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Abstract. This research is concerned with evolution equations and their forward-backward dis-
cretizations. Our first contribution is an estimation for the distance between iterates of sequences
generated by forward-backward schemes, useful in the convergence and robustness analysis of itera-
tive algorithms of widespread use in variational analysis and optimization. Our second contribution
is the approximation, on a bounded time frame, of the solutions of evolution equations governed by
accretive (monotone) operators with an additive structure, by trajectories defined using forward-
backward sequences. This provides a short, simple and self-contained proof of existence and regu-
larity for such solutions; unifies and extends a number of classical results; and offers a guide for the
development of numerical methods. Finally, our third contribution is a mathematical methodology
that allows us to deduce the behavior, as the number of iterations tends to +∞, of sequences gener-
ated by forward-backward algorithms, based solely on the knowledge of the behavior, as time goes
to +∞, of the solutions of differential inclusions, and viceversa.

1. Introduction

Semigroup theory is a relevant tool in the study of ordinary and partial differential equations, as
well as differential inclusions, which appear, for instance, in contact mechanics, optimization, vari-
ational analysis and game theory. Among its applications, it helps analyze the evolution of flows
in mechanical systems, and establish convergence and convergence rates for numerical optimization
algorithms. One of its cornerstones was the Hille-Yosida Theorem [22, 49], which states that an
unbounded linear operator A, on a Banach space X, is the infinitessimal generator of a strongly
continuous semigroup (St)t≥0 of nonexpansive linear operators on X, satisfying −u̇(t) = Au(t) if,
and only if, it is closed, its domain is dense in X, its spectrum does not intersect R−, and the resol-
vents satisfy an appropriate bound. This result was complemented by the Lumer-Phillips Theorem
[41, 31], which provides an alternative, and, perhaps more practical, characterization in terms of
semidefiniteness. It is important to mention that Hille and Yosida used different strategies to con-
struct the semigroup (that is, to show the necessity). Yosida’s approach consists in approximating
the operator A by a family (Aλ)λ>0 of bounded ones, establishing the existence of solution to the
regularized differential equation −u̇λ(t) = Aλuλ(t) by classical arguments, and then passing to the
limit while showing that the regularized solutions uλ converge to a true solution of the original
problem. Hille, in turn, discretizes the time interval [0, T ], where T > 0 is arbitrary but fixed,
constructs approximating trajectories using a sequence of points generated by resolvent iterations,
and finally passes to the limit as the partition is refined. Both show the convergence is uniform on
[0, T ].
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Another important landmark was the discovery, two decades later, of sufficient conditions for a
nonlinear, possibly multi-valued, operator A to generate a strongly continuous semigroup (St)t≥0

of nonexpansive nonlinear operators that solves the differential inclusion −u̇(t) ∈ Au(t). Yosida’s
approach was used by Brézis [9] (also Barbu [5] and Pazy [38]), while Hille’s path was followed by
Crandall and Pazy [16]1, and then simplified and perfected by Rasmussen [42] and Kobayashi [25].
They built a concise and sharp inequality −let us call it (I)− to bound the distance between two
sequences of points generated using compositions of resolvents. We shall come back to this point
later, since this is the line of research we explore in this paper. Other authors have analyzed the
nonautonomous setting [26, 1, 8], where there is a function t 7→ A(t) that generates an evolution
system that, of course, is not a semigroup, in general. In some relevant special cases, resolvents
may be replaced by Krasnosel’skĭı-Mann [27, 32] and, equivalently, Euler [40] iterations. This issue
is addressed in [46, 18], where applications in optimization and game theory are given.

A few years later, Passty [37] introduced the notion of an asymptotic semigroup, which is, roughly
speaking, a possibly nonautonomous evolution system that asymptotically behaves like a semigroup.
This concept allows us to deduce several convergence properties of the trajectories generated by an
asymptotic semigroup, as time goes to +∞, based on what is known about those generated by the
semigroup it is related to. A similar idea lies behind the notion of almost-orbit (see [34]), which
helps to prove that every nonexpansive iterative algorithm is robust against summable errors (see
[39, Lemma 5.3]). The interested reader is referred to [1, 2, 3] for further details and applications.
Passty proved, under some restrictive assumptions, that every sequence generated using products
of resolvents of A, with parameters (λn)n≥0, more precisely, satisfying xn = (I + λnA)−1xn−1 for
all n, converges strongly (weakly) as n → +∞ if, and only if, all trajectories generated by the
semigroup (St)t≥0 converge strongly (weakly) as t → +∞. The process of generating sequences
of points using resolvent iterations is also known as the proximal point algorithm, as developed by
Martinet [33] and further studied by Rockafellar [43] and Brézis-Lions [10], among others. It is
one of the fundamental building blocks of first order methods used to solve nonsmooth optimization
problems and variational inequalities in practice (see the note on forward-backward iterations in the
next paragraph). Passty’s innovative idea is remarkable, since it makes it possible to use calculus
techniques, such as derivation and integration, to analyze the behavior of iterative algorithms. A
few years later, Miyadera and Kobayashi [34] and Sugimoto and Koizumi [45] were able to get rid of
Passty’s superfluous hypotheses by using inequality (I) mentioned above. Inequality (I) also enabled
Güler [21] to show, based on an example of Baillon [4], that there is a proper, lower-semicontinuous,
convex function for which the proximal point algorithm produces sequences that converge weakly
but not strongly, settling an open question in optimization theory posed by Rockafellar [43] fifteen
years earlier. As a matter of fact, this function may be chosen differentiable and with Lipschitz-
continuous gradient, as proved by the authors in [18], using a variant of inequality (I).

Forward-backward iterations combine the principles of proximal, Krasnosel’skĭı-Mann and Euler
iterations. They are fundamental in the numerical analysis of structured optimization problems
and variational inequalities, since they represent the core of first order methods. Particular cases
include: the gradient method, originally introduced by Cauchy in [11]; its variant, the projected
gradient method [20, 28]; the proximal point algorithm mentioned above; the proximal-gradient
algorithm [37, 30], and its particular instance, ISTA2 [19, 13], with applications in image and signal
processing, data analysis and machine learning. Moreover, some primal dual methods [12, 14, 47]

1Although Crandall and Liggett [15] used Yosida’s method in their work on Banach spaces.
2Iterative Shrinkage Thresholding Algorithm.
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can be reduced to these types of iterations. Also, accelerated methods, such as FISTA3 [35, 6] use
a forward-backward engine.

The purpose of this research is to extend, unify and condense the theory on the generation of
strongly continuous semigroups of nonlinear and nonexpansive mappings by multi-valued operators
with an additive structure. On the one hand, we analyze the approximation of solutions for the
differential inclusion −u̇(t) ∈ (A+B)u(t) by trajectories constructed by interpolation of sequences
generated using forward-backward iterations, on a compact time interval. This approach is different
from the one by Trotter [44] and Kato [24], which uses double backward iterations. Double backward
iterations require the (costly!) computation of both resolvents. We address this issue, for theoretical
curiosity, in a forthcoming paper. On the other hand, we establish asymptotic equivalence results
that link the behavior, as the number of iterations tends to +∞, of sequences generated by forward
backward iterations, with the behavior of the solutions of the differential inclusion −u̇(t) ∈ (A +
B)u(t), as time t tends to +∞. We obtain new strong convergence results for forward-backward
sequences as straightforward corollaries. We have aimed at presenting these findings in a simple
and pedagogic manner, accessible to researchers in functional analysis, differential equations and
optimization.

Although the Hilbert space setting is suitable for many applications, our results may be stated
and proved in a class of Banach spaces with no additional effort. The extension to general Banach
spaces is an open question.

The paper is organized as follows: In Section 2, we give the notation and definitions, along with
a description of the main technical tool required to prove our main results. The approximation in a
finite time horizon is discussed in Section 3. Section 4 is devoted to the approximation in an infinite
time horizon and contains new convergence results for forward-backward sequences. The technical
proofs are given in Section 5.

2. Forward-backward iterations defined by accretive and cocoercive operators

Let X be a Banach space with topological dual X∗. Their norms and the duality product are
denoted by ‖ · ‖, ‖ · ‖∗ and 〈·, ·〉, respectively. The duality mapping j : X → X∗ is defined by

j(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2∗}.

In what follows, we assume that X∗ is 2-uniformly convex, which implies that X is reflexive, the
duality mapping is single valued, and there is a constant κ > 0 such that

(1) ‖u+ v‖2 ≤ ‖u‖2 + 2〈j(u), v〉+ κ‖v‖2,

for all u, v ∈ X (see [29, 48]). For instance, Lp spaces have this property for p ≥ 2.
A set-valued operator A : X → 2X is accretive if, whenever u ∈ Ax and v ∈ Ay, we have

‖x− y + λ(u− v)‖ ≥ ‖x− y‖

for all λ > 0. If, moreover, I + λA is surjective for all λ > 0, we say A is m-accretive. In this case,
its resolvent, defined as Jλ = (I +λA)−1, is single-valued, everywhere defined and nonexpansive. It
follows from [23, Lemma 1.1] that A is accretive if, and only if, it is monotone, which means that

〈j(x− y), u− v〉 ≥ 0, 4

3Fast Iterative Shrinkage Thresholding Algorithm.
4In Hilbert spaces, this terminology is preferred, and the inequality reads (x−y, u−v) ≥ 0, where (·, ·) is the inner

product.
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whenever u ∈ Ax and v ∈ Ay. Next, an operator B : X → X is cocoercive with parameter θ > 0 if

〈j(x− y), Bx−By〉 ≥ θ‖Bx−By‖2,
for all x, y ∈ X. Clearly, if B is cocoercive with parameter θ, it is Lipschitz-continuous with constant
1
θ . Moreover, the operator Eλ : X → X, defined by

(2) Eλ = I − λB,

is nonexpansive for all λ ∈ [0, 2θ
κ ]. Finally, if A is m-accretive and B is cocoercive, then A + B is

m-accretive, and the forward backward splitting operator Tλ : X → X, defined by

Tλ = Jλ ◦ Eλ,
is single-valued, everywhere defined and nonexpansive. These are the standing assumptions on X,
A and B for the rest of the paper.

Remark 2.1. Actually, the minimal hypotheses on λ, B and X, required for our proofs to hold,
is that Eλ be nonexpansive for all λ ∈ [0,Λ] for some Λ > 0. Some definitions and proofs must be
slightly adjusted if the duality mapping j is not single-valued. If B = 0, no assumptions need be
made on X or λ.

We are interested in the study of sequences satisfying

(3) xk = Tλk(xk−1) = Jλk
(
Eλk(xk−1)

)
for k ≥ 1, where (λk) is a sequence of positive numbers, called step sizes, and x0 ∈ X is the
initial point. We mentioned earlier that these sequences are fundamental in the numerical analysis
of optimization problems, variational inequalities and fixed-point problems. However, our purpose
here is to analyze them as discrete approximations of an evolution equation governed by the sum
A+B. To this end, it is useful to rewrite (3) as

(4) −xk − xk−1

λk
∈ Axk +Bxk−1, k ≥ 1,

or, more generally, as

(5) −xk − xk−1

λk
+ εk ∈ Axk +Bxk−1, k ≥ 1,

where εk accounts for possible perturbations or computational errors. In the notation of formula
(3), this is

(6) xk = Jλk
(
Eλk(xk−1) + λkεk

)
.

Back to the exact version (4), the left-hand side can be interpreted as a discretization of the velocity
for a trajectory t 7→ u(t), so (4) can be related to the differential inclusion

(7) −u̇(t) ∈ Au(t) +Bu(t),

for t > 0. In the following sections, we shall establish the nature of this relationship. On the one
hand, we shall prove that the iterations described in (4) can be used, in at least two different ways,
to construct a sequence of curves that approximate the solutions of (7) uniformly on each compact
time interval. The existence of such solutions is obtained as a byproduct. On the other hand,
we shall show that, given A and B, the trajectories satisfying (7) will have the same convergence
properties, when t→∞, as the sequences satisfying (4), when k →∞, provided the step sizes are
sufficiently small. The key mathematical tool is the following inequality, whose proof is technical,
and will be given in Section 5.
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Theorem 2.2. Let (xk), (x̂l) be two sequences generated by (5), with step sizes (λk) and (λ̂l), as

well as error sequences (εk) and (ε̂l). Assume λk, λ̂l ≤ θ
κ for all k, l ∈ N. Then, for u ∈ D(A) fixed,

and each k, l ∈ N, we have

(8) ‖xk − x̂l‖ ≤ ‖x0 − u‖+ ‖x̂0 − u‖+ |||(A+B)u|||
√

(σk − σ̂l)2 + τk + τ̂l + ek + êl,

where |||Au||| = inf
v∈Au

‖v‖, σk =
k∑
i=1

λi, τk =
k∑
i=1

λ2
i and ek =

∑k
i=1 λi‖εi‖ (similarly for σ̂l, τ̂l and êl).

We first became aware of an inequality of this sort (for B ≡ 0 and slightly less sharp) in [21],
where Güler attributes it to Kobayashi [25] (see also [40]). However, the main arguments were given
by Rasmussen [42], who simplified the proof of Crandall and Liggett [15], ultimately based on that
of Hille [22]. Similar estimations are given in [26, 1] (still for B = 0, but for a time-dependent A)
and in [46, 18] for A = 0.

3. Approximation in finite horizon

Theorem 2.2 provides existence and regularity results for the evolution equation

(9)

{
−u̇(t) ∈ (A+B)u(t), for almost every t > 0,

u(0) = u0 ∈ D(A),

by means of an approximation scheme. For each t ≥ 0 and m ≥ 1, set

(10) um(t) =
[
T t

m

]m
u0.

In other words, um(t) is the m-th term of the forward-backward sequence generated by (3) from u0

using the constant step size λk ≡ t/m. We shall prove that (um) converges uniformly on compact
intervals to a Lipschitz-continuous function satisfying (9). We begin by establishing the convergence.

Proposition 3.1. The sequence (um) converges pointwise on [0,∞), and uniformly on [0, S] for
each S > 0, to a function u : [0,∞) → X, which is globally Lipschitz-continuous with constant
|||(A+B)u0|||.

Proof. We may assume that u0 ∈ D(A). Extension to D(A) will then be possible in view of the
Lipschitz (thus uniform) continuity. Given t, s > 0 and n,m ∈ N, define um(t) and un(s) as above.
By Theorem 2.2, we have

(11) ‖um(t)− un(s)‖ ≤ |||(A+B)u0|||
√

(t− s)2 +
t2

m
+
s2

n
.

For s = t, this gives

‖um(t)− un(t)‖ ≤ t |||(A+B)u0|||
√

1

m
+

1

n
.

It follows that (um) converges pointwise on [0,∞), and uniformly on [0, S] for each S > 0, to a
function u : [0,∞)→ X. Passing to the limit in (11), as m,n→∞, we obtain

‖u(t)− u(s)‖ ≤ |||(A+B)u0||| |t− s|

for all t, s > 0. �
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Remark 3.2. Given S > 0 and m ≥ 1, define vm : [0, S]→ X by

(12) vm(t) =
[
T S

m

]µ(t)
u0, where µ(t) =

⌊
m
t

S

⌋
and t ∈ [0, S].

This is a piecewise constant interpolation of the forward-backward sequence generated with S
m as

step sizes, and initial point u0 for k = 1, . . .m. In order to estimate the distance between vm and
um (defined in (10)), we use (8) to obtain

‖um(t)− vm(t)‖ ≤ |||(A+B)u0|||
√
S2

m2
+
t2

m
+
tS

m
≤ 3S√

m
|||(A+B)u0|||.

Whence, as m→∞, vm also converges uniformly on [0, S], for easch S > 0, to the same function u.

Theorem 3.3. The function u, given by Proposition 3.1, satisfies (9).

Proof. We shall verify that u is an integral solution of (9) in the sense of Bénilan (see [7]), which
means that, whenever y ∈ (A+B)x and S ≥ t > s ≥ 0, we have

(13) ‖u(t)− x‖2 − ‖u(s)− x‖2 ≤ 2

∫ t

s
〈j(x− u(τ)), y〉dτ.

If (xn) is any sequence generated by (4) with steps sizes (λn), then

−(xn − xn−1)− λnBxn−1 + λnBxn ∈ λnAxn + λnBxn

for each n ≥ 1. In view of the monotonicity of A+B, we have

〈j(x− xn), λny + xn − xn−1 + λnBxn−1 − λnBxn〉 ≥ 0,

whenever y ∈ Ax+Bx. Whence,

2λn〈j(x− xn), y〉 ≥ 2〈j(x− xn), xn−1 − xn〉+ 2λn〈j(x− xn), Bxn −Bxn−1〉
= 2‖xn − x‖2 + 2〈j(x− xn), xn−1 − x〉+ 2λn〈j(x− xn), Bxn −Bxn−1〉
≥ ‖xn − x‖2 − ‖xn−1 − x‖2 + 2λn〈j(x− xn), Bxn −Bxn−1〉
≥ ‖xn − x‖2 − ‖xn−1 − x‖2 − 2θ−1λn‖x− xn‖‖xn − xn−1‖.

Now, let us choose x0 = u0, λn ≡ S
m , where m is fixed but arbitrary. In view of Remark 3.2, there is

a constant K > 0 such that 2θ−1‖x− xn‖ ≤ K for n = 1, . . . ,m. Summing for n = µ(s), · · · , µ(t),
we obtain

‖vm(t)− x‖2 − ‖u(s)− x‖2 ≤ 2

µ(t)∑
n=µ(s)

S

m

[
〈j(x− xn), y〉+K‖xn − xn−1‖

]

≤ 2

µ(t)∑
n=µ(s)

S

m
〈j(x− xn), y〉+

µ(t)∑
n=µ(s)

6S2K|||(A+B)u0|||
m
√
m

= 2

µ(t)∑
n=µ(s)

S

m
〈j(x− xn), y〉+ (µ(t)− µ(s))

6S2K|||(A+B)u0|||
m
√
m

≤ 2

µ(t)∑
n=µ(s)

S

m
〈j(x− xn), y〉+

6S2K|||(A+B)u0|||√
m

.

We obtain (13) by letting m→∞. �
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Existence of solution for (9) can be recovered as a consequence of the preceding arguments.

Corollary 3.4. The differential inclusion (9) has a unique solution.

Uniqueness follows from monotonicity. Another consequence of the results above is:

Corollary 3.5. Let (xk) be a sequence generated by (3) and let u : [0, S]→ X be a solution of (9).
Then

(i) The function t 7→ |||(A+B)u(t)||| is nonincreasing.

(ii) ‖xk − u(t)‖ ≤ ‖x0 − u0‖+ min
{
|||(A+B)x0|||, |||(A+B)u0|||

}√
(σk − t)2 + τk.

4. Approximation in infinite horizon

In this section, we show that the forward-backward sequence generated by (3), have the same
asymptotic behavior, as the number of iterations goes to infinity, as the solutions of the evolution
equation (9), when time does. The key argument is the idea of asymptotic equality introduced by
Passty [37], closely related to the notion of almost-orbit, introduced by Miyadera and Kobayasi [34].
Further commentaries on this topic can be found in [1, 2, 3].

In order to simplify the notation, given x ∈ D(A) and t ≥ 0, we write

(14) Stx = u(t),

where u satisfies (9) with u0 = x. Also, for 0 ≤ s ≤ t, we write

(15) US(t, s) = S(t− s).

In a similar fashion, if n ∈ N and x ∈ H, we denote

(16) Tnx = Tλn ◦ · · · ◦ Tλ1x.

In other words, Tnx is the n-th term of the forward-backward sequence starting from x ∈ D(A).
Assume (λn) /∈ `1, and write ν(t) = max{n ∈ N : σn ≤ t}. For 0 ≤ s ≤ t, we set

(17) UT (t, s) =

ν(t)∏
i=ν(s)+1

Tλi ,

where the product denotes composition of functions and the empty composition is the identity.
A nonexpansive evolution system on X is a family

(
U(t, s)

)
0≤s≤t such that

(i) U(t, t)z = z for all z ∈ X and t ≥ 0.
(ii) U(t, s)U(s, r)z = U(t, r)z for all z ∈ X and all t ≥ s ≥ r ≥ 0.

(iii) ‖U(t, s)x− U(t, s)y‖≤‖x− y‖ for all x, y ∈ X and t ≥ s ≥ 0.

Example 4.1. The families
(
US
)

and
(
UT
)
, defined in (15) and (17), respectively, are nonexpansive

evolution systems. Actually, the same is true if S is replaced by any other semigroup of nonexpansive
functions on X, and if each Tλi is replaced by any other nonexpansive function on X.

A function φ : [0,∞)→ X is an almost-orbit of the nonexpansive evolution system U if

lim
t→∞

sup
h≥0
‖φ(t+ h)− U(t+ h, t)φ(t)‖ = 0.

The following result from [2, Theorem 3.3] reveals the usefulness of the concept of almost-orbit.
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Proposition 4.2. Let U be a nonexpansive evolution system and let φ be an almost-orbit of U .
If, for each x ∈ X and s ≥ 0, U(t, s)x converges weakly (resp. strongly) as t → ∞, then so does
φ(t). The same holds if the word “converges” is replaced by “almost-converges” or “converges in
average”.

Several examples and applications, along with additional commentaries can be found in [2, 18].
The following result establishes a relationship between the trajectories generated by US and UT :

Theorem 4.3. Let (λn) ∈ `2 \ `1, and fix x ∈ X. For each t > 0, define φS(t) = Stx and
φT (t) = Tν(t)x

5. Then, φS is an almost-orbit of UT , and φT is an almost-orbit of US .

Proof. We first prove that φS is an almost-orbit of UT . By Theorem 2.2 and Corollary 3.5, we have∥∥∥∥∥∥
[
m∏
k=1

T h
m

]
Stx−

 ν(t+h)∏
i=ν(t)+1

Tλi

Stx
∥∥∥∥∥∥ ≤ |||(A+B)Stx|||

√(
σ
ν(t+h)
ν(t)+1 − h

)2
+ τ

ν(t+h)
ν(t)+1 +

h2

m

≤ |||(A+B)x|||
√

4ρ2(t) + τ∞ν(t)+1 +
h2

m
,

where σnk = σn − σk, τnk = τn − τk and ρ(t) := sup{λn : n ≥ ν(t) − 1}, which vanishes as t → ∞.
Passing to the limit as m→∞, we obtain

‖ShStx− UT (t+ h, t)Stx‖ ≤ |||(A+B)x|||
√

4ρ2(t) + τ∞ν(t)+1,

which tends to 0 as t→∞, uniformly in h ≥ 0. It follows that

lim
t→∞

sup
h≥0
‖φS(t+ h)− UT (t+ h, t)φS(t)‖ = 0.

To prove that φT is an almost-orbit of US , we proceed in a similar fashion, to obtain∥∥∥∥∥∥
 ν(t+h)∏
i=ν(t)+1

Tλi

 Tν(t)x−

[
m∏
k=1

T h
m

]
Tν(t)x

∥∥∥∥∥∥ ≤ |||(A+B)x|||
√

4ρ2(t) + τ∞ν(t)+1 +
h2

m
.

Then, we pass to the limit as m→∞ to deduce that

‖φT (t+ h)− ShφT (t)‖ ≤ |||(A+B)x|||
√

4ρ2(t) + τ∞ν(t)+1,

and conclude. �

Theorem 4.3 implies [37, Lemmas 4 & 6], [45, Proposition 2.3], [34, Proposition 7.4], [40, Propo-
sitions 8.6 i) & 8.7] and [18, Theorem 3.1]. Combining Theorem 4.3 with Proposition 4.2, and using
[39, Lemma 5.3], we obtain

Theorem 4.4. The following statements are equivalent:

i) For every z ∈ D(A), Stz converges strongly (weakly), as t→ +∞.
ii) For every initial point x0 ∈ X, every sequence of step sizes (λn)n≥1 ∈ `2 \ `1, and every

sequence of errors (εk)k≥1 such that
∑

k≥1 ‖εk‖ < +∞, the sequence (xn), generated by (5),

converges strongly (weakly), as n→ +∞.
iii) There exists a sequence of step sizes (λn)n≥1 ∈ `2 \ `1 such that, for every initial point

x0 ∈ X, the sequence (xn), generated by (4), converges strongly (weakly), as n→ +∞.

Theorem 4.4 implies [37, Theorems 1 & 2], [45, Theorem], [34, Theorem 7.5], as well as [18,
Theorem 3.2].

5This is a piecewise constant interpolation of the sequence Tnx.
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New convergence results for forward backward sequences on Banach spaces. Theorem
4.4 can automatically give new convergence results for forward-backward sequences by translating
the information available on the behavior of the semigroup. Theorem 4.5 below is provided as a
methodological example, to show how this indirect analysis can be carried out. Therefore, we have
priviledged statement simplicity, over generality.

Recall, from Section 2, that X is a Banach space with 2-uniformly convex dual, A is m-accretive
and B is cocoercive. Let (εk)k≥1 be a sequence representing computational errors and let (xk)k≥0

satisfy (5). We assume that
∑

k≥1 ‖εk‖ < +∞. Finally, set A = A+B and Σ = A−10, and assume

Σ 6= ∅. To simplify the statements and arguments, supose X is uniformly convex. We know that Σ
is closed and convex, and the projection PΣ is well defined, single-valued and continuous.

Theorem 4.5. Let (λn)n≥1 ∈ `2 \ `1. Assume one of the following conditions holds:

i) There is α > 0 such that for every x /∈ Σ and every y ∈ Ax, 〈j(x−PΣx), y〉 ≥ α‖x−PΣx‖2;
ii) J1 is compact and, for every x /∈ Σ and every y ∈ Ax, 〈j(x− PΣx), y〉 > 0; or
iii) The interior of Σ is not empty.

Then, xn converges strongly, as n→ +∞, to a point in Σ.

Proof. In all three cases, we first prove that for each z ∈ D(A), Stz converges strongly, as t→ +∞,
to a point in Σ.

i) The hypotheses of [36, Theorem 1] are easily verified.
ii) It suffices to combine [36, Proposition 1] and [36, Theorem 1].
iii) We use [36, Theorem 4].

We conclude by applying Theorem 4.4. �

5. Proof of the fundamental inequality

This last section is devoted to the proof of Theorem 2.2. In order to simplify the notation, given
ν > 0 and z, d ∈ X, write

Eελ(z) = Eλ(z) + λε, and T ελ(z) = Jλ(Eελ(z)),

so that (6) reads

xk = T εkλk (xk−1).

Next, given Θ > 0 and λ, µ ∈ (0,Θ], set

(18) α =
λ(Θ− µ)

Θ(λ+ µ)− λµ
, β =

µ(Θ− λ)

Θ(λ+ µ)− λµ
, γ =

λµ

Θ(λ+ µ)− λµ
.

Lemma 5.1. Write Θ = θ
κ . For λ, µ ∈ (0,Θ] and x, y, ε, η ∈ X, we have

(19) ‖T ελ(x)− T ηµ (y)‖ ≤ α‖T ελ(x)− y‖+ β‖x− T ηµ (y)‖+ γ‖x− y‖+ γΘ‖ε− η‖.

Proof. Set ∆ = j(T ελ(x)− T ηµ (y)). We have

Θ(λ+ µ)‖T ελ(x)− T ηµ (y)‖2 = Θ(λ+ µ)〈T ελ(x)− T ηµ (y),∆〉
= Θλ〈T ελ(x)− Eηµ(y),∆〉+ Θµ〈Eελ(x)− T ηµ (y),∆〉

+Θλµ

〈
Eηµ(y)− T ηµ (y)

µ
−
Eελ(x)− T ελ(x)

λ
,∆

〉
≤ Θλ〈T ελ(x)− Eηµ(y),∆〉+ Θµ〈Eελ(x)− T ηµ (y),∆〉,(20)
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since A is accretive and
Eεν(z)− T εν (z)

ν
∈ A(T εν (z))

for all ν > 0 and z, ε ∈ X. We can rewrite (20) as

(21) Θ(λ+µ)‖T ελ(x)−T ηµ (y)‖2 ≤ Θλ〈T ελ(x)−y,∆〉+Θµ〈x−T ηµ (y),∆〉−λΘµ〈Bx−ε−By+η,∆〉.

Notice also that

(22) −λµ‖T ελ(x)− T ηµ (y)‖2 = −λµ〈T ελ(x)− y,∆〉 − λµ〈x− T ηµ (y),∆〉+ λµ〈x− y,∆〉.

Combining (21) and (22), we obtain

[Θ(λ+ µ)− λµ]‖T ελ(x)− T ηµ (y)‖2 ≤ λ(Θ− µ)〈T ελ(x)− y,∆〉+ µ(Θ− λ)〈x− T ηµ (y),∆〉
+ λµ〈EΘ(x)− EΘ(y),∆〉+ λµΘ〈ε− η,∆〉.

Since EΘ is nonexpansive and ‖∆‖ = ‖T ελ(x)− T ηµ (y)‖, we finally get (19). �

We are now in a position to conclude.

Proposition 5.2. Theorem 2.2 is true.

Proof. To simplify notation set

ck,l =
√

(σk − σ̂l)2 + τk + τ̂l.

In view of the characterization (6) of the sequence (xk), for each k ≥ 1, we have

yk :=
Eλk(xk−1) + λkεk − xk

λk
∈ Axk.

Given any v ∈ Au, the accretivity of A implies

‖xk − u‖ ≤ ‖xk + λkyk − u− λv‖ = ‖Eλk(xk−1)− Eλk(u)− λk(v +Bu) + λkεk‖
≤ ‖Eλk(xk−1)− Eλk(u)‖+ λk‖(v +Bu)‖+ λk‖εk‖.

Since Eλk is nonexpansive and v ∈ Au is arbitrary, we deduce that

‖xk − u‖ ≤ ‖xk−1 − u‖+ λk|||(A+B)u|||+ λk‖εk‖.

Iterating this inequality, we obtain

‖xk − u‖ ≤ ‖x0 − u‖+ σk|||(A+B)u|||+ ek,

and, noticing that σk ≤ ck,0, we conclude that

‖xk − x̂0‖ ≤ ‖x0 − u‖+ ‖x̂0 − u‖+ ck,0|||(A+B)u|||+ λk‖εk‖,

thus inequality (8) holds for the pair (k, 0). For (0, l), with l ≥ 0, the argument is analogous.
The proof will continue using induction on the pair (k, l). Let us assume inequality (8) holds for

the pairs (k − 1, l − 1), (k, l − 1) and (k − 1, l), and show that it also holds for the pair (k, l). To

this end, we use the inequality (19) with x = xk−1, y = x̂l−1, λ = λk and µ = λ̂l:

(23) ‖xk − x̂l‖ ≤ αk,l‖xk − x̂l−1‖+ βk,l‖xk−1 − x̂l‖+ γk,l‖xk−1 − x̂l−1‖+ γk,lΘ‖εk − ε̂l‖.
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Using the induction hypothesis in (23) and the fact that αk,l + βk,l + γk,l = 1, we deduce that

‖xk − x̂l‖ ≤ ‖x0 − u‖+ ‖x̂0 − u‖+ |||(A+B)u||| (αk,lck,l−1 + βk,lck−1,l + γk,lck−1,l−1)

+ αk,l(ek + êl−1) + βk,l(ek−1 + êl) + γk,l(ek−1 + êl−1) + γk,lΘ(‖εk‖+ ‖ε̂l‖)
= ‖x0 − u‖+ ‖x̂0 − u‖+ |||(A+B)u||| (αk,lck,l−1 + βk,lck−1,l + γk,lck−1,l−1)

+ ek−1 + êl−1 + (αk,lλk + γk,lΘ)‖εk‖+ (βk,lλ̂l + γk,lΘ)‖ε̂l‖
= ‖x0 − u‖+ ‖x̂0 − u‖+ |||(A+B)u||| (αk,lck,l−1 + βk,lck−1,l + γk,lck−1,l−1) + ek + êl,(24)

since αk,lλk + γk,lΘ = λk and βk,lλ̂l + γk,lΘ = λ̂l. On the other hand, we have

αk,lck,l−1 + βk,lck−1,l + γk,lck−1,l−1 ≤
√
αk,l + βk,l + γk,l

√
αk,lc

2
k,l−1 + βk,lc

2
k−1,l + γk,lc

2
k−1,l−1

=
√
αk,lc

2
k,l−1 + βk,lc

2
k−1,l + γk,lc

2
k−1,l−1,(25)

and

c2
k,l−1 = c2

k,l + 2λ̂l(σk − σ̂l)
c2
k−1,l = c2

k,l + 2λk(σk − σ̂l)

c2
k−1,l−1 = c2

k,l + 2(λ̂l − λk)(σk − σ̂l)− 2λkλ̂l.

Therefore,

αk,lc
2
k,l−1 + βk,lc

2
k−1,l + γk,lc

2
k−1,l−1 = c2

k,l − 2γk,lλkλ̂l ≤ c2
k,l.(26)

Combining (24), (25) and (26), we obtain (8). �
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