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Abstract——The increasing integration of renewable energy
sources into current power systems has posed the challenge of
adequately representing the statistical properties associated
with their variable power generation. In this paper, a novel pro‐
cedure is proposed to select a proper synthetic time series gener‐
ation model for renewable energy sources to analyze power sys‐
tem problems. The procedure takes advantage of the objective
of the specific analysis to be performed and the statistical char‐
acteristics of the available time series. The aim is to determine
the suitable model to be used for generating synthetic time se‐
ries of renewable energy sources. A set of indicators is proposed
to verify that the statistical properties of synthetic time series
fit the statistical properties of the original data. The proposal
can be integrated into systematic tools available for data analy‐
sis without compromising the representation of the statistical
properties of the original time series. The procedure is tested us‐
ing real data from the New Zealand power system in a mid-
term analysis on integrating wind power plants into the power
system. The results show that the proposed procedure reduces
the error obtained in analyzing power systems compared with
reference models.

Index Terms——Time series analysis, renewable energy source,
solar energy, stochastic process, statistical analysis, wind energy.

I. INTRODUCTION

THE contribution of renewable energy sources (RESs) to
power systems, e.g., wind- and solar-based energy, has

undergone an accelerated expansion, and today, new wind
farms and solar power plants are under construction or at the
planning stage in different countries of the world [1]-[3]. For
the wind power, before its integration into power systems, it

is necessary to estimate their potential contribution to the
system through a methodology on the wind speed and wind
power modeling, such as the generation of synthetic series
(SS) [4]. SS are series generated using mathematical models.
SS aim to replicate the statistical properties of time series,
often composed of historical datasets whose elements have
causal relationships. Since time series have a stochastic com‐
ponent, the generation of each SS is the realization of the
corresponding stochastic process [3], [5]-[7]. Thus, to repre‐
sent the statistical properties of time series, a set of SS
should be generated. The number of series to be generated
and the model to be used are determined by the properties
of the stochastic process.

With regard to its application to power systems, SS have
other possible applications, e.g., ① the spinning-reserve re‐
quired for their secure operation [8], [9]; ② the system con‐
ditions for reliability studies [10], [11]; ③ the commitment
and economic dispatch of the generation units; ④ the size of
the storage systems [12], [13]; ⑤ electrical consumption pat‐
terns [14]. These applications are fed by input parameters,
which are usually subject to uncertainties. Different studies
have attempted to solve the problems related to the opera‐
tion and expansion of power systems in the presence of un‐
certainty and variability caused by RES. One way to over‐
come the uncertainty is the use of stochastic and robust opti‐
mization. These techniques have been used to solve the prob‐
lems of unit commitment, generation planning, and transmis‐
sion [5], [15]. The models above require the time series of
the resources considered to model the variability and uncer‐
tainty adequately. This is a complex task, since in practice, it
is often not possible to have time series of RES with the de‐
sired characteristics. Different models have been studied and
developed to generate SS in response to this challenge.
These models are used as input data in the tools for power
system analysis [8] - [11], [16]. For instance, SS have been
widely used to represent the uncertainty of RES in both gen‐
eration and transmission planning [5], [17].

The selection of a model to generate SS is not a trivial
task [8]-[11], [16], [17]. Few research works have been done
on defining the criteria, indicators, or procedures to priori‐
tize, organize, and systematize the selection of an appropri‐
ate model to generate SS. Based on a similar application in
power systems, a model available in the literature is often
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tuned to fit the time evolution of the original time series.
Several models for the applications in power systems have
been reported in [8]-[11], [16]. Given the above, it is neces‐
sary to propose a methodology to systematize the selection
of the model needed to generate SS depending on the prob‐
lem that has to be solved with regard to power systems, e.g.,
for expansion and operation studies.

In the literature, Markov chains are widely used to gener‐
ate SS for the analysis of power systems. These models can
represent time series, whose statistical properties differ from
the normal distribution [18], [19]. Nonetheless, their capabili‐
ties to represent the autocorrelation function (ACF) in series
with seasonal variations have been questioned, and therefore,
several modifications have been reported to achieve better
representations of the ACF [20]. This is important because
the ACF together with the seasonal trends determines the en‐
ergy provided by the RES. Consequently, the use of Markov
chains for the generation of SS is relegated to short-term
analyses, where instant power becomes more important than
the energy supplied by the RES [18], [19].

Furthermore, autoregressive integrated moving average
(ARIMA) models are reported to generate long-term SS anal‐
yses, where the energy is more important than the short-term
power produced by the RES [21] - [24]. These models pro‐
vide a better representation of the ACF of time series com‐
pared with Markov chains [23]. However, the preprocessing
of raw data is required so that their probability density func‐
tion becomes normally distributed [25] - [27]. Numerical de‐
rivatives and integral transformation are often used for this
purpose. The SS are obtained by applying the inverse of the
preprocessing process to the model output, i. e., the numeri‐
cal integration or the inverse integral transformation.

While Markov chains and ARIMA models can only repre‐
sent temporal relationships in time series, vector autoregres‐
sive (VAR) models are used for the generation of SS in pow‐
er system, where the spatial dependencies among the time se‐
ries of RES are important (for instance, expansion planning
analyses) [12], [16], [27] - [29]. Like ARIMA models, VAR
models require the preprocessing of raw data to make their
probability density functions normally distributed. As a re‐
sult, the integral transformation is often used for this pur‐
pose [27]. VAR models adequately represent the statistical
features of the datasets and their relationships, i.e., ACF, sea‐
sonal behavior, spatial dependencies, etc. Hence, they are
suitable for generating SS in both long- and short-term analy‐
ses of power systems. However, the raw data have to be syn‐
chronized to turn the VAR model.

Significant efforts to develop new models for generating
SS can be found in [16], [17]. However, little attention has
been paid to formulating a procedure to select suitable mod‐
els for generating SS depending on the study to be per‐
formed. This is highly needed considering the increase of
RES and the importance of representing the uncertainty and
variability to study the operation and expansion of power
systems.

This paper proposes a novel procedure that selects the
models needed to generate SS for a specific analysis of pow‐
er systems. The procedure can be applied to study the opera‐

tion and expansion of power grids with high penetration of
renewable energy. The results indicate that the proposed pro‐
cedure allows choosing, from several candidate models, the
one that best fits the objective of the study and that better re‐
constructs the statistical characteristics of the original time
series. The proposed procedure considers the following gen‐
eral steps.

1) The input of the specific analysis objective is consid‐
ered.

2) With the information contained in the raw data, it deter‐
mines the models that best fit the requirements of the analy‐
sis.

3) Finally, the model is selected by applying different sta‐
tistical tests and computing a set of proposed indicators that
account for the appropriateness of each model to represent
the statistical properties of the original data.

Thus, the main contributions of this paper include: ① defi‐
nitions and propositions of criteria needed for a proper selec‐
tion of models to generate SS that can be used in different
studies related to the operation and expansion of power sys‐
tems; ② a systematic procedure to be followed and the sta‐
tistical analyses necessary to select a suitable model for the
generation of SS; ③ a procedure to systematize and define
transformations by estimating the order and adjusting the
models appropriately.

The remainder of this paper is organized as follows. Sec‐
tion II presents the proposed procedure. In Section III, the re‐
sults are obtained by applying the proposed procedure. Final‐
ly, Section IV sets out the concluding remarks and future
work.

II. PROCEDURE FOR SELECTION OF MODELS FOR

GENERATION OF SS

A. Overview

A suitable model for the generation of SS should produce
an independent, identically distributed sample, each having
the same fundamental properties as the original time series
without replicating it exactly [15]. For an statistically viable
SS, several stages must be followed. In [30], a methodology
multi-step model-building strategy is developed with the fol‐
lowing main steps: ① model specification, determining the
order of model; ② model fitting, determining the parameter
values of model; ③ model verification, checking whether
the model analyzes the data correctly.

Firstly, in the model specification (also referred to as mod‐
el identification), the different time series models that may
be suitable for specified observed series are selected. In this
step, the selected model is tentative and subject to revision
later in the subsequent analysis. When choosing a model, in
[30], the smallest number of parameters that will adequately
represent the time series is suggested.

Secondly, the model fitting consists of finding the best
possible estimates of these unknown parameters within a giv‐
en model. For instance, the least-squares method can be con‐
sidered.

Thirdly, the model verification is in charge of assessing
the quality of the model that has been specified and estimat‐
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ed. In this step, two fundamental aspects are assessed. Initial‐
ly, it is necessary to define whether the selected model fits
the data. Next, it is necessary to assess whether the model
assumptions are reasonably well satisfied. Thus, two situa‐
tions may arise after the model verification, i.e., ① if there
are no deficiencies found, it can be assumed that the model‐
ing is complete and can be used; ② if deficiencies are
found, another model is selected, i.e., we return to the model
specification step. Finally, the three steps are repeated until,
ideally, an acceptable model is found.

B. Proposed Procedure

The proposed procedure involves selecting and tuning the
parameters of a model for generating SS for power system
analysis. The procedure is based on an approach that classi‐
fies the most common models developed in the existing liter‐
ature and simultaneously compares them using various indi‐
cators. Figure 1 shows the classification of the models re‐
ported in the existing literature about the generation of SS
for solar- and wind-based RESs. Further, Fig. 1 shows the
models that can represent the temporal and the spatial-tempo‐
ral dependencies. The models comprise contemporaneous au‐
toregressive moving average (CARMA), autoregressive mov‐
ing average (ARMA), principal component analysis plus au‐
toregressive moving average (PCA + ARMA) are identified
in Fig. 1.

The proposed procedure focuses on modeling time series
of wind speed, wind power, solar radiation, and solar power.
This is because wind- and solar-based RESs are currently
the most-widely employed ones across power systems.

The proposed procedure takes the analysis and available
time series (dataset) of the RES as inputs. Figure 2 presents
the flow chart of the proposed procedure including six steps.
The first two steps involve the inputs of the procedure,
namely, the analysis to be performed and the time series
(raw data) available from the energy resource. The third step
defines whether the information contained in the raw data is
enough to carry out the analysis. The fourth step identifies

the probability density function, the ACF, the partial autocor‐
relation function (PACF), seasonality (and their periods), and
trends of the time series. The fifth step determines the set of
candidate models that can be used for the generation of SS.
The candidate models are included in Fig. 1. Finally, the
sixth step selects the final model for the generation of SS.
As can be observed, this procedure follows a sequence con‐
ceived to be later integrated into the available tools for data
analysis and/or to be converted in a new model selection
tool.

The steps shown in Fig. 2 are described in details as fol‐
lows.
1) Definition of Analysis to Be Performed

This step defines the specific type of power system analy‐
sis to be performed and some modeling requirements for the
time series of the energy resources. The following aspects
should be clarified in this step: ① time horizon of the analy‐
sis; ② time frame; ③ simulation type; ④ the role of RES
in the analysis; ⑤ power system model. There are two types
of analysis in this paper: ① system expansion planning; ②
system operation planning. Figure 3 shows the analysis car‐
ried out in this first step. In the analysis of system expan‐
sion planning, the power system model is simplified. The
time horizon of the analysis ranges from 5 to 25 years, the
RESs are considered as energy development centers, and in
some cases, an hourly resolution is required for the time se‐
ries. In the analysis of system operation planning, different
models of the power system are used. The time horizon of
the analysis ranges from a week (very short-term planning)
to five years (long-term planning), only the RESs currently
in operation are considered, and an hourly resolution for the
time series is required. It is desirable to consider spatial-tem‐
poral dependencies among time series related to power
plants based on RES.
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Fig. 1. Classification of models for generation of SS.
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Fig. 2. Flow chart of model selection for generation of SS.

851



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 9, NO. 4, July 2021

2) Selection of Time Series
In this step, the time series (raw data) of the RES are se‐

lected. The following aspects must be verified in this step:
① location; ② measured variables; ③ data length; ④ sam‐
pling time. The time series available to perform the analyses
of power systems are often not generated at the locations of
interest. In these cases, atmospheric models are used to gen‐
erate time series at the locations of interest [31], [32]. In this
step, it is also suggested to check whether new RESs are
added in the analysis (e.g., new RES projects become opera‐
tive in the analysis). If so, the analysis must be conducted
considering the time series of wind speed and/or solar radia‐
tion since this brings opportunity to reduce the uncertainty
of raw data. Hence, the results are obtained [19]. The gener‐
al scheme of this step is presented in Fig. 4.

In order to exemplify what is shown in Fig. 3, the follow‐
ing time series are selected: ① those measured at the energy
development centers for system expansion planning; and ②
those measured at the RES power stations currently in opera‐
tion for system operation planning. In both cases, the sam‐
pling time must be at least one hour, while its duration
should cover more than one year.
3) Analysis of Information to Assess Compliance with Re‐
quirements

In this step, the compliance with the requirements in the
first step and the features of the available time series of the
energy resources is assessed. If the time series meet all the
requirements, there will be enough information to perform
the desired analysis. Otherwise, the step of selection of time
series is to be revisited for the missing information. Note
that this is a checking step. It is verified that the following

conditions are met, depending on the analysis to be per‐
formed.

1) As for the system expansion planning analysis, there
are time series available for each energy development cen‐
ter; the time series are at least one year; and the sampling
time of the time series is at least one hour.

2) As for the system operation planning, there are time se‐
ries available for each RES currently in operation; the sam‐
pling time of the time series is one hour at the most; and the
time series are synchronized (if the focus is in a very-short-
time system operation planning).

If these conditions are not satisfied by the available time
series, additional information about the RES centers should
be gathered, or the focus of the analysis should be adapted
to the information that the series provides. There is a depen‐
dency between the first and the second steps, which moti‐
vates the addition of a link between the first and the second
steps in Fig. 2. Accordingly, this crosscheck prevents mis‐
leading results and/or issues arising during the data process‐
ing and the model selection steps (from the fourth step on‐
wards).
4) Preprocessing of Raw Data and Statistical Analysis

In this step, a statistical characterization of the time series
is carried out. This involves the preprocessing of raw data to
convert the RES time series to meet the requirements for a
proper application of SS models. Figure 5 shows the prepro‐
cessing and the transformation of the RES time series. The
trends, seasonality, and temporal and spatial correlations are
analyzed. This is important since wind speed/power and so‐
lar radiation/power series exhibit marked trends and seasonal‐
ity that could be represented through deterministic models.
Hence, less complicated models could be used to represent
the behavior of the remaining stochastic process. In the pro‐
posed procedure, the following tests are used to identify
trends, seasonality, temporal, and spatial correlations of the
time series.

1) Trends and seasonality are identified through an aug‐
mented Dicker-Fuller test [33], and their results complement
the results obtained through the box-plot technique and the
Kruskal Wallis test [33].

2) Temporal and spatial correlations are identified using
the ACF and the cross-correlation function (CCF), respective‐

System expansion
planning

Very long-term
(5 to 25 years)

System operation
planning

Long-term
(2 to 5 years)

Medium-term
(1 month to 2 years)

Short-term
(1 to 4 weeks)

Very short-term
(less than 1 week)

Analysis to be
performed

Fig. 3. Types of analysis to be performed in power system and correspond‐
ing time horizon.
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Fig. 4. General scheme for selection of time series.
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Fig. 5. General scheme for preprocessing of raw data and statistical analy‐
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ly. When there is more than one power plant based on RES,
the cross-correlation matrix (CCM) is used to identify the
spatial correlation. Further, the single- and multi-variable ver‐
sions of the Ljung-Box test are applied as complements [34].

Furthermore, since several models require that the time se‐
ries have a normal probability density function, the proce‐
dure in [35] and the hypothesis tests reported in [36] are fol‐
lowed. They include the Anderson-Darling and the χ2 tests.

Next, we describe how the tests and functions are used in
this step. Firstly, the trends and seasonality are identified
with hourly, daily, weekly, and monthly resolutions [32]. Sec‐
ondly, the temporal dependency is verified by analyzing the
ACF and the PACF of the individual time series. If these
functions yield the coefficients significantly different from
zero, it is concluded that these time lags are temporarily cou‐
pled. Thirdly, the spatial-temporal dependency is identified
using the CCF. If there are lags significantly different from
zero, then there exists a spatial correlation among the time
series. Finally, as mentioned above, the hypothesis tests in
[35], [36] are carried out to determine if additional process‐
ing of raw data is required to obtain the time series with a
normal probability density function. It is important to re‐
mark that, although these analyses are performed with hour‐
ly, daily, weekly, and monthly resolutions (for illustrative
purposes), just carrying out these assessments using a week‐
ly and a monthly resolution provides enough information for
the system expansion planning. Nonetheless, for the system
operation planning, these tests should be conducted with
hourly and even daily resolutions.
5) Definition of Candidate Models and Estimation of Model
Parameters

In this step, a set of models suitable for the generation of
SS is defined. The analysis requirements to be performed
and the statistical features of the time series are considered
for this purpose. Also, the assumptions/properties of the
available models are checked. The set of models suitable for
the generation of SS is formed by following a decision tree.
In this step, the following three conditions are checked.

1) The need for spatial-temporal representation
Since just a few models satisfy this requirement (as

shown in Fig. 1), those models determine a set of suitable
models for themselves and define the first possible outcome
of the decision tree, i. e., the remaining conditions are not
checked, and the procedure moves towards the next step: the
selection of the final model. However, if the analysis does
not require the spatial-temporal representation, then the can‐
didate models are those able to represent the temporal depen‐
dency, as shown in Fig. 1. Thus, the process moves towards
the second condition.

2) Type of time series where the model is used
This includes solar radiation/power and/or wind speed/

power in similar analyses. As a result, a set of available
models is brought down to those previously used to repre‐
sent the same energy source in similar power system analy‐
sis.

3) Compliance degree between statistical properties of
time series and assumptions/requirements of models

The models that do not require the preprocessing of raw

data are identified, thereby defining the set of suitable mod‐
els, i.e., the second possible outcome of the decision tree. If
all models require the preprocessing of the raw data, then
they are classified into two categories: ① the models that on‐
ly require a numerical derivative to comply with all their as‐
sumptions/requirements; ② the models that require the use
of an integral transformation to comply with all their as‐
sumptions/requirements. The two sets of suitable models and
their preprocessing methodologies constitute the third possi‐
ble outcome of the decision tree.
6) Selection of Final Model

In this step, the final model is selected from the set of
suitable models defined in the previous step. The structures
and parameters are also identified. In order to select the suit‐
able model, a five-step procedure is proposed as follows: ①
analysis of data from the previous processing; ② determina‐
tion of model parameters; ③ generation of SS; ④ calcula‐
tion of assessment indicators on model benefits; ⑤ analysis
of indicators and selection of the final model. To determine
the model parameters, we follow the instruction given in the
works where the models are presented.

The best model is selected considering the performance in‐
dicators of each model, which are based on the deviation of
the statistics obtained from the SS and the original time se‐
ries. The statistics considered are the mean, variance, stan‐
dard deviation, and the quantiles 10%, 25%, 50%, 75%, and
90%. Besides, the deviations from the probability density
function, ACF, PACF, and the CCM are also used as indica‐
tors. All these indicators are computed with the same resolu‐
tion used in the statistical analysis, e.g., hourly, daily, week‐
ly, and/or monthly, to prevent representation errors [12],
[22], [33]. The error measurements proposed in this paper to
assess the accuracy of each model are as follows.

1) Root mean square error (RMSE)

RMSE =
1
N∑k = 1

N

e2
k (1)

2) Root mean squared relative error (RMSRE)

RMSRE =
RMSE

1
N∑k = 1

N

x2
k

(2)

3) Error measurement

- -- -- ----- --
RMSRE=

1
2
(RMSREMonth +RMSRECCM) (3)

where ek is the difference between the model and the time
series for the kth statistical feature; N is the number of statis‐
tical features considered; and xk is the kth statistical feature
of the time series to be represented through the SS;
RMSREMonth is the RMSRE calculated using monthly statis‐
tics; RMSRECCM is the RMSRE of the CCM; and

- -- -- ----- --
RMSRE is

the average of RMSREMonth and RMSRECCM. Equation (3) is
the error measurement used when the original time series
have a seasonal behavior and spatial-temporal dependencies.

The model that gives the minimum error measurements is
selected as the final model to generate SS for the power sys‐
tem analysis. If the error measurements are not significantly
different from one to another, an additional analysis is car‐

853



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 9, NO. 4, July 2021

ried out based on the objective of the analysis to be per‐
formed. For instance, in very short-term analyses that in‐
clude chronological simulations, the spatial-temporal relation‐
ships are essential. Hence, the model with the minimum er‐
ror measurements in the CCM is selected to generate SS. In
contrast, for the medium, large, and very-large analyses,
wherein energy simulations are considered, the energy contri‐
bution of the RES is highly important. Then, the model with
the minimum error measurements in the statistical seasonali‐
ty indicators is selected to generate SS. If chronological sim‐
ulations of typical days are included, the SS must adequately
represent the spatial-temporal relationships, the seasonality,
and the energy contribution of the RES. Then, the model
with the minimum error measurements in both statistical sea‐
sonality indicators and CCM is selected.

Note that the proposed procedure for the model selection
considers that all assumptions are made in the formulation
of the models (e.g., the requirements of co-variance stationar‐
ity and normal distribution of time series for ARMA mod‐
els). The proposed procedure also attempts to prevent the
models without previous statistical knowledge of the time se‐
ries to be represented. Furthermore, by following the proce‐
dure, the model that better fits with the requirements of the
analysis and the time series features is selected. This avoids
the review and model selection procedures when only a mod‐
el exploration search is performed. Finally, by following the
proposed procedure, we diminish the error in the analysis
that could appear due to the lack of representation in the sta‐
tistical properties of the time series related to RES. In addi‐
tion, the proposed procedure follows the logic of expert sys‐
tems. Therefore, it could be integrated with other data analy‐
sis tools and/or used independently as an additional tool by
system operators. This is beyond the scope of this paper, and
therefore, such implementation is not included.

A case study is presented in Section III, where the pro‐
posed procedure is applied in system expansion planning.

III. CASE STUDY AND RESULTS

In this section, the proposed procedure is applied to a mid-
term operation planning analysis considering two wind pow‐
er stations. The proposed procedure is implemented in the R
and MATLAB software.

Step 1: the case study considers the system operation plan‐
ning with a two-year horizon. The system is mainly thermal,
and chronological simulations are included in the analysis.
The model for the simulations considers the main transmis‐
sion lines and the short-term technical constraints of the sys‐
tem. The addition of new power plants is not included in the
analysis. Two wind power plants already in operation in the
system are modeled.

Step 2: for this specific case, the time series for these
power plants have an hourly resolution and correspond to
the measurements made in New Zealand from 2004 to 2008
at STH1 and CKS1 locations (STH1 and CKS1 mean one lo‐
cation in wind sites in the Southland and Otago, and Cook
Strait, respectively) [33], [37].

Step 3: the time series requirements for this case study are
as follows: a time frame of two years, a resolution of at

least an hour, and spatial-temporal correlation. The latter is
required because a chronological simulation is considered.
The available time series of wind speed meet the first two re‐
quirements. The spatial-temporal correlation is verified
through the CCF of the series.

Step 4: Fig. 6(a) shows the ACF of time series at STH1,
whereas Fig. 6(b) shows the CCF of time series between
STH1 and CKS1 locations. These functions allow us to de‐
termine if there are spatial-temporal dependency. Figure 6
shows that several coefficients significantly differ from zero,
which means that there is a spatial-temporal dependency be‐
tween the two locations.

The next step is to determine whether the time series are
normally distributed. Figure 7 shows the histogram of wind
speed time series at STH1 location. The histogram presents
an evident asymmetry towards the left. This indicates that
the time series are not normally distributed. To corroborate
this statement, the χ2 and Anderson-Darling tests are conduct‐
ed, resulting in the rejection of the null hypothesis that the
time series are normally distributed (the p-values of the tests
are close to zero).

Then, the seasonality in the time series is assessed. The
box plot of the times series is depicted in Fig. 8 considering
both hourly and monthly resolutions to perform exploratory
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analysis, where the results obtained from STH1 location
with an hourly resolution. The results show that the time se‐
ries present a daily seasonality. In order to verify this fact,
the Kruskal Wallis test is applied. As a result, the p-values
tend to be zero for both hourly and monthly resolutions at
STH1 and CKS1 locations. This fact implies that there are
hourly and monthly seasonality in both time series. Since
both time series have seasonality, it is also possible to con‐
clude that they are not stationary in terms of co-variance.
This is important for defining the suitable models and select‐
ing the final model.

Step 5: the set of suitable models should be defined. Giv‐
en the spatial-temporal representation constraint, only the
models with this capability are considered. Since raw datas‐
ets are synchronized with hourly and monthly seasonalities,
and are not normally distributed, VAR models with different
preprocessing methods [16], [23], CARMA models [8], mod‐
els based on Copula theory [12], and PCA + ARMA models
[29] are finally selected. These models constitute a set of 17
suitable models as follows: ① 12 VAR models with differ‐
ent preprocessing methods; ② three different CARMA mod‐
els; ③ a model based on Copula theory; ④ a PCA + ARMA
model. For this set of models, the integral transformation is
selected to preprocess the original data for VAR and PCA
plus VAR models (the remaining models do not require a
preprocessing of the raw data). Then, (4)-(8) define the math‐
ematical procedure to transform the original data.

Y t =X t -Xat -Xdt (4)

Y t =
X t - μ tk

σ tk

"k Î S (5)

Y 't =F -1
inN (Fk (Y tk)) "k Î S (6)

Y t =X t - μ tk "k Î S (7)

Y 't =F -1
inN (F(Y t)) (8)

where X t is the vector of each time series; Xat is the vector
of the means computed with a monthly resolution; Xdt is the
vector of the means computed with an hourly resolution; Y t

is the vector of the transformed time series; Fk is the vector
of probability density functions; F -1

inN is the vector of inverse
standard normal distributions; Y 't is the resulting stationary
normally distributed time series; μ tk is the vector of seasonal‐
ity means; σ tk is the vector of seasonality standard deviation;
and k is the seasonality pattern, which belongs to the set S
composed of hourly and monthly seasonality.

Once the raw data are preprocessed, the resulting time se‐

ries Y 't associated with each original series are used to identi‐
fy the structure and parameters of each model. The identifi‐
cation procedure ends when the residuals of the model relat‐
ed to Y 't behave as uncorrelated white noise. Furthermore,
the SS generated using the model is normally distributed.
The SS of the renewable resources are obtained by applying
the inverse process described in (4)-(7).

Step 6: considering the objectives of the case study, the
statistical indicators used to measure the accuracy of the
models are computed for both hourly and monthly resolu‐
tions. Since the chronological simulation requires that the
seasonality, the spatial-temporal correlations, and the energy
contribution of the wind power plants are adequately repre‐
sented, (3) is used to select the model to generate SS. This
error measurement consists of a combination of RMSRE
computed with a monthly resolution and RMSRE of the
CCM. This error measurement is selected since the error
metrics (1) and (3) are similar for all models and all statisti‐
cal features presented in Section II. Furthermore, (3) is used
as error measurement since high-order models tend to have
similar RMSRE values when computed with an hourly reso‐
lution. Figure 9 presents the RMSRE obtained for the set of
suitable models, considering the wind speed time series at
STH1 location. In Fig. 9, models 1 to 12 are the VAR mod‐
els; models 13, 16, and 17 are the CARMA models; model
15 is based on the Copula theory, and model 14 is the PCA +
ARMA model. As can be observed, the model with the mini‐
mum RMSRE value is model 15. Figure 10 shows the RM‐
SRE of CCM and monthly statistics. It can be observed that
model 15 gives the highest value of RMSRE of CCM, i.e.,
35%. This is an unacceptable error considering that the anal‐
ysis to be performed involves a chronological simulation.

Figure 11 shows the RMSRE values for each available
model computed by solving (3). Contrary to the hourly reso‐
lution analysis suggested, (3) indicates that the best model to
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generate SS is the VAR model 9. This is because the RM‐
SRE of the VAR model 9 is smaller than that of model 15.
This result is expected due to the significant difference in
the RMSRE of CCM shown in Fig. 10, where RMSRECCM of
the VAR model 9 is lower than 10%, whereas that of model
15 is about 35%. This result shows a considerable difference
between selecting any model available in the literature and fol‐
lowing the proposed procedure for model selection.

Now, we assess the accuracy of the VAR model 9, which
is the selected model. The histogram of the SS generated
with this model, its ACF, its PACF, its CCF, and its box plot
are compared with the original wind speed time series. In
this paper, only the results of the STH1 location are presented.

Figure 12 shows the histograms of the original time series
(OTS) and the SS generated by the VAR model 9. It is
shown that the SS can represent the probability density func‐
tion of OTS. This point is relevant, as the type of analysis to
be performed requires that the energy contribution of the
wind power plants is adequately represented, and the proba‐
bility density function is an indicator of the contribution.

Figure 13(a) and (b) shows the comparison of the ACF
and PACF, respectively. Figure 13(a) shows that the ACF re‐
structed through SS using VAR model 9 closely follows the
ACF of OTS until lag 20. In this lag, the difference between
the two ACFs achieves its maximum value and keeps con‐
stant until lag 50. This is an expected result since VAR mod‐
el 9 is of order 16. Therefore, it cannot represent the influ‐
ences of all lags in the current value of the time series. How‐
ever, the difference observed is not significant. This is sup‐
ported by the result presented in Fig. 13(b), where the PACF
of OTS and PACF restructed through SS using VAR model
9 are practically the same. Since the PACF determines the ef‐
fect of a given lag in the current value of the series, the

VAR model 9 is suitable to represent the temporal dependen‐
cy of the time series.

Figure 14 shows the comparison of the CCF of OTS and
the CCF reconstructed through SS using VAR model 9 at
STH1 location. It is observed that the SS can represent the
shape and values of the original CCF. However, the relation‐
ship between the past values of CKS1 location and the pres‐
ent values of STH1 location has a better representation than
the influence of the future values of CKS1 location on the
present values of STH1 location. This is an expected result
since the VAR model used for the generation of SS is caus‐
al. Therefore, it only considers the influence of the cast lags
in the current value of the time series. Despite this result,
the difference observed for the future measurements at
CKS1 location is not significant. Thus, it is possible to con‐
clude that model 9 also adequately represents the spatial rela‐
tionships between the wind speed time series at STH1 and
CKS1 locations. This statement is further supported by the
result in Fig. 10, where the RMSRE error for model 9 is
about 4% in the representation of the cross-correlation matrix.
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Finally, Fig. 15 shows a comparison between the box
plots of the OTS and SS. Like the previous observations, the
SS can represent the seasonal behavior on an hourly basis.
As shown in Fig. 15, wind speed measurements at CKS1 lo‐
cation are used for comparison to show that the VAR model
9 does not allow only a representation of the statistical indi‐
cators of the measurements at STH1 location. This result
confirms that the proposed procedure for selecting a suitable
model to generate SS for power system analysis works ap‐
propriately. A model that achieves the requirement of power
system analysis and the statistical properties of time series
associated with RES can be obtained. Table I shows the sta‐
tistical properties of the selected model.

IV. CONCLUSION

This paper studies the challenge of selecting the appropri‐
ate model for generating SS for operation, planning, and ex‐
pansion studies of power systems considering RESs. In this
sense, a methodological proposal to select a suitable model
to generate SS is proposed.

It has been demonstrated that if an adequate analysis is
not carried out and the available models are applied without

verifying their assumptions and application conditions, sea‐
sonal energy contributions or dependency structures may not
be adequately characterized. According to the obtained re‐
sults, it is found that the proposed procedure for model selec‐
tion allows choosing the model that best achieves the objec‐
tive of this paper, and can represent the statistical characteris‐
tics of the OTS.

Furthermore, the proposed approach is independent of the
type of RES modeled, the nature of the time series (i. e.,
solar power, solar radiation, wind power, or wind speed),
and the statistical features of the time series. Additionally,
the results show that, if the proposed procedure is followed,
it is possible to reduce the error in the analysis of power sys‐
tems compared with a traditional approach. Future research
shall be focused on scenario reduction strategies and the sim‐
plification of different steps of the proposed procedure. Be‐
sides, incorporating other types of modeling (e. g., machine
learning, physics, and stochastic models, etc.) in the pro‐
posed framework is considered as future work.
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TABLE I
STATISTICAL PROPERTIES FOR CKS1 LOCATION

Statistics

Average

Standard deviation

Variance

Minimum

Maximum

Quantile 10%

Quantile 50%

Quantile 75%

Quantile 90%

Property

Original model
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19.453

0.000
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3.470
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11.986

14.908

VAR model 9
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14.834
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