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ABSTRACT This paper proposes a new framework to detect, segment, and estimate the localization of the
eyes from a periocular Near-Infra-Red iris image under alcohol consumption. This stage will take part in
the final solution to measure the fitness for duty. Fitness systems allow us to determine whether a person is
physically or psychologically able to perform their tasks. Our segmentation framework is based on an object
detector trained from scratch to detect both eyes from a single image. Then, two efficient networks were
used for semantic segmentation; a Criss-Cross attention network and DenseNet10, with only 122,514 and
210,732 parameters, respectively. These networks can find the pupil, iris, and sclera. In the end, the binary
output eye mask is used for pupil and iris diameter estimation with high precision. Five state-of-the-art
algorithms were used for this purpose. A mixed proposal reached the best results. A second contribution is
establishing an alcohol behavior curve to detect the alcohol presence utilizing a stream of images captured
from an iris instance. Also, a manually labeled database with more than 20k images was created. Our best
method obtains a mean Intersection-over-Union of 94.54% with DenseNet10 with only 210,732 parameters
and an error of only 1-pixel on average.

INDEX TERMS Biometrics, fitness for duty, segmentation, iris, alcohol.

I. INTRODUCTION
The concept of biometrics is the set of intrinsical and behav-
ioral characteristics that can be used to verify the identity of
an individual. All human beings have unique morphological
characteristics that differentiate and identify us, the shape of
the face, the geometry of parts of our body, like hands, our
eyes, and perhaps the best known, the fingerprint [1], [2].

Iris recognition systems have been used mainly to rec-
ognize the cooperative subjects in controlled environments
for borderline demographics and to gain access to secure
areas using near-infra-red capture devices [2]–[4]. With the
improvements in iris performance and reduction in the cost of
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iris acquisition devices, the technology will witness broader
applications and may be confronted with newer challenges.
One kind of this new challenge is identifying if a captured
subject is under alcohol, drug effects, or even in sleep depri-
vation and sleep restriction conditions. This area is known
as ‘‘Fitness for Duty’’ [5], [6] and allows us to determine
whether the person is physically or psychologically able to
perform their task. [6]. This system delivers an answer based
on the threshold of ‘‘fit’’ and ‘‘unfit’’ statistical people behav-
ior threshold. It does not have a relationship with the auto-
matic alcohol test that measures alcohol percentage on blood.

In state of the art, various performance tests have been
proposed as FFD, including psycho-motor tasks, temperature
sensor, electroencephalography, finger tapping, smart band
wrist, in-cab monitoring, among others [7], [8].
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It has been reported sensitivity problems to detect vari-
ous job-related impairments. Also, some critical issues have
been shown related to the type of device response and the
possibility of impersonation. For instance, the wrist smart-
band can be shared with another partner or removed to avoid
identification. Therefore, including an identification process
is crucial to detect the FFD for each person. Biometrics
modalities such as irismay help to identify theworkerwithout
removing the personal protection devices.

Several stages are required to build a new FFD device
based on iris behavior to study alcohol’s reaction, one of them
is the semantic segmentation explored in this paper (etp). The
whole process consists of the followings steps:

• Periocular NIR image acquisition(etp).
• Eyes detection (etp).
• Iris and pupil segmentation (etp).
• Iris recognition.
• FFD classification (fit/unfit).

In order to create a framework to understand the iris behav-
ior and segment iris under alcohol presence, many algorithms
are necessary to capture N frames, detect both eyes, and seg-
ment the images to localize the pupil and the iris to measure
the changes over time. To segment this image is not a trivial
task because the method needs to be efficient in the number of
parameters to be implemented in a regular iris sensor. Most of
these sensors aremobile devices self-integrated with a limited
size of memory. See Figure 2.

Recently, automatic pupil segmentation is attracting many
researchers to find the precise measurement of the pupil
radii to apply to biometric analytics as part of medical,
entertainment applications, virtual reality lenses, among
others [9], [10]. In the biomedical field, there is a vital
requirement in developing precise and automatic segmenta-
tion systems to capture saccade velocity, latency, the diameter
of the iris, and pupil [11]–[13]. In this context, pupil mea-
surement has been used to assess several cognitive functions,
including fatigue, depression, and others. [14]. The iris under
alcohol shows very large or small pupil sizes compared to
the traditional iris in average condition. Therefore, the default
parameters segmenter are not valuable for a proper segmen-
tation of the eye under alcohol effects.

The paper aims to develop an efficient framework to
locate and segment the iris and pupil in multiple frames
in subjects with and without alcohol consumption. This
work is ongoing research whose main objective is to estimate
and extract the most relevant metrics from the iris and pupil
to identify and know the behavior changes in the iris under
alcohol influences. See Figure 1.

The iris alcohol segmentation present the following chal-
lenges:

• The people react differently with the same quantity of
alcohol; some present pupil dilation, and other pupils
constrict.

• The average constriction size of the pupil in alcohol
presence is over the normal ranges. These changes do

not allow used parametrical segmentation methods such
as Osiris or commercial software.

• Most of the time, people present semi-closed eyes. This
feature is an extra difficulty.

• In the presence of alcohol, the volunteer in front of
the sensor shows an involuntary disbalance. This adds
blurring to the captured images.

The article is organized as follows: Section II summarizes
the related works on alcohol and semantic segmentation.
The database is explained in Section III. The Eye detection
methods proposed are in Section IV. The Iris and pupil
localization methods are in Section V. The experimental
framework and results are presented in Section VI, Ablation
study is presented in Section VII and we conclude the article
in Section VIII.

II. RELATED WORK
A. ALCOHOL DETECTION
The influence of alcohol, in particular in iris recognition,
was reported by Arora et al. [13]. They presented a prelim-
inary study of the impact of alcohol on an Iris recognition
system. The experiments were performed on the ’Iris Under
Alcohol Influence’ database. Results show that when com-
paring pre and post-alcohol consumption images, the overlap
between mated and non-mated compare distance score distri-
butions increases by approximately 20%. These results were
obtained using a relatively small database (220 pre-alcohol
and 220 post-alcohol images obtained from 55 subjects). The
subjects consumed about 200 ml of alcohol (with a 42%
concentration level) in approximately 15 minutes, and the
images were captured 15-20 minutes after alcohol consump-
tion. This work suggests that about one in five subjects under
the influence of alcohol may be able to evade identification
by iris recognition systems.

Czajka [11] applied Hough transform operating on direc-
tional image (estimation of an image gradient delivering both
a gradient value an its direction). After modeling the pupil
size, It was shown as function of number of frames, repre-
senting the dynamic of pupil. In this way the pupil dynamic
is modeled extracting liveness features.

Kumar and Passi [15] used a series of steps for prepro-
cessing eye images based on replacing pixels over threshold-
ing, median, Gaussian filtering, and a Canny edge detector.
Using these steps, they performed segmentation over the
Casia v3 and IITD datasets. This dataset does not present
alcohol examples.

Bernstein et al. [16] used spectrogram images of size
224 × 224 from audio wave-forms to identify the presence
of alcohol with Convolutional Neural Networks (CNN) and
wearable sensors. They used 80 training images (40 positive,
40 negative) and 20 test images (10 positive, 10 negative) and
achieved a test accuracy of 60% with Caffenet and 60% with
Alexnet.

Koukiou and Anastassopoulos [17] proposed the use of
thermal images to identify individuals under the influence of
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FIGURE 1. Block diagram of the proposed segmentation framework.

alcohol. They have shown that changes in the eye temperature
distribution in intoxicated individuals can be detected using
thermal imagery [18].

B. SEMANTIC SEGMENTATION
Semantic segmentation is the process of identifying each
object in an image. This process is performed pixel by pixel
to evaluate and assign a label to each pixel [19].

State-of-the-art algorithms such as semantic segmenta-
tion have been mainly trained to localize very complex
objects from cities such as cars, buildings, and people and
a few in biometric gaze applications. Even when we find
more than one class object in the same image. Traditional
pre-trained implementation models reach meager results
when directly applied to eye segmentation and gaze estima-
tion with alcohol presence. Another limitation is that most
state of the art segmentation algorithms are based on deep
convolutional networks with a large number of layers and
parameters [20]–[22].

The U-Net [23] is a convolutional network architecture
for the fast and precise segmentation of images. This net-
work comprises two stages: the encoder (downsampling) and
decoder (upsampling) paths using successive convolutional
layers. The downsampling stage extracts the feature informa-
tion from the images. The upsampling operators recover the
image by replacing the pooling operators. Hence, these layers
increase the resolution of the output. The high-resolution
features from the path are localized and combined with the
upsampled result. Successive convolution layers can then
learn to assemble a more precise output based on this infor-
mation. This U-Net network was improved in order to reduce
the number of parameters using a pre-trained MobileNet
network as encoder [24]. This kind of network has been used
to perform semantic segmentation onmedical images and iris.

Chen et al. [21] proposed a complex DeepLabv3+ as an
extension of the previous DeepLabv3 by adding a simple yet
effective encoder module to recover the object boundaries.
The rich semantic information is encoded in the output of
DeepLabv3 with atrous convolution allowing to control the
density of the encoder features depending on a budget of
computational resources. Furthermore, the decoder module
allows detailed object boundary recovery. DeepLabv3+ is
a cutting-edge architecture for semantic segmentation. This
architecture can do multi-scale processing without increasing
the number of parameters. DeepLabv3+ adds an intermediate
decoder module on top. After processing the information via
DeepLabv3+, the features are then up-sampledN times. This
network improves the data load from the end of the network

and provides a shortcut path from the feature extraction
front-end to the near future of the network. This kind of
network has been used to perform semantic segmentation on
Virtual reality lens.

Badrinarayanan et al. [20] proposed the first Encoder-
Decoder architecture for segmentation tasks called SegNet.
SegNet has three main blocks: encoder, hidden vector, and
decoder Network, followed by a pixel-wise classification
layer. The encoder part will convert the input image into
a single-dimensional vector (hidden vector). The decoder
network will convert the hidden vector into the correspond-
ing semantic segmentation. This kind of CNN was used to
perform sclera segmentation onMulti-Angle Sclera Database
(MASD) [25]. Hassan et al. [26] used the SegNet to segment
pupil, iris, and sclera over several databases.

The Fully Convolutional Neural Networks (FCNN) are the
natural evolution of the CNN for segmentation tasks [27],
[28]. This kind of neural network delivers an image of
equal size as the input image containing the segmented
classes. To reach that goal, this adds an upsampling layer.
Bezerra et al. [28] perform iris segmentation used the follow-
ing databases: Casia v4, IITD, CrEye-Iris.

The DeepVOG [29] is a convolutional layer with 10× 10
filters which output feature maps with the same size of
the input by appropriate padding. The down-sampling path
reduces the size of the feature maps and increases the
size of receptive fields of convolutional filters each stage,
such that more complex features in a larger context can be
extracted. DeepVOG was developed as a prerequisite for
many eye-tracking and Video-OculoGraphy (VOG) methods
for accurate pupil localization. DeepVOG is based on Fully
Convolutional Neural Network (FCNN). The output simulta-
neously enables to perform pupil center localization, elliptical
contour estimation, and blink detection, all with a single
network and with an assigned confidence value, at frame
rates above 130 Hz on commercial workstations with GPU
acceleration. Pupil center coordinates can be estimated with
a median accuracy of around 1.0 pixel, and gaze estimation
is accurate to within 0.5 degrees.

Valenzuela et al. [19] proposed an efficient DenseNet
based on DenseNet56 and compared several implemen-
tation in number of parameters, scores and complex-
ity using DeepLabv3, UNet, Mask-RCNN, DenseNet-56,
DenseNet101 and, DenseNet10. These models were trained
using the OpenEDS database.1 The goal was to achieve an
accurate and efficient segmentation algorithm for NIR eye
Images taken fromVirtual Reality (VR) lenses.Models with a

1https://research.fb.com/programs/openeds-challenge/
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FIGURE 2. Graphics demonstration of all the stages used in the proposed framework method based on DenseNet10 and Eye-tiny-yolo.

low number of parameters were obtained. No alcohol images
were used in this work. As a continuation of this work, this
current paper is based on semantic segmentation ofNIR under
alcohol effect. The problem that we try to solve is different,
and the previous version of DenseNet10 did not perform well
with alcohol images. The new version of DenseNet10 used
in this paper was trained from scratch with a new module
of three levels of Data-Augmentation (basic, medium, and
aggressive). Three layers of Transition down (TD) and three
layers of Transition up (TU) were used. A new set-up value
of K (grown rate factor) was selected K = 5. The best results
were reached with an aggressive level of Data-Augmentation.
The best parameters are described in the append section,
Tables 6, 7 and 8.

Huang et al. [30], [31] proposed a semantic model of
full-image dependencies over local feature representations
using light-weight computation and memory. They introduce
a criss-cross attention module (CCNet). The CCNet collects
contextual information in horizontal and vertical directions to
enhance pixel-wise representative capability. The CCNet can
harvest the contextual information of its surrounding pixels
on the criss-cross path through a novel criss-cross attention
module for each pixel. By taking a further recurrent operation,
each pixel can finally capture the long-range dependencies
from all pixels.

It is essential to point out that previous work did not report
results with alcohol presence.

III. DATABASES
For this paper, a new database of iris images under alcohol
presence was created. Traditional databases available to test
iris segmentation have not present images with iris captured
under alcohol consumption on NIR or Visual Spectrum [32].
This new database was captured using two different iris NIR
sensors: Iritech Gemini, and Iritech Venus.2 Each image has
a size of 1280 × 760 pixels. Example of images are shown
in Figure 3.

Two-hundred and sixty-six subjects were included in the
experiments under alcohol effect and 765 subjects with no

2https://www.iritech.com/products/hardware/gemini-camera

FIGURE 3. Example of binocular periocular images taken directly from
NIR sensor at 30 cm.

TABLE 1. Database description. Time is reported in minutes.

alcohol. Each volunteer was requested to step on a floor mark
(30 cm from the camera for Gemini and 50 cm for Venus
Iritech capture devices) and to look at the NIR capture device
after having consumed 200 ml of alcohol according to the
protocol explained as follows:

The data capture process was organized in 5 sessions,
according to the following protocol:

The room temperature and lighting were controlled and
kept constant during the data capturing process. A total
of 100 images(average) per eye were captured for each indi-
vidual per session.

Overall a total of 21,315 subject-disjoint images were used
to train our proposed method. All the images were manually
labeled using the VIA tools [33]. For left and right eyes, pupil,
iris, and sclera were labeled. This was a very demanding and
time-consuming process that took over one year. See Figure 4.

After the eye detector was applied to separate left and
right eyes, the images were divided into Train (70%), Val-
idation (20%), and Test (10%). That is 14,918 (alcohol:
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FIGURE 4. Example images with both eyes manually labeled.

TABLE 2. Division database on train, validation test subsets.

FIGURE 5. Y-axis shows Pupil-Iris Ratio for each session separately.
X-axis show the time consumption of alcohol. From left to right: 0, 15, 30,
45 and 60 minutes.

13,126, and 1,790 No_alcohol), 4,263 (alcohol: 3.725, and
528No_alcohol), 2,134 (alcohol: 1,874, and 256No_alcohol)
images respectively. The subset separation takes into consid-
eration the amount of real levels of alcohol and non-alcohol
cases in a working environment. On average, 10% of workers
present some level of alcohol consumption. See Table 2.

The manually labeled pupils contain pupil radii ranging
from 7 to 18 pixels with an average radio of 9 pixels, mak-
ing both databases complicated for performing segmentation
over the pupil.

Figure 5 shows a statistical representation of each group
present in the dataset according to pupil-iris ratio. In this
database, no gender analysis was performed.

As we mentioned before, a stream of images containing
both irises were captured - 100 frames in average. This
process, which takes five seconds, was repeated for all the
participants. During that time, the aperture of the subject’s iris
adjusts to NIR light changes of the sensor’s LEDs. This veloc-
ity change, measured across all the frames, helps estimate
alcohol’s influence on the individuals since alcohol directly
affects the velocity of iris adjustment to direct light.

A. DATA AUGMENTATION
An aggressive Data Augmentation (DA) was performed
using the imgaug library [34]. DA was applied using
non-geometrical transformations organized on three groups:
Common, Noise/Blur, Image corruption. The parameters for

FIGURE 6. Example of aggressive data augmentation from semantic
periocular NIR. In red the eye-yolo detection.

eachmodification are reported in the append section. Figure 6
shows examples of the output images.

IV. EYE DETECTION IN PERIOCULAR IMAGES
The capture process is cooperative and delivers periocular
images with both eyes on it. The images are usually not cen-
tralized because of the effect the alcohol had for the volunteer.
On average, one hundred frames are captured per subject.
This capture process takes five seconds. Then, an eye detector
was implemented in order to find both eyes in the images
and crop them to be segmented in a later step. A traditional
eye detector based on haar-cascade [35] was evaluated as a
baseline and discarded because it presents a deficient perfor-
mance (78,60% of accuracy) and also needs a left and right
eye version. These results are not reliable for our purpose.
In the end, a new version of eye detector based on tiny-yolo
was trained to detect simultaneously both eyes with high
precision, called Eye-tiny-yolo. This new version can detect
the eyes on periocular NIR images.

A. EYE DETECTORS
You Only Look Once (YOLO) [36] is a state-of-the-art
detector and predicts multiple bounding boxes per grid cell.
At training time, we only want one bounding box predictor
to be responsible for each object. We assign one predictor
to be ‘‘responsible’’ for predicting an object-based (Eye)
prediction with the highest current Intersection Over Union
with the ground truth. This metric leads to specialization
between the bounding box predictors. Each predictor bet-
ter predicts specific sizes, aspect ratios, or object classes,
improving overall recall. However, the pre-trained tiny-yolo
did not perform well for our proposed method based on
periocular NIR eyes images. This result is because no eye
images are used while training it. Therefore, regular tiny-yolo
implementation was retrained from scratch using images of
size 416 × 416, the Learning rate of 1e − 3, Batch size
of 32, Optimizer Adam, custom loss function, and Data-
Augmentation (DA). A dataset of 1,400 periocular images
(both eyes are present) was divided into 1,120 for the train
and 380 for the test. All the images are manually labeled.
The performance improved substantially; the two eyes are
detected simultaneously in bounding boxes of different sizes.
Therefore, they are all resized to 320× 320 as an input to the
segmentation stage. This new version can detect both NIR
eyes simultaneously and is called ‘‘Eye-tiny-yolo’’.
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FIGURE 7. Example of Eye-tiny-yolo detection with both eyes
automatically detected. The nostrils also represent a challenge in this
image because the segmenter could have confused it with pupils. The
green squares show a correct detection of the left and right eyes.

Figure 7 shows a high confidence detection of both eyes
in the same picture simultaneously. It is not unnecessary to
pass the image two times to detect the left and right eye.
This method reached 0.9860 +/− 0.021 of IoU and standard
deviation. See Table 3.
Table 3 shows the performance of Eye-tiny-yolo with

different thresholds. The state-of-the-art value reported is a
threshold of 0.50. The performance of Eye-tiny-yolo was
evaluated by comparing the coordinates (x,y) of the ground
truth for each eye and the detection coordinates of the Eye-
tiny-yolo with several thresholds as is shown in Table 3. For
all the segmenters, DeepVOGv2, DenseNet10, and CCNet,
the intersection Over Union (IOU) was reported according to
the state of the art.

V. IRIS AND PUPIL LOCALIZATION
Once both eyes are isolated, we employ convolutional neu-
ral networks to find a mask that segments the iris and the
pupil. The networks used in this paper are described in the
Section VI. However, those networks only output a mask that
highlights pixels that belong to the iris and the pupil in the
images. In order to use this information, we employ pupil and
iris localization algorithms, which find the centers and the
radii of the circles that best adapt the pupil and iris contours,
using the mask as input. The ratio between the pupil and
iris radii is essential to assert alcohol consumption [13]. This
section describes the localization algorithms that were used
in this study as follows:

A. MASS CENTER
This localization method is straightforward and effective.
First, a binary image of the pupil and iris is complemented
using the XOR operation. As a result, a contour area is
obtained for the pupil and iris. Afterward, themost significant
area is filled in order to search and estimate the boundaries
of the iris and the pupil. This method explores the vertical
and horizontal boundaries (edges) of the pixels. With this
information, we calculate the radii of the pupil and the iris
separately, as shown in Figure 8.

TABLE 3. Performance of Eye-tiny-yolo with different threshold levels
and the standard deviation (Std).

B. LEAST-MEAN-SQUARES BASED SEGMENTATION
This localization algorithm is conceived to be as lightweight
as possible. A binary and morphological operations [37] were
used instead of computationally expensive algorithms that
have been applied in traditional approaches, such as Canny
edge detection, the Hough transform, and RANSAC [2],
[38]–[41]. First, A single-channel prediction of the iris region
is computed. Then, it was isolated the iris region employing
a hole-filling operation [37], which removes the pupil. The
pupil is then separated by applying a XOR operation between
the raw prediction and the iris region. After that, the contour
of the iris and the pupil regions was obtained. For this pur-
pose, the XOR operation between the binary image and the
erosion of the same binary image was used, thus recovering
only the removed pixels during the erosion operation. In the
next step, horizontal lines from the iris contour, using Sobel
filters [37] were removed to eliminate eyelids and eyelashes.
Finally, the coordinates of the contour pixels and estimation
of the best fitting circle using a Least-Mean-Squares (LMS)
algorithm [37] was calculated. As a result, the coordinates of
the center and radius of both pupil and iris are obtained. See
Figure 5.

C. MIXED APPROACH
The ’’Mixed Algorithm’’ is a combination of the previous
methods (Mass Center and LMS). First, the erosion algorithm
is applied to find boundaries. After that, the Mass Center is
used to find the pupil circle. If the pupil circle was found
correctly, the LMS algorithm is used to find the iris circle.
However, when eyelids intersect the pupil, the Mass-Center
algorithm fails to report a pupil. In such cases, the Hough
transform is applied to find both pupil and iris circles. The
combination of these three algorithms allows us to improve
the results.

VI. EXPERIMENTS AND RESULTS
A. METRICS
This section describes all the metrics used to evaluate the
whole framework: eye detection, segmentation stage, local-
ization of the iris and pupils. Figure 2 shows the results of the
framework with all stages applied.

B. INTERSECTION OVER UNION
In order to evaluate Eye-tiny-yolo detector, the Intersection
over Union (IoU) metric was used. The IoU measures the
overlap between two boundary images. This is used to mea-
sure how much the boundary predicted by the algorithm
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FIGURE 8. Mass center framework implementation. letters a) Represents the Iris track and b) Represent Pupil track.

FIGURE 9. Least-Mean-Squares framework implementation.

overlaps with the ground truth (the real object). Traditionally,
state-of-the-art datasets reported an IoU threshold equal to or
greater than 0.5. Figure 10 show the graphical effect to apply
IoU. The IoU is calculated using the following equation:

IoU =
A ∩ B
A ∪ B

(1)

On the other hand, for the evaluation of the segmenta-
tion networks we use the bit-wise version of IoU. This IoU
assesses how much of the predicted binary mask correlates
with the ground-truth mask pixel by pixel. The following
equation is used for its calculation:

IoU =

∑
and(A,B)∑
or(A,B)+ c

, (2)

where A and B are binary images, and c is a small constant
that prevents the IoU from taking an infinite value when there
is no overlap between A and B.

C. EXPERIMENT 1:OSIRIS
As a baseline, the Osiris software was used to segment the
pupil and the iris from alcohol images. However, the resulting
segmentation performancewas low. The alcohol images show
the size of pupil very large or small compared to traditional
images in normal condition. Therefore, the default parameters
are not valuable for the proper segmentation of the image.
Figure 11 Show examples of wrong segmentation for alcohol
images. The method fails in both pupil and iris localization.

FIGURE 10. A visual example of intersection over union and bitwise
quality metric. The dashed red box is the predicted detection,
the continuous green box is the ground truth, and the gray area is the
overlap between the two. The example shows three different IOU scores
from left to the right, with the rightmost being the best. Based on [42].

D. EXPERIMENT 2:DeepVOG
Two experiments were developed for DeepVOG. For the
first one, pre-trained models were used. For the second one,
a DeepVOGv2 was trained from scratch. DeepVog is only
focused on gaze estimation and pupil estimation. The input
images of the original version used video with a frame
rate above 130 Hz of 320 × 320 × 3 image size. Our
DeepVOGv2 implementation can segment four classes: Iris,
the pupil, left and right sclera. DeepVOGv2 was trained from
scratch with a low frame rate of images (less than 20 fps)
using alcohol presence images of 640×480×3 pixels, Adam
optimizer with a learning rate of 1e-5 during 400 epochs.
A batch size equals 8 with a step size of 64 and an input shape
of 320 × 240 × 3. An additional convolutional layer with
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FIGURE 11. Example of wrong segmentation under presence of alcohol
for traditional Osiris software. The green circle represents the iris
boundaries. Red color represents the mask area detected by Osiris. The
software masks all the areas not belonging to the iris texture(such as
highlights, eyelish, eyelashes).

TABLE 4. Summary of the segmentation methods under alcohol
influences. TFL: represent transfers learning models.

a filter of 3 × 3 and Tversky Loss was added to generalize
the loss function. The Tversky index addresses data imbal-
ance and achieves a better trade-off between precision and
recall in iris images of convolutional deep neural networks.
In addition, we specify our camera parameters such as focal
length becausewe used a different capture devicewith a lower
resolution and fps.

The DeepVOGv2was also tested with the same database to
check their performance under a complex scenario (very low
pupil size radio). As we mentioned before, the database was
manually labeled. The coordinate allows us to crop the eyes
from the periocular images manually or automatically using
Eye-tiny-yolo.

For themanually cropped images, theywere cropped, split-
ting the 1280×760 image into two images of 640×480 pixels;
each one of them has one eye. The second cropping was made
using Eye-tiny-yolo. The output image was resized to its
original size and placed again in a black image of 1280×760
to compute the IoU. Table 4 shows the results for DeepVOG
and DeepVOGv2.

FIGURE 12. Histogram of the distribution error for the pupil and the iris
center localization using DenseNet10 for the test dataset. Left. Show a
histogram of segmentation results with the error in pixels. Right. Box-plot
to describe the average error in pixels from pupil and iris centers.

FIGURE 13. Histogram of the distribution error for pupil and iris center
localization using CCNET for the test dataset.

E. EXPERIMENT 3:DenseNet10
One of the goals of this work is to reduce the layers and
the concatenation matrix’s size from the original imple-
mentation of DenseNet56 and DenseNet101. For doing so,
a feature extractor and two paths (Down-sampling and
one Up-sampling) were modified. The down-sampling path
has 1 Transition Down (TD), and an up-sampling course
has 1 Transition Up (TU) instead of the four Transitions
(2TD+2TU ) used in the traditional approach. For each
layer i, the number of feature maps k obtained is given by
the following equation: k0 + k × (i − 1), where k0 is the
number of channels in the input layer. In order to define
the best number of filters k to use in each layer, a grid
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FIGURE 14. Example of semi-closed challenging images. Left original images under alcohol consumption. Right: DeepVOGv2 results.

search from k = 3 to k = 15 was used. The best result
was obtained with k = 5. The following parameters were
used to train our DenseNet10: Epochs: 200, Batch Size: 32,
Optimizer: RMSprop, LR: 1e− 4, Decay: 1e − 6, Dropout:
0.15, with aggressive Data Augmentation and an Input shape:
320× 240× 3. This model was trained and tested from
scratch with a GPU-1080-ti with 32GB RAM.

Figure 12 shows a histogram with the distribution error
for pupil and iris localization with images under alcohol
presence using theDenseNet10method. The left figure shows
a histogram error rate of 1 pixel for the test set. The right
figure shows the plot distribution for the iris and pupil.

F. EXPERIMENT 4:CCNet
Criss-Cross attention network (CCNet) was used in this
approach to get an efficient model with a low number of
parameters. Our model was trained from scratch with the
presented dataset. The input image used is 360 × 240 × 1.
The best parameters used were: Batch size: 60, LR: 1e − 3,
Epochs: 200. This network was trained and tested with a 6GB
GTX-1660 GPU and 16 GB of RAM.

Figure 13 shows a histogram with the distribution error for
pupil and iris localization with images under alcohol presence
using CCNet model and the LMS algorithm.

Table 4 shows the comparison results among the
Osiris as a baseline, DeepVOG, DeepVOGv2, DenseNet10,
DenseNet10 with transfer learning (TFL-1), MobilNet-UNet,
Mobil-UNet with transfer learning (TFL-2), CCNet, and
CCNetwith transfer-learning (TFL-3). TheOsiris system per-
forms over 63.4 % Mean IoU, while the Original DeepVOG
obtained a 90.03%. DeepVOGv2 trained from scratch to
reach 91.30%. A fine-tuning was applied to DenseNet10,
MobileNet-UNet, and CCNet using pre-trained models in
order to explore the efficiency and the ability to segment eyes.
The results are competitive but do not improve the previous
version trained from scratch; even the parameters numbers

are reduced. The proposed method DenseNet10 trained under
the database alcohol presents better results 94,58 % of
Mean IoU.

Table 5 shows the results for the five different metrics. Tra-
ditional Hough and Mass center and three proposed metrics
to measure the center of the pupil and radii.

Figure 14 and Figure 15 show a set of challenging images
with semi-closed eyes under alcohol effects. Left: The images
in grayscale show semi-closed eyes where the pupil is not
visible and presents some eyelashes occlusions. Figure 14
Right: figures show the results for DeepVOGv2. This method
reaches good results, but it cannot deal very well with semi-
closed eyes. Figure 15 right, the DenseNet10 method shows
it can detect these semi-closed eyes with high precision.

G. EXPERIMENT 5: GRAND-MEAN
The grand mean [43] of a set of multiple subsamples is
the mean of all observations: each data point, divided by the
pooled sample size. This analysis type is used to analyze the
differences in the data series acquired between different trials.
The pooled mean allows to analyze the general behavior of
the studied group and therefore provides guidelines of the
‘‘waveform’’ for each group. Grand mean is widely used
in the processing of EEG signals, especially in cognitive
evoked potentials, since it allows to obtain the fundamental
component of the EEG signal using individual signals that
by themselves can be very noisy [44]. In this way, the grand
mean enables us to estimate the tendency. This tendency
capacity was used to analyze the measures obtained from
alcohol and no-alcohol images for each subject using the
pupil and iris radii.

Figure 16 shows the population behavioral study as such
a time sequence of 5 seconds of pupil size recordings. This
analysis was conducted to determine whether there were
differences in pupil radius size under alcohol and non-alcohol
conditions.
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TABLE 5. Comparison metrics for all the methods to estimate the localization of the iris and pupil using CCNet. The table shows the error in pixels and
the standard deviation. The best results are highlighted in bold.

FIGURE 15. Example of semi-closed challenging images. Left original images under alcohol consumption. Right: Our proposed
DenseNet10 results.

FIGURE 16. Grand mean curves of the alcohol (Red) and no
alcohol (Green) population.

In order to obtain the alcohol and non-alcohol curves,
the grand mean was estimated for the pupil radii at each time
instant for all the subjects in each one of the groups. Thus,
it is possible to define the baseline behavior curve for people
in the presence and absence of alcohol consumption. The
analysis shows a difference in pupil size’s temporal behavior,
with larger size (more significant dilation) in subjects under
the effects of alcohol. It is important to note that this analysis
shows the average behavior of the population, so it is not
possible to use it as a single variable to separate both groups.

FIGURE 17. Performance analysis using pruning drop weights.

VII. ABLATION STUDY
In order to study the true impact of individually trained
weights in the presented networks, we performed an Ablation
study. For this study, we pruned an amount of k-percent of
the best-trained network weights (CCNet and DenseNet10)
and evaluated the IoU in the 2.134 images of the test set.
The pruning level k was increased from 10% in steps of 10%
up to 100% of the weights were pruned. For CCNet and
DenseNet10, we employed the L1-unstructured pruning algo-
rithm of PyTorch, which eliminates the k-percent of weights
with the smallest activation values in the entire model. The
results of both networks are shown in Fig. 17. For CCNet
and DenseNet, up to 30% of the weights could be eliminated
without experiencing a major drop in performance since the
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TABLE 6. Aggressive-Common data augmentation parameters.

TABLE 7. Aggressive- Noise/Blur data augmentation parameters.

IoU would only decrease from 91,9% to 89,7% and 94.54%
to 91.0%, respectively. Therefore, the significance of those
weights is very low in the segmentation of iris images.

VIII. CONCLUSION
According to the results, it is possible to measure the alcohol
presence and changes in the behavior using the frame of the
eyes. The diameters of the pupil and iris present abnormal
sizes that confuse traditional approaches and do not allow us
to use a parametric method such as Osiris. The semi-closed
eyes and eyelashes present a real challenge to efficiency
and high accuracy about IoU. A mixed localization method
is more suitable for the measure; nevertheless, we reach a
high precision of less than one pixel. The number of param-
eters for the best semantic segmentation approach is also
relevant because it allows us to implement this framework
in a mobile device or commercial hardware. The proposed
system involves two efficient methods: CCNet andDenseNet.
DenseNet10 obtained a high score but a higher number of
parameters in comparison to CCNet. The database capture
for this project is also a significant contribution. This database

TABLE 8. Aggressive- Image corruption data augmentation parameters.

will be available for a research community by the end of 2022.
As future work, we need to study the feasibility of measuring
fitness for duties using a regular NIR iris sensor. The results
obtained show that it is possible to accomplish this goal.

APPEND
See Tables 6–8.
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