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Discovering the influences between paintings and artists is very important for automatic art analysis. Lately, this problem has
gained more importance since research studies are looking into explanations about the origin and evolution of artistic styles,
which is a related problem. ,is paper proposes to build a multiplex artwork representation based on artistic formal concepts to
gain more understanding about the aforementioned problem. We complement and built our approach on the previous notion of
Creativity Implication Network. We used the recently proposed MultiRank algorithm to suggest possible explanations of the
dynamic of some artistic styles. Our results corroborate some well-known facts about the artists analyzed and give qualitative and
quantitative information that show the possibilities and strengths of the proposed framework. We plan to expand our analysis to
include more abstract artworks. Ideally, we are going to be able to validate more our results and test how our methodology could
be used to generate visual artifacts too.

1. Introduction

Discovering the influences between paintings and painters is
still an arduous task. As suggested by Saleh et al. [1], a big
part of the problem depends on the fact that determining
influence is a subjective matter. When an observer looks at a
painting, he can see objects, colors, lines, and shapes, capture
design principles, and possibly even recognize the genre or
style. Having multiple ways of describing an artwork adds to
the complexity when tasked with influence identification
and analysis. Saleh et al. [2] affirm that measuring similarity
between paintings is fundamental when shedding light on
possible influences. ,e authors have investigated specific
artist distance measures to quantify similarity and have
suggested influences with some success. Since paintings
from a given artist can cover a wide period of time and
influences might come from several categories such as
formal aspects, historical events, or social context, we know
there is still a large space to cover andmake improvements in
previous ideas [1, 2].

As stated by the authors, some of the descriptions used
by observers to speak about a painting might be translated
into a computational domain. In particular, characteriza-
tions based on object presence have been the path followed
by some authors in the past as they solved the aforemen-
tioned or similar problems [1–7]. Saleh et al. quoted [1]
“Although the meaning of a painting is unique to each artist
and is completely subjective, it can somewhat be measured
by the symbols and objects in the painting” (pg. 2). Within
the related problems to influence analysis, art style and genre
classification are two that stand apart. ,ese two problems
have occupied an important part of automatic art analysis,
both achieving interesting results [7–9]. Although we know
that finding the elements that characterize styles is one of the
most important tasks of art historians [10] and is still an
important research objective, things are starting to move
elsewhere. Elgammal et al. quoted [11] “. . . classifying style
by the machine is not what interests art historians. Instead,
the important issues are what machine learning may tell us
about how the characteristics of style are identified and the
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patterns or sequence of style changes” (pg. 1). Automatic art
analysis research is trying to find quantitative and qualitative
explanations as stated by the authors and is one of the goals
of our work.

In addition to recognizing influences between artists,
trying to identify creativity associated with particular
paintings has also been studied. Elgammal et al. [12] pro-
posed a computational framework based on constructing a
network between paintings to give some understanding in
terms of originality and influence. For the authors, a creative
product must be original compared to previous samples and
valuable or influential when taking into account future
artifacts. ,e authors suggest that, based on the visual aspect
of interest, a similarity function or measure should be used
during the process of building the proposed network. ,e
calculated scores, measure creativity along the visual aspect,
or dimension associated with the similarity function are
used. ,e authors also comment on the fact that this implies
that several networks can be constructed: one for every
similarity function. ,e proposed procedure applies a series
of transformations to the network and reduces the analysis
of creativity to a variant of a network centrality problem [12].

Network and complex systems theory are making their
way into automatic art analysis [13, 14]. Some authors
recognize that most complex systems are not simply formed
by one or two simple networks [15, 16]. Instead, these
systems are better explained with several layers or networks.
Multiplex networks, as they are called, are a special type of
multilayer networks [17–19]. ,ey are formed by a fixed set
of nodes connected by different types of relations or in-
teractions. In general, every one of these interactions gives
birth to a distinct layer. Based on the increasing interest in
multiplex networks, several algorithms have been suggested
to measure the centrality of nodes in multiplexes [20].
Rahmede et al. [20] briefly review some of the most relevant
algorithms proposed during the past several years. ,e
authors pay close attention to how previous research solves
the problem of understating how centrality in one layer
might affect the same measurement in another layer. Finally,
the authors used previous ideas that suggest measuring si-
multaneously the importance of nodes and layers based on
random walks [21].

In this paper, we are interested in discovering and
understating possible influences based on formal artistic
concepts between some abstract art paintings and the im-
plications they might have giving plausible explanations of
the origin and evolution of the artistic styles to which these
artworks belong. We claim that recognizing novel, inter-
esting, and valuable paintings is the first step towards our
objective. As suggested by Kim et al. [10], we firmly believe
that identifying important factors of each style is the key
ingredient to comprehend the uniqueness of every piece of
art and the relationships with other similar pieces while
trying to understand their creativity.We propose amultiplex
artwork representation in order to achieve our research goal.
We believe that, in abstract art, in which most of the samples
were found to lack the presence of common day objects,
formal aspects of the artwork become more relevant for any
analysis. As a byproduct of our proposal, we are going to

identify potentially creative, original, and visually valuable
pieces that could be further analyzed and also try to identify
possible microstyles in particular artists.

To work towards our objective, we are going to execute
the following steps which are described in the next para-
graphs. First, we suggest expanding some previous works
related to the six-step methodology (6SM) to analyze art [22]
(see Section 2.1). In contrast to what has been done by some
authors using features of convolutional neural networks to
gain some understanding and insights about style
[3, 5, 7, 10, 11, 23], we propose to use an art-based repre-
sentation that focuses more on human perceptual features
and expand on it [24, 25]. ,is representation is based on
some formal artistic concepts, design principles, and binary
relations. ,e main reason to choose a different direction is
related to the fact that, in terms of possible explanations,
deep neural features are not very understandable by humans
right now [11].

We then propose to apply some clustering to our rep-
resentations (see Section 2.2). From the results obtained by
this procedure, we are going to build several distance ma-
trixes from our categorical and numerical features that are
going to be the base for our similarity function. Following
the claims of previous authors [1], we hope that our simi-
larity function is better suited to capture additional stylistic
characteristics and as a byproduct, identify better influences
between paintings. We believe that having the option to
include categorical information into the representation gives
alternatives to encode information related to time relations
between the artworks that is relevant to capture stylistic
changes. During this research, we have only scratched the
surface of this aspect with the inclusion of shape hierarchies
or some simple categorical features. In the future, we plan to
include more artistic and contextual material that we believe
is key for our main objective.

Based on our similarity function, we suggest building
some networks or layers from our multiplex (see Section
2.3). We hope to explore how information in a multiplex can
benefit fromwhat has been suggested.We propose to expand
and complement previous ideas by Elgammal et al. [12]. We
take into account more visual and formal aspects into the
similarity measurement and suggest separating or aggre-
gating this information as we see fit. We hypothesize that
doing this could give us more plausible explanations as to the
evolution of paintings in our dataset. ,is perspective can be
more realistic in terms of explaining the creation of artistic
styles or microstyles in which there are several aspects to be
considered. For every internal representation, we are going
to build an artwork network over which we can gain some
insights into the connections between paintings, their in-
fluences, and originality.

Using the ideas suggested by the authors, we propose to
build several Creativity Implication Networks. We deviate
from the authors’ proposed parameters and suggest new
ways to fix those values. In particular, we used part of the
hierarchical clustering procedure to fix some parameters
that in the original paper [12] were global. Some of these
Creativity Implication Networks are going to be the building
blocks of our multiplex artwork representation. We think
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that our proposal gives a better approximation to capture a
larger quantity of stylistic attributes because it allows us to
measure creativity, originality, and influence in a compre-
hensive way. Elgammal et al. [12] suggest having several
similarity functions focused on specific artistic aspects, but
do not consider the impact of utilizing all aspects at the same
time. We are going to do some experiments and try to
support that our hypothesis is plausible based on our results.
As far as we know, nobody has tried to make a similar
analysis using a multiplex artwork representation before.

Next, we propose to use the MultiRank algorithm [20]
(see Section 2.4) to give some possible explanations of the
evolution of artworks and styles. Based on the layer ranking
suggested by the algorithm, we analyze the results and find
correlations with arts’ previously known theoretical facts.
Finally, we present the results of our experiments (see
Section 3) by providing insights into possible interpretations
and future work (see Section 4).

2. Materials and Methods

2.1. Artwork Representation and Knowledge Base
Construction. To represent the abstract works of art used in
this research, we followed the steps described in Gutiérrez
et al. [22]. ,e procedure basically consists of 6 steps: (a)
image segmentation, (b) straight skeleton and centrality
measurement, (c) color information, (d) shape classification,
(e) design principles and binary relations extraction, and (f)
artwork representation. ,e dataset used for this work
consists of art by Mark Rothko, Clyfford Still, and Barnett
Newman. In total, we downloaded 288 images fromWikiArt
[26]. From this total, 158 samples belong to Rothko, 86 to
Newman, and 45 to Still. ,e time span covered by our
dataset is between 1934 and 1976.

2.1.1. Image Segmentation. ,e image segmentation step
uses the algorithm proposed by Syu et al. [27] which builds
hierarchical image segmentation. ,e authors suggest a two-
phase procedure based on an iterative and contraction
process. ,e first phase uses raw pixels from the original
image and groups the pixels into regions. ,e second phase
employs color, size, texture, and intertwining of the regions
of the previous phase to build the final segmentation. For
this research, we used a maximum of 60 segments along with
the other parameters described in [22]. Figures 1 and 2 give
examples of the result of the segmentation process we
described.

2.1.2. Straight Skeleton and Centrality Measurement. ,e
second step builds a planar graph called straight skeleton
over every region. ,e purpose of this graph is to induce a
terrain model as described in [22] over which a centrality
measure can be calculated. ,is measurement can define a
generalized notion of center of mass that is going to be used
to represent every region during the remaining steps. Fig-
ure 3 shows the terrain model induced by the straight
skeleton of a region and visualizes the center of the Eu-
clidean graph.

2.1.3. Color Information. ,e third step extracts color in-
formation based on Itten’s model [28]. As described in [22],
we follow Sartori et al. [29] proposal to build a 180-color
palette. We replace every original color with a representative
of the color swatch. As a byproduct of this procedure, we
obtain 11 groups of colors that are going to be used else-
where in our procedures. Figure 4 shows the color palette
built over the 288 artworks in our dataset. Figure 5 shows the
result of switching the color value of every pixel of an
artwork with the nearest centroid that makes up the color
swatch.

2.1.4. Shape Classification. ,e fourth step is a shape clas-
sification process. ,e goal of this step is to do a clustering
procedure to find a reduced number of general shapes that
can represent the regions extracted in previous steps. As
described elsewhere [22], most of the details of this phase are
based on techniques of statistical shape analysis. Every re-
gion undergoes a simplification process that selects points
from the border of the straight skeleton generated in the
second step. Using the Ramer–Douglas–Peucker algorithm,
we reduce the original region one point at a time until only
three points are left. Figure 6 shows some steps of this
simplification. All these approximated representations of the
original region are stored for further use.

,e clustering procedure starts with the 13-point rep-
resentation of all the regions extracted. Out of the original
288 samples in the dataset used for this research, a total of
2831 regions were extracted. After some empirical experi-
mentation, we found that setting the cluster number pa-
rameter to 200 gave good results for our purpose. ,e two
conditions used to establish this number were the following:
alr/alo≥ 0.90 and 1≥ (ar/ao)≥ 0.90, where alr is the arc-
length of the approximated curve, alo is the arc-length of the
original curve, ar is the area of the approximated curve, and
ao is the area of the original curve. ,e clustering procedure
uses the ideas presented by Vinué et al. [30]. ,e authors
suggest an extension to the original k-means algorithm with
the objective of applying the clustering directly over con-
figuration matrixes using Procrustes analysis and the Rie-
mannian distance. ,e result of the shape classification can
have several uses as discussed in Gutiérrez et al. [22]. In
particular and for the purposes of this research, we use it as a
means of simplifying all the regions to be able to extract the
binary relations that will be described in the following
paragraphs. Once the 200 clusters were identified and the
respective mean shape of each cluster was calculated, the
centroids were used to replace the original regions pre-
serving as much information as possible.

2.1.5. Binary Relations and Design Principles. ,e fifth step,
binary relations and design principles extraction, calculates
relations on pairs of regions based on measurements over
the mean shape bounding box, direction, and aspect ratio as
well as some contrast relations based on size and color.

(1) Normalized Area Contrast. ,e first binary relation be-
tween regions that we calculate is that related to the area.
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Every area region is normalized using the width and height
of the original image. We define the normalized area con-
trast (NAC) for a pair of regions as follows:

NAC Ri, Rj􏼐 􏼑 � Ri − Rj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (1)

where Ri is the normalized area over the total area of the
original image. ,is measurement gives us an idea of the
difference in size between the pair of regions. ,is number
tends to zero when both regions have approximately the

same area and tends to one when one of the regions is large
compared to the other.

(2) Aspect Ratio Contrast. ,e next binary relation that we
define is related to the aspect ratio. Using the straight
skeleton and the generalized mass center of our regions, we
can calculate the shortest path between the two furthest
points of the straight skeleton’s outer border as it passes
through the center. To calculate this path, we compute the
distance between every pair of points of the border and take

(a) (b) (c) (d)

Figure 2: Clyfford Still: 1947-R-No. 1 (1947). From left to right: original image, 3, 13, and 60.

(a) (b) (c) (d)

Figure 1: Mark Rothko: Untitled (1947). From left to right: original image, 3, 13, and 60.
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Figure 3: Terrain model induced by a straight skeleton. Center of Euclidean graph based on closeness centrality measure.
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the maximum.,en, using the interior points of the straight
skeleton, we find the path that connects both end points and
passes through the center of the graph. Figure 7 shows an
example of a region that exhibits the generalized center, the
full straight skeleton, and the shortest path between the end
points that generate the maximum distance. ,ese two end
points are going to be used as the reference points of the
Bookstein shape coordinates transformation [31]. After
applying this linear transformation that takes the end points
that achieve the maximum distance to the coordinates
(− (1/2), 0) and ((1/2), 0), respectively, we calculate the
shape bounding box. ,is procedure can be applied to the
centroids or every original region or simplified region. We
define the aspect ratio contrast (ARC) for a pair of regions as
follows:

ARC Ri, Rj􏼐 􏼑 � ARi − ARj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (2)

where ARi � height/width of the bounding box after ap-
plying the Bookstein shape coordinates transformation as
just described. ,is measurement allows us to get an idea of
how different in terms of proportion both regions are. If one
of the regions is very flat or horizontal and the other one is
thin and vertical, this measurement is going to be large.

(3) Orientation Weighted Histogram Contrast. ,e third
binary relation we are going to define is related to

orientation contrast. Using the shortest path just described,
we implement a way to calculate an orientation based on the
ideas presented in [22]. Instead of using 6 bins, we suggest
having 13 bins in the histogram. Every bin is 15°, and the
range starts at − 7.5°. We use every segment of the shortest
path and extract the angle of inclination. We calculate the
histogram counting the number of elements in every bin,
weighted by the distance of the segment normalized by the
path’s full distance. Once the histogram is calculated, we can
have an approximation to the orientation of the longest path
and a general notion of the orientation of the region. We
define the orientation weighted histogram contrast
(OWHC) for a pair of regions as follows:

OWHC Ri, Rj􏼐 􏼑 � 􏽘
13

k�1
Ri,bink
∗Rj,bink

. (3)

If this measurement tends to 1, then both regions are
parallel. If on the contrary, the value tends to 0, then both
regions are somehow perpendicular.

(4) HUE Color Wheel Contrast. ,e next binary relation is
related to hue contrast. Based on the color obtained after the
image segmentation, we convert from the RGB color space
to the HSV color space. ,e maximum possible contrast for
the hue of the analyzed color is located at exactly 180 de-
grees. Based on this fact, we define the hue color wheel
contrast (HCWC) as

HCWC Ri, Rj􏼐 􏼑 �
ColorRi,Hue − ColorRj,Hue

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

180
, (4)

where ColorRi,Hue corresponds to the angle in the HSV color
space. We do the same procedure for the color palette
sample used to switch the region’s original color.

(5) Lightness Color Contrast. ,e fifth binary relation we are
going to define is related to lightness color contrast. Using
once again the color conversion from RGB to HSL color
space, we take the lightness coordinate and define the
lightness color contrast (LCC) as follows:

LCC Ri, Rj􏼐 􏼑 � ColorRi,Lightness − ColorRj,Lightness

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (5)

(6) Color Temperature Contrast. ,e following binary re-
lation we are going to use is related to the contrast between
cold and warm colors. To calculate this measurement, we
follow the procedure described by Wang et al. [32]. We
define the color temperature contrast (CTC) for a pair of
regions as follows:

CTC Ri, Rj􏼐 􏼑 � Color Temp Scorei − Color Temp Scorej

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(6)

where Color Temp Score is calculated as the authors suggest.

(7) Color Weight Contrast. ,e next binary relation we are
going to define is associated with the perceptual contrast
between heavy and light colors. To define this measurement,

Figure 4: Color palette built from 288 artworks by Mark Rothko,
Barnett Newman, and Clyfford Still—180 colors, 11 groups of
colors. Up to down: black, blue, brown, grey, green, orange, pink,
purple, red, white, and yellow.

(a) (b)

Figure 5: Color palette application over Mark Rothko’s Violet,
Black, Orange, Yellow on White and Red (1949).
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we use the ideas suggested by Wang et al. [32]. ,e equation
to calculate the color weight contrast (CWC) is as follows:

CWC Ri, Rj􏼐 􏼑 � ColorWeight Scorei − ColorWeight Scorej

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(7)

(8) Color Saturation Contrast. ,e last binary relation we are
going to define is related to saturation. Using the conversion
from RGB color space to HSL color space, we capture the
saturation in this last space. We define the color saturation
contrast (CSC) as follows:

CSC Ri, Rj􏼐 􏼑 � ColorRi,Saturation − ColorRj,Saturation

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (8)

2.1.6. Artwork Representation. ,e last step in our art
representation is building the internal vector representation.
Out of the final results from the image segmentation, we find
those regions that contain other regions inside. We know
this is always possible because of the way this hierarchical
segmentation was defined. We refer to these segments as
simple regions. After analyzing all the segmentations of our
dataset, we found that on average there were less than 12
simple regions and the maximum number was 17. Our
procedure is flexible enough, and in case more regions are
required, everything that is going to be described can be
modified.

We construct a complete graph of the first 20 simple
regions or less. Figure 8 shows an example of our procedure.
,e order in which the graph is built depends on the size of
the regions.We start with the largest region and end with the
smallest. We propose to build several vector representations
of every artwork. ,ese vector representations are going to

be categorical-numerical, numerical, or only categorical.,e
first part of our representation is going to capture the global
aspects of the sample.

We suggest the following three different global
subvectors:

GI1 � [artist, year, style,width, height],

GI2 � [artist, year, style],

GI3 � [width, height],

(9)

where “artist,” “year,” and “style” are categorical attributes.
“Year” and “style” correspond to the reported creation time
and style in the WikiArt site. From 288 artworks in the
dataset, all the samples have an attribute “artist” filled in.
Five records do not have an established year of creation, so
we filled in the values with the “unknown” value. All of the
samples have a “style” attribute. “Width” and “height” are
numeric and correspond to the original image parameters.
After the global aspects, we propose 11 different region-
specific information representations. ,e details of how we
construct every representation are in the supplementary
materials (see S.2.1.1.). Aspects of area, aspect ratio, the
identifier of the cluster to which every region belongs, the
coordinates of the straight skeleton center, the major and
minor axis of the original region and simplified shape ap-
proximation, eccentricity, solidity, perimeter, orientation
information, and original color and palette color informa-
tion are taken into account. We name these region repre-
sentations from now on as Regk,j, for k � 1, . . . ,

11 and j � 1, . . . , 20. Finally, we come to the binary relations
representation part. For this purpose, we construct 17 dif-
ferent subvectors that take into account all the binary re-
lations previously defined. See details in the Supplementary
Material for a description of every representation (S.2.1.2.).
We refer to these representations as Relk,j, for k � 1, . . . ,

17 and j � 1, . . . , 190.

2.2. Representation Clustering. After all the previous steps,
our final dataset ended with 166 artworks. Most of the
original samples could not be processed because the algo-
rithm to calculate the straight skeleton was not able to finish.
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Figure 6: Region 2 of Rothko’s “Violet, Black, Orange, Yellow on White and Red” (1949) work. 3, 4, 5, and 6 points simplification in red.
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Figure 7: Straight skeleton of region, center of region, and shortest
path over the straight skeleton.
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Five artworks without year information were taken out to be
able to build the final multiplex. Since our internal repre-
sentations can contain categorical-numerical vectors, we
decided to use a variant of the Growing Hierarchical Self-
Organizing Map (GHSOM) [33] implemented by
Malondkar et al. [34]. We decided to use this algorithm for
two reasons. ,e first one is that besides GHSOM being a
dynamic variant of the SOM algorithm that generates a
multilevel hierarchy of SOM maps, there is no need to
specify any parameter besides the input data. ,e second
reason is that the authors made an extension of the original
GHSOM algorithm to work with mixed attributes. ,e
authors make use of the distance hierarchy [35] approach to
modify the optimization function of the original GHSOM.

2.2.1. Distance Hierarchy Construction. To be able to use the
algorithm suggested byMalondkar et al. [34] we had to build
a distance hierarchy for every categorical attribute. For most
of the categorical attributes present in our representations,
we use a simple distance hierarchy tree consisting of only
two levels. In the first level, we only have the root element. In
the second element, we place all the different categorical
values for the specific attribute and set the weight of every
edge as 0.5. ,is simple distance hierarchy tree has two
properties. ,e first one is that the distance between any pair
of leaves of the tree is 1. ,e second characteristic is that all
the categorical values have the same importance. In our
experiments, attributes such as “artist,” “year,” or “style” are
basically all equal. We intend to build a more complex
distance hierarchy tree in the future that considers the re-
lationship between “years” and “style” so that years that are
historically related to a specific style are more similar than
far away “years”.

For the cluster identifier categorical value, we propose to
construct a distance hierarchy based on the result of the
Riemannian distance of the clustering procedure. Our first
task to achieve this goal is to map the distance matrix of the
200 clusters to a tree. We accomplished that using the
neighbor-joining tree estimation method developed by

Saitou et al. [36]. After normalizing the distance matrix and
applying the algorithm, we validated the error of the ap-
proximation running a linear regression. We obtained an
R2 � 0.7028831. Figure 9 shows the result of the validation.
,e final distance hierarchy consists of 398 nodes of which
200 leaves correspond to the centroids of the clustering
procedure. Figure 10 shows a simplified version of the
cluster distance hierarchy.

After having all the distance hierarchies for the cate-
gorical attributes defined for our vector representations, we
have to establish our measurement of variance. Following
Malondkar et al.’s [34] ideas, for the simple categorical
attributes, those who have a distance hierarchy tree of two
levels, we use the coefficient of unlikability.,is coefficient is
defined as follows:

u2(l) � 􏽘
i∈Domain(l)

pi 1 − pi( 􏼁, (10)

where pi � frequency(li, Cn)/n, in which li is the ith value of
the attribute l in its domain and frequency(li, Cn) is the
absolute frequency of li for the attribute l in Cn and Cn is the
set of all n input instances. For the shape cluster distance
hierarchy attribute, we propose to use the within-data
variance [37] measurement that is defined as follows:

W(l) �
􏽐

n
i�1 􏽐

n
k�1 dist x(l,i), x(l,k)􏼐 􏼑􏼐 􏼑

2

n
2

− n
, (11)

where

dist x(l,i), x(l,k)􏼐 􏼑 � dh l, x(l,i)􏼐 􏼑 − dh l, x(l,k)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (12)

l is any categorical attribute, x(l,i) and x(l,k) are any input
vectors, and dh(l, x(l,.)) corresponds to the distance hier-
archy mapping for the specific categorical attribute l. Re-
membering that this mapping locates a point in the tree, we
can give the precise definition for the ith input vector as in
[34]:

dh l, x(l,i)􏼐 􏼑 � Nx(l,i)
, dx(l,i)

􏼒 􏼓, (13)

(a) (b)

Figure 8: Rothko’s “Violet, Black, Orange, Yellow onWhite and Red” (1949). 10 simple regions and complete graph based on the centers of
every region's straight skeleton.
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where Nx(l,i)
is the anchor or the leaf symbol or categorical

value and dx(l,i)
is the offset of the point from the root. Finally,

equation (12) can be defined as

dh l, x(l,i)􏼐 􏼑 − dh l, x(l,k)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � dx(l,i)
+ dx(l,k)

− 2dLCP
x(l,i) ,x(l,k)( )

,

(14)

where dLCP(X,Y)
is the offset of the least common point of X

and Y. LCP(X,Y) is defined as

(1) Either X or Y, if X or Y refers to the same point
(2) X if X is an ancestor of Y; this means the X lies on the

path from the root to Y
(3) ,e least common ancestor of X and Y

,e general distance function between any pair of input
vectors is defined as

dist x(.,i), x(.,k)􏼐 􏼑 � 􏽘
M

l�1
dh l, x(l,i)􏼐 􏼑 − dh l, x(l,k)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

⎡⎣ ⎤⎦

1/2

,

(15)

whereM corresponds to the total number of attributes in the
specific representation. More details can be found in
Malondkar et al. [34].

2.2.2. GHSOM Results. For the research in this paper, we
used the following parameters for applying the GHSOM.,e
number of epochs used was 10, for the criterion associated
with τ1 or the criteria to expand a map in any level; we
suggest the value τ1 � 0.8, for the criterion associated with τ2
or the decision to expand a neuron in any map, and we
propose the value τ2 � 0.5. For the decision of τ1, we fol-
lowed the guidelines proposed by Malondkar et al. [34]. ,e
authors suggest that this value is going to let the algorithm
find general clusters within the first levels and does not

create maps with a large quantity of neurons. For the de-
cision of τ2, we did some preliminary experiments. Initially
using a value of 0.8, on average only 25% of the neurons of
the first level were candidates to new iterations. ,is amount
was too small, and we achieved large clusters of neurons in
the first level, while for 25% of the neurons we ended up with
hierarchies with 2 or 3 levels deep and clusters with between
2 and 20 elements. When we set τ2 � 0.5, we achieved on
average that 50% of the neurons in the first level were
candidates for new iterations, while the levels of each in-
dependent neuron hierarchy were no more than three levels
deep.

With additional experiments, we were able to corrob-
orate that with the combination of τ1 � 0.8 and τ2 � 0.5 we
had fewer clusters of 4 or fewer elements. ,is fact made the
run time for the algorithm shorter. Table 1 lists all the in-
ternal representations used in this work. All the represen-
tations are built out of global, regions, and/or binary relation
characteristics. Table 2 shows the results of GHSOM using
the parameters described previously and some of the initial
and more important results that we are going to use next.
Every internal representation has its mqe0, the size of the
map in level 1, the total number of maps, and the number of
levels of the final hierarchy. All of these results are going to
be important in the multiplex construction process. Fig-
ures 11 and 12 show examples of the IR5 internal repre-
sentation and of the contrast binary relationship between
color palette elements present in IR13.

2.3. Network Construction. To build all the networks or
layers of multiplex in this research, we propose to start from
the distance function defined in equation (15) for the in-
ternal representations discussed previously. Even do we have
several aggregated representations such as IR1, IR2, and IR5,
we are going to concentrate initially in the last one. ,e
reason behind this decision is based on empirical visual
evaluations of the clusters in the first level of all these three
networks. Since we have the style classification of all the
artworks analyzed, we observed a better separation in the
style classes in representation IR5. From this point on, we are
going to refer to these networks as N1, N2, and N3. We also
built two additional networks that take into account only the
region’s aspects or the relational characteristics, respectively.
,ese two networks are associated with the internal rep-
resentations IR3 and IR4 and are denoted by N4 and N5. We
plan to analyze the relationships between all these five
networks in some future works. Finally, we suggest a
multiplex composed of 23 layers that correspond to the
internal representations IRi for i � 6, . . . , 28.We are going to
name our multiplex M1 and are going to reference each layer
using the same indexes of the respective internal
representation.

Following Elgammal et al.’s [12] ideas and using the time
labels from the artworks in our dataset, we construct our
networks as directed graphs where each vertex corresponds
to a painting. A relationship between painting pi and pj

takes place if pi was created before pj. ,is relationship has a
positive weight named wij that corresponds to the similarity
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Figure 9: Validation of the error of the approximation of the
neighbor-joining tree estimation applied over the Riemannian
distance matrix of the 200 clusters. ,e linear regression R2 is
0.7028831
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Figure 10: Distance hierarchy cluster tree.

Table 1: Internal representations.

Internal representation Global representation Region representation components Relation representation components
IR1 GI1 Reg1,j, for j � 1, . . . , 20 Rel1,j, for j � 1, . . . , 190
IR2 GI2 Reg2,j, for j � 1, . . . , 20 Rel2,j, for j � 1, . . . , 190
IR3 GI3 Reg3,j, for j � 1, . . . , 20
IR4 GI3 Rel2,j, for j � 1, . . . , 190
IR5 GI3 Reg3,j, for j � 1, . . . , 20 Rel2,j, for j � 1, . . . , 190
IR6 GI3 Rel3,j, for j � 1, . . . , 190
IR7 GI3 Rel4,j, for j � 1, . . . , 190
IR8 GI3 Rel5,j, for j � 1, . . . , 190
IR9 GI3 Rel6,j, for j � 1, . . . , 190
IR10 GI3 Rel7,j, for j � 1, . . . , 190
IR11 GI3 Rel8,j, for j � 1, . . . , 190
IR12 GI3 Rel9,j, for j � 1, . . . , 190
IR13 GI3 Rel10,j, for j � 1, . . . , 190
IR14 GI3 Rel11,j, for j � 1, . . . , 190
IR15 GI3 Rel12,j, for j � 1, . . . , 190
IR16 GI3 Rel13,j, for j � 1, . . . , 190
IR17 GI3 Rel14,j, for j � 1, . . . , 190
IR18 GI3 Rel15,j, for j � 1, . . . , 190
IR19 GI3 Rel16,j, for j � 1, . . . , 190
IR20 GI3 Rel17,j, for j � 1, . . . , 190
IR21 GI3 Reg4,j, for j � 1, . . . , 20
IR22 GI3 Reg5,j, for j � 1, . . . , 20
IR23 GI3 Reg6,j, for j � 1, . . . , 20
IR24 GI3 Reg7,j, for j � 1, . . . , 20
IR25 GI3 Reg8,j, for j � 1, . . . , 20
IR26 GI3 Reg9,j, for j � 1, . . . , 20
IR27 GI3 Reg10,j, for j � 1, . . . , 20
IR28 GI3 Reg11,j, for j � 1, . . . , 20
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Table 2: GHSOM results based on internal representations.

Internal representation mqe0 SOM1—rows SOM1—columns No. of maps Hierarchy levels

IR1 145.001464987 3 2 12 4
IR2 82.0860953303 2 3 14 4
IR3 10.8608869533 2 3 14 3
IR4 58.2748424417 2 5 14 4
IR5 69.0314317304 2 3 14 4
IR6 56.2932799944 2 2 12 5
IR7 18.7704010202 2 2 8 4
IR8 6.45736468788 2 2 11 4
IR9 2.21063868007 8 5 14 3
IR10 4.46055119803 2 3 13 4
IR11 6.81042259044 16 2 14 3
IR12 5.23939665429 7 2 13 4
IR13 4.88050905168 2 19 13 3
IR14 0.19201392764 2 2 2 1
IR15 5.07207337982 2 2 13 4
IR16 9.50684525155 7 2 13 3
IR17 5.52501118163 2 3 13 4
IR18 5.35404842430 2 7 13 3
IR19 0.10429766467 2 2 4 3
IR20 6.72006565071 3 3 13 3
IR21 2.97816266084 2 2 13 4
IR22 0.56725618817 2 45 14 2
IR23 3.32803255637 2 2 14 4
IR24 4.31574612459 2 2 13 5
IR25 8.69541753071 19 2 14 2
IR26 12.9772115760 2 2 4 3
IR27 10.0418477987 2 2 12 4
IR28 11.0835902198 2 2 9 4

Figure 11: Level 1 SOM of IR5 with 2 rows and 3 columns.,e neurons have the following number of elements respectively: 34, 43, 71, 8, 1,
and 13.
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between both paintings. To define the similarity between any
two paintings in our dataset, we start with the distance
matrixes based on our internal representations and gener-
ated in the previous GHSOM procedure. We first normalize
these distance matrixes. ,en we define a similarity matrix

for every normalized distance as one minus the normalized
distance. We denote by WIRk

the adjacency matrix for k �

1, . . . , 28 where an entry wijIRk

� 1 − Normdist(x(.,i),

x(.,k))IRk
or 0. Since our time labels describe only the year the

painting was created and an artist can produce more than

Figure 12: Level 1 SOM of IR13 with 2 rows and 19 columns. For arrangement constraints, we present the map in a grid of 8 by 5. ,is
internal representation clusters the contrast binary relationship between color palette samples present. ,e neurons have the following
number of elements, respectively (top-down, left-right): 5, 6, 6, 12, 3, 7, 8, 3, 5, 1, 1, 1, 3, 3, 7, 31, 4, 5, 3, 5, 2, 3, 7, 5, 5, 1, 5, 3, 5, 1, 5, 6, and 3.
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one painting per year, we assume that if a case like that
happens, all the paintings by the same artist in that year are
related to each other. If an artist painting spans more than
one year of production, we assume that all the previous
paintings of the same artists and other artists are related. We
also assume that a painting is not related to itself; then, for
every i and k, wiiIRk

� 0.
Elgammal et al. [12] suggest that, to use the WIRk

ad-
jacency matrixes to build a creativity implication network,
we have to interpret the weights in a specific way. Starting
with an assignment of a creativity value equal for every
painting in the network, the authors propose to interpret an
incoming edge from painting pj to painting pi with a high
weight, showing that painting pi is very similar to pj, and
therefore, meaning that pi is not novel. ,ey also suggest
that, based on the last fact, the creativity value of pi should be
lowered and, in opposition, the value of pj should be in-
creased. If the contrary situation happens, the authors
suggest that the creativity value of pi should be increased and
that of pj lowered. Considering the outgoing edges of pi, a
different situation comes into play.

According to the creativity definition proposed by
Elgammal et al. [12], for pi to be creative, it is not enough to
be novel, and it also has to be influential. ,is last fact in our
context means that future paintings must imitate pi. If we
have a high weight wij between pi and pj, the creativity value
of pi has to increase and that of pj should be reduced. On the
contrary, a lower weight between pi and pj shows that pi is
not influential over pj. In this last situation, the score of pi

has to go down and the creativity value of pj has to increase.
To formalize the notions of low and high, the authors in-
troduce what they call a balancing function on the graph.
,ey define a value m(i) for every node pi that basically
determines for every edge weight connected to node pi; if the
weight is over m(i), then it is considered high and the other
way around. ,e linear balancing function used in [12] is
defined as follows:

Bi(w) �
w − m(i), if w> 0,

0, otherwise.
􏼨 (16)

,e authors state that this balancing function basically
converts weights lower thanm(i) to negative values.,is fact
implies that the more negative the weight of an edge, the
more creative the subsequent nodes or paintings and the less
influential the node pi. By contrast, if we have a more
positive weight over an edge, then the following node is
considered less creative and the origin node must be con-
sidered more influential. As suggested by the authors,
negative weights provide a solution for low weights, but are
problematic when considering the propagation of creativity
scores. To solve this last issue, the authors propose to for-
malize the intuition that a negative edge between a node pi

and pj should really mean that a positive and equivalent
weight between pj and pi should exist. Since by construction
the original adjacency graph was antisymmetric, this last
reversal of some links is not problematic. ,is last trans-
formation is what Elgammal et al. [12] consider a “Creativity

Implication Network” and is denoted in our context by 􏽥WIRk

for k � 1, . . . , 28.
To finally implement the construction of a “Creativity

Implication Network,” Elgammal et al. [12] suggest limiting
the incoming connections into a painting since more recent
paintings will have a higher number of incoming edges,
making them highly biased. ,ey propose to use the top K
most similar prior paintings. In the experiments conducted
by the authors, this parameter is global and fixed. If we limit
our similarity function to a specific aspect, this global pa-
rameter is going to have a lot of impact in the results of the
analysis. If the analysis takes into account paintings from a
very wide time span, the top K similar paintings are not
going to take into account information about style that in
some sense should be crucial to defining the connections of
the “Creativity Implication Network”.,e authors introduce
a “temporal prior” to overcome this situation. ,ey suggest
taking into consideration the prior K painting and com-
bining the similarity function with this temporal constraint
to reduce the number of incoming edges. ,e authors also
propose to use a temporal neighborhood to locally calculate
the parameter m(i) for every node of the graph.

We propose to use the information of the unsupervised
GHSOM clustering procedure to give an alternative solution
to the global parameter K of the most similar paintings, the
temporal prior, and the local balancing function parameter
m(i). We know that having a fixed global K parameter treats
all the inputs in a uniform manner irrespective of being
located in dense or sparse regions. Using the cluster of
painting pi, we could replace the K topmost similar nodes for
the cluster’s real members. In this case, we would not be
fixing globally this parameter and the GHSOM algorithm
will let us achieve a similar result without possibly inducing
any bias in our construction procedure. Following Elgammal
et al. [12] discussion on the temporal prior, we believe our
proposal of using the cluster can give a better approximation
to capture more stylistic aspects than rather constraining the
incoming connections based on a fixed and global number
over the entire graph.

Our approach borrows some ideas from the work de-
scribed in [38, 39] that use clustering heuristics for network
constructionmethods. Finally and trying to give amore local
perspective on the local balancing function, we suggest
ranking the distances between all the members of the pi

cluster in the first level and consider including an additional
20 percent of the size of the cluster of similar elements that
do not belong to the cluster to define the value m(i). ,ere
are two general cases. ,e first one is that the maximum
distance between any pair of elements from the cluster
applied to the respective similarity matrix already contains
the additional 20 percent of new elements. In this case, the
final m(i) value is the last similarity measurement of the
member that was added to the cluster. ,e rationale behind
this decision is to include similar elements that were not
assigned to the specific cluster after the GHSOM procedure
or to take into account more diversity and measure the
impact over the “Creativity Implication Network” of similar
paintings.
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2.4. Creativity Scores and Multiplex Measurements. To
complement the ideas presented in the previous section to our
multiplex, we propose to use the MultiRank algorithm de-
veloped by Rahmede et al. [20].,e aim of this algorithm is to
rank nodes and layers in large multiplex networks. ,e au-
thors suggest that the MultiRank takes into account the full
multiplex network structure and uses the information present
in nodes and layers. A random walk hopping through links of
different layers with different probabilities determined by the
centrality of the layers or influences is the main idea of the
algorithm proposed by Rahmede et al. [20]. Solving a coupled
set of equations that determine the centrality of nodes and the
importance of layers is the way the ranking works. ,e au-
thors state that this algorithm can be applied to weighted and
directed multiplexes as is our case.

According to Rahmede et al. [20], the equation that
governs the node centrality scores is as follows:

Xi � 􏽥α 􏽘
N

j�1

Gji

κj

Xj + β]i, (17)

where 􏽥α is taken as 0.85, which is usual in the context of the
PageRank algorithms, and Gji, κj, ]i, and β are defined as
follows:

Gji � 􏽘
M

α
A
α
jiz

α
, (18)

κj � max 1, 􏽘
N

i�1
Gji

⎛⎝ ⎞⎠, (19)

υi � θ 􏽘
N

j�1
Gij + Gji􏽨 􏽩⎛⎝ ⎞⎠, (20)

β �
1

􏽐
N
i�1 υi

􏽘

N

j�1
1 − 􏽥αθ 􏽘

N

i�1
Gji

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦Xj. (21)

In equation (18), Aα
ji corresponds to the entries of the

adjacency matrix A of layer α that in our case are the weights
and zα are the influence of the layers for α � 1, 2, . . . , M. ,e
second equation coupled with equation (17) gives the
ranking of the layers as follows:

z
α

�
1

Nc

W
α

􏽘

N

i�1
B
in
αi Xi􏼂 􏼃

c
, (22)

where Nc indicates a normalization constant, Wα � 􏽐
N
i�1

􏽐
N
j�1 Aα

ij, Bin
αi � 􏽐

N
j�1 Aα

ji/Wα, and c is a parameter. Based on
the comments of the authors, when the parameter c< 1, nodes
with low centrality contribute more than when the parameter
value is 1. On the contrary, if c> 1, the contribution of central
nodes is less than that of the linear case, i.e., when c � 1.

3. Results and Discussion

3.1. Creativity Implication Network Scores. Table 3 contains
the color key conventions used in all the networks in the

figures presented in this research. Figure 13 shows N3
network (based on IR5). ,e network layout is ordered by
year of creation (starting from 1934 and ending in 1976) and
colored by style. ,e weight of the links is represented in the
thickness of the arcs. ,e illustration has the following seven
artistic styles: (1) Color Field Painting (68.07%), (2) Abstract
Expressionism (13.86%), (3) Expressionism (7.23%), (4)
Surrealism (6.63%), (5) Abstract Art (2.41%), (6) Mini-
malism (1.2%), and (7) Abstract Expressionism-Color Field
Painting (0.6%). Figure 13(a) corresponds to the creativity
scores calculated using the method discussed in Section 2.3.
We can see the effect of the balancing function especially in
some of the first nodes from left to right. Since the color of
the edges corresponds to the color of the originating nodes,
we see an important number of purple edges pointing to-
wards blue nodes. ,ese paintings correspond to the Ex-
pressionism style and were created between 1936 and 1938.
,ese nodes receive a lot of reversed connections from
paintings belonging to the Color Field Painting style (purple
nodes) because the similarity between them and examples of
future Color Field Paintings is not that much.,e first in-
teresting fact about Figure 13(a) is that almost all the styles
have a node that has a high creative score compared to the
rest of the elements in the network belonging to the same
style class. ,ese more creative paintings are located at the
beginning of the development of the specific styles. We could
also see that as time passes, the creative nodes are more
creative than previous ones. Following Elgammal et al.’s [12]
ideas, we also calculate the creativity score giving different
weights to originality and influence. Figure 13(b) uses
β � 0.1, to give 90% of weight to influence during the cal-
culation of the creativity scores. We can see that the older
paintings have more importance under these circumstances.
On the contrary, the more recent nodes appear smaller.
Figure 13(c) uses β � 0.9, which gives a lot of importance to
originality. As suggested by the authors, the recent paintings
increase their creative score. To try to visualize the impact of
exterior influences and see the correlation with originality
and influence, we did the same visualization as in Figure 13,
but to the paintings of Mark Rothko exclusively (based on
IR5 but taking into account only 91 elements).

Figure 14 has the following five artistic styles: (1) Color
Field Painting (65.93%), (2) Abstract Expressionism
(13.19%), (3) Surrealism (12.09%), (4) Expressionism
(7.69%), and (5) Minimalism (1.1%). Figure 14(a) corre-
sponds to the creativity scores calculated using the same
techniques already discussed but applied to the new dataset.
Figure 14(b) shows once again the impact of the linear
combination between originality and influence. We used the
same values for β as before. We can visually see the dif-
ferences between the original creativity scores of the full
dataset and those of the dataset based on Rothko’s artworks.
Without considering the external influences of Newman and
Still’s works, Rothko’s Surrealism artworks (orange nodes)
gain a lot of creative value. ,is can be attributed in part to
the small time period of this style in Rothko’s artistic
production that lasted only five years. Based on the con-
struction of our networks, having less influence in future
paintings gives the previous nodes more creativity.
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Additionally, and as is mentioned by Breslin [40],
Newman’s influence was clear for Rothko’s surrealism pe-
riod, because since 1942, Gottlieb, Newman, and Rothko
discussed surrealism art exhibitions that took place in New
York and incorporated several of the artistic movement’s
manifestos into their work. A similar effect happens when we
analyze the Abstract Expressionism paintings. As com-
mented by Hess et al. [41], Newman is recognized as one of

the major figures in Abstract Expressionism and the in-
fluence in Rothko’s artworks since the 1940s is clear. In
particular, the authors discuss the impact of Newman’s
Onement series for the birth of Color Field Painting style.
Figure 15 shows more clearly what has been mentioned. In
the illustration, the creativity scores of Rothko’s paintings
are compared. ,e green points correspond to the score
calculated over the first dataset and the red points

Table 3: Color style conventions—dataset information.

Color Artistic style Time period Percentage of dataset

Color Field Painting 1946–1976 68.07

Abstract Expressionism 1944–1952 13.86
Expressionism 1934–1940 7.23
Surrealism 1941–1946 6.63
Abstract Art 1940–1945 2.41
Minimalism 1964–1967 1.2

Abstract Expressionism-Color Field Painting 1962 0.6

(a) (b) (c)

Figure 13: N3 network based on IR5. 166 paintings colored by artistic style (see Table 3). (a) Creativity scores in terms of size of nodes.
(b) Combination of originality and influence by parameter β � 0.1. In this case, influence is given 90% of the weight in the calculation
of the score. (c) Just as previous image, β � 0.9, originality is given 90% of the weight.

(a) (b) (c)

Figure 14: N3 network based on IR5. 91 paintings byMark Rothko colored by artistic style (see Table 3). (a) Creativity scores in terms of size
of nodes. (b) Combination of originality and influence by parameter β � 0.1. In this case, influence is given 90% of the weight in the
calculation of the score. (c) Just as previous image, β � 0.9, originality is given 90% of the weight.
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correspond to the score without external influences. We see
a lot of changes in the values up to 1950 where both series
were stabilized for the period between 1951 and 1956 (red
box in Figure 15).

As described previously, the first part of the chart cor-
responds to the following three artistic styles: Expression-
ism, Surrealism, and Abstract Expressionism. Even though
the creativity scores change considerably, the most creative
paintings remain the same with different values. An inter-
esting exception to the fact just stated is Primeval Landscape
of 1945 (purple box in Figure 15). Figure 16 shows this
painting. ,e change in creativity score can be explained
using the clusters of the GHSOM process. Figure 16(b) il-
lustrates the cluster of this painting calculated using the full
dataset and only Rothko’s artworks. In the first case, we can
see that there are 13 elements of the cluster that belong to
Newman or Still paintings, and roughly 38% of the elements
are external samples. We can also see that 7 paintings of
Rothko that appeared in the first cluster over the full dataset
are not present in the second cluster. From that number,
more than half correspond to artworks that belong to Ex-
pressionism or Surrealism styles. ,e samples of Abstract
Expressionism remain almost constant independent of the
dataset.

Similar explanations can be given to some other
paintings that have an important change in scores. We
believe we are correct in claiming that the external paintings
that are not present in the second clusters are those spe-
cifically important and influential in Rothko’s future works
and positively impact his creative scores. Examples of these
external paintings are the 13 elements that force the re-
duction of creativity of Primeval Landscape. Another in-
teresting fact is illustrated in Figure 15 (red box).,is period
corresponds to the development of Color Field Painting.
Since the creativity score values are very similar in both
datasets, we hypothesize that during this period, Rothko
developed his own Color Field Painting style, and it was not
affected in important ways by external influences. During
this time, we can see the appearance of his signature large
blocks of color horizontally placed in the canvas. Lastly, the

clusters generated by GHSOM for both datasets are basically
the same.

,e final remark for Figure 15 is related to the black
square paintings. ,is last period starts around 1964 and
goes until the last created painting of Rothko in 1970. ,e
general trend of both series during this time is very similar. If
we only focus on the second dataset, we see there were not
any variations on Rothko’s Color Field Painting.We only see
two paintings that change their creative scores in a relevant
way. When we analyze Rothko’s last paintings in the context
of the three artists, what we can conclude is that Rothko’s
paintings increase their values because Newman and Still
start exploring different variations on their own Color Field
Painting styles. Rothko’s last paintings are definitely more
creative within that context because the three artists stop
developing new paintings and were not similar to previous
examples. ,e visualization of the comparison of creativity
scores when originality and influence change weights is in the
supplementary material section. In particular, Figure S.3.1
shows as expected that based on influence, some of the first
artworks developed by Rothko turn out to be more influ-
ential if we only take into account the works of the artist. In
terms of originality, the last works of Rothko gain more
importance but keep a similar trend with relation to the
complete dataset.,is fact is explained based on the network
construction process that quantifies originality in terms of
not having similar future paintings.

3.2. Creativity Scores in Multiplex. Figure 17 shows some of
the layers of our multiplex (based on IRi for i � 6, . . . , 28).
Once again, every network layout is ordered by year of
creation and colored by style (see Table 3) to be able to
compare visually with network N3. ,is sample of 9 layers
shows the diversity of creativity scores considering partic-
ular visual aspects or design principles. We can also see that
the weight links have a different importance in every layer.
,e impact of different balancing functions used to build
every layer’s final network can also be characterized. In
particular, we can see that Figure 17(a) has more balanced
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Figure 15: N3 network based on IR5. 91 paintings by Mark Rothko. Green points correspond to the creativity scores of the full dataset (161
paintings). Labels contain the style abbreviation of every artwork as follows: Ex: Expressionism, Su: Surrealism, AE: Abstract Expressionism,
and CF: Color Field Painting. Red points correspond to the creativity scores of Rothko’s artworks without external influences. Purple box
corresponds to Rothko’s Primeval Landscape from 1945. Red box corresponds to paintings from the period between 1951 and 1956. Black
box corresponds to late paintings from 1964 to 1970.
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(a) (b) (c)

Figure 16: GHSOM cluster comparison. (a) Mark Rothko’s Primeval Landscape of 1945. (b) Level 1 SOM of IR5. ,e first row corresponds
to the first dataset of 161 paintings. Cluster of 34 elements. ,e second row corresponds to the second dataset of 91paintings. Cluster of 14
elements. (c) Level 2 of SOM of the respective datasets. Cluster of 13 and 4 elements, respectively.

(a) (b) (c)

(d) (e) (f )

Figure 17: Continued.
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links pointing to the first paintings of the dataset, while
Figure 17(g) shows that on that layer almost all the edges of
paintings belonging to Color Field Painting point towards
the last paintings. ,e rest of the creativity scores are in the
supplementary section (see Figure S.3.2).

,e next experiment we conducted with the dataset was
to visualize the evolution of creativity scores. To have a
general insight into the evolution of the full dataset, we split
the complete time period between 1934 and 1976 into
smaller slices of 6 years each. ,e last period has more years
since only Clyfford Still produced artworks after 1970. ,e
goal behind our analysis is to see the correlations between
the creativity scores and the birth and evolution of artistic
styles. Even do we have 7 different artistic styles in our
dataset, we decided to focus on Color Field Painting. ,e
first reason behind this decision has to do with the large
number of samples of art from that respective style. ,e
second reason has to do with having all three artists develop
diverse works of art belonging to this style. ,e last reason
has to do with the large time period of development of Color
Field Painting. Compared to Abstract Art, Minimalism, or
Surrealism, Color Field Painting lasted three or four times
more than those artistic styles. Part of the hypothesis we
would like to validate is that to gain insights on the birth of a
new artistic style, we would have to analyze the creativity
scores, especially the originality and influential variants,
because to be defined as an artistic style there has to be a
novelty and quite some influence. In particular, Color Field
Painting has all the ingredients that make it a very good
candidate to validate our intuitions and see how the global
creativity scores correlate with specific artistic concepts or
design principles that can help us understand better and
possibly complement the art expert knowledge used to
classify and analyze art.

Figure 18 shows the 6 general time subperiod between
1934 and 1976 in which we initially split the dataset. Every
consecutive period aggregates the paintings of the following

six years. From the network visualization in this figure, we
see the variation in creativity scores along the different time
periods. Figure 18(b) shows the first time an artwork was
categorized as belonging to Color Filed Painting style
(purple node—Figure 19(A) shows Barnett Newman’s
Moment 1946 painting). In the next time slice, we see the
appearance of more paintings belonging to Color Field
Painting style. We see a shift in the creativity scores of some
Surrealism paintings. ,is is normal, since we already know
that previous samples lose creativity scores as soon as new
styles appear. ,e evolution of the behavior of the scores is
better appreciated in Figure 19. In this illustration, we can
see the nine most creative Color Field Painting images. ,e
first painting was created in 1946, but it was not until 1949
that its creativity score gained value. ,is painting appeared
once again with a higher score in 1964. ,is is the only
painting that has that behavior. ,e other creative works
gained a higher creativity score but lose it gradually. In
general, that is the trend we see in Figure 19. ,ere is also a
period of time between the creation of the work and the high
score that is not less than three or four years.

Figure 19 also shows us the very stationary period be-
tween 1950 and 1956 that was a moment in which Rothko
developed his own style. We can see that, during that short
period, Newman kept on exploring his vertical and long
compositions that is one of the main characteristics of his
Color Field Painting style. On the other hand, the most
creative work of 1956 let us identify what is going to be
Rothko’s distinctive sign. Once again, we have more facts
that let us support what theoreticians claim about the im-
portance of Newman for the development of this particular
style [40, 41]. Six out of nine of the works were developed by
him, Rothko helped with two, and Still only has one
painting.

In terms of our multiplex and to try to capture some
insights in the origin of Color Field Painting, we generated
two variants. ,e first one was generated only using the

(g) (h) (i)

Figure 17: Some layers of our multiplex based on IRi for i� 6, . . ., 28. See Table 3 for color conventions. Creativity scores in terms of size of
nodes (a) (IR6) show normalized area-related characteristics. (b) (IR7) shows normalized straight skeleton coordinates characteristics. (c) (IR8)

shows the binary normalized area contrast characteristics. (d) (IR13) shows the binary temperature contrast characteristics. (e) (IR16) shows the
binary HUE (RYB color space) color palette contrast characteristics. (f) (IR19) shows the binary color weight color palette contrast char-
acteristics. (g) (IR20) shows the binary saturation color palette contrast characteristics. (h) (IR21) shows normalized area characteristics of every
region. (i) (IR22).
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paintings of our dataset up to the year 1952 (Figure 18(c)).
,e second multiplex was built using all the paintings
available. Using the definition of creativity that is suggested
by Elgammal et al. [12], we are going to focus initially in the
influential part. By construction of our networks and as

described previously, influence is a crucial factor. In the
supplementary material, Figure S.3.2.1 shows that the time
series of all the paintings belonging to the Color Field
Painting style is quite similar to that of Figure 19.We use this
fact to compare our previous measurements to the ones

(a) (b) (c)

(d) (e) (f )

Figure 18: N3 network based on IR5. 166 paintings colored by artistic style (see Table 3). Creativity scores are represented by node size. We
split by consecutive periods of 6 years. (a) Subset of paintings from 1934 to 1940. (b) Subset of paintings from 1934 to 1946. (c) Subset of
paintings from 1934 to 1952. (d) Subset of paintings from 1934 to 1958. (e) Subset of paintings from 1934 to 1964. (f ) Subset of paintings
from 1934 to 1976.
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Figure 19: Time series of creativity scores based on network N3 for Color Field Painting artworks. (A) Barnett Newman:Moment (1946).
(B) Mark Rothko: Untitled (1948). (C) Barnett Newman: By Tows (1949). (D) Mark Rothko: Untitled (1949). (E) Barnett Newman:
Untitled 3 (1949). (F) Barnett Newman: Vir Heroicus Sublimis (1950–1951). (G) Barnett Newman: Moment (1946). (H) Clyfford Still:
Untitled (1951–1952). (I) Barnett Newman: Galaxy (1949).
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obtained using our two variants of multiplex and different
datasets.

Figure 20 shows the results of calculating the MultiRank
measures using several parameters. Following what Rah-
mede et al. [20] comment about the c parameter, we know
that, for c< 1, nodes with low centrality contribute more and
on the contrary, for c> 1, nodes with low centrality con-
tribute less to the measurements. In terms of the evolution of
an artistic style, we can think that c> 1 might give us some
possible explanations of the origin of the artistic style. ,is
hypothesis is based on the fact that, by construction, nodes
that do not have a high creativity score are basically those
nodes that have more similarity with previous creative nodes
or on the contrary are isolated paintings that might be
creative but do not have enough or any influence when
calculating the scores. To analyze the left part of the graphs
presented in Figure 20, we assume that these regions cor-
respond to an exploration using the design principles or
main characteristics of the particular style. We believe that
influence is quite important for the final establishment of an
artistic style. Based on these two hypotheses, we are going to
interpret the results of Figure 20.

,e first row of Figure 20 shows the rankings of the
paintings from 1934 up to 1952.,is time period has 6 years
of Color Field Painting artwork productions that is equiv-
alent to 35.9% of the samples. Abstract Expressionism ac-
counts for 29.49%, Expressionism for 15.38%, Surrealism for
14.1%, and finally, Abstract Art with the remaining 5.13%.
We see that, across all the parameter variations, the artworks
4, 41, 35, and 14 are always ranked in the top 4 (Figure 21).
Artwork number 4 (Figure 21(a)) belongs to Expressionism
and is one of the earliest paintings in the dataset. We have to
remember that in general, when we give influence more
weight, older nodes in the network become more important.
Our findings corroborate this fact once again. Painting
number 41 belongs to Abstract Expressionism and is also
one of the first in Barnett Newman’s production. ,e last

two paintings (35 and 14) belong to Mark Rothko and are
classified as Color Field Painting. ,ese artworks are, re-
spectively, from 1948 and 1951. We recall that painting
number 14 was also classified as very creative (Figure 19(B)).
In terms of the layer importance and following the hy-
potheses stated previously, we are interested in elite layers
and use c> 1, to try to gain some insights into the origin of
the artistic Color Field Painting style.

,e second row of Figure 20, columns (a) and (b), shows
that the most important layers are those based on IR17, IR8,
IR15, and IR12. ,ese representations correspond to the
following relations or aspects of our representation, respec-
tively: (1) binary lightness color palette contrast character-
istics, (2) binary normalized area contrast characteristics, (3)
binary saturation contrast characteristics, and (4) binary
lightness contrast characteristics. At first, we can see that 3 out
of 4 characteristics are related to color. ,e other charac-
teristic is a binary relationship that compares areas of the
regions that make up the main composition of the artwork.
We know these characteristics are very general and that al-
most all artworks irrespective of artistic style are going to have
color as one of themost important aspects and composition as
the other one. Even do and in particular, for Color Field
Painting, these two characteristics are more important since
these are the main formal aspects that theoreticians use to
classify these paintings [40, 41]. It is also interesting that, in
Figure 20(a), three of our characteristics remain constant
during the layer ranking. Even do our network layers are
highly connected (see supplementary material Figure S.3.2.2
(a)), the diverse density coefficient (see supplementary ma-
terial Figure S.3.2.2 (b)) of every layer helps the multiplex
capture different aspects in terms of influence.

To give some insights in relation to the stabilization of
the Color Field Painting style, we are going to use the in-
formation in Figure 20 in columns (c and d). In this case and
based on the parameters used, we are giving more influence
to popular layers. In our context, this means that layers with
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Figure 20: Multiplex MultiRank calculations. ,e first row corresponds to the node’s ranking and the second one to the layers. Every graph
shows the results for the parameter c between 0 and 3. (a) Elite layers have more weight and the influence of each layer is required to be
independent of Wα. (b) Elite layers have more weight and centralities of the layers are not normalized by Wα. (c) Popular layers are more
influential and this influence is independent of Wα. (d) Popular layers are more influential and centralities are not normalized by Wα.
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more active nodes are more important. Focusing in the
region associated with c< 1, we see quite some differences in
both graphs. When we take into account the normalization
of the ranking using the total weight of every layer
(Figure 20(c)), we see that there is not a lot of variation in the
graph. On the contrary, if we do not normalize the centrality
scores, we see a lot of layer importance variations. ,e top-
ranked layers do not change that much. Once again, we see
that the most important aspects in terms of the stabilization
of the styles in the time period analyzed are related to IR17,
IR12, IR8, IR18, IR15, IR20, and IR16. We see the appearance of
the binary relation of color temperature based on the color
palette (IR18) and some other new design principles that
were not present before.

Besides the facts just mentioned, it can be more inter-
esting to see the behavior of Figure 20(d) in the lower layers.
In particular, the layers associated with the internal repre-
sentations IR10, IR6, IR28, IR24, IR27, IR22, and IR12 are the
ones that frequently shift in importance. We see from the
graph that IR27 and IR22 loses importance very fast. ,ese
two aspects are related to color characteristics of regions and
shape cluster identifier of regions. It is interesting that when
c is near 0, these two aspects are quite important. We know
from experts’ descriptions that shape and color are im-
portant for Color Field Painting and is the main charac-
teristic of this style [40, 41]. We see that these two layers are
probably important because there are quite an important
number of paintings that share common shapes and colors.
As soon as we move towards 1 in the c parameter range,
binary lightness contrast characteristics gain more impor-
tance. We believe the measurements are capturing one of the
most important aspects of Rothko’s works of this period that
is the color relationship between its large color blocks.

To see the evolution of the characteristics of Color Field
Painting, we used our secondmultiplex with all the paintings

in our dataset. Figures 22(a) and 22(b)) give us the most
important paintings based on creativity and influence
(Figure 23). We see a different result compared with the
previous dataset. Now we observe that the four top-ranked
nodes are very early paintings of Rothko and Still. ,ese
paintings shift in importance from graph to graph, but they
remain important along the full c parameter range. ,e
painting numbered 24 is once again the most important
painting. It seems that influence is the prevalent charac-
teristic of our ranking and that is probably why older
paintings rank higher. In terms of the layer importance and
focusing on c> 1, Figures 22(a) and 22(b) only have layer 15
and 17 in common in the top 5. As was already commented,
IR17 and IR15 are related to binary lightness contrast and
saturation contrast characteristics, respectively. ,ese two
aspects are fundamental to Color Field Painting artistic style.
,e other relevant layers are IR6, IR8, IR10, IR14, and IR18.
,ese representations correspond to the following relations
or aspects: (1) normalized area-related characteristics, (2)
binary normalized area contrast characteristics, (3) binary
normalized weighted orientation contrast histogram char-
acteristics, (4) binary color weight contrast characteristics,
and (5) binary color temperature color palette contrast
characteristics.

In contrast to what we found for the previous dataset,
this time most of our characteristics are related to com-
positional aspects like area or orientation. In terms of ad-
ditional color characteristics, we see that temperature and
weight are new important characteristics. We believe this
fact can be attributed to Mark Rothko’s late Color Field
Painting artworks that are darker and in perceptual terms
heavier. Examples of this are given in Figure 24. ,is fact is
also supported by Figures 22(c) and 22(d), in particular
looking at c< 1, in which we can see that the two most
important layers in both cases are IR14 and IR18.

(a) (b) (c) (d)

Figure 21: Multiplex MultiRank top 4 paintings in the dataset between 1934 and 1952. (a) Mark Rothko: Interior, 1936 (Surrealism).
(b) Barnett Newman: Fe Blessing, 1944 (Abstract Expressionism). (c) Mark Rothko: Number 24 (Untitled), 1951 (Color Field
Painting). (d) Mark Rothko: Untitled, 1948 (Color Field Painting).
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(a) (b) (c) (d)

Figure 24: Continued.

(a) (b) (c) (d)

Figure 23: Multiplex MultiRank top 4 paintings in the dataset between 1934 and 1952. (a) Mark Rothko: Interior 1936 (Expressionism).
(b) Clyfford Still: PH 343 1937 (Expressionism). (c) Mark Rothko: Rural Scene 1936 (Expressionism). (d) Clyfford Still: Self-portrait PH
382 1940 (Expressionism).
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Figure 22: Multiplex MultiRank calculations on the full dataset. ,e first row corresponds to the node’s ranking and the second one to the
layers. Every graph shows the results for the parameter c between 0 and 3. (a) Elite layers have more weight and the influence of each layer is
required to be independent of Wα. (b) Elite layers have more weight and centralities of the layers are not normalized by Wα. (c) Popular
layers are more influential and this influence is independent of Wα. (d) Popular layers are more influential and centralities are not
normalized by Wα.
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4. Conclusions

In this paper, we used a hierarchical representation [22] to
extract information related to shapes, color, size, orientation,
and some binary contrast relationships. All the features that
make up this representation try to capture some design
principles grounded on a perceptual basis. We presented
several internal representations built over 166 artworks from
Mark Rothko, Barnett Newman, and Clyfford Still. ,e
paintings in our dataset span a time period between 1934
and 1976 and are classified under 7 artistic styles. Our in-
ternal representations were built to try to give information
or insights of specific art theory formal aspects present in
almost all artworks and in particular in abstract paintings.

Based on Elgammal et al.’s [12] ideas and our internal
representations, we built several creativity implications
networks. We experimented over some of the main pa-
rameters and procedures used by the authors to build these
networks. In particular, we used the results of an extension
to the traditional GHSOM clustering procedure that works
over categorical and numerical attributes, to replace the
global parameter K used by Elgammal et al. [12]. In our
opinion, this decision frees us from having to decide sub-
jectively over the temporal prior value described by the
authors and also let us build a more robust balancing
function. We argued that giving a local approach based on
the cluster size and elements of every painting let us treat the
input space in a nonuniform manner and capture dense
regions or sparse in different ways. It is our belief that these
facts generate a better approximation to some stylistic as-
pects that we tried to argue about along our paper.

Additionally, we analyzed the influences of certain artistic
external information in the creative process of Mark Rothko’s
work. We showed visually and through numerical compar-
ison that some time periods of the artist were more prone to
external influences. We gave some possible explanations as to
the fluctuations in creativity scores and the impact of these
measurements in previous artistic styles in which Mark
Rothko had worked. Furthermore, we also showed the
support of our findings with some known art theorists claims

about relations and influences between Mark Rothko,
Newman, and Still. Expanding on these ideas and in the
context of creativity in general, our methodology might be
used to validate and do further research in physiological
creativity (P-creativity) and historical creativity (H-creativity)
based on Boden’s ideas [42]. ,e relationship between these
two types of creativities can give us new perspectives to try to
understand the evolution of artistic styles in general or to
simply grasp ideas as how external influences act against
artistic medium and in particular artists. Since the full artistic
production is so large, the rankings presented here give an
alternative to focus on interesting and particular examples to
understand general trends in the art world. We believe it can
also help with what Elgammal et al. [12] suggest as being an
important characteristic of a creative agent that is to have: “. . .

ability to assess its creativity as well as judge other agents’
creativity” (pg. 2).

We also presented a multiplex artwork representation
using our internal representations. We showed the appli-
cation of theMultiRank algorithm [20], whose aim is to rank
nodes and layers in a multiplex. We compared the results
obtained of an aggregated network to that of the multiplex
and the measurements from both models. In particular, we
used the linear combination proposed by Elgammal et al.
[12] over originality and influence to contrast our findings.
We discussed some of the most creative paintings identified
and showed visually the different interpretations if origi-
nality guides our measurements or if we use influence in-
stead. We tried to argue the advantage of our representation
in identifying relevant nodes belonging to particular artistic
styles and the relation that exists between these paintings
and the birth, evolution, and decay of these styles. We gave
quantitative and qualitative arguments that support how our
methodology can provide insights into the general evolu-
tionary trends of Color Field Painting style. We analyzed the
relations between the MultiRank results and c parameter
range based on Rahmede et al.’s [20] comments. We tried to
show the relationship between the layer rankings and impact
for creativity scores and explanations of formal aspects that
can be related to understating particular features from Color

(e) (f ) (g) (h)

Figure 24: Mark Rothko’s dark Color Field Painting artwork. (a) No. 2, 1964. (b) No. 8, 1964. (c) Untitled, 1967. (d) Untitled (Gray, Gray on
Red), 1968. (e) Untitled, 1968. (f ) Untitled, 1968. (g) Untitled, 1969. (h) Untitled (Black and Gray), 1970.
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Field Painting. Our analyses permit us to further hypothesis
what goes on when a specific artist can explore the creative
medium he works on.

In future work, we propose to do more experiments with
other artistic styles to see if our results can generalize or in
what forms they differ if they do. We believe that our hy-
pothesis that microstyles or styles should have specific time
periods of high creativity scores followed by more influence
in future artwork production can be explored further. We
think the evidence we presented allows us to support our
hypothesis. Doing more experiments in broader Abstract
Art styles should give us the chance to correlate the duration
of these periods with some artistic concepts or design
principles that can help us understand better and possibly
complement the art expert knowledge used to classify and
analyze artworks. Achieving this helps us in the broader art
understating or analysis that are important for creativity and
other areas of knowledge. In conquering our goal of trying to
identify new promising microstyles in an artistic domain, we
hope our ideas can help us gain progress in that direction.
We firmly believe that, in terms of explanation, our mul-
tiplex artwork representation can be improved to give even
more interesting insights that help us achieve our objective.
We also proposed to validate the power of our multiplex
representation to separate artwork paintings based on
previous stylistic information to give more support to our
results. In that process, we propose to include more design
principles related to balance, rhythm, and possible aspects
associated with composition.
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,e data used in this research are available from the cor-
responding principal author upon request.
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,e supplementary material contains the regions and re-
lations information vector description based on the internal
representations discussed in the paper. Additionally, com-
parison of creativity scores when originality and influence
change weights are presented and also the associated time
series are presented. ,ese materials extend some of the
analyses discussed in the paper. Finally, some important
measurements of the multiplex used are presented [43].
(Supplementary Materials)
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Guerrero, A Computer Model for the Generation of Visual
Compositions, International Conference on Computational
Creativity (ICCC), Sydney, Australia, 2013.
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