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Abstract: Kiwifruit (Actinidia chinensis var. deliciosa (A Chev) Liang et Ferguson) is a sub-tropical
vine species from the Actinidiaceae family native to China. This species has an allohexaploid genome
(from diploid and autotetraploid parents), contained in 174 chromosomes producing a climacteric
and fleshy fruit called kiwifruit. Currently, only a small body of transcriptomic and proteomic
data are available for A. chinensis var. deliciosa. In this low molecular knowledge context, the
main goal of this study is to construct a tissue-specific de novo transcriptome assembly, generating
differential expression analysis among these specific tissues, to obtain new useful transcriptomic
information for a better knowledge of vegetative, floral and fruit growth in this species. In this
study, we have analyzed different whole transcriptomes from shoot, leaf, flower bud, flower and
fruit at four development stages (7, 50, 120 and 160 days after flowering; DAF) in kiwifruit obtained
through RNA-seq sequencing. The first version of the developed A. chinensis var. deliciosa de novo
transcriptome contained 142,025 contigs (x = 1044 bp, N50 = 1133 bp). Annotation was performed
with BLASTX against the TAIR10 protein database, and we found an annotation proportion of 35.6%
(50,508), leaving 64.4% (91,517) of the contigs without annotation. These results represent a reference
transcriptome for allohexaploid kiwifruit generating a database of A. chinensis var. deliciosa genes
related to leaf, flower and fruit development. These results provided highly valuable information
identifying over 20,000 exclusive genes including all tissue comparisons, which were associated with
the proteins involved in different biological processes and molecular functions.

Keywords: Actinidia; breeding; de novo transcriptome; kiwifruit leaf; flower; fruit development

1. Introduction

Actinidia chinensis var. deliciosa is an allohexaploid species (2n = 6x) with an estimated
genome size of 4.4 Gbp and 174 chromosomes [1-3]. It is a species that originated in south-
western China and belongs to the genus Actinidia, which includes at least 76 species [4].
This species has an important economic role due to its edible fruit known as kiwifruit,
being also a species of nutritional importance due to its high level of vitamin C [5]. The
kiwifruit worldwide production in 2019 reached about 4.35 million tons, China being
the most important producer, followed by New Zealand, Italy, Iran, Greece and Chile.
However, most of the Chinese kiwifruit are locally consumed, with less than 0.2% of the
total being exported (http:/ /faostat.fao.org (accessed on 4 January 2021)).

The Actinidia genus is mainly composed of dioecious plants. The flowers are axial
with five petals, usually white colored, and sepals that can be fused with the base or not.
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The fruit is a berry and has black seeds embedded within the flesh where the colors and
morphology vary depending on the cultivar. Actinidia chinensis var. deliciosa cv. ‘Hay-
ward’ is one of the most widely distributed cultivars, and bears fruits with green flesh
and a fuzzy appearance. The characteristic flavor of the kiwifruit is one of the important
aspects for consumer acceptance and its commercial potential. The balance of sweetness
and acidity is given by the sugars such as glucose, fructose, sucrose and myo-inositol in
small quantities, and the acids found in the mature fruit including quinic acid, citric acid
and in less proportion, malic acid [6]. From a molecular point of view, at the genomic
level, the whole-genome sequencing of the heterozygous ‘Hongyang’ cultivar [7] and the
‘Red5’ genotype [8] has been reported. In addition, at this moment the most recent works
are those corresponding to the genome assembly of Actinidia eriantha [9], the high-quality
Actinidia chinensis genome [10] and the current kiwifruit genome database [11], which will
undoubtedly provide valuable information at the genomic level. However, the information
at the transcriptomic, proteomic or metabolomic levels is scarcer, mainly in the case of
important kiwi commercial cultivars such as ‘Hayward’ taking in account its ploidy level.
Transcriptomic analyses are relatively recent in kiwifruit species, focused on physiology
and fruit ripening studies or resistance to diseases. These transcriptomic studies included
the sequencing of whole male and female transcriptomes of A. arguta flower buds [12], the
study of fruit development in the cultivar “Hongyang” based on long noncoding RNA ex-
pression and alternative splicing [13], the premature bud break dormancy analysis [14], the
genome-wide gene expression profiles in male and female plants using high-throughput
RNA sequencing (RNA-seq) [15], or transcriptomic analysis studies about bacterial and
fungal diseases such as Pseudomonas syringae pv. actinidiae (Psa) [16,17] and Botryosphaeria
dothidea, which produce important losses in kiwifruit [18]. More recently, new studies have
been focused on the study of post-harvest behavior after the application of ethylene-related
phytohormones such as 1-MCP (ethylene inhibitor) and Ethrel (ethylene precursor), which
provides more knowledge about the kiwifruit shelf-life extension [19]. In addition, some
transcriptomic studies have been reported showing new findings on anthocyanin biosyn-
thesis in A. chinensis [20,21] and A. arguta [22]. Finally, from the proteomic and metabolomic
point of view, we can highlight the study in Actinidia arguta by using iTRAQ-based quanti-
tative proteomic which is providing a new approach according to flesh development color
in kiwifruit [23] or the current metabolomic study about A. arguta leaves with nutraceutical
values [24]. All these transcriptomic, proteomic and metabolomic studies were focused on
the specific areas that deal with the most important problems of kiwifruit and that suppose
important agronomic and economic impact. According to plant tissue development at the
physiological level, gibberellins are a large family of isoprenoid phytohormones which
act as growth regulators in higher plants [25]. Thus, gibberellins stimulate cell elongation
or cell division being involved in the seed germination, maturation or flowering of many
vascular species [26]. The synthesis of these isoprenoids can be mediated by the meval-
onate or methylerythritol phosphate pathways [25]. Therefore, the role of both of these
pathways could be an interesting approach in order to discern the mechanisms involved in
the tissue-specific development process.

The objective of this work was the development of a de novo transcriptome in green-
fleshed kiwifruit ‘Hayward” using RNA-seq analysis from the leaf, flower and fruit tissues
in different development phases, including a differential gene expression analysis to
generate a database of genes related to the leaf, flower and fruit development and to identify
the most important proteins involved in these development processes. Additionally, the
most important kiwifruit genes linked to these processes were identified, illustrating the
powerfulness and usefulness of this transcriptomic resource.

2. Materials and Methods
2.1. Plant Material and RNA Sequencing

Sample tissues of Actinidia chinensis var. deliciosa cv. "Hayward’ including shoots,
leaves, flower buds, flowers and fruits at 7, 50, 120 and 160 days after full bloom (DAFB)
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Shoots (11)

(Figure 1) were collected and immediately frozen in liquid nitrogen from the German
Greve Silva experimental station in Rinconada de Maipu (University of Chile). ‘Hayward’
flowers were pollinated using pollen from ‘Belen’ variety. RNA was extracted from three
biological replicates using the RNeasy Mini Kit (Qiagen®, Hilden, Germany). To verify
sample integrity, total RNA was evaluated on Fragment Analyzer™ Automated CE System
(AATI) and quantified by Qubit® 2.0 Fluorometer, using Qubit™ RNA BR Assay Kit (Life
Technologies, Carlsbad, CA, USA). For library construction, one microgram of RNA sample
was used as input for Illumina® TruSeq RNA HT Sample Prep Kit, according to the
manufacturer’s instructions. Final libraries were analyzed on an NGS kit for Fragment
Analyzer™, and quantified by Qubit® 2.0 Fluorometer, using Qubit'™ DNA BR Assay Kit.
Libraries were sequenced on HiSeq 2500 platform (Illumina Inc., San Diego, CA, USA).

Leaves (19) Flower buds (53) Flowers (65) Fruits

Figure 1. Tissues assayed in kiwifruit cv ‘Hayward’ including shoots leaves unfolded (11), leaves completely developed
(19), flower buds growing (53), full flowering (65), fruits as the following days after full bloom (DAFB): 7, 50, 120 and 160
days. Between parenthesis are indicted the phenological stage References [27].

2.2. Transcriptome Assembly and Refining

Total reads were analyzed (pre- and post-trimming) and trimmed with FastQC software
and FLEXBAR software (https://github.com/seqan/flexbar (accessed on 5 October 2020))
in order to filter low-quality reads (Phred score less than 25) and remove reads either
short or with Ns in the sequence. Remaining reads after trimming were used as input
in the transcriptome assembly using Trinity software (https://github.com/trinityrnaseq
(accessed on 5 October 2020)). The refinement of the transcriptome was made using CD-
HIT (http:/ /weizhongli-lab.org/cd-hit/ (accessed on 5 October 2020)) to remove duplicate
contigs with a 0.9 identity setting and Corset (https://github.com/Oshlack/Corset/wiki
(accessed on 5 October 2020)) to filter out contigs with less than 30 reads mapping to each
contig in the assembly.

2.3. Assessment of Assembly Metric, Quality and Annotation

Transcriptome metric measurement was performed by TrinityStats.pl Software, a quality
assessment was performed by two ultra-conserved protein gene finder softwares (CEGMA
and BUSCO; http:/ /korflab.ucdavis.edu/datasets/cegma/ (accessed on 5 October 2020);
http:/ /busco.ezlab.org/ (accessed on 5 October 2020)). Annotation was performed with
DIAMOND, (https://github.com/bbuchfink/diamond (accessed on 5 October 2020)) in
BLASTX mode against TAIR10 protein database, reporting hits with minimum e-value of
0.001. To explore the main gene functions involved in the vegetative growth leaves, floral
and fruit development from the biological processes and molecular function point of view
we performed a singular enrichment analysis (SEA) by Panther GO slim [28] and AgriGo
v2 [29], using the top hit species Vitis vinifera as reference.

2.4. Principal Component Analysis and Sample Similarity

A principal component analysis (PCA) was conducted to evaluate in a non-supervised
way, the grouping and similarity of each sample and corresponding biological replicates,
along with a sample similarity heatmap. Both graphs were constructed with the R-based
PtR script (“—log2 -CPM —center_rows —prin_comp 3” parameters) from Trinity analysis
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utilities using the counts matrix containing every sample and its replicates as an input. For
sample similarity, Spearman’s correlation coefficient was used.

2.5. Differential Expression Analysis and Protein-Protein Interaction Network

Raw counts of each contig were obtained with RSEM (https://deweylab.github.io/
RSEM/ (accessed on 5 October 2020)) using Bowtie2 aligner (http:/ /bowtie-bio.sourceforge.
net/bowtie2/index.shtml (accessed on 5 October 2020)) to align all the input reads to the
de novo assembled transcriptome. Then all counts and replicates per tissue were used
to develop a raw counts” matrix. From this raw count, a TPM-TMM normalized ma-
trix was calculated and used for the study alongside the raw counts’ matrix. Differential
expression analysis was performed by using the R’s package edgeR from Bioconductor
(http:/ /bioconductor.org/packages/release/bioc/html/edgeR.html (accessed on 5 Octo-
ber 2020)). Differentially expressed genes (DEGs) were used for further comparisons and
downstream analyses. Finally, a protein—protein interaction network was developed in
order to associate DEGs with metabolic processes by using the STRING database [30],
considering a score >0.400 for the assayed DEGs.

3. Results
3.1. Refined De Novo Transcriptome Assembly

In order to obtain a multiple-tissue de novo transcriptome of genes from Actinidia
chinensis var. deliciosa, RNA libraries were constructed and sequenced from the shoots,
leaves, flower buds, flowers and fruits at 7, 50, 120 and 160 DAFB with a total of 604,735,364
pair-end reads (150 bp x 2) (Table Sla). All the raw reads in the FastQ format, including the
pair-end and replicates, are available from the NCBI Short Read Archive (SRA) database
under the bioproject number PRINA564374 (https:/ /www.ncbi.nlm.nih.gov/sra/PRJNAS5
64374 (accessed on 5 October 2020)). These reads were processed and trimmed to remove
any low-quality reads and then used as the input to assemble the transcriptome with the
Trinity software. The assembled and refined transcriptome contains 142,025 total contigs,
where 106,603 contigs are trinity “genes” unigenes. Moreover, the average size for the
contigs was 1044, the largest one reaching 36,186 bp while the shortest was 501 bp long
(Table 1 and Table S1b).

Table 1. Summary of the de novo transcriptome metrics and annotation summary.

Metric
Total Contigs 142,025
Trinity “Genes” 106,630
Average contig (bp) 1,044
L CEGMA Score (%) C: 56.8; F: 35.1; M: 8.1
2 BUSCO Score (%) C:69.9; F:18.3; M: 11.8

1 CEGMA dataset used contains 248 eukaryotic proteins. C: complete genes found from the dataset, F: fragmented
genes found from the dataset, and M: missing genes. 2 BUSCO dataset used contains 1440 plant-specific proteins.
C: complete genes found from the dataset, F: fragmented genes found from the dataset, and M: missing genes.

In addition, to assess the quality for our de novo transcriptome, we performed a
biological-based analysis approach. The biological analysis needs the use of the ultra-
conserved proteins encoded in the assembled transcriptome, searching them and reporting
how many are completed, fragmented and missing. We used CEGMA and BUSCO to
evaluate the completeness of the ultra-conserved protein coding genes for the eukaryote
and plant species. CEGMA found 140 (56.8%) complete, 87 (35.1%) fragmented and 20
(8.1%) missing genes from its 248 eukaryotic ultra-conserved protein data set. However,
BUSCO found 1007 (69.9%) complete, 263 (18.3%) fragmented and 170 (11.8%) missing
genes from the ultra-conserved plant database (1440 total plant-specific proteins) (Table 1).
Finally, an additional quality control of the samples and biological replicates was performed
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using Trinity’s auxiliary scripts (Figure 2), showing high similarities between the biological
replicates and variable differences among the different tissues samples.
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Figure 2. (A) Principal component analysis (PCA) of the four development stages of the study and
its biological replicates (R). In the Y-axis is the principal component (PC) 2 and 3 and in the X-axis is
the principal component 1 and 2, respectively. (B) Heatmap with filters of fold change > 4 and FDR
0.05 across all tissues and replicates. Y-axis represents the genes while the X-axis shows all sample
tissues and replicates. The color key represents the median centered log2 TMM-normalized TPM
values. Yellow indicates a high level of expression, black indicates no change in expression, and
purple indicates a low level of expression.

3.2. Gene Annotation and Enrichment Analysis

The main gene functions involved in the vegetative growth of the leaves, and the
floral and fruit development were analyzed from the biological processes and molecular
function point of view, using the top-hit species Vitis vinifera as the reference (Figure 3;
Figures 51-59; Tables S2 and S3). According to the annotations by Panther (Table S2)
in shoot vs. leaf comparisons for the biological processes, the top hits GO terms were
metabolic processes (23.1%; GO:0008152) and cellular component organization or biogen-
esis (23.1%; GO:0071840), while for molecular function it was molecule binding (42.9%;
GO:0005488). As for flower bud vs. flower, the most important GO term for the biological
processes were metabolic processes (45.9%; GO:0008152), while for molecular function it
was the catalytic activity (45.1%; GO:0003824) as well as for fruit development (fruit7 d vs.
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50 d-120 d-160 d) the top hits for the biological processes and molecular function were
also metabolic processes (45.7%; GO:0008152) and catalytic activity (51.8%; GO:0003824),

respectively.
Shoot vs Leaf Flower buds vs Flower Fruit7d vs 50d-60d160d
PANTHE-R GO-Slim Blrloqltal Process PANTHER GO-Slim Blrlogkal :’ro(ess PANTHER GO-Slim Biological Process

W biological regulation (GO:0065007
cellular component organization or biogenesis (G0:0071840
ogenesis (GO:0071840 B cellular pro (G0:0009987
W developmental process (GO:0032502)
M localization (GO:0051179
W metabolic process (G0:0008152
response to stimulus (GO:0050896

iogenesis (GQ:0071840)

response to stimulus (GO:0050896)

PANTHER GO-Slim Molecular Function PANTHER GO-Slim Molecular Function PANTHER GO-Slim Molecular Function
Total  Genes: 21 Total # function hits: 7 Total # Genes: 193 Total n hits: 82 Total # Genes: 179 Total # function hit:

ol w

B binding (GO:0005488)

B binding (GO:0005488
catalytic activity (GO:0003824)
transporter activity (GO:0005215

tivity 0140110)

ctivity (GO:0045182

transporter activity (G0:0005215

Figure 3. Panther GO annotations for each comparative plant tissues shoot vs. leaf, flower bud vs. flower and fruit7 d vs.
50 d-120 d-160 d (including all fruit tissues together).

In the GO analysis by using AgriGO v2 (Table S3), only eight GO terms were found for
shoot vs. leaf according to the p-value, thus we can highlight the response to the stimulus
(1.3e-04; GO:0050896) and nucleic-acid binding (1.8e-05; GO:0003676) for the biological
processes and molecular function, respectively. According to floral and fruit development,
we found 119 and 56 GO terms, respectively. A total of 69 GO terms were exclusives for
flower bud vs. flower while only six were exclusives for fruit7 d vs. 50 d-120 d-160 d
(Table S3).

3.3. Transcriptome Annotation and Differential Expressed Genes

After the annotation process against the TAIR10 protein database, we obtained a total
of 50,508 contigs (35.6%) annotated, leaving 91,517 contigs (64.4%) without annotations
(Table 2; Table S2). From the annotated contigs, 99.99% corresponded to a diverse plant
species. The top three hit species were Vitis vinifera (18.2%), Juglans regia (5.8%) and
Coffea canephora (4.3%) (Table 2 and Table S4). Also, we found that 1.5% of the annotation
corresponds to the Actinidia genus.
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Table 2. Functional annotations and top-hit species summary.

Functional Annotation

Total contigs annotated 50,508

Total contigs unannotated 91,517
Top-hit species (%)

Vitis vinifera 18.2%

Juglans regia 5.8%

Coffea canephora 4.3%

Actinidia genus 1.5%

In order to perform a general comparison of the number of gene expression differences
between the tissues, a differential expression analysis was performed. When comparing all
the replicates and tissues (using a normalized factor based on the fold change between each
expression and the mean expression across the samples) with filters of the false discovery
rate (FDR) > 0.005 and FC > 4, we found around 49,000 differential expressed genes
(Figure 2). In addition, to obtain a better understanding about the tissues comparison,
differential gene expression was evaluated by edgeR [31], grouping different tissues as
follow: shoot vs. leaf, flower bud vs. flower, fruit 7 d vs. fruit 50 d, fruit 7 d vs. fruit 120 d
and fruit 7 d vs. fruit 160 d (Figure 4 and Figure S10). Thus, through these comparisons
we can obtain the overexpressed and under expressed genes of each tissue comparison
related to the leaves vegetative growth, and the flower and fruit development. Finally,
we’ve obtained 22,962 exclusive genes for all the tissue comparisons at p-value < 0.001,
obtaining 1567 (shoot vs. leaf), 10,634 (flower bud vs. flower), 2113 (fruit7 vs. 50), 3560
(fruit7 vs. 120) and 5088 (fruit7 vs. 160) (Figure 4; Table S4).

0S¥NI4 SA Z3iniy

.20
1 15?“)\\\

WY
e

Figure 4. Venn diagram for differential expression genes between the following different plant tissues:
shoot vs. leaf, flower bud vs. flower, fruit7 vs. fruit50, fruit7 vs. fruit120 and fruit7 vs. fruit160 at

p-value < 0.001.

On the other hand, if we analyze each tissue separately, the highest number of ex-
pressed contigs was for flower bud vs. flower, the vegetative and fruit tissues being lower
expressed. However, the number of expressed contigs increased with the fruit development
time from 7 to 160 days (Figure 5A). If we compare up- and down-regulated contigs, the
previous stage of each plant tissue comparison showed a lower number of up-regulated



Agronomy 2021, 11, 919

8of 19

A 8000

7000
6000
5000

4000

Number of contigs

3000

2000

1000

0

6000

5000

4000

3000

Number of contigs

2000

1000

0

= /= = [/

contigs, except in the case of the fruit at 7 vs. 160 days where a higher number of up-
regulated contigs for fruit at 7 vs. 160 days was appreciated (Figure 5B). This event was
presumably due to the fact that fruits after 160 days reached their maximum development,
giving a greater number of up regulated contigs in favor of day 7 contrary to day 160.
A summary of the main genes involved in each tissue comparison is shown (Table S5),
obtaining a total of 120 genes with a logFC over 2.

Shoot Leaf Flower bud Flower Fruit at 7days  Fruit at 50 days Fruit at 120 days Fruit at 160 days
@ >200 0 20-200 0 10-20

Shoot > leaf Flower bud > flower Fruit at 7d > 50d Fruit at 7d > 120d Fruit at 7d > 160d

@ Up regulated O Down regulated

Figure 5. (A) Number of expressed contigs by plant tissue (above). Contig expression is shown in white color (10-20), grey
(20-200) and dark grey (>200). (B) Number of expressed contigs by tissue comparison (below). Up-regulated (grey color)
and down-regulated (white color) contigs.

If we pay attention to the most significant contigs according to the logFC over 2, some
examples of DEGs were shown in the heatmap (Figure 6). As for shoot vs. leaf comparison,
the protein KDP41561.1 (hypothetical protein JCGZ_15968 (Jatropha curcas)) was overex-
pressed in the shoots while the protein XP_010651436.1 (type 2 DNA topoisomerase 6
subunit B-like isoform X1 (Vitis vinifera)) was overexpressed in the leaves. In addition, a
contig linked to the protein ALO19891.1 (UDP-glycosyltransferase 84J2) (Camellia sinensis))
was overexpressed in the leaf (Table S5). According to flower bud vs. flower compari-
son, XP_002308583.2 (hypothetical protein POPTR_0006s24990g (Populus trichocarpa) and
XP_010279585.1 (cytokinin dehydrogenase 9-like) (Nelumbo nucifera) were overexpressed in
the flower buds and flower, respectively (Table S6). As for the fruit comparison between
fruit 7 d vs. fruit 120 d, we can highlight XP_010924477.1 (probable inositol oxygenase
(Elaeis guineensis)), which was overexpressed in fruit 120 d while in the comparison between
fruit 7 d and fruit 160 d XP_016207777.1 (calcium-binding protein CML39 (Arachis ipaensis))
as well as XP_010654040.1 (heat stress transcription factor A-2e isoform X2 (Vitis vinifera))
were both overexpressed in fruit 160d (Table S5).
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Figure 6. Summary of the top-hit genes up- and down-regulated considering shoot, leaf and fruit tissues (d7, d50, d120 and
d160). Light yellow color indicates a minimum value of counts while red indicates a maximum count.

3.4. Protein—Protein Interaction Network

According to the protein—protein interaction, protein IDs from Vitis matched with our
Actinidia contigs were used in the STRING tool for each plant tissue comparison. When we
analyzed the shoot vs. leaf, we observed three clusters differentially expressed related to
the plant circadian rhythm, RNA transport and a third cluster mainly related to the sulfur
and nitrogen metabolism involved in specific tissue differentiation (Figure 7 and Table S6).

In the comparison between the flower buds and flowers, two main protein clusters
were shown. The biosynthesis of secondary metabolites, phenylpropanoid biosynthesis,
or cysteine and methionine metabolism were the main routes involved. The enzyme
mevalonate kinase (VIT_14s0128g00330.t01) is, however, the unique protein that connects
both the clusters, and for this reason this enzyme could be one of the keys involved in the
flower development process (Figure 8 and Table S6).
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Figure 8. Protein—protein interaction network for flower bud vs. flower comparison.

In the protein analysis of the development of the fruits (7 d vs. 50 d), many protein
clusters were observed (Figure 9 and Table S6). However, we can highlight the porphyrin
and chlorophyll metabolism, biosynthesis of secondary metabolites, photosynthesis or
cysteine and methionine metabolism being all of those involved in the early growth of
fruit. According to the comparisons between 7 d vs. 120 d or 7 d vs. 160 d, we observed
that other physiological mechanisms were involved in the subsequent fruit development
including RNA polymerase, pyrimidine and purine metabolism, basal transcription factors
or nucleotide excision repair (Figures 511 and 512).
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Figure 9. Protein—protein interaction network for fruit at 7 vs. 50 days.

4. Discussion

4.1. Refined De Novo Transcriptome Assembly

According to the assembled and refined transcriptome, a total of 142,025 contigs
(X = 1044 bp, N50 = 1133 bp) were obtained, of which 106,603 contigs corresponded to
Trinity “genes” unigenes. Within the assembled contigs, the size ranged from 501 bp to
36,186 bp long. In a similar study assaying Actinidia eriantha, the assembly of the filtered
reads reached a total of 69,396 unigenes obtaining sizes between 201 and 9602 bp [32].
In comparison with previous studies, our results were of better quality showing a larger
number of contigs and size.
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On the other hand, regarding the completeness of the ultra-conserved protein evalua-
tion by CEGMA and BUSCO, the obtained scores suggested that the assembled transcrip-
tome contains an important number of ultra-conserved proteins complete or fragmented,
indicating the high-quality standard transcriptome in terms of completeness. This biologi-
cal approach indicated the high-quality score especially for BUSCO which reached almost
70% of the complete genes found in the different datasets. This 70% from the BUSCO score
seems to be lower against the quality scores reported above in different plant genomes,
but the construction of the de novo transcriptome from three different plant tissues may
explain this difference. CEGMA and BUSCO complete scores over 95% were reported for
twelve plant genomes including the model plant Arabidopsis thaliana and the fruit tree Pyrus
communis L. var ‘Bartlett’ [33]. In agreement with these previous results, the sum of the
values of the completed and fragmented genes obtained in our study was close to 90%,
which was quite high considering the construction of a de novo transcriptome. In addition,
a specific tissue de novo transcriptome assembly of Ilex paraguariensis [34] obtained similar
data with around 73% of complete genes reaching close to 85%.

4.2. Gene Annotation and Enrichment Analysis

In the gene annotation and enrichment analysis, we obtained significant functional
annotations from each tissue comparison, including shoot vs. leaf, flower bud vs. flower
and for fruit development. In the case of the shoot vs. leaf comparison, the top hits
for the biological processes were related to metabolic processes (GO:0008152) or cellular
component organization (GO:0071840), while for molecular function it was molecule
binding (GO:0005488). Therefore, these processes may be involved in the biosynthesis of
constituent macromolecules and plant cells related to leaf development and growth. When we
compared bud vs. flower and fruit development (fruit 7 d vs. 50 d-120 d-160 d), the top hit
for biological processes was metabolic processes (GO:0008152), while for molecular function
the catalytic activity (GO:0003824) was the most significant for both tissue comparisons
indicating an increase in the chemical reactions linked to flowering and fruit development.

In addition, only eight GO terms were found for shoot vs. leaf, probably due to
the lack of protein annotations related to these tissues. However, flower bud vs. flower
and fruit development comparisons showed 119 and 56 GO terms, respectively. Thus, for
flower bud vs. flower, some significant protein IDs were related to the anatomical structure
development (p-value of 6.5e-27; GO:0048856), reproductive process (3.4e-12; GO:0022414),
aromatic compound biosynthesis process (7.4e-07; GO:0019438) or response to abiotic
stimulus (100e-07; GO:0009628). Therefore, GO:0048856 is related to the progression of
anatomical structures including the flower bud to a mature flower. The protein network in-
volved in GO:0022414 was described as responsible for the inheritance of cytoplasmic male
sterility in soybeans during flower development [35]. The aromatic compound biosynthesis
process (GO:0019438) includes all of the chemical reactions and pathways related to the
formation of aromatic compounds which can be happening during flower development, so
the aromatic composition of the kiwifruit could be forming during flower development
as has been described in Eucalyptus grandis floral tissues [36]. For the proteins network
related to the response to abiotic stimulus (GO:0009628), recent studies in flower buds from
transgenic blueberry evidenced its relation to flower development [37].

Finally, in the case of fruit development (fruit 7 d vs. 50 d-120 d-160 d), some
protein IDs were associated with protein metabolic processes (4.1e-3; GO:0019538), DNA
polymerase activity (3.9e-10; GO:0034061), transferase activity (6.1e-06; GO:0016740) or
catalytic activity (1.6e-03; GO:0003824). In other plant species including cucumber, some
of the main proteins linked to fruit development were involved in the process of protein
metabolism (GO:0019538) [38]. In addition, some of the most important proteins involved in
the fruit development stage in peaches (cell enlargement) were involved in transferase and
catalytic activities [39]. Therefore, a major catalysis reaction and an increase in enzymatic
activity seem to be more related to fruit development (GO:0034061, GO:0016740 and
GO:0003824). A similar approach was implemented in a de novo assembly of the Persea
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americana cv. ‘Hass’ (avocado) transcriptome during fruit development where proteins
related to fruit oily characteristics were predominant [40].

4.3. Transcriptome Annotation and Differential Expressed Genes

Only 35.6% of the contigs were annotated against the TAIR10 protein database. This
low match could be explained by the lack of information in the protein databases, which
implies a lower knowledge in the Actinidia genus at protein level and explains the interest
of this study. Similar results, however, were obtained in other studies in kiwifruit Actinidia
chinensis var. ‘Jinkui’, where from the obtained 140,187 unigenes, only 56,912 (39%) were
functionally annotated [41]. In addition, Li et al. (2015a) obtained 51,745 unigenes in
Actinidia arguta and 30,439 matches to known proteins (58%). More recently, an RNA-seq for
different fruit tissues was carried out in Actinidia eriantha, reaching 69,783 non-redundant
unigenes and only 21,730 (30%) were annotated in different protein databases [32].

Several genes specifically involved in protein translation were observed and linked to
hypothetical and predicted proteins (Figure 6 and Table S5). The protein ALO19891.1 (UDP-
glycosyltransferase 84J2) (Camellia sinensis)) overexpressed in the leaf would be an example.
As other authors have reported, UDP-glycosyltransferases (UGTs) play an important role
in the plant growth and acclimatization to stress conditions [42], which would explain the
overexpression of this protein in the leaves. As for the flower bud and flower comparison,
XP_010279585.1 (cytokinin dehydrogenase 9-like) (Nelumbo nucifera) was overexpressed
in the flower. In recent studies, such as that carried out in Jatropha curcas [43], the role of
cytokinins in flowering development, especially in the pistil, is confirmed. According to
fruit development in the comparison between fruit 7 d and fruit 120 d, XP_010924477.1
(probable inositol oxygenase (Elaeis guineensis)) increased, which could be related with
the ascorbic acid biosynthesis included in a recent work in tomato [44]. In addition,
in the present study XP_016207777.1 (calcium-binding protein CML39 (Arachis ipaensis))
was up-regulated by the fruit 160 d. Nowadays, there are evidences that the interaction
between calcium and phytohormone signals play an important role in fruit development
and ripening; however, the mechanisms that are triggered are still unclear [45].

A work with a similar approach has been recently published in Actinidia chinensis [46],
where the authors combined the transcriptomic studies with an annotated genome. In this
study, the authors investigated gene expression patters in different tissues by an electronic
fluorescent pictograph (eFP) browser. Thus, they have been able to identify TFs correlated
with floral bud and flower development and with fruit development, maturation and
ethylene-induced fruit ripening. Therefore, the current work and the mentioned-above
both make a great contribution to the plant community especially in Actinidia chinensis.

4.4. Protein—Protein Interaction Network

The mechanisms that control flowering development, fruit and senescence are con-
nected and controlled by different genetics context, which are influenced by the environ-
ment [47]. Moreover, the reproductive process is the one that happens more suddenly and
may be the most environment-dependent, due to the plants that switch from vegetative
growth to flower development only when there are favorable environmental conditions [48].
This fact is of great interest, since the continuity of the species depends on it. The plant
progression from vegetative growth to reproductive is called, by some authors, floral
transition and this process is not only controlled by a single gene but by a complicated
gene network [49].

The obtained results in the protein—protein analysis of the comparison between the
shoot and leaf showed the great importance of the plant circadian rhythm affecting the
kiwi leaf development. The duration of the day is one of the main factors that induces leaf
and floral development, and after a lot of effort and meticulous work in the last decades
the flowering locus (FT) was identified [50]. Therefore, in this complex context, in order
to elucidate some essential pathways and candidate proteins in silico involved in the
development plant tissue process such as leaf, flower, and fruit, the dynamics of the PPI
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networks through the gene expression profile could be a useful tool [51]. The metabolism
and physiology of the majority of organisms are changing between day and night which is
traduced in the biological circadian clock [52].

The obtained result through the PPI network seems to indicate that the circadian
rhythm is mainly affecting during the leaf development process, although nitrogen and
sulfur metabolism were also important pathways involved in this process. Plants requires
nitrogen in high amounts in order to produce sugars or organic acids [53], while sulfur
metabolism is an event mainly stimulated by photorespiration [54]. This process occurs in
the leaf mesophyll in the presence of light and high oxygen concentrations. In this study,
photosynthesis is highly significant in the leaf development. In this sense, Abadie et al. [54]
indicated that sulfur assimilation is stimulated by photorespiration and excessive photo-
synthesis could be detrimental to plant cell sulfur nutrition.

The development from flower bud to flower is the most important event occurring
in the plant’s life and in this context of the floral transition there were many pathways
involved, including the gibberellin pathway and environmental conditions such as the
light [55]. In our study, in the flower bud vs. flower comparison, some of the most
significant clusters were the biosynthesis of secondary metabolites, phenylpropanoid
biosynthesis, or cysteine and methionine metabolism. However, we paid special attention
to the enzyme mevalonate kinase (VIT_14s0128g00330.t01), which is the only connection
between both of the clusters. Mevalonate kinase is an enzyme that catalyzes the phospho-
rylation of mevalonate to produce mevalonate 5-phosphate, and a Northern blot analysis
in Arabidopsis showed that this enzyme is accumulated mainly in the roots and inflores-
cences [56]. Previous studies in Arabidopsis pointed out that in the plant cell, the mevalonate
or isoprenoid pathway partly leads the biosynthesis of isoprenoids such as gibberellins [25].
Thus, in spite of this enzyme being in silico identified, this could be considered as one of
the main enzyme’s candidates involved in the interconnection between phenylpropanoid
biosynthesis, and cysteine and methionine metabolism.

Finally, regarding fruit development, in the comparison of fruit development (7 vs.
50 days), there were no clearly defined clusters although the most significant pathways
were porphyrin and chlorophyll metabolism, biosynthesis of secondary metabolites, photo-
synthesis, or cysteine and methionine metabolism. Cysteine is a reduced sulfide molecule
and is therefore related to the sulfur metabolism mentioned above in the vegetative devel-
opment of the leaves. Therefore, this molecule plays an important role in redox signaling
and it is synthesized through the incorporation of sulfide into O-acetylserine catalyzed
by O-acetylserine(thiol)lyase (OASTL), which is present in mitochondria, chloroplasts,
and cytosol. In addition, cytosolic sulfide and chloroplastic S-sulfocysteine have been
shown to act as signaling molecules by regulating autophagy and protecting photosystems,
respectively [57]. Therefore, the result obtained is fully in concordance with the initial stage
of fruit development.

In the last steps of fruit development, analyzing the comparisons in fruit develop-
ment (7 d vs. 120 and 7 vs. 160 d), the most significant events included those related
to RNA polymerase, pyrimidine and purine metabolism, basal transcription factors and
nucleotide excision repair. RNA polymerases are holoenzymes that contain catalytic and
regulatory/non-catalytic subunits involved in template selection, initiation, elongation,
transcriptional fidelity, termination, and RNA processing [58,59]. On the other hand, purine
and pyrimidine nucleotides played an essential role in the division and elongation of tissues
by acting as basic components of DNA in the nucleus and as transcription components [60].
In addition, a basal transcription factor 3 (BTE3) has been reported to play a significant
part in the transcriptional regulation linked with eukaryotes growth and development [61],
which could be related to the last stages of the fruit development in kiwi fruits.

5. Conclusions

In this study, high-quality tissue-specific de novo transcriptomes were developed
identifying the main differentially expressed genes linked to vegetative growth (comparing
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shoot vs. leaves), flower (flower bud vs. flower) and fruit development (fruit at 7, 50, 120
and 160 days) in Actinidia chinensis var. deliciosa cv. "Hayward’ fruits. This information
is of special interest in species, such as kiwifruit, with a wide ploidy level variability.
The measured metrics and scores of the transcriptome assembly proved to have enough
quality to be a putative database of transcripts. In addition, the biological approach for the
transcriptome assembly ensures that the assayed transcriptomes have high-quality and an
important number of ultra-conserved proteins. Around 35% of the contigs were annotated,
although around of 65% of the contigs did not match with any protein, indicating a large
number of sequences not associated to the functional annotations. This work has also
provided valuable information, identifying 22,962 exclusive genes for all tissue comparisons
and allowing the association of identified proteins with different biological processes and
molecular functions involved in the development of vegetative and reproductive tissues.
UDP-glycosyltransferase 84]2 in the shoot and leaf comparison, cytokinin dehydrogenase
9-like in the flower bud and flower comparison, or inositol oxygenase and calcium-binding
protein CML39 in the fruit development, seem to play an important role. In addition,
circadian plant rhythm, and sulfur and nitrogen metabolism were identified as main
pathways involved in leaf development. Mevalonate kinase was one of the main enzymes
involved in the interconnections between phenylpropanoid biosynthesis and cysteine
and methionine metabolism in the flower bud vs. flower comparison. On the other
hand, porphyrin and chlorophyll metabolism, biosynthesis of secondary metabolites,
photosynthesis, or cysteine and methionine metabolism were the most important pathways
involved in the first step of fruit development, whereas RNA polymerase, pyrimidine
and purine metabolism or basal transcription factors were mainly related to the last fruit
development stages. The obtained results provided new tissue-specific information from
the transcriptomic and proteomic point of view for further molecular studies in kiwifruit.
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