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In men, 70% of circulating testosterone binds with high affinity to plasma sex hormone binding globulin (SHBG), which de-
termines its bioavailability in their target cells. In recent years, a growing body of evidence has shown that circulating SHBG not
only is a passive carrier for steroid hormones but also actively regulates testosterone signaling through putative plasmamembrane
receptors and by local expression of androgen-binding proteins apparently to reach local elevated testosterone concentrations in
specific androgen target tissues. Circulating SHBG levels are influenced by metabolic and hormonal factors, and they are reduced
in obesity and insulin resistance, suggesting that SHBG may have a broader clinical utility in assessing the risk for cardiovascular
diseases. Importantly, plasma SHBG levels are strongly correlated with testosterone concentrations, and in men, low testosterone
levels are associated with an adverse cardiometabolic profile. Although obesity and insulin resistance are associated with an
increased incidence of cardiovascular disease, whether they lead to abnormal expression of circulating SHBG or its interaction
with androgen signaling remains to be elucidated. SHBG is produced mainly in the liver, but it can also be expressed in several
tissues including the brain, fat tissue, and myocardium. Expression of SHBG is controlled by peroxisome proliferator-activated
receptor c (PPARc) and AMP-activated protein kinase (AMPK). AMPK/PPAR interaction is critical to regulate hepatocyte
nuclear factor-4 (HNF4), a prerequisite for SHBG upregulation. In cardiomyocytes, testosterone activates AMPK and PPARs.
(erefore, the description of local expression of cardiac SHBG and its circulating levels may shed new light to explain phys-
iological and adverse cardiometabolic roles of androgens in different tissues. According to emerging clinical evidence, here, we
will discuss the potential mechanisms with cardioprotective effects and SHBG levels to be used as an early metabolic and
cardiovascular biomarker in men.

1. Introduction

(e incidence of cardiovascular mortality is higher in men
than in women [1–3], and gender differences are highly
related to circulating plasma levels of sex-steroid hormones
[4, 5]. Estrogens have cardioprotective effects in women

prior to menopause, but in adult men, the main gender-
related steroid hormone is testosterone [6]. A study from the
Mayo Clinic (2018) exhaustively reviewed and analyzed the
main clinical publications in the last 10 years related to
plasma testosterone levels, testosterone administration
therapies, and their impact on the cardiovascular system.
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Evidence indicates that physiological testosterone levels are
beneficial for the male cardiovascular system, while tes-
tosterone deficiency is associated with an unfavorable
metabolic profile and increased cardiovascular risk [7].

Sex hormone binding globulin (SHBG) transports tes-
tosterone within the blood stream and regulates its bio-
availability and access to extravascular target tissues [8, 9]. In
men, plasma testosterone levels fluctuate throughout life and
begin to decrease in middle age and continue to decline with
age [4]. Low plasma testosterone levels in men have been
associated with the concept of “andropause,” which rapidly
has become a worldwide epidemic condition related to an
adverse cardiometabolic risk profile [4, 10, 11]. (ere is
substantial clinical evidence indicating that androgen sig-
naling plays a key role for the cardioprotective benefits
elicited by physiological testosterone levels in men.

Several cross-sectional and cohort studies have shown
that low SHBG levels are associated with an increased risk of
developing metabolic diseases [12, 13]. An association has
also been described between SHBG actions unrelated to the
transport of sex hormones and metabolic disorders. A meta-
analysis examining different concentrations of SHBG
showed that low levels of SHBG in men are a predictor of
metabolic syndrome and type 2 diabetes [14]. Metabolic
abnormalities are closely associated with cardiovascular
disease [15–17]. Despite previous evidence, a recent cohort
study including about 150,000 middle-aged and aged adult
men (40–69 years old) concluded that low circulating SHBG
levels are associated with diminished mortality in “all-cause”
included in this study, particularly those related with cancer
and cardiovascular diseases (CVDs). For total and calculated
free testosterone, the expected inverse association with
SHBG levels was observed only for “all-cause” and cancer
mortality and not for CVD deaths [18]. Another cohort
study showed, in a group with age ranging from 35 to 80
years, that elevated levels in SHBGwere positively associated
with increased incidental cardiovascular disease risk in men
over 65 years [19]. However, it is still unknown whether
changes in the circulating plasma levels of SHBG, the local
expression of SHBG and androgen-binding proteins in
tissues such as the heart, or the secondary effects of SHBG
level fluctuations in free testosterone are responsible for
these effects. In this review, we are going to discuss the
mechanisms currently proposed for SHBG cardioprotective
effects and how the use of circulating SHBG levels can be
useful as an early metabolic and cardiovascular biomarker.

2. SHBG Is not Only a Passive
Carrier for Sex-Steroids

In men, approximately 70% of circulating plasma testos-
terone binds with high affinity to circulating SHBG, 20–30%
to albumin, and the remaining 1-2% circulates in free form
[20]. In women, the majority of plasma estradiol and tes-
tosterone are bound to SHBG and other proteins and is not
bioavailable; only about 2% of these sex hormones are free to
bind to receptors and have an impact on the body [21].
Circulating SHBG modulates the level of free sex-steroid
hormones that can enter to diverse target cells [22]. (e

endocrinological concept known as “free hormone hy-
pothesis” states that the “bioavailable” steroid hormone, i.e.,
the one that has an effect when bound to its receptor, is the
unbound or “free” fraction of steroid hormones [23].
However, recent evidence indicates that circulating SHBG
not only is a passive carrier of male sex hormones but also
actively regulates testosterone uptake and androgen sig-
naling [24]. Because circulating SHBG binds to sex hor-
mones, the relative plasma levels of this protein can
modulate the concentrations of sex-related hormones ac-
cessible for use by the body, which has an impact on the
processes regulated by the sex hormones [25]. SHBG can
also release hormones in specific tissues and cells directly,
which can influence both production and effects of sex
hormones as well as the expression and function of circu-
lating SHBG. Also, sex hormones bound to circulating
SHBG can change the affinity of SHBG to its peripheral
receptors. Moreover, intracellular expression of SHBG in
testicular proximal tubule cells increases uptake of dihy-
drotestosterone and prolongs the expression of androgen-
responsive genes [26].

One case description of a patient with a homozygous
missense mutation in SHBG, which abrogates protein se-
cretion in a 27-year-old man showed low total testosterone
but normal free testosterone levels. Despite this, no alter-
ations were seen in sexual development. However, fatigue,
muscle weakness, and impaired exercise tolerance were part
of the patient’s symptoms. Faced with normal levels of free
testosterone, this phenotype suggests that circulating SHBG
may affect tissues in a manner dependent or independent of
testosterone [27]. Frairia et al. studied tissue distribution of
the SHBG membrane receptor either in estrogen/androgen-
dependent tissues and proposed that the actions of SHBG in
tissues are not strictly sex-steroid-dependent [28]. (ere is
evidence suggesting that circulating SHBG interacts with
specific proteins in the plasma membrane and it can be
internalized once it is accumulated [29]. In steroidogenic
tissues, SHBG can be internalized to activate transduction
signaling pathways different and independent of those in-
duced by the classical action mechanism based on intracel-
lular androgen receptors [30]. (ere is also evidence
indicating that circulating SHBG, through LG domains, binds
membrane receptors with tyrosine kinase activity and
G-protein-coupled receptors [20]. Functional plasma mem-
brane receptors for SHBG have been identified in cardiac
tissue [31], and SHBG is expressed in the myocardium [32].

2.1. Circulating SHBG Internalization. Circulating SHBG
protein may be internalized through the low-density lipo-
protein-related protein 2 receptor also known as megalin
receptor in rat yolk cells. Megalin-deficient mice display de-
fects resembling animals treated with androgen receptor an-
tagonists [30]. Megalin is expressed in several tissues including
derived cardiac cells [33]. (e human megalin promoter gene
possesses PPARs-responsive elements, suggesting a metabolic
regulation in the protein expression [34]. In fact, megalin
expression is reduced in Ren2 rats, a model of metabolic
syndrome [35]. Megalin facilitates the uptake of several
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ligands, many of which are cataloged as intracrine, including
SHBG [36]. (ese extracellular molecules can act by initiating
intracellular signals after internalization. (e main intracel-
lular target sites described for intracrine actions include the
nucleus and mitochondria. In C2C12, a mouse myoblast cell
line, megalin KO, decreases the respiratory and glycolytic
capacity [37]. Megalin mediates the retrograde trafficking of
TGF-β and angiotensin II to mitochondria through the ret-
rograde early endosome-to-Golgi transport pathway and
Rab32 [37], all of this playing a role in mitochondrial phys-
iology. Whether the metabolic effects of SHBG are related to
its retrograde transport and if this trafficking is related to
mitochondrial modulation in cardiac cells are unknown.

2.2. SHBG as an External Ligand. SHBG activates several
signaling pathways depending on a putative membrane
receptor coupled to a G-protein [38], increasing the intra-
cellular cAMP levels in COS-1 cells. An increase in cAMP in
MCF-7 cells results as a receptor-mediated action of sex-
binding protein [39]. Although stimulation of the cAMP
pathway has positive effects on cardiac function, long-term
activation produces detrimental effects in the myocardium
inducing hypertrophy and heart failure [40].
In lymphocytes, incubation with SHBG induces the phos-
phorylation of ERK and Akt kinases, an effect that is in-
creased by coincubating with estradiol [41]. All these
pathways have been implicated as possible targets in met-
abolic disorders [42–45].

3. Signal Transduction Pathways Involved in
SHBG Expression

SHBG is a glycoprotein synthesized and secreted by the liver
[46–48] that transports sex-steroids (androgens and estro-
gens) from steroidogenic organs to their target tissues
[6, 20, 24, 49, 50].(e structural organization of SHBG genes
is evolutionarily conserved and is expressed in most ver-
tebrates [51, 52]. Additionally, SHBG mRNAs exhibit al-
ternative splicing that encodes the androgen-binding
protein (ABP) [22, 53], which differs from SHBGmRNAs by
the presence of an exon I (exon A) that does not influence
the post-translational modifications required for SHBG
secretion [54]. In humans and rats, ABP is produced in the
liver [22], Sertoli and Leydig cells [55], and cardiomyocytes
[31, 56]. (e physiological role of ABPs in peripheral tissues
remains poorly understood; however, studies indicate that
ABPs regulate the local bioavailability of androgens [56–58].
SHBG/ABPs are polypeptides of 43-44 kDa [20, 50]. (e
steroid binding domain is in the N-terminus, whereas the
regulatory domains can interact with a plasma membrane
receptor for SHBG [9, 29, 38, 59, 60]. (e human SHBG is a
polypeptide of 373 amino acids that constitute a tandem
repeat of laminin G-like (LG) domains [9].

Locally produced SHBG modulates the expression of
androgen-responsive genes in prostate tissue [61]. Expres-
sion of SHBG protein may enhance or inhibit the uptake of
androgens in a cell- and tissue-specific manner [62]. SHBG
exerts protective roles against excessive androgen exposition

during embryonic and fetal cardiogenesis [63]. Hepatic
secretion of SHBG is controlled by circulating sex-steroid
levels [64, 65]. Others have argued that higher levels of
circulating SHBG are compensated in vivo by hypothalamic-
pituitary feedback, resulting in higher total sex-steroid
concentrations [66]. (is is a controversial point, and there
is a continuing debate over whether—and by which
mechanisms—circulating SHBG regulates total, free, and/or
bioavailable sex-steroid concentrations and their physio-
logical responses. Expression of ABP has been described in
the human heart, and it has been suggested that this protein
influences the bioavailability of gonadal steroids in the
myocardium [31].

Transcriptional regulation of SHBG has been mainly
studied in fetal liver and hepatocyte cell lines [67]. SHBG
protein expression is controlled by peroxisome proliferator-
activated receptor c (PPARc), a coactivator for several
nuclear transcription factors, including the androgen re-
ceptor [68]. PPARs regulate cell metabolism and improve
ATP generation [69, 70]. A key metabolic regulator is AMP-
activated protein kinase (AMPK), which acts as an energy
sensor [71]. AMPK/PPPAR interaction is critical to upre-
gulate SHBG expression by controlling hepatocyte nuclear
factor-4α (HNF4α) [72]. HNF4α affects the transcription of
many genes involved in lipid metabolism, and this fact may
contribute to explain the reported correlations between
circulating SHBG levels and lipid metabolism, glucose
metabolism, and in consequence to cardiovascular risks
[73, 74]. (e SHBG promoter contains PPAR-response el-
ements (PPAR-RE), which are required for SHBG expres-
sion. PPARc acts as a transcriptional inhibitor of SHBG gene
expression in the liver [75]. Some controversial results have
been reported since women receiving troglitazone (a
pharmacologic PPARc agonist) showed increased circulat-
ing SHBG plasma levels [76], while treatment of HepG2 cells
with rosiglitazone reduced the secretion of SHBG [75]. It has
been reported that GW9662, a different PPARc antagonist,
increased the synthesis of SHBG in HepG2 liver cells [74]. A
potential explanation was that footprinted region 3 (FP3) in
the SHBG promoter gene contain binding domains for
HNF4α, PPARc, and RXR retinoic acid receptors [77, 78].
(us, during normal physiological state, HNF4α may bind
with high affinity, whereas PPARc may act as transcriptional
inhibitors during alterations of lipid metabolism [75].

Although these studies may homologate certain in vivo
conditions, they do not consider that gene expression of
SHBG can also be regulated by testosterone [64, 65]. In this
context, transfection of NB16 cells, which do not express
sex-steroid receptors, with a plasmid expressing the an-
drogen receptor showed that incubation with SHBG-tes-
tosterone or different hormone or carrier concentrations
induces the expression of a reporter androgen-responsive
gene in a concentration-dependent manner [30]. (erefore,
transcriptional regulation of SHBG seems to be regulated by
testosterone levels and transactivation mediated by andro-
gen receptors [64, 65].

Adiponectin is a protein produced in the white adi-
pose tissue, negatively related with body mass index
(BMI), and their plasma levels are decreased in obese
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patients. In a study performed in HepG2 human cells,
adiponectin increases the levels of SHBG through acti-
vation of AMPK-HNF4α signaling [79]. In obese patients,
there is a chronic low-grade inflammatory state with high
levels of TNFα and IL-1β. TNF-α levels are negatively
related with SHBG expression. In hepatoblastoma human
cells, TNFα induces reduction of the levels of SHBG
through the activation of NFκB and the inhibition of
HNF4α P1 promoter activity by the p65 subunit [80]. In
streptozotocin-induced diabetic rats, the plasma levels of
adiponectin were decreased and have an increase in TNFα
and IL6 levels [81]. Also, they showed that adiponectin
receptor 1 was increased in the heart of diabetic rats, but
the levels of adiponectin did not change. In line with this,
the systemic levels of adiponectin in plasma were not able
to induce the signaling by adiponectin receptor 1, showing
a decrease of pAMPK and GLUT4 expression in car-
diomyocytes [81]. (is information can be hypothetically
related with SHBG levels in the heart and plasma of obese
and diabetic patients because they share the same sig-
naling factors (Figure 1).

In cardiomyocytes, it has been reported that testosterone
activates AMPK to modulate energy production through
GLUT4-dependent glucose uptake [82]. AMPK interaction
is critical for upregulating SHBG expression in HepG2 cells
[79]. Furthermore, upstream AMPK regulates the activity of
PPAR-alpha [83]. In the nucleus, androgen signaling
stimulates PPAR activity and peroxisome proliferator-ac-
tivated receptor-c coactivator 1α (PGC-1α) to increase the
expression of various nuclear-encoded metabolic genes,
including oxidative phosphorylation genes [84, 85]. Since
cardiac cells express SHBG and HNF4α gene [86], and
testosterone activates the transcriptional machinery to ex-
press SHBG protein, including PPAR, AMPK, and HNF4α
[31, 32, 87], we hypothesize with the possibility that these
pathways may be activated to induce cardiac SHBG ex-
pression. Transcriptional regulation of SHBG expression
involving the AMPK/PPARs pathway also modulates met-
abolic networks for fatty acid and glucose metabolism
during adaptive cardiomyocyte responses [88]. In addition,
the protein deacetylase sirtuin 3 (SIRT3) plays cardinal roles
in modulating the metabolic network of fatty acid and
glucose metabolism for ATP production [89, 90]. Notably,
SIRT3 favorably modifies cellular mechanisms implicated in
cardiovascular diseases [91, 92]. SIRTexpression is controlled
by PGC-1α and AMPK [93, 94] and testosterone activates
PGC-1α [95], but it remains unknown whether car-
dioprotective actions of androgens involve SIRT3 signaling.

4. Effects of SHBG and Testosterone on Cardiac
Function: Mechanistic Evidence fromAnimal
and Human Research

Most of the research linking SHBG and androgens has been
focused on their circulating levels. If altered levels of cir-
culating SHBG are causally related to high cardiovascular
risk, raises the question, what is the potential mechanism?

In humans, plasma SHBG levels are influenced by nu-
tritional state, metabolism, and hormonal factors

[9, 58, 96, 97]. Patients with obesity and insulin resistance
show reduced circulating SHBG levels [74, 98]. Importantly,
circulating SHBG levels are strongly correlated with plasma
testosterone concentrations and low testosterone levels are
strongly associated with metabolic disorders [99–101]. In
addition, decreases in SHBG levels are linked to high car-
diovascular risk factors [102]. Although metabolic disorders
increase the incidence of cardiovascular disease, it is unclear
whether SHBG expression has an impact on SHBG receptor
signaling or androgen actions in cardiac cells.

Morbidity and mortality in patients with metabolic and
cardiac diseases remain high [11] mainly because of the lack
of effective cardioprotective strategies to handle car-
diometabolic disorders. A 5-year-long follow-up study in-
dicated that men >65 years of age with elevated SHBG and
lower total testosterone were independently associated with
an increase of both CVD risk and mortality [19, 103].
Circulating SHBG stands as an available marker for as-
sessment of cardiovascular health, especially in the female
population, whereas in men similar effects are less known.
Future implications of cardiovascular risk assessment and
the importance of plasma SHBG in cardiovascular patho-
physiology might be even broader since cardiomyocytes of
patients suffering from dilated cardiomyopathy produce
cardiac SHBG and appear to be internalized, possibly rep-
resenting a mechanism for delivering sex hormones to the
heart [32]. (us, an interesting concept is that locally
expressed SHBG controls testosterone levels in the myo-
cardium to activate additional androgen signaling pathways.
(erefore, abnormal locally produced SHBG function might
help explain the adverse cardiac metabolic effects of an-
drogen deficiency.

An interesting study in patients with dilated cardio-
myopathy demonstrated that cardiomyocytes express an
androgen-binding protein, similar to SHBG, and the sub-
cellular distribution matched with androgen receptor lo-
cation [31]. Moreover, studies in megalin knock-out mice
demonstrate a crucial role for this receptor during cardiac
development [104]. Immunohistochemical and 3D recon-
stitution assays showed that these animals had severe car-
diovascular anomalies in structures such as aortic arch,
common arterial trunk, coronary arteries, and ventricular
septum, as well as a marked thinning of the ventricular
myocardium [104]. SHBG has been associated with megalin-
induced internalization of the protein into the cells;
megalin-deficient mice showed defects resembling an-
drogen deficiency [20, 30]. Although reduced levels of
circulating SHBG decrease total testosterone levels, the
effect of low testosterone on SHBG expression is not fully
understood [105].

Low SHBG levels correlated with measures of heart
failure severity and were associated with a higher risk of
cardiac death. Interestingly, impaired hepatic SHBG ex-
pression impacts testosterone levels, and its deficiency is
independently linked to cardiometabolic diseases [106]. In
pathological conditions with reduced circulating SHBG
levels—such as obesity or insulin resistance—the symptoms
of testosterone deficiency in men can be exacerbated
[8, 32, 58, 98]. Obesity is considered an independent risk
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factor for heart failure [17], and mice fed with high-fat diet
(HFD) for 16 weeks developed obesity that adversely affects
the function and structure of the heart and induces cardiac
dysfunction [107]. Moreover, low concentrations of total
testosterone and SHBG were strongly associated with an
increased likelihood of having metabolic syndrome, inde-
pendent of other cardiovascular risk factors [108]. It has
been proposed that myocytes may produce and secrete ABP
in a paracrine manner perhaps to influence the bioavail-
ability of sex-steroids in the myocardium [31]. Low plasma
levels of SHBG are associated with several sex-steroid
hormone-dependent diseases [109] and have been reported
to be an early indicator of cardiovascular risk in individuals
suffering from obesity and metabolic syndrome [110–112].
Experimentally, circulating SHBG suppression causes car-
diac disorders, partly by mimicking low testosterone level
conditions, whereas physiological levels of SHBG and tes-
tosterone show cardioprotective effects [14, 25, 73, 102].
Jänne et al. showed that decreased SHBG levels in the kidney
by castration can be restored with a treatment with dihy-
drotestosterone [113]. (is experiment shows us that SHBG
concentration can be modulated by testosterone but is not
fully understood the dependence of testosterone to the
variations of SHBG levels and how we can differentiate the
effects in cardiometabolic function. Laurent et al. reported
that SHBG-tg male mice that overexpress SHBG exhibit an
increase in total testosterone concentration compared with

wild-type mice, although free levels of testosterone do not
change. (is result changed when the mice were castrated,
eliminating the hypothalamic feedback of luteinizing hor-
mone over Leydig cells, showing a decrease in free testos-
terone levels [114]. Furthermore, SHBG-tg mice showed a
significant decrease in the weight of the seminal bladder and
levator ani/bulbocavernosus muscle, organs that are sensi-
tive to androgens [114]. In accordance with that, Rastrelli
et al. demonstrated that high SHBG levels are related to
lower PSA and hematocrit, markers of androgen deficiency,
and increase ANDROTEST scores, an androgen-dependent
clinical parameter, demonstrating that high SHBG levels in
humans can be associated with hypogonadism [115]. In line
with this observation, Nokoff et al. reported that boys with
obesity have lower levels of SHBG and total testosterone in
comparison with normal weight controls, but free testos-
terone levels do not change [116]. (is type of data gives us
information about the dependency of testosterone levels
with SHBG variations and presents the metabolic and
physiological effects that SHBG levels can induce in the
body, independent of free concentration of testosterone,
challenging the free hormone hypothesis. With these an-
tecedents, the dependence of SHBG on cardiometabolic
effects is incomplete and future research is needed to probe
this question. An interesting hypothesis is that testosterone
levels regulate cardiac SHBG expression to positively in-
fluence cardiometabolic responses (Figure 2).
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Figure 1: Signaling pathways activated by SHBG. (e figure illustrates the action mechanism of SHBG as a hormone carrier and SHBG
direct actions. (1) Free circulating androgens and estrogens that correspond to the bioavailable portion of sex hormones can cross the plasma
membrane and bind intracellular sex hormone receptors, thus activating the “classic,” genomic sex hormone intracellular pathways. (2) As
described in the literature, free circulating sex hormones can also bind to putative membrane receptors activating “fast, nongenomic
intracellular signaling pathways.” (3) Another putative membrane receptor, for SHBG, can also activate intracellular signaling pathways,
leading to fast, nongenomic effects. (4) (e megalin receptor, which induce the internalization of SHBG and a retrograde pathway that
affects nuclear and mitochondrial function, can also account for some SHBG-induced intracellular effects.
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Humanized transgenic mice expressing the human
SHBG have been used to study the function of this protein.
In this in vivo model, SHBG overexpression prevents both
the weight increase and fat accumulation induced by high-
fat diet. Additionally, SHBG overexpression also abolishes
the increase in insulin, leptin, and resistin and protects
against high-fat diet-induced obesity [80, 117]. SHBG
overexpression does not change food and water intake or
intestinal lipid absorption; however, the author did not
measure the testosterone levels [117].

On the other hand, elevated levels of circulating SHBG
bind more estrogens and may be beneficial by reducing the
ability of estrogens to promote breast cancer growth. Also,
plasma SHBG levels can directly affect cancer growth [118].
High circulating levels of SHBG have also been associated
with better cardiovascular health and metabolic status in
postmenopausal women [119, 120]. (erefore, cardiac
SHBG expression may be associated with intra-
cardiomyocyte testosterone signaling, allowing car-
dioprotective effects or, otherwise, producing cardiac
dysfunction under metabolic disorder conditions. (us,

expression of cardiac SHBG may restrict the anabolic ac-
tivity of testosterone on the heart, which impairs cardiac
SHBG expression and metabolic adaptations. (en, the
relationship between low circulating SHBG and low free
testosterone may represent early markers of poor cardio-
vascular health. Physiological effects of testosterone in
cardiac cells includes handling of energy substrates and
increased gene expression of key enzymes involved in
glucose uptake and glycolysis; and regulation of critical
transcription factors related to stimuli that affect car-
diomyocyte function.

5. Human Diseases and Medications Related to
Circulating SHBG

Various human diseases have been associated with altered
circulating levels of SHBG, many of which also are linked
with high CVD risk (Table 1). In humans, there is diverse
information that reflects the bidirectional nature of the
relationship between the SHBG levels and metabolic im-
pairment. Different SHBG-gene polymorphisms have been
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Figure 2: Hypothetical pathways leading to SHBG expression and their modulation in the heart. A hypothetical intracellular pathway for
SHBG expression in the cardiomyocytes. (e same membrane receptors modulating SHBG expression in the liver could be expressed in the
heart. Metabolic cues modulate the activity of the transcription factor hepatocyte nuclear factor 4-α (HNF4α), which leads to an increase in
SHBG gene expression. (e following are some of the questions that arise relating to the possible production and secretion of SHBG as an
endocrine or paracrine mediator: (1) Can TNFα, IL-1β, and adiponectin modulate SHBG expression in cardiac tissue? (2) Is the heart
involved in the release of soluble SHBG in a paracrine or endocrine way? (3) Can soluble SHBG trigger intracellular signaling pathways in
the heart?

6 International Journal of Endocrinology



related with metabolic effects in case-control studies. Low
levels of SHBG were correlated with cardiac risk since HDL-
L levels were lower than the normal threshold in patients
with coronary heart disease, and this correlation might be
affected by SHBG polymorphism [130]. Carriers of the
SHBG polymorphisms rs6257 and rs6259 present a higher
risk of diabetes than carriers of other alleles and present low
levels of SHBG [131]. Metabolic diseases have been related to
abnormal levels of this protein in plasma. SHBG mRNAs in
liver and protein levels in serum were lower when the he-
patic triglyceride concentration was high and decrease with
the increase of body mass index [132].

Metabolic diseases have been related with abnormal
levels of this protein in plasma. In obesity, circulating SHBG
levels are decreased to 50% in obese adult women (non-
menopause) compared with lean control patients [121, 122].
Also, girls and boys with obesity have near 70% of circulating
SHBG compared with nonobese [116]. In patients with
diabetes and metabolic syndrome, plasmatic SHBG levels

also show decreased levels compared with controls
[25, 110, 123]. Laaksonen et al. showed that an entire cohort
of patients without diabetes or metabolic syndrome have
34.5 nmol/l of plasma SHBG; nevertheless, some patients
that develop diabetes or metabolic syndrome present low
levels of SHBG ranging to 26.2 and 28.2 nmol/l, respectively
[25]. On the other hand, malnutrition such as anorexia [128]
and Kwashiorkor patients with protein and energy mal-
nutrition show increased plasma SHBG levels compared
with control normal weight individuals [129]. One example
is a longitudinal cohort of patients in whom SHBG levels
were evaluated in anorexia and after a treatment to gain
weight, showing that the levels of SHBG decrease in the gain
weight therapy [129]. (is evidence shows that circulating
SHBG levels have a negative correlation with the develop-
ment of obesity/overweight patients and have a positive
correlation in malnutrition patients; therefore, plasma
SHBG levels are correlating with the nutritional state of
patients.

Table 1: Pathologies and circulating levels of SHBG.

Author Condition Sex Age (years) SHBG (nmol/l) p value Change

Obesity

Kopelman et al.
[121]

Lean control Women 28 60± 8

Obese Women 29 30± 4 Non
reported Decreased

Cupisti et al. [122] BMI< 25 kg/m2 Women 26.41± 6.09 53.42± 23.1
BMI> 25 kg/m2 Women 29.23± 7.08 30.03± 14.52 <0.0001 Decreased

Nokoff et al. [116]

Normal weight Women 10 59.5
Obese Women 10 18.5 <0.0001 Decreased

Normal weight Men 12 57
Obese Men 12 18 <0.0001 Decreased

Diabetes

Lindstedt et al.
[123]

Control Women 38–60 88± 55
Diabetes Women 38–60 55± 31 <0.001 Decreased

Laaksonen et al.
[25]

Control Men 51.3± 6.7 34.5
Metabolic
syndrome Men 51.4± 6.8 28.2 <0.001 Decreased

Diabetes Men 52.2± 5.6 26.2 <0.001 Decreased

Ding et al. [110]

Normal Women 60.3± 6.1 36.9± 17.4
Type 2 diabetes Women 60.3± 6.1 22.3± 13.8 <0.001 Decreased

Normal Men 63.7± 7.6 27.3± 10.7
Type 2 diabetes Men 63.7± 7.6 19.6± 7.2 <0.001 Decreased

PCOS
Ferk et al. [124] Control Women 25.3± 3.8 61.0± 14.7

PCOS Women 24.4± 4.4 44.4± 19.1 <0.001 Decreased

Baldani et al. [125] Control Women 31.3± 4.8 71.6± 21.7
PCOS Women 28.3± 5.7 38.4± 19.9 <0.001 Decreased

Hypothyroidism Leger et al. [126]
Euthyroid Boys and

girls 7.1± 0.5 77.8± 7.9

Hypothyroid Boys and
girls 7.1± 0.5 48.2± 6.5 <0.01 Decreased

Klinefelter
syndrome

Plymate et al. [127]
Normal Men 24–40 6.5± 1.2

XXY Klinefelter’s Men 20–45 16.4± 2 Not
reported Increased

Estour et al. [128] Normal weight Women 25.6± 62.9
Anorexia Women 20 (14–35) 90.8± 32.6 <0.001 Increased

Malnutrition Pascal et al. [129]
Control Boys and

girls
16± 8
months 0.11± 0.03

Kwashiorkor
patients

Boys and
girls

20± 8
months 0.18± 0.07 μmol/l <0.0005 Increased

(e table shows different diseases and some studies that describe the associated circulating SHBG levels. Gender, mean age (±standard deviation), and p value
change between different conditions are also presented.
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Circulating SHBG is also correlated with endocrinology
diseases such as polycystic ovary syndrome (PCOS) and
hypothyroidism. In PCOS, the levels of circulating SHBG are
decreased compared with control women in a 25%–45% as
compared with normal levels [124, 125], whereas in hypo-
thyroidism, the relation is almost the same [126]. Otherwise,
in Klinefelter syndrome patients (XXY), there are increased
levels of circulating SHBG [127]. In other endocrine diseases
such as hypothyroidism, decreased levels of circulating
SHBG have been observed, whereas hyperthyroidism leads
to increased plasma SHBG levels. (is relation has been
explained at the level of the transcription factor HNF4α
being increased by hyperthyroidism [133].

Nokoff et al. showed that obese children in early puberty
state have a decrease in the circulating SHBG levels and total
testosterone and have an increase in estrone metabolites,
probably by the aromatization of androgens in adipose tissue
that can lead to develop hypogonadotropic hypogonadism in
these boys and affect the reproductive function in the future
[116]. (ere is incomplete information about the impact of
plasmatic SHBG and development of cardiometabolic disease in
youth, but the evidence showed a correlation between circu-
lating SHBG, hypogonadism, insulin resistance, cardiac meta-
bolism, and dyslipidemia, which are related with low circulating
SHBG levels as a result of altered SHBG hepatic production.

Besides hormones and diseases, some medications and
dietary compounds alter SHBG liver production [134, 135].
Antiepileptic drugs such as carbamazepine and phenytoin
induce an increase in SHBG circulating levels in men and
women [134]. Likewise, thiazolidinediones, and oral con-
traceptives in women, also increase SHBG plasma levels
[136]. To the best of our knowledge, only one prospective
study has analyzed the effects of changing circulating SHBG
levels on cardiometabolic outcomes. In this prospective
study, lifestyle interventions directed to obtain favorable
changes in circulating levels of SHBG in men and women
could not show to influence the risk of developing type 2
diabetes mellitus in the participants [137].

According to our current understanding, the car-
dioprotective effects of androgens in men have been poorly
studied and the deleterious effects exerted by testosterone
appear to be controversial. Recent research indicates that
administration of testosterone in physiological doses to
individuals with metabolic syndrome improves insulin
sensitivity and reduces central obesity [138]. Additionally,
development of heart failure in individuals with metabolic
syndrome is partially reduced by treatment with testosterone
in physiological doses [139, 140]. Likewise, subjects with low
plasma testosterone levels develop insulin resistance and
diabetes, as well as central obesity and heart failure
[99, 100, 141, 142]. Moreover, plasma testosterone levels
decline with age, while SHBG levels increase, which in turn
leads to progression of testosterone deficiency and age-re-
lated cardiovascular pathologies [25, 143].

6. Conclusion and Future Research

Given the important roles of androgens in normal men
physiology, abnormal levels must be considered one of the

main causes implicated in several disorders and pathological
conditions [108, 144–146]. According to a 2017 update
demography report from the American Heart Association,
almost one in three adult men have some type of cardio-
vascular disease [147]. In the context of human disease
relevance, the international expert consensus panel that
convened in 2015 concluded that there is a need for a major
research initiative to explore the possible cardioprotective
benefits of testosterone therapy, implying that there is
sufficient evidence regarding the safety of testosterone
therapy in hypogonadal men and that the direction of future
research should be set toward defining suitable therapeutic
options for cardiovascular disease [148, 149]. Research in the
field of androgen signaling will provide a considerable
understanding of the physiological and pathological roles of
SHBG and sex-steroid hormones. (us, an appropriate
description of testosterone signaling considering circulating
and cardiac SHBG expression might help explain both
physiological and adverse cardiac metabolic roles of an-
drogens (particularly androgen deficiency). Research di-
rected to elucidate whether plasmatic and cardiac SHBG
expression is associated with physiological testosterone
levels could represent novel research approaches to study
insulin resistance, obesity, diabetes, and heart failure.
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