the top boundary.
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Numerical modeling results, using the previously introduced concept, are compared
with the corresponding empirically developed design curves commonly used in practice,
which are based on field data of failed and stable rock pillars (Figure 6). The comparison is
performed in terms of the required tensile ratio between the stress in the pillar (σp) and
the unconfined strength of the rock (UCS). Figure 8 shows failure envelopes, obtained
from numerical modeling, of a pillar with constant height of 10 m with no structures
present (curve for LDF = 1) and with the presence of geological structures oriented at
30◦ to 80◦ with respect to the horizontal. It can be noticed that pillars with geological
structures oriented at 60◦ shows the worst-case scenario in terms of stability. Only when
the presence of discontinuities inclined in different directions are considered is it possible
to obtain a similar shape of failure envelopes for rock pillars. Therefore, this numerical
modeling agrees with the importance of the presence and direction of discontinuities
and the values previously defined of the LDF factor, as using the same values proposed
from [18], it is possible to generate similar failure envelope curves as shown in Figure 6
from field observations. However, as is shown in [4], even without the presence of angular
discontinuities, slender pillars should be less stable, as observed in the field. Therefore,
the proposed masonry equivalent FLAC model, even considering discontinuity effects,
is missing an important aspect that has not been considered in rock pillar mechanics. In
structural engineering, slender columns are known to show buckling effects and failure.
Buckling can be avoided (theoretically) when the loads are applied absolutely axially
to the column, the column material is totally homogeneous with no imperfection, and
the construction is symmetrical. All these factors are fulfilled in our present numerical
modeling; however, in practice, these are not fulfilled, and thus, buckling effects are
expected. This effect was first studied by Euler in the 18th century, who proposed the
existence of a critical load that depends on the geometry of the column. For a column with
fixed ends, the critical load for which buckling effects start to show is [23]:

Pcr =
4π2EI

L2 (10)



Energies 2021, 14, 890 10 of 16

Energies 2021, 14, x FOR PEER REVIEW 10 of 17 
 

 

Considering that there is a relationship between the elastic modulus and the UCS, a 
critical stress for buckling can be obtained that could explain low values of failure stress 
for slender rock pillars, given by: 

𝜎௖௥ = 𝐶 ∙ ቆ𝑊௣𝐻௣ቇଶ
 (11)

where C is a constant that would depend on the rock type. Therefore, additionally to dis-
continuity effects, the buckling effect is also believed to play an important role in the sta-
bility of pillars with low values of Wp/Hp. 

 
Figure 8. Pillar stability curves with varying LDF factor, Hp = 10 m. 

Figure 9 shows the numerical modeling stability curves for different pillar heights 
and constant width of opening of 20 m. These modeling results do not contemplate the 
effect of the dip of discontinuities. Additionally, the empirical failure envelopes, obtained 
from [14], with safety factors of 1.0 and 1.4, are also shown in this figure. These empirical 
curves were obtained from field observations of hard-rock pillars with widths ranging 
from 1.9 to 45 m and heights from 2.4 to 53 m. 

Figure 8. Pillar stability curves with varying LDF factor, Hp = 10 m.

Considering that there is a relationship between the elastic modulus and the UCS, a
critical stress for buckling can be obtained that could explain low values of failure stress
for slender rock pillars, given by:

σcr = C·
(

Wp

Hp

)2
(11)

where C is a constant that would depend on the rock type. Therefore, additionally to
discontinuity effects, the buckling effect is also believed to play an important role in the
stability of pillars with low values of Wp/Hp.

Figure 9 shows the numerical modeling stability curves for different pillar heights and
constant width of opening of 20 m. These modeling results do not contemplate the effect of
the dip of discontinuities. Additionally, the empirical failure envelopes, obtained from [14],
with safety factors of 1.0 and 1.4, are also shown in this figure. These empirical curves were
obtained from field observations of hard-rock pillars with widths ranging from 1.9 to 45 m
and heights from 2.4 to 53 m.

Similarly, Figure 10 shows the same ratio as in the previous figure, but in this case,
the width of the pillar is maintained constant. In both figures, the width of the opening
(excavation) is maintained constant at 20 m.

In both cases (constant Hp or Wp), the numerical modeling results are higher than the
empirical values for Wp/Hp ratios less than 1.0, which is due to the fundamental role that
the dip of discontinuities plays in the stability results and buckling effects.

To evaluate the effect of the in situ stress, related to the depth of overburden, the
results obtained for a width of opening Wo = 20 m and constant height Hp = 10 m were
analyzed against the in situ stress ratio (σh/σv). The results are shown in Figure 11, where
it can be noticed that there is little difference between the failure envelopes when the same
in situ stress ratio is set but with different magnitudes, that is, when σh = 40 MPa and
σv = 25 MPa and when σh = 4 MPa and σv = 2.5 MPa were used. Therefore, there will
be negligible differences in the failure envelope when the in situ stress ratio is constant.
Similarly, in Figure 12, it is shown that changing the excavation size (Wo) has negligible
effects on the envelope obtained. This allows us to consider that the results obtained are
valid in other geometric and stress situations.
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widths Wp.

From the masonry-type model results, it can be deduced that when the pillar width-to-
height ratio is maintained constant, the strength of the pillar decreases as the pillar is scaled
up. On the other hand, it also shows that maintaining the height constant and increasing
the pillar width, the maximum average stress in the pillar decreases and the strength
increases proportionally to its width. It also shows that when the width is maintained
constant and the height is increased, the maximum load that can withstand the pillar
decreases as the area remains constant. It is important to notice that, so far (except for
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Figure 8), no consideration has been made regarding the presence of discontinuities in
different orientation and in the frequency of the discontinuities. Similar results were
obtained by [24] on uniaxial compressive tests on intact rock specimens. Based on field
data, [25] also showed that increasing the pillar height and maintaining a constant width
generates a reduction in the strength of the rock pillar.
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As was mentioned before, a typical value of shear strength for discontinuities was
used for most of the analysis performed. Discontinuity friction angle was varied from
14◦ to 38◦, while the cohesion was maintained constant at 0.6 MPa. Results are shown
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in Figure 13, where it can be observed that the shape of the curve is maintained, but the
average load to UCS ratio decreases by about 30 to 25% along the Wp/Hp values.
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Similarly, Figure 14 shows the shift of the failure envelope when the cohesion of the
discontinuities is varied, keeping the friction angle constant at 14◦. From Figure 14, it can
be noticed that for Wp/Hp ratios lower than 1.5, there are only slight changes in the onset
of failure, but it becomes significant at higher values of Wp/Hp.
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From Figures 9 and 10, it is observed that within 0.3 to 1.0 width-to-height ratio,
the results deviate from those presented by [14]. Until now, the results of the numerical
model have only considered the effect of horizontal and vertical discontinuities (masonry
model); therefore, it is assumed that the values reported in these two figures should be
higher than those with discontinuities in other dipping angles. To estimate the effect of the
discontinuities dipping at angles other than vertical and horizontal, the empirical reduction
factor DDF, shown in Table 1, is applied to the numerical modeling results. When this
factor is applied to the results of Figures 9 and 10, and assuming the worst-case scenario of
60◦ dip of discontinuities, the resulting failure envelopes are shown in Figures 15 and 16.
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When these two figures are compared with the results of Figures 9 and 10, the im-
portance of the presence of discontinuities for pillar stability is confirmed, especially for
width-to-height ratios less than 1.0. The effect of discontinuities also allows us to confirm
that the numerical model, based on the masonry-type model and the empirical results,
follows the same trend as those documented by [14].

7. Conclusions

This paper evaluates the use of a masonry-type constitutive model for the analysis
of rock pillar stability using numerical modeling. This constitutive model consists of a
three-part shear stress failure envelope that depends on typical failures modes observed in
masonry walls. This constitutive model resembles the rock mass considering the strength
of the intact rock and discontinuities. The validity of this masonry-type constitutive model
was established using the modeling results and comparing them with existing empirical
data commonly used in the pillar failure criterion, such as of [14]. The following conclusions
are based on the numerical modeling results of different geometries and shear parameters
on rock pillars:

- Failure criteria for rock mass based on masonry theory allow considering failure
mechanisms commonly observed in rock pillars and masonry walls, using a three-
stage failure envelope. This model considers the shear strength of discontinuities and
the intact strength of the rock (UCS).

- Masonry-type failure envelope for rock pillars is independent from the in situ stress
magnitudes applied when the stress ratio (σh/σv) is maintained constant.

- When the discontinuity dipping angle is not taken into account, in pillars with constant
height, the strength decreases rapidly for the pillars’ Wp/Hp ratio, ranging from 0.2
to 1.2. For Wp/Hp values higher than 3.0, there are minor differences in the strength
of pillars. In pillars with a constant width, the differences in strength are small for
Wp/Hp values lower than 1.0, and negligible for values of Wp/Hp, higher than 1.0.

- The effect of the discontinuity dipping angle was studied through the use of the
empirically derived Large Discontinuity Factor LDF obtained from field data. When
this factor is included in the model, similar strength envelopes to those derived from
field observations are obtained. The stability of pillars is predominantly influenced by
the dip of discontinuity when Wp/Hp is 1.0 or less.

- From modeling, it can be deduced that discontinuity effects are not the only cause of
rapidly decreasing the stress to reach failure in slender pillars. Buckling effects may
explain this observed behavior.

- The described model based on the masonry theory allows the distinction between
different modes of failure of rock pillars as observed in the field. Additionally, the
results showed that when a discontinuity dip factor is taken into account, some pillar
geometries present a more favorable stability behavior than others, which should also
be considered in practice.
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