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Callus induction and phytochemical profiling of Yucca carnerosana (Trel.) McKelvey
obtained from in vitro cultures
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Abstract

It has been demonstrated that some species of the Yucca genus are a source of metabolites with functional properties,
as is Yucca carnerosana (Trel.) McKelvey with antifungal activity. This research aimed to induce the formation of
callus tissue in Y. carnerosana, to know the growth kinetic, and to analyze the metabolite profile of the formed
tissue and plants propagated under in vitro and ex vitro conditions. Callus induction was achieved using Murashige
& Skoog (MS) medium supplemented with 4.4 uM benzyladenine and 4.1 uM 4-aminotrichloropicolinic acid
(Picloram). The growth kinetics of callus tissue was characterized by a latency phase achieved at the second week
of culture, followed by an exponential growth until the fourth week. The culture showed a specific growth rate
of 0.0258 d~!; the doubling time was 26.866 days, and the growth index was 5.9091. The metabolite profile was
analyzed using Ultra-High-Performance Liquid Chromatography coupled to Mass Spectrometry (UHPLC-PDA-
HESI-Orbitrap-MS/MS). The chromatographic and mass spectral analysis allowed the separation and identification
of 22 compounds in callus tissue, 26 in in vitro plants, and 27 in ex vitro plants. Our results indicate that the callus
tissue and the in vitro and ex vitro plants of Y. carnerosana may be a source of metabolites of interest.
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Resumen

Algunas especies del género Yucca han demostrado ser una fuente de metabolitos con propiedades funcionales,

tal es el caso de Yucca carnerosana (Trel.) McKelvey con actividad antifiingica. El objetivo de esta investigacion
fue inducir la formacién de tejido calloso en Y. carnerosana, conocer el comportamiento cinético y analizar el
perfil de metabolitos del tejido obtenido, asi como en plantas propagadas in vitro y ex vitro. La induccién de
callos se logré utilizando medio Murashige & Skoog (MS) suplementado con benciladenina 4.4 uM y 4cido 4-
aminotricloropicolinico (Picloram) 4.1 uM. La cinética de crecimiento se caracterizé por una fase de latencia
alcanzada en la segunda semana de cultivo, seguida de un crecimiento exponencial hasta la cuarta semana. La tasa
especifica de crecimiento fue de 0.0258 d~!; el tiempo de duplicacién fue de 26.866 dias y el indice de crecimiento
fue de 5.9091. El perfil de metabolitos se analiz6 mediante cromatografia liquida de ultra alta resolucién acoplada
a espectrometria de masas (UHPLC-PDA-HESI-Orbitrap-MS/MS). El andlisis cromatografico y espectrométrico
permitio la separacion e identificacion de 22 compuestos en callos, 26 en plantas in vitro y 27 en plantas ex vitro.
Nuestros resultados indican que el tejido calloso de Y. carnerosana asi como las plantas in vitro y ex vitro puede ser
fuente de metabolitos de interés.

Palabras clave: UHPLC-MS, polifenoles, in vitro, reguladores de crecimiento, Asparagaceae.
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1 Introduction

Some of the most representative succulent plants in
Mexican flora are those belonging to the Yucca genus
(Asparagaceae) (Matuda and Pifa, 1980), with around
49 species across the Mexican territory (Rocha et al.,
2006). Some species of the Yucca genus represents a
source of building material (Soltani et al., 2020), food
additives (Suzuki et al., 2020; Thomas-Popo et al.,
2019; Tsibranska et al., 2020), and cosmetics (Lee et
al., 2019), as well as compounds with therapeutic
potential (Patel, 2012). In this regard, it has been
shown that Yucca shidigera contains yuccaol A, B
and C, resveratrol, and other phenolic compounds
with reported biological activities (Oleszek et al.,
2001) such as anti-inflammatory (Marzocco et al.,
2004). Similarly, Yucca filamentosa and Y. schidigera
contain steroidal saponins with biological applications
such as anti-tumoral, antimicrobial and anti-arthritic;
and resveratrol which exhibits antioxidant and anti-
inflammatory activities (Patel, 2012). The methanolic
extract from the bark of Yucca periculosa contains
4.,4’-dihydroxystilbene, resveratrol, and 3,3°,5,5’-
tetrahydroxy-4-methoxystilbene, and has shown
growth-regulating activity against the larvae of
Spodoptera frugiperda, a maize pest (Torres et al.,
2003). Yucca aloifolia has a high linoleic, oleic, and
palmitic acid content, so the biodiesel obtained from
this species’ oil could be used as fuel (Nakashima
et al., 2016). On the other hand, the antifungal
activity of Y. carnerosana against the development of
postharvest fruit fungi such as Rhizopus stolonifer,
Colletotrichum  gloeosporioides, and Penicillium
digitatum has been demonstrated (Jasso de Rodriguez
et al., 2011). Furthermore, it has been found that Y.
carnerosana residues from the fiber industry have
biosorption capacity to remove Pb (II) ions present
in aqueous solutions due to their phenolic acids
and lignans (Medellin-Castillo et al., 2017). Thus,
a great interest has arisen in taking advantage of these
species. Currently, Yucca spp. extracts are marketed
as capsules, drinks, or powders (Patel, 2012), without
phytochemical characterization. These events have led
populations to decline; thus, conservation strategies
must be employed to protect the environment and
increase the number of individuals in populations.

Plant cell tissue and organ culture offer a useful
biotechnological tool to enhance the production of
biomass and secondary metabolites (Cisneros-Todrres
et al., 2019; Cortes-Morales et al., 2018; Khan et

al., 2019). This technique provides tools such as in
vitro mass propagation, leading to greenhouse transfer,
which has already been reported for Yucca spp.
such as Yucca elephantipes (Pierik and Steegmans,
1983), Y. aloifolia (Atta-Alla and Van Staden, 1997),
Yucca valida (Arce-Montoya et al., 2006), Yucca
coahuilense, Y. filamentosa, and Y. periculosa (Lopez-
Ramirez et al., 2018). In this regard, the induction of
callus tissue of Yucca spp. has been applied for the
regeneration of plants, as is the case of Yucca gloriosa
(Durmishidze er al., 1983), and for the study of steroid
substances during morphogenesis (Gogoberidze et al.,
1992). To the best of our knowledge, information
regarding the in vitro culture of Y. carnerosana is
limited in the literature and refers to micropropagation
of this species (L6pez-Ramirez et al., 2018). Similarly,
information regarding the phytochemical profile of
Y. carnerosana is also limited in the literature;
nevertheless, it has been proposed that the fruits and
seeds contains sarsapogenin (Romo de Vivar, 1985).
Thus, in vitro culture and callus generation could
allow to generate several lines of research on cell
metabolism, cellular response mechanisms to different
types of stress, generation of somatic embryogenesis,
among others, without the need to extract specimens
from their natural habitat, as well as the study and
production of compounds under controlled conditions
(Efferth, 2019).

This work aimed to generate and characterize
the growth of callus tissue from Y. carnerosana
and identify of some of the metabolites present
in methanolic extracts prepared with callus
and plants cultivated under in vitro and ex
vitro conditions. In this regard, Ultra-High-
Performance Liquid Chromatography coupled to Mass
Spectrometry (UHPLC-PDA-HESI-Orbitrap-MS/MS)
was employed as an approach for the identification
of compounds present in plant extracts (Cornejo et
al., 2016; Simirgiotis et al., 2017). With the results
generated, it is possible to contribute to this species’
biotechnological management and phytochemical
knowledge.

2 Materials and methods

2.1 Plant material

The plants of Y. carnerosana were obtained from the
in vitro germplasm bank of the Universidad Auténoma
de Aguascalientes, México, and then micropropagated
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according to the method proposed by Lépez-Ramirez
et al. (2018). For this, axillary buds of Y. carnerosana
were sliced and cultivated in Murashige and Skoog
(MS) medium (Murashige and Skoog, 1962) (pH 5.7,
30 g L™'of sucrose and 10 g L™! of agar as gelling
agent). The medium was sterilized in an autoclave
at 121 °C for 20 min and then supplemented with
meta-topoline (12.43 uM), filtered through a 0.45 uM
nylon filter disc (Acrodisc®). The axillary buds were
transferred into 500 mL flasks containing 30 + 3 mL
of the culture medium and incubated at 25 + 2 °C
under a photoperiod of 16 h light (40 uMol m~2 s~!)
for 4 weeks. The generated in vitro shoots (4+1 cm
in length) were used for the experiments of callus
induction and plant acclimatization. One specimen
is available at the Herbarium of the Universidad
Auténoma de Aguascalientes (HUAA; Voucher No.
16463).

For in vitro rooting, individual shoots were
transferred into MS medium (Murashige and Skoog,
1962) without growth regulators. The culture medium
was prepared as given before, and the explants
were incubated under the mentioned conditions
above. After 5 weeks of culture, the seedlings that
developed roots were removed carefully from the
culture medium and washed with distilled water.
The in vitro plants were then transferred into pots
containing substrate (PROMIX®, United States) and
acclimated to greenhouse conditions as reported
previously (Pérez-Molphe-Balch et al., 2002). Each
pot was covered with a transparent polythene bag
for 2-3 weeks to prevent desiccation and allow
acclimatization. Once the acclimatization process was
achieved, each plant was maintained for 64 weeks until
harvesting for extract preparation and phytochemical
analysis.

2.2 Callus generation

For callus induction, three different explants were
used: stem, the base of the leaf, and middle
part of the leaf (Figure 1A), as well as different
concentrations of 2.4-dichlorophenoxyacetic acid
(2,4-D; 0.0, 4.52, 6.79, and 9.05 uM) combined
with different concentrations of benzyladenine (BA;
0.0, 2.22, and 4.44 uM), were evaluated. Another
tested combination was 4-aminotrichloropicolinic acid
(Picloram; 0.0, 4.14, 6.21, and 8.28 uM) with BA
(0.0, 2.22, and 4.44 uM). Thus, a total of 12 different
combinations were evaluated (Table 1). The explants
were cultivated in MS medium and incubated as
given in section 2.1. Three independent experiments
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composed of three explants were performed in each
treatment.

Statistical ~analyses were performed with
GraphPad Prism 8.1.2 (GraphPad Software San
Diego, CA, USA). Data were analyzed using one-
way ANOVA, and a p-value of 0.05 was considered
statistically significant.

2.3 Yucca carnerosana callus growth
kinetics

The treatment composed of 4.14 uM of picloram and
4.44 uM BA allowed the generation of callus tissue.
Nevertheless, for Y. carnerosana callus maintenance
and evaluation of its kinetic growth behavior, the
concentration of picloram was reduced by half. Thus, 1
g of callus tissue was transferred into flasks containing
60 mL of MS medium, 30 g L~ sucrose, 10 g
L~! agar, and 2.05 uM picloram, and 4.4 uM BA.
The pH of the culture medium was adjusted to
5.7 before autoclaving at 120 °C for 20 min. The
incubation conditions mentioned above were used.
Three independent samples were taken each week
randomly for 12 weeks. Each sample was dried in
an oven at 37 °C = 2 °C for 1 week in dark
conditions and then weighed to obtain the dry weight
(DW). The growth kinetics parameters were calculated
according to the change in fresh weight (FW) and
DW. The growth rate equation was as follows: y =
In (Xg/Xo)/At, where Xo and Xg are the dry weight
of callus at the beginning and the end of the culture
period interval (g L™!), respectively; At is the culture
time interval (days); u is the specific growth rate
(day™!). The doubling time was calculated as follows:
tg = In 2/u where t; is the doubling time (days).
The growth index was calculated as follows: GI =
(Xg-Xp)/Xo where Xg and Xy are the end and initial
dry weight of callus, respectively (Gémez-Aguirre
et al., 2012; Maldonado-Magafa et al., 2013). A
Microsoft Excel (Microsoft 365) spreadsheet was used
to perform calculations and graphs.

2.4 Phytochemical analysis using
Ultra-High-Performance Liquid
Chromatography coupled to Mass
Spectrometry (UHPLC-PDA-HESI-
Orbitrap-MS/MS)

2.4.1 Preparation of extracts

For the phytochemical analysis, in vitro plants (4-
week-old plants), callus tissue (tissue obtained after
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12 weeks), and ex vitro plants (64-week-old plant
leaves) were used. Each sample was collected and
then dried in an oven (Ecoshel, Mexico) at 37 °C =+
2 °C for 7 d. The dried material was pulverized in a
mortar, and then 50 g of each sample was successively
extracted by maceration using 300 mL of hexane,
followed by chloroform and methanol (JT Baker,
Spain). Each extraction stage was carried out three
times in a water bath at 60 °C for 15 min. Then, each
sample was filtered on filter paper (Whatman® grade
41, Argentina) and concentrated in a rotary evaporator
(Sev-Prendo, México) to remove the dissolvent. The
methanolic extract was used for UHPLC-PDA-HESI-
Orbitrap-MS/MS analysis.

2.4.2  Sample preparation and UHPLC-PDA-HESI-
Orbitrap-MS/MS conditions

The sample was resuspended (2.5 mg mL~!) in HPLC-
MS-grade methanol and sonicated over 10 min. All
samples were filtered (0.22 yM) and injected into a
UHPLC system coupled to a mass spectrometer. The
phytochemical analysis was performed as previously
reported (Cornejo et al., 2016; Torres et al., 2003),
using a Dionex Ultimate 3000 UHPLC system
(Thermo Fisher Scientific, Bremen, Germany) with
a C18 column (ID: 150 x 4.6 mm, 5 uM; Restek
Corporation, Bellefonte, PA, USA), equipped with a
Quaternary Series RS pump and a Dionex Ultimate
3000 Series TCC-3000RS column compartment,
an Ultimate 3000 Series WPS-3000RS autosampler
(Thermo Fisher Scientific) and a rapid separations
PDA detector. The detection wavelengths were 254,
280, 320, and 440 nm; PDA was recorded from
200 to 800 nm for peak -characterization. The
separation was performed in a gradient elution mode
composed of a 1% formic aqueous solution (A)
and acetonitrile (B). The flow rate was 1.0 mL
min~!, and the injection volume 10 uL. The gradient
program [time (min), %B] was: (0.00, 5), (5.00, 5),
(10.00, 30), (15.00, 30), (20.00, 70), (25.00, 70),
(35.00, 5), and 12 min for column equilibration
before each injection. The system was controlled
by the Chromeleon 7.2 Software (Thermo Fisher
Scientific, Waltham, MA, USA, and Dionex Softron
GmbH division of Thermo Fisher Scientific) and
coupled to a Thermo high-resolution Q Exactive focus
mass spectrometer (Thermo Fisher Scientific). The
chromatographic system was coupled to the mass
spectrometer with a heated electrospray ionization
source II (HESI II). Nitrogen (purity>99.999%) was
employed as both the collision and damping gas.

Nitrogen was obtained from a Genius NM32LA
nitrogen generator (Peak Scientific, Billerica, MA,
USA). Mass calibration for Orbitrap was performed
once a week, in both negative and positive modes.
Caffeine and N-butylamine (Sigma-Aldrich, Saint
Louis, MO, USA) were the calibration standards
for positive ions. Buspirone hydrochloride, sodium
dodecyl sulfate, and taurocholic acid sodium salt
were used to calibrate the mass spectrometer. These
compounds were dissolved in a mixture of acetic acid,
acetonitrile, water, and methanol (Merck Darmstadt,
Hesse, Germany) and infused using a Chemyx Fusion
100 syringe pump. The XCalibur 2.3 and Trace Finder
3.2 (Thermo Fisher Scientific, San Jose, CA, USA)
programs were used for UHPLC control and data
processing, respectively. Q Exactive 2.0 SP 2 (Thermo
Fisher Scientific, Waltham, MA, USA) was used to
control the mass spectrometer (Cabafias-Garcia et al.,
2020; Cabaiias-Garcia et al., 2019).

2.4.3  MS parameters

The HESI parameters were optimized as follows:
sheath gas flow rate 75 units; auxiliary gas flow rate
20 units; capillary temperature 400 °C; auxiliary gas
heater temperature 500 °C; spray voltage 2500 V
(for ESI-); and S lens RF level 30. Full scan data in
negative mode was acquired at a resolving power of
70,000 full widths half maximum (FWHM) at m/z:
200. For the compounds of interest, a scan range
of m/z: 100-1000 was chosen; the automatic gain
control (AGC) was set at 3 x 10°, and the injection
time was set to 200 ms. Scan rate was set at 2
scans s~!'. External calibration was performed using
a calibration solution in positive and negative modes
before each sample series. In addition to the full
scan acquisition method, for confirmation purposes,
a targeted MS/MS analysis was performed using the
mass inclusion list and expected retention times of the
target analytes, with a 30 s time window, with the
Orbitrap spectrometer operating both in positive and
negative mode at 17,500 FWHM (my/z: 200). The AGC
target was set to 2 X 10°, with a maximum injection
time of 20 ms. The precursor ions were filtered by the
quadrupole operating at an isolation window of m/z: 2.
The fore vacuum, high vacuum, and ultra-high vacuum
were maintained at approximately 2 mbar, from 10° to
below 10'0 mbar, respectively. Collision energy (HCD
cell) was operated at 30 eV. Detection was based on
calculated exact mass and the retention time of target
compounds. The mass tolerance window was set to 5
ppm (Cabanas-Garcia et al., 2019).
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3 Results and discussion

3.1 Callus tissue culture establishment

Callus generation was only observed from stem
explants (Figure 1). the base and the middle part of the
leaf not generated callous tissue and showed necrotic
characteristics after 19-21 days. This event may be due
to the higher concentration of auxins in active growth
regions of plant such as stems (Jiang et al., 2017).
Regarding the callus induction experiments, although
the treatments composed by 2.22 uM BA+4.52 uM
2,4-D; 444 uM BA+4.52 uM 2,4-D, and 4.44 uM
BA+9.05 uM 2,4-D showed the highest induction
frequency (66%, see Table 1), the formed tissue
showed compact, solid, and necrotic characteristics
(see Figures 1b, le, and 1g). On the other hand,
the treatment composed by 4.4 uM BA+4.1 uM
picloram showed an induction frequency of 44% (see
Table 1), and the formed tissue showed friable and
white to yellowish-green characteristics (Figure 1 K)
after 4-5 weeks of growth. The induction frequency
and the physical characteristics of the formed tissue
may be influenced by mutual interactions among
plant growth regulators, which exert differentiated
responses in different plant tissues (Wang and Irving,
2011). Once the callous tissue was obtained, it was
subcultured with the same regulators, reducing the
auxin concentration, since it has been proposed that
the callous tissues become necrotic if the same
concentrations are maintained (Garay-Arroyo et al.,
2014). In this regard, it has been proposed that auxins
are differentially distributed within tissues, which
gives rise to various morphogenetic processes with
potential herbicide effects at high doses (Quareshy
et al., 2017). The treatment composed by 4.4
uM BA+4.1 puM picloram was used for growth
kinetic evaluation of the formed callus tissue of Y.
carnerosana. Based on the fresh and dry weight
measurements (Figure 2), A lag phase was observed
until week 2, then an exponential growth phase from
week 2 to 12, without observing the stationary or death
phases. The culture showed a growth rate of 0.025 d~,
a doubling time of 26.866 days, and a growth index of
5.9091. To the best of our knowledge, this is the first
report dealing with the callus tissue’s kinetic behavior
evaluation of Y. carnerosana and for another Yucca
spp. With the obtained information, it was possible to
quantify the grams of biomass that each gram of callus
could generate in the unit of time.

Fig. 1. Effect of growth regulators on callus induction
in the stem of Yucca carnerosana (Trel.) McKelvey at
21 days. A) Types of Y. carnerosana explants used for
callus generation. B) 2.2 uM BA + 4.5 uM 2,4-D, C)
22 uM BA + 6.8 uM 2,4-D, D) 2.2 uM BA + 9.5
UM 2,4-D, E) 4.4 uM BA + 4.5 uM 2,4-D, F) 4.4 uM
BA + 6.8 uM 2,4-D, G) 4.4 uM BA + 9.0 uM 2,4-D,
H) 2.2 uM BA + 4.1 uM picloram, I) 2.2 uM BA +
6.2 uM picloram, J) 2.2 uM BA + 8.3 uM picloram,
K) 4.4 uM BA + 4.1 uM picloram, L) 4.4 uM BA +
6.2 uM picloram, M) 4.4 uM BA + 8.3 uM picloram,
N) Control (free of growth regulators) at 12 weeks of
incubation.

3.2 Phytochemical  analysis  of Y.
carnerosana methanolic extracts

The phytochemical characterization of extracts was
achieved by comparing the information obtained
by UHPLC-PDA-HESI-Orbitrap-MS/MS with the
spectrometric evidences existing in the literature
or by studying the fragmentation pattern of the
molecules. For Y. carnerosana extracts prepared
with different tissues, the chromatographic conditions
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Table 1. Effect of BA, 2,4-D and picloram in stem explants on callus induction of Y. carnerosana (Trel.) McKelvey.

Growth regulator (uM)
BA 24D Picloram Induction frequency (%)
0 0 0 0
222 452 66
222 6.79 44
222 9.05 0
444 452 66
444  6.79 44
444 9.05 66
2.22 4.14 33
2.22 6.21 33
2.22 8.28 11
444 4.14 44
444 6.21 44
444 8.28 0

BA= benzyladenine; 2,4-D= 2,4-dichlorophenoxyacetic acid; Picloram= 4-
aminotrichloropicolinic acid. The values represent the average (n=3).

r12

r 10

Fresh weight (g L)
Dry weight (g L")

T T T T T T T T T T T T 0
0 1 2 3 4 5 6 7 8 9 1011 12 13
Cultivation time (week)

Fig. 2. Callus growth kinetics of Yucca carnerosana
(Trel.) McKelvey. Each value represents the mean of

three replicates + standard error.

allowed the separation and tentative identification
of 64 metabolites (see Figure 3, Table 2). Among
detected compounds, 26 occurred in vitro, 27 in
ex vitro condition, and 22 in callus cultures. The
characteristics of each peak, such as retention time,
theoretical and measured mass, fragmentation pattern,
and the tentative identification of each compound, are
summarized in the Table 2.

Compounds 1, 2, 4, 5, 7, 8, 14, and 16 were
identified as organic acids. Among these compounds,
two gluconic acid isomers (compounds 1 and 5),
two malic acid isomers (compounds 4 and 7) as
well as quinic and citric acids (compounds 2 and 8,
respectively) were assigned as proposed by Taamalli
et al. (2015). These compounds were present in vitro

and ex vitro conditions. Similarly, compound 14 was
assigned as shikimic acid (Chen et al., 2014) and
compound 16 as a malonic acid derivative since
pseudomolecular ion at my/z: 134.8940 yielded one
fragment at m/z: 103.0035 (malonic acid). On the other
hand, compound 6 was present in callus tissue, and it
was identified as resveratrol 3-8-mono-glucoside. For
this compound, pseudomolecular ion at my/z: 389.1220
yielded fragments at m/z: 179.0561 and 211.0717,
generated due to the separation of the hexose moiety
from the basic polyphenolic structure. The presence of
resveratrol has been reported in other Yucca species,
such as Y. schidigera (Cheeke et al., 2006) and Y.
periculosa, showing photoprotective activities against
UV rays (Garcia-Bores et al., 2010).

On the other hand, compound 10 was only detected
in callus tissue, and it was identified as diethyl
oximinomalonate since one fragment at my/z: 128.0347
was generated due to the loss of ethanol and water.
Similarly, compounds 11-13 were detected only in
plants cultivated ex vitro. In this regard, compound
11 was identified as succinic acid due to the presence
of one main fragment at m/z: 101.0236 generated due
to the loss of water, and compound 12 was identified
as dimethyl malate since pseudomolecular ion at my/z:
161.0451 yielded one fragment at m/z: 129.0187,
generated due to the loss of one methyl group and the
subsequent elimination of water. Additionally, three
piscidic acid isomers (compounds 13, 21, and 22)
were detected in plants growing under in vitro and ex
vitro conditions and assigned as reported previously
(Cabanas-Garcia et al., 2019), see Table 2.
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Fig. 3. UHPLC-PDA-HESI- Orbitrap-MS/MS chromatograms of methanolic extracts prepared with Yucca carnerosana
(Trel.) McKelvey plants. A) ex vitro plant, B) in vitro plant, and C) callus tissue.
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Compounds 15, 17, 18, and 50 were mainly
detected in callus tissue and were identified as
rhynchosporoside isomers as reported previously
for callus cultures of Coryphantha macromeris
(Cactaceae) (Cabaiias-Garcia et al., 2021). Similarly,
compounds 19 and 23 were detected in callus
tissue, and identified as 2-O-(2-hydroxyethyl)-4-O-[2-
O-(2-hydroxypropyl) hexopyranosyl] hexopyranose
isomers. For this metabolite, the loss of one methyl
group generated one fragment at myz: 427.2464,
and the loss of one C3H;0; radical generated
one fragment at m/z: 369.1401. Compound 20 was
proposed as pantothenic acid, as reported previously
(Rodriguez-Pérez et al., 2013) and compound 24
as a succinic acid derivative since pseudomolecular
ion generated two fragments at my/z: 121.0288
and at my/z: 117.0186 (succinic acid), which were
consistent with the separation of the benzoic
acid moiety and the subsequent elimination of
water. On the other hand, compound 25 was
assigned as 2-(hydroxymethyl)-6-[3,4,5-trihydroxy-6-
(4-hydroxybutoxy) oxan-2-yl] methoxy oxane-3.4,5-
triol. For this metabolite, the loss of a methoxy group
and the subsequent elimination of water generated one
fragment at my/z: 367.1608, and the loss of the hexose
moiety produced one fragment at my/z: 251.1130.
Compounds 26 and 35 were identified as verbasoside
isomers (see Figure S1). This compound occurred
exclusively in callus tissue, which is the first time
reported for Yucca species.

Compound 27 was only detected in callus tissue,
and it was assigned as a cyclohexane carboxylic acid
derivative since pseudomolecular ion at m/z: 351.1296
yielded fragments at my/z: 303.1448, 273.1344, and
287.1499. Fragments at my/z: 303.1448 and 273.1344
were generated due to the loss of 3 molecules of
water and the subsequent elimination of one methoxy
group; fragment at my/z: 287.1499 corresponded to
the elimination of four molecules of water. On the
other hand, compound 28 was only detected in plants,
and it was tentatively identified as 3-oxo-5-amino-
hexanoic acid since pseudomolecular ion yielded one
fragment at my/z: 128.0347 generated due to the loss of
water. Similarly, compounds 29 and 30 corresponded
to glycosidic nature metabolites and were present
only in plants cultivated under ex vitro conditions.
The loss of the hexose moieties characterized the
fragmentation pattern of these compounds. Compound
31 was detected in all tissues, and it was assigned
as isopropylmalic acid since pseudomolecular ion at
my/z: 175.0612 yielded one fragment at my/z: 143.0713
generated by the loss of two water molecules.

WWW.rmiq.org

Compound 32 was tentatively identified as
cistanoside G since pseudomolecular ion at myz:
445.1715 yielded one main fragment at m/z: 119.0493
([IM-H-C12H21010]7). This phenylethanoid glycoside
occurred exclusively in callous tissue. This metabolite
was reported for the first time in Cistanche
plants (Orobanchaceae) (Deyama et al., 2006) and
this is the first report for Yucca genus and
Asparagaceae family. To the best of our knowledge,
the biological activities of cistanoside G have
not been reported in the literature. Nevertheless,
phenylethanoid glycosides have been reported in
several plant sources employed in traditional Chinese
medicine since they possess biological activities such
as neuroprotective, antioxidant, anti-inflammatory,
antivirus, antibacterial and, antiosteoporotic properties
(Xu et al., 2017; Xue and Yang, 2016). Our results
suggest that Y. carnerosana callus culture may be
a source of material to perform this group of
metabolites’ isolation and study.

Additionally, compounds 33, 34, 37, and 38
were assigned as metabolites of phenolic nature
(caffeic acid and syringic acid and one of its
derivatives) as reported previously (Cabafias-Garcia et
al., 2019; Chen et al., 2014; Iswaldi et al., 2013). For
these compounds, antioxidant properties have been
proposed (Alvarado-Ambriz et al., 2020; Cikman
et al., 2015) and anti-inflammatory, anticancer,
antidiabetic, neuroprotective, cardioprotective, and
hepatoprotective effects (Srinivasulu er al., 2018).
Compound 36 occurred in plants cultivated under
in vitro conditions, and it was assigned as 6,7-
dihydroxy-2-oxo-1-benzopyran-4-carboxylic acid
since pseudomolecular ion at my/z: 221.0090 yielded
one main fragment at my/z: 177.0190 ([M-H-
CHO;]"7). For compound 39, spectrometric evidences
suggested the presence of [-D-galactopyranoside,
6-hydroxyhexyl 6-O-B-D-galactopyranosyl in callus
tissue of Y. carnerosana. The pseudomolecular ion at
myz: 441.1975 yielded two fragments at m/z: 395.1923
(IM-H-OH-CH30]") and 217.1078 ([M-H-hexose-
C,>H;50]7). Similarly, compound 40 occurred in callus
tissue and in vitro plants, and it was assigned as a
ferulic acid derivative (Cabafias-Garcia et al., 2019). It
has been proposed that ferulic acid inhibits the growth
of Phytophthora cinnamomi, a fungus responsible for
root rot in a wide range of hosts, producing significant
economic and ecological losses worldwide (Matei et
al., 2020). Thus, this derivative may be interesting for
further studies.

Eriodictyol (Compound 42) was assigned as
reported previously (Taamalli et al., 2015), and
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compound 43 as 2-[(3-methyl benzoyl) amino]
acetic acid, since two fragments were detected
at m/fz: 176.0711 ([IM-H-OH]~) and 119.0496
([IM—H—-C,H3NO32]7). On the other hand, compound
44 was detected in all samples, and it was
assigned as sinapic acid as proposed by Cabaias-
Garcia et al. (2019) and Liu et al. (2015).
For this metabolite, its therapeutic effect against
UVB-induced photo-aging of the skin has been
proposed (Jeon et al., 2019). Compound 45 was
assigned as magnoloside U as reported previously
(Cabafias-Garcia et al., 2021), and compound
46 was assigned as 3,4,5-triacetyloxy-6-[(4-oxo-
2,3-dihydro-cyclopentachromen-7-yl)oxyJoxan-2-
yllmethyl acetate since pseudomolecular ion at my/z:
531.1505 yielded one fragment at myz: 134.0365,
and compound 47 was proposed as the glycosylated
flavonoid naringenin 7-O-rutinoside due to the
presence of one main fragment at my/z: 266.0659,
generated by the loss of the glycosidic moiety.

Compound 48 (3,4,5-triethoxybenzyl alcohol)
yielded fragments at myz: 209.1178 and 165.0916
generated due to the elimination of one methoxy group
and the subsequent elimination of the CoH ¢O radical.
For compound 51, spectrometric evidences suggested
the presence of leeaoside (Zhang et al., 2015) in ex
vitro plants.

In addition to citric, malic, gluconic, succinic,
and pantothenic acids, other organic acids were
detected (compounds 49, 54, 56-59, 61, and 63). The
fragmentation pattern was mainly characterized by the
loss of water and CO;, as proposed by Ledesma-
Escobar et al. (2015). Similarly, compounds 55, 60,
and 62 were also assigned as flavonoids (alpinetin,
sakuranetin, and persicogenin, respectively). The
fragmentation steps were mainly characterized by the
B-ring loss from the basic flavonoid structure and the
loss of water and methyl groups. Finally, compound
64 was assigned as nordihydrocapsiate, as previously
reported (Cabafias-Garcia et al., 2019).

Several phenolic acids, phenolic glycosides and
organic acids were identified in the methanolic extracts
of Y. carnerosana obtained from in vitro cultures.
It has been demonstrated that for achieving the
highest diversity of bioactive compounds present in
plant extracts, the extraction processes and conditions
should be investigated to determine the optimal
methodology (Sanchez-Rangel et al., 2014; Vallejo-
Castillo et al., 2020). Thus, further studies should be
performed to find the optimal conditions that may
ensure the highest diversity of metabolites in each
sample of Y. carnerosana.

Conclusions

It was determined that the best medium for friable
callus induction was MS supplemented with 4.4 uM
BA + 4.1 uM picloram. The callus growth curve of Y.
carnerosana showed a lag phase and an exponential
growth phase in a 2-12-week period. However, the
stationary phase could not be observed within the time
considered for the experiment. The methanolic extract
prepared with Y. carnerosana callous tissue showed
the presence of 22 compounds. On the other hand,
26 compounds occurred in the extract prepared with
plants growing in vitro, and 27 in plants cultivated
under ex vitro conditions. Our results suggest that the
callus tissue culture of Y. carnerosana is a promising
source for the study and production of biomass and
plant metabolites.
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