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A B S T R A C T   

Vegetation biomass is a globally important climate-relevant terrestrial carbon pool and also drives local hy
drological systems via evapotranspiration. Vegetation biomass of individual vegetation types has been success
fully estimated from active and passive remote sensing data. However, for many tasks, landscape-level biomass 
maps across several vegetation types are more suitable than biomass maps of individual vegetation types. For 
example, the validation of ecohydrological models and carbon budgeting typically requires spatially continuous 
biomass estimates, independent from vegetation type. Studies that derive biomass estimates across multiple 
vegetation or land-cover types to merge them into a single landscape-level biomass map are still scarce, and 
corresponding workflows must be developed. Here, we present a workflow to derive biomass estimates on 
landscape-level for a large watershed in central Chile. Our workflow has three steps: First, we combine field plot- 
based biomass estimates with spectral and structural information collected from Sentinel-2, TanDEM-X and 
airborne LiDAR data to map grassland, shrubland, native forests and pine plantation biomass using random forest 
regressions with an automatic feature selection. Second, we predict all models to the entire landscape. Third, we 
derive a land-cover map including the four considered vegetation types. We then use this land-cover map to 
assign the correct vegetation type-specific biomass estimate to each pixel according to one of the four considered 
vegetation types. Using a single repeatable workflow, we obtained biomass predictions comparable to earlier 
studies focusing on only one of the four vegetation types (Spearman correlation between 0.80 and 0.84; 
normalized-RMSE below 16 % for all vegetation types). For all woody vegetation types, height metrics were 
amongst the selected predictors, while for grasslands, only Sentinel-2 bands were selected. The land-cover was 
also mapped with high accuracy (OA = 83.1 %). The final landscape-level biomass map spatially agrees well with 
the known biomass distribution patterns in the watershed. Progressing from vegetation-type specific maps to
wards landscape-level biomass maps is an essential step towards integrating remote-sensing based biomass es
timates into models for water and carbon management.   

1. Introduction 

The regular assessment of vegetation biomass is important for 
quantifying carbon stocks, which contributes to an improved under
standing of carbon cycling (Houghton, 2005) and the sustainable use of 
biomass as energy-source and for forest inventory tasks (Koch, 2010). 
Before the background of climate change initiatives such as the Kyoto 
protocol, many countries have committed themselves to regular carbon 
stocks reporting, which often bases on biomass inventories (Patenaude 

et al., 2005). Hence, many countries regularly assess their vegetation (or 
at least forest) biomass at a national scale and, in some cases, within 
smaller spatial units. Biomass inventories often base exclusively on field 
plots, but additional information from remote sensing sources has been 
increasingly integrated to enhance spatial detail and inventory effi
ciency. Various remote sensing data types have been used to map 
vegetation biomass across a wide variety of ecosystems, including 
grasslands (e.g., Filho et al. 2019, Sibanda et al., 2015; Wang et al., 
2019; Yang et al., 2018a), shrublands (e.g., Chang et al., 2018; Li et al., 
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2017; Viana et al., 2012), agricultural fields (e.g., Wang et al., 2016), 
savannas (Forkuor et al. 2020) and several forest types (e.g., Dong et al., 
2003; Drake et al., 2003a, Lu et al. (2013)). In forests, structural infor
mation acquired by active sensor systems such as light detection and 
ranging (LiDAR) and Radar, often performs better than passive optical 
systems (Fassnacht et al., 2014). Furthermore, information on vegeta
tion structure obtained by optical photogrammetric approaches using 
structure-from-motion algorithms with spaceborne (e.g., Fassnacht 
et al., 2017; Persson et al., 2013) and airborne data (e.g., Messinger 
et al., 2016; Ota et al., 2015) has been successfully applied to estimate 
forest biomass at local to regional scales. These studies often reported 
similar accuracies as studies based on more cost-intensive LiDAR data. 
These photogrammetric approaches were also applied successfully for 
estimating biomass in grasslands and shrublands (Cooper et al., 2017; 
Cunliffe et al., 2016). However, for grassland and shrubland ecosystems, 
spectral information from spaceborne sensors alone can deliver 
reasonable biomass estimates (Yang et al., 2018a; Viana et al., 2012). 

Many earlier studies either focused on estimating biomass at local 
extents using fine grain remote sensing data or at large extents using 
coarser resolution data. Since the launch of the Copernicus programme 
of the European Space Agency, fine grain remote sensing data at 
approximately 10 m pixel size are globally available through the 
Sentinel-1, Sentinel-2 and TanDEM-X satellites. This creates new possi
bilities to obtain fine-grain biomass estimates over large areas. 

Most studies so far estimated biomass for only one vegetation type (e. 
g., grasslands or shrublands or forests), while studies assessing vegeta
tion biomass across a complete landscape remain sparse. One example is 
the study of Mitchard et al. (2009), who modelled aboveground woody 
biomass across a diverse African landscape using ALOS PALSAR Radar 
data. Likewise, Ji et al. (2012) assessed biomass of forests, shrubs, and 
herbaceous areas in the Yukon Flats ecoregion of interior Alaska using 
Landsat data. Baccini et al. (2004) estimated landscape-scale biomass in 
California using coarse spatial resolution remote sensing data combined 
with topographical and climatological data. 

The assessment of vegetation biomass across an entire landscape is of 
particular interest for some scientific and management applications. For 
example, biomass maps obtained with remote sensing techniques 
represent an independent source of validation (or comparison) for 
biomass estimates obtained with process-based ecohydrological model 
simulations. Usually, these simulations are validated using field plots or 
flux measurements (Yang and Zhang, 2016). Validations using field 
plots or fluxes have limitations in terms of their spatial coverage and 
remotely sensed biomass estimates offer a unique opportunity to over
ride those limitations. By improving the parameterisation of such eco
hydrological models, fine-grain, landscape-level biomass maps can help 
to refine important information related to the water use efficiency of the 
land cover types represented in the ecohydrological model. 

A second important application for landscape-level biomass maps is 
to provide information about the amount and distribution of carbon 
currently stored and produced in a defined area. This information can be 
valuable for carbon modelling and spatial planning processes related to 
rural development initiatives (e.g., related to sustainable biomass con
sumption as an alternative to fossil fuel-based systems). The importance 
of knowing the spatial aspects of biomass consumption and production 
(which can be provided by repeated remote sensing-based biomass es
timates) has been discussed, for example, by Wang and Wang (2016). 

Despite the apparent relevance of landscape-level biomass maps, 
remote sensing studies providing biomass estimates across multiple 
vegetation or land-cover types are still scarce and corresponding 
workflows have to be developed. Here, we present a workflow to esti
mate vegetation biomass at the landscape-level in South-Central Chile. 
We used structural information collected from airborne LiDAR and 
TanDEM-X sensors in combination with Sentinel-2 optical data to 
separately estimate vegetation biomass of four vegetation types (grass
land, shrubland, native forests, pine plantations). In a subsequent step, 
we created a land-cover classification of the four vegetation types to 

integrate all biomass estimates into a single landscape-level biomass 
map. We aimed to develop a straightforward, reproducible workflow 
leading to parsimonious models and robust biomass estimates. 

2. Study area 

The study area corresponds to the Cauquenes River watershed (1625 
km2), a tributary of the Maule river located on the eastern slope of the 
coastal mountain range in south-central Chile. The area is part of the 
Chilean Mediterranean biodiversity hotspot, and its native ecosystems 
are classified as endangered according to the IUCN Red List of Ecosys
tems (Alaniz et al., 2016). 

The climate is listed as warm-summer Mediterranean (Csb) in the 
Köppen classification. The watershed is classified as water-limited ac
cording to Budyko’s dryness index (Mcvicar et al., 2012). Native forests 
are mostly degraded secondary forests consisting of Nothofagus glauca 
and Nothofagus obliqua and broadleaved sclerophyllous species such as 
Cryptocarya alba, Quillaja saponaria, Lithraea caustica, Azara petiolaris, 
and Maytenus boaria. Acacia caven thorny trees mainly dominate the 
shrublands. We refer to the Acacia ecosystems as shrublands, as in our 
study area most of the Acacia trees have a growth habitus of shrubs and 
hardly reach heights above 3 m while the canopy cover is typically low. 

The slopes in the area range from 8 % to more than 50 % and reach a 
maximum elevation of 731 m above sea level. Alfisols and inceptisols 
soils with textures ranging from sandy loam to clay are commonly 
present in the area (CIREN (Centro de Información de Recursos Natu
rales), 1997). 

3. Methods 

We merged four types of field inventories and three types of remote 
sensing data to derive a vegetation biomass map for the study area using 
random forest models combined with an automated feature selection 
using the “Variable Selection using Random Forests” (VSURF) algorithm 
(Genuer et al., 2015). All processing was conducted in R (R Core Team, 
2017). The corresponding codes are available on GitHub (Supplemen
tary material 1). 

3.1. Field data 

Biomass reference data were collected during field campaigns in 
2018 and 2019. We focused on grasslands, shrublands, pine plantations, 
and native forests. All field data were collected in circular plots with a 
radius of 15 m. The plots’ size was selected to approximately match the 
spatial resolution of the applied remote sensing data. Table 1 shows the 
number of samples and summary statistics for each vegetation type. We 
attempted to spread the field sampling across the complete study area; 
however, due to quite severe accessibility restrictions (private, fenced 
land), some land-use types (particularly grasslands) were sampled at 
only a few clustered locations. Nevertheless, we ensured that a possibly 
large gradient of grassland situations - representing the watershed - is 
covered in the data. 

Grasslands – To derive reference biomass estimates for grasslands, 
we applied a plate-meter instrument along transects located in circular 

Table 1 
Summary of biomass estimates of field plots.   

Grasslands Shrublands Native 
Forests 

Pine 
Plantation 

Number of plots 49 49 54 67 
Median biomass [t 

ha¡1] 
3.15 11.48 157.09 100.92 

Min biomass [t 
ha¡1] 

0.51 4.45 30.57 7.81 

Max biomass [t 
ha¡1] 

6.57 18.64 433.77 450.61  
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plots with a radius of 15 m. We intersected the circular plots with four 
transects, one crossing the plot centre in North-South direction, one in 
East-West direction and two more with a 90◦ shift, resulting in 8 rays 
extending from the plot centre to the perimeter of the plot. Along the 
rays, we collected eight rising-plate-meter measurements in a 2 m in
terval and at distances from 1 m to 15 m from the circle. This resulted in 
a total of 8 * 8 = 64 rising-plate-meter measurements per plot. The 
rising-plate-meter measures the height of the compressed grass at a 
given location and hence its canopy resistance. The plate-meter mea
surements were transformed to biomass values in ton ha− 1 by calibrat
ing the height measurements with a set of destructive samples collected 
randomly across grassland areas close to our field plots. For the 
destructive samples, we first conducted the standard plate-meter mea
surements and noted the height. Then the plate of the plate-meter was 
used to define the area from which we completely harvested all the 
aboveground vegetation material. We transported the material in sealed 
bags to the laboratory and measured the dry weight of the collected 
plant material after drying the samples for 48 h at a temperature of 50 
◦C. Finally, we established an allometric equation between the obtained 
dry-weights and the plate-meter height measurements (Supplementary 
Material 2). This allometry (Spearman correlation = 0.76; RMSE =1.68 
ton ha− 1) was then applied to calculate the biomass estimates for the 
field plots by first deriving a mean biomass estimate for the plate-meter 
measurements and then scaling these values up to hectare scale using an 
expansion factor defined as:  

expansion factor =10,000 m2 / area of the plate-meter disc in m2.                 

Shrublands – For shrublands, we measured the biomass of shrubs and 
the surrounding grasslands independently. For shrubs, we followed the 
instruction of Milla et al. (2013) to estimate the biomass of Acacia Caven 
shrubs, which was by far the most frequently occurring species in the 
studied shrublands. We recorded the minimum and maximum crown 
diameter and height of all living shrubs in the 15 m plot. The minimal 
crown diameter and the height were measured in the field while the 
maximum crown diameter was manually measured from unmanned 
aerial vehicle (UAV; DJI Phantom 4) data. These three metrics were then 
fed into the allometric equation provided in Milla et al. (2013) to esti
mate the biomass of the individual shrubs in the plots. The individual 
estimates were subsequently summed and scaled up to ton ha− 1 values 
using the same extension factor as described for the forests below. For 
estimating the biomass of the grass patches between the shrubs, we 
followed the same approach as for the grassland plots but took mea
surements only along two transects instead of four. Biomass estimates 
for shrub and grass patches were then summed to derive the final 
shrubland biomass reference values. 

Plantation and native forests – In forested areas, we recorded the 
DBH, height, and species of all trees with a DBH greater than 5 cm. For 
each tree, we used a suitable species-specific allometric equation to 
derive the aboveground biomass via the tree volume (Drake et al., 
2003b; Milla et al., 2013) (Supplementary material 3). For individuals 
without available biomass or volume functions, we used functions pro
posed for species of the same genus; if there were no function for species 
of the same genus, the allometric function of the forest type Roble-R
aulí-Coihue was used (Gayoso et al., 2002). The transformation from 
volume to biomass was made from the specific density of the wood (Mg 
m− 3). Wood specific density data were obtained from the literature (e.g., 
Gutiérrez and Huth, 2012). Finally, we estimated the biomass values in 
tons ha-1 by summing the biomass of all trees in a plot and then multi
plying the sum with an expansion factor defined as:  

Expansion factor =10,000 m2 / pi*152                                                       

3.2. Remote sensing data 

To establish the random forest models, we derived predictor vari
ables from two cloud-free Sentinel-2 scenes (downloaded as surface 
reflectance product), acquired on the 29th of January 2019 (Chilean 
summer) and on the 23rd of July 2019 (Chilean winter). We included 
only the spectral bands with 10 and 20 m pixel size (10 bands in total), 
with wavelengths ranging from 490 to 2190 nm. We further included a 
digital canopy height model (CHM). The latter was created by sub
tracting a LiDAR-derived digital terrain model (5 m pixel size) from a 
TanDEM-X digital surface model (12 m pixel size) provided by DLR 
(Zink et al., 2014). The TanDEM-X scenes applied to create the DEM 
product were collected between January 2012 and August 2014. 
Furthermore, we included a slightly outdated LiDAR-based CHM with 5 
m pixel size acquired in 2009 (derived from a discrete point cloud with 
an average return density of approximately 5 pts m− 2). 

We derived additional spectral indices and biophysical canopy traits 
from the Sentinel-2 optical bands. The biophysical canopy traits 
included estimates for leaf area index (LAI), Chlorophylls, Canopy water 
content, Fraction of Photosynthetically Active Radiation (FPAR), and 
Fractional Vegetation Cover (FCV). Trait estimates were obtained using 
the SNAP toolbox of ESA (http://step.esa.int/main/download/snap- 
download/). Meanwhile, the vegetation indices included GNDVI, 
IRECI, NDI45, NDVI, SAVI, and TNDVI (see Supplementary Material 4). 
We further added topographic metrics derived from the LiDAR-based 
digital terrain model, including slope, aspect, the Topographic Water 
Index (TWI), Channel Network Base Level, Channel Network Distance, 
Convergence Index, Slope Length factor (LS factor), Plan Curvature and 
Profile Curvature. These variables relate to the morphometry and geo
morphology of the landscape. Thus, they are proxies for soil water 
retention and may indirectly relate to the amount of biomass an area can 
accumulate. 

The Grey Level Co-Occurrence Matrix (GLCM) textural metrics 
“mean”, “variance” and “dissimilarity” were calculated for all predictor 
variables with a window size of 3 × 3 pixels to include textural infor
mation. We selected a window size of 3 × 3 pixels as we assumed that, 
given the comparably coarse pixel sizes of the input data (5− 20 m), 
larger window sizes are unlikely to reveal textural vegetation patterns 
that are relevant for successfully estimating biomass. 

3.3. Landcover classification map 

We calculated a land-cover classification map containing our four 

Table 2 
Selected predictor variables for each vegetation type. Predictor variables col
oured grey were dropped after the GAM analyses.  
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target classes and a set of additional land-cover classes to provide the 
spatial context needed to obtain a landscape-level biomass map (see 
Table 3 for a full list of the considered classes). We included optical, 
topographic and topological information to derive the land-cover map. 
The optical information consisted of three Sentinel-2 composites of 
surface reflectance data corresponding to the whole year (median value 
of all available 2019 scenes), the summer season (median value for all 
scenes acquired between January 2018 and March 2019), and the winter 
season (median value for all scenes acquired between June and 
September 2019). We also included vegetation indices, Tasseled Cap 
transformations, and textural variables derived from the Grey Level Co- 
ocurrence Matrix (GLCM; Haralick et al., 1973). As topographic infor
mation, we derived macro- and micro-topographic indices using SAGA 
GIS (Conrad et al., 2015) with a digital elevation model (DEM; SRTM) 
obtained from the Google Earth Engine (Gorelick et al., 2017). Finally, 
we used distances to roads obtained from OpenStreetMap as topological 
information (OpenStreetMap contributors, 2017) (detailed list of pre
dictors in Supplementary Material 5). 

We used random forest (RF) classifications with Recursive Feature 
Elimination (RFE, Guyon et al., 2002) as variable selection to derive the 
land cover maps. RF was tuned using the standard ‘superClass’ function 
of the Rstoolbox R-package (Leutner et al., 2018). 

For training the algorithm, we used 5600 sample points obtained via 
visual interpretation of high-resolution imageries available from Google 
Earth Pro. We considered a total of 12 land-cover classes, including the 
four target classes and 8 additional commonly occurring classes (see 
Table 3 for number of samples per class). 

3.4. Remote sensing-based biomass models 

Biomass regressions - We used random forest regression models 
(Breiman, 2001) combined with the VSURF variable selection procedure 
(Genuer et al., 2015) to relate the biomass reference estimates collected 
in the field and the available remote sensing data. We additionally used 
generalized additive models (GAM) (Wood, 2011) for interpreting the 
relation of the selected variables with the response and for identifying 
remaining interrelated predictor variables. 

The variable selection algorithm VSURF first filters out unimportant 
predictor variables based on random forest mean variable importance 
values. Then, an iterative optimization is conducted to select the vari
ables most suitable for predicting the response variable. VSURF suggests 
two sets of variables, one optimized for interpretation (i.e. some pre
dictors may be redundant but equally important for predicting the 
response) and another one optimized for prediction (i.e. focusing solely 
on obtaining a possibly high model fit) (Genuer et al., 2015). Here, we 
selected the variable subset optimized for prediction accuracy. 

Subsequently, we trained random forest models using the VSURF 
selected predictors, with the number of trees (ntrees) fixed to 500 and 
the mtry-parameter to number of predictors / 3. With this, we followed 
the findings of earlier investigations which stated that these standard 
settings for mtry and ntrees obtain good accuracies in most cases (Oshiro 

et al., 2012; Probst et al., 2019). We report Spearman correlation, root 
mean square error (RMSE) and the normalized root mean square error 
(nRMSE; normalized with the range) between random forest predictions 
and our biomass reference values. The random forest models were fed 
with all available samples and the validation was conducted using the 
internal bootstrap procedure of random forest which from our experi
ence is sufficient to obtain realistic estimates of the model performance. 

However, to confirm this, we additionally conducted an iterative 
validation procedure based on repeated data-splits. In this procedure we 
randomly selected 80 % of the reference samples as training and the 
remaining 20 % of the samples as validation data. In this additional 
validation, spearman correlation coefficients and nRMSE values were 
calculated using only the 20 % validation data not used during training. 
This procedure was repeated 100 times to capture the variability in 
model performances caused by differing combinations of training and 
validation samples. During the iterative validation procedure, we also 
always predicted the RF model to the full area to obtain a biomass map 
for each iteration. This allowed us to calculate the coefficient of varia
tion for each pixel’s biomass estimates (standard deviation of the 100 
estimates of a pixel divided by the mean of the 100 estimates). The 
coefficient of variation describes the variability of the model predictions 
depending on the training data and hence gives an idea of the stability of 
the model during the 100 iterations (e.g., Lopatin et al., 2016). The final 
biomass prediction maps for each of the four vegetation types were 
obtained by training the models with all samples and predicting the 
model to the full study area using the selected predictor variables. 
Biomass maps were obtained at a pixel size of 20 m (Sentinel-2 scale) 
and predictor layers with a higher spatial resolution were resampled to 
20 m using the standard settings of the resample()-function of the raster 
package in R. 

To allow for an improved interpretation of the selected predictor 
variables, we calculated GAM models between the biomass response and 
the VSURF selected predictors and plotted each predictor’s response 
curves. We applied the GAM algorithm implemented in the R-package 
“mgcv” (Wood, 2011) using the “REML” (restricted maximum likeli
hood)” automatic smoothing parameter option. We also activated the 
internal variable selection to identify unnecessary predictor variables 
that were not dropped by VSURF. The same workflow was applied to 
each of the four vegetation types. 

3.5. Landscape-level biomass map 

As the final step of the workflow, the biomass maps of the four 
vegetation types were merged into a single map. For this, we combined 
the information of the land-cover classification map (see section 4.3) 
with the individual biomass maps for grassland, shrubland, native for
ests and pine plantations (see section 4.4): For each pixel of the land- 
cover classification map, we checked whether it indicated one of the 
four vegetation type classes. If this was the case, the spatially corre
sponding biomass estimate of the corresponding vegetation type 
biomass map was assigned to the pixel (for example, if a pixel was 

Table 3 
Confusion matrix of the land cover map.  

Classes Water Sand Nat. Forest Croplands Eucalyptus Wetlands Shrublands Pines Grasslands Bare soil Impervious Fire scars 

Water 126 5 0 0 0 2 0 0 0 0 0 0 
Sand 2 44 0 0 0 0 0 0 0 1 0 0 
Nat. Forest 0 0 136 0 5 1 7 5 1 0 0 0 
Croplands 1 0 1 296 9 9 15 1 18 12 0 4 
Eucalyptus 0 0 2 0 134 0 22 7 0 0 0 3 
Wetlands 3 0 1 3 0 34 2 0 4 0 0 0 
Shrublands 0 0 3 6 10 3 129 1 11 8 0 8 
Pines 0 0 6 0 11 0 2 148 0 0 0 2 
Grasslands 0 0 0 6 0 4 6 1 100 15 1 0 
Bare soil 1 0 0 2 2 0 3 4 11 110 3 3 
Impervious 0 0 0 0 0 1 0 0 0 3 101 0 
Fire scars 0 0 1 0 2 0 6 0 0 1 0 31  
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classified as “shrubland”, we filled the pixel with the biomass estimate of 
the shrubland biomass map at the same location). If the land-cover map 
indicated a non-relevant land-cover type (e.g., urban area), we filled it 
with an NA value. 

4. Results 

4.1. Biomass models 

Random forest models for all four vegetation types resulted in high 
accuracies (Fig. 2 and 3). Table 2 shows the predictors selected by the 
VSURF algorithm. 

As depicted in Fig. 2, the iterative validation results show moderate 
stability with 90 % of Spearman correlation values varying between 
approximately 0.5 and 0.95 across all vegetation types. Grasslands show 
the least stable results with the broadest range of values. However, all 
vegetation types have median Spearman correlation values matching 
approximately the values reported for the models including all samples, 
confirming the validity of the results based on all samples (Fig. 3). The 
corresponding nRMSE results show a similar behaviour, with moderate 
stability and nRMSE values ranging between approximately 10 and 27 
%. Grasslands show again a slightly higher variability than the other 
three vegetation types. 

Consistently high model accuracies were obtained for all vegetation 
types when using all samples to build the model with Spearman corre
lations ranging between 0.8 (native forests) and 0.84 (shrublands) and 
nRMSE values between 8.9 % (pine plantations) and 15.7 % (shrub
lands) (Fig. 3). The scatterplots indicate a reasonable fit for all vegeta
tion types with no clear signs of saturation or biases. In forests, pine 
plantation performed better than native forests, while the two non-forest 
vegetation types show similar accuracies. 

The predictor variables selected by the VSURF algorithm included 
Sentinel-2 based predictors (original bands, vegetation indices, or 
texture metrics) for all vegetation types. Canopy height information was 
selected for the two forest models and the shrublands. For the pine 
plantations, Sentinel-2 predictors corresponding to the summer acqui
sition were selected, while for the native forests only Sentinel-2 pre
dictors from the winter acquisition were selected. Only one biophysical 
indicators (Fractional vegetation Cover) and one topographic metric 
(Profile curvature) were selected, both for the shrubland biomass model. 

4.2. Land-cover map 

The land cover classification reached an overall accuracy (OA) of 
0.83 (±0.15) and a kappa index of 0.81. Table 3 shows the corre
sponding confusion matrix, while Table 4 depicts detailed accuracy 
measures per class. The summarized version of the map showing only 
the four vegetation types considered in the study is presented in Fig. 1. 

The land-cover classification generally shows high accuracy, with 
better class-specific accuracy for pine plantations and native forests than 
for the shrubland and grassland classes, which depicted some confusion 

between each other. 

4.3. Landscape biomass map 

Fig. 4 depicts the final landscape-level biomass map and its corre
sponding coefficient of variation map. The latter indicates the stability 
of the predictions during the iterative validation procedure. 

The spatial distribution of the vegetation types in the watershed is 
clearly reflected in the biomass map. High biomass predictions in the 
western (and partly southern) area correspond to pine plantations and 
native forests. Meanwhile, lower and intermediate biomass predictions 
in the central and eastern areas correspond to grasslands and shrublands 
(Fig. 4). 

The variability of the biomass estimates of the individual pixels ob
tained during the iterative model runs is low throughout the largest part 
of the study area, with most areas showing a variability of below 10 % 
(Fig. 4, right panel). 

5. Discussion 

We demonstrated a workflow to estimate aboveground vegetation 
biomass at the landscape level across several vegetation types using a 
combination of spectral and structural information derived from 

Table 4 
Accuracy metrics of the land cover classification. The four vegetation types for which biomass estimates were obtained are displayed in bold letters.   

Sensitivity Specificity Pos. Pred. Value Neg. Pred. Value Prevalence Detection rate Detection Prevalence Balanced Accuracy 

Water 0.947 0.995 0.947 0.995 0.079 0.075 0.079 0.971 
Sand 0.898 0.998 0.936 0.997 0.029 0.026 0.028 0.948 
Nat. Forest 0.907 0.988 0.877 0.991 0.089 0.081 0.092 0.947 
Croplands 0.946 0.949 0.809 0.987 0.186 0.176 0.218 0.947 
Eucaliptus 0.775 0.977 0.798 0.974 0.103 0.080 0.100 0.876 
Wetlands 0.630 0.992 0.723 0.988 0.032 0.020 0.028 0.811 
Shrublands 0.672 0.966 0.721 0.958 0.114 0.077 0.106 0.819 
Pine 0.886 0.986 0.876 0.987 0.099 0.088 0.100 0.936 
Grasslands 0.690 0.979 0.752 0.971 0.086 0.059 0.079 0.834 
Bare soil 0.733 0.981 0.791 0.974 0.089 0.065 0.083 0.857 
Impervious 0.962 0.997 0.962 0.997 0.062 0.060 0.062 0.980 
Fire scars 0.608 0.994 0.756 0.988 0.030 0.018 0.024 0.801  

Fig. 1. Study area and sampling locations across the Cauquenes watershed in 
South-Central Chile. Native forests and Pine plantations are mostly found in the 
coastal mountain range in the West, while shrublands and grasslands are 
common in the central parts of the study area. Other land-cover types are 
depicted in white. 
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satellite and airborne remote sensing data. The workflow proved to 
deliver sound results for all examined vegetation types, reaching high 
accuracies in terms of Spearman correlation and nRMSE, and depicting 
no obvious biases or saturation effects. 

The less accurate results for the native forests compared to pine 
plantations agree with those of earlier investigations in Chilean native 
forests (e.g., Maack et al., 2015; Fassnacht et al., 2014). This may relate 
to a saturation of the height ~ biomass relationship in these forests. 

Fig. 2. Violin plots indicating the distribution of the perfor
mance metrics obtained during the iterative validation pro
cedure (100 runs with splits into 80 % training and 20 % 
validation samples). Black dots illustrate individual biomass 
estimates, boxplots inside violin plots indicates the percentiles 
of the distribution values (5, 25, 50, 75, 95 %), and the width 
of the violin indicates the distribution of the values. The results 
refer to random forest models trained with predictor variables 
summarized in Table 3 and after dropping the unnecessary 
variables identified with the GAM analysis.   

Fig. 3. Scatterplots between predicted and observed biomass values for the four considered vegetation types and corresponding model performances of the models 
assessed using all samples. The results refer to random forest models trained with predictor variables summarized in Table 3 and after dropping the unnecessary 
variables identified with the GAM analysis. 
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Once established in the dominant canopy layer, the broadleaved trees of 
the Nothofagus forests tend to accumulate more biomass in the stems and 
invest given resources in the broadening of the tree crown and less to 
further increase their height. Furthermore, the native forests are 
generally more heterogeneous in terms of structure and species diversity 
(Braun et al., 2017), which complicates the accurate prediction of their 
biomass. Moreover, species-specific allometric equations were missing 
for a few of the native species. This may have contributed to a slightly 
higher uncertainty in the reference biomass estimates as compared to 
the reference estimates for Pinus radiata. 

The results for the pine plantations showed the lowest nRMSE value 
and second highest Spearman correlation. This is expected, as the 
examined plantations consist of only a single coniferous tree species 
(Pinus radiata) planted in homogeneous and regular stands. In these 
stands, height is an accurate predictor for the overall size of trees, and 
corresponding good model performances have been reported in 
numerous comparable settings using height metrics derived from LiDAR 
data and other sources (e.g., González-Ferreiro et al., 2012; Tojal et al., 
2019). Even higher accuracies are possible to estimate pine forests’ 
biomass if the temporal off-set between the acquisition of the field and 
the structural remote sensing data is smaller than in this study (e.g., 
Navarro-Cerrillo et al., 2017). Hence, the results for both forest types 
could likely be further improved by replacing the applied LiDAR and 
TanDEM-X CHM with a CHM that better matches the dates of the field 
campaigns. However, access to high spatial resolution CHMs across 
larger areas is still limited by acquisition costs as most established op
tions to collect such data over large areas (LiDAR or photogrammetric 
based point clouds) require airborne campaigns. The latter are costly or 
even not possible at all if the corresponding sensor systems are not 
available. This may be a common situation in many economically less 
developed countries and rural areas. Very high resolution 
stereo-satellite images can be used as an alternative, globally available 
data-source to derive high spatial resolution digital elevation models 
(Fassnacht et al., 2017). However, the extraction of a corresponding 
digital terrain model which is required to calculate canopy heights is 
challenging with these data. It may, however, be possible in areas with 
subtle topography and comparably sparse vegetation cover (see for 
example Hosseini et al., 2020). 

The performances of the models for shrublands were in the same 
range as reported for earlier studies focusing on Mediterranean and xeric 
shrublands and applying exclusively Sentinel-2 data (e.g., Aranha et al., 
2020), Sentinel-1 and PALSAR data (Chang et al., 2018) and LiDAR data 
(Li et al., 2017). The same applies to the grassland models that per
formed similarly or even better as earlier studies which estimated 

grassland biomass using Sentinel-2 data alone (Filho et al., 2020) or 
combined with Sentinel-1 and other optical sensors (Naidoo et al., 2019; 
Wang et al., 2019). 

The comparably high variability of the performance metrics during 
the iterative model runs, particularly for the grassland models (Fig. 2), is 
likely to be an effect of the comparably low sample size available in this 
study. Grasslands and shrublands have the overall lowest number of 
samples in our study. Other studies in a similar setting have also found a 
positive relationship between sample size and model performance sta
bility (e.g., Fassnacht et al., 2014, Fassnacht et al. 2018) and accuracy 
(e.g., Sterenczak et al., 2018). Due to the high time effort required to 
collect reference samples, particularly when focusing on more than one 
vegetation type, we could not sample more reference data in our study. 
However, the median values of the performance metrics in the iterative 
validations agree reasonably well with the random forest validations 
obtained when using all samples to build the models (Fig. 3). This in
dicates that the reported model accuracies are realistic. 

The suggested workflow efficiently selected a sparse subset from the 
original predictor space consisting of 216 variables. In the cases of 
grasslands and pine plantations, the variable sets selected by VSURF 
consisted of only two and three uncorrelated predictors, which led to 
good random forest model performances, exceeding the performance of 
random forest models trained with all predictors (results not shown). 
This generally confirms the efficiency of the VSURF algorithm in iden
tifying sparse subsets of well-performing and meaningful predictors (e. 
g., Chavent et al., 2019; Speiser et al., 2019). However, for the native 
forest and shrubland models, the additional GAM analysis enabled us to 
identify additional intercorrelated variables and to reduce the final set of 
predictors to 3 and 4 variables for native forests and shrublands, 
respectively. The corresponding random forest models showed no loss in 
performance compared to the models using all VSURF selected variables 
(results not shown). Hence, this combination of VSURF and a subsequent 
verification of the selected variables with GAM seems to be an efficient 
approach to identify a sparse set of predictor variables to build parsi
monious, well-performing models. 

Comparing the variables selected for each forest type, the most 
important variables for both forests were canopy height metrics. This 
confirms the frequently reported importance of height metrics for esti
mating forest biomass with remote sensing devices (e.g., St-Onge and 
Vega, 2008; Tonolli et al., 2011). The corresponding response curves 
indicate that the canopy height contributed in a close to linear and 
positive way to explain the biomass values (Table 2, Supplementary 
Material 6). Interestingly, in the model for native forests the comparably 
outdated LiDAR CHM got selected rather than the more recent 

Fig. 4. Landscape-scale vegetation biomass map combining the biomass estimates of the considered vegetation classes and the corresponding coefficient of variation 
(CV) map obtained during the iterative classifications. The areas marked as background (white) are land-cover classes not included in the analysis. 
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TanDEM-X CHM. We assume that in native forests, the higher spatial 
resolution of the LiDAR CHM was crucial for accurately predicting 
biomass by delivering information about small-scale variability in 
height that could not be depicted in the coarser spatial resolution 
TanDEM-X CHM (© DLR). Due to the comparably slow growing speed of 
the native forests, the acquisition date of the LiDAR CHM (10 years 
off-set) may have been less problematic than for the pine plantations in 
which no predictor related to the LiDAR DEM got selected. This seems 
plausible, given the fast growth of pine plantations and the corre
sponding short rotation periods of approximately 22-years (Jélvez et al., 
1990). 

For native forests, a Sentinel-2 band from winter and a texture var
iable were selected along with the CHM, while in pine plantations only 
Sentinel-2 bands of the summer image remained in the final model. One 
reason for this might be that native forests in this part of Chile consist of 
a mixture of evergreen and deciduous tree species (Frank and Finckh, 
1999). Hence, winter images may have contributed to differentiate 
better these species types and hence mirror the species composition of 
the stands, which may support the accurate estimation of the local 
biomass. Some earlier studies reported that species or forest type in
formation can improve remote sensing-based biomass estimations in 
forests (e.g., Anderson et al., 2008; Fassnacht et al., 2017). In the native 
forests, the texture metric based on the GNDVI indicates that informa
tion about the canopy’s homogeneity may have also contributed to 
explain the variation in biomass. The negative correlation of the GNDVI 
variance with biomass (Table 2) suggests that more homogeneous can
opies may relate to older native forests with corresponding higher 
biomass values. However, the corresponding response curves do not 
show a truly clear trend (Supplementary Material 6). 

In case of the plantation forests, summer reflectance may have sup
ported the discrimination between stands with similar canopy heights 
but differing canopy densities as the selected SWIR band (S2B11-sum
mer, wavelength at 1610 nm) should contain information about canopy 
leaf structure, and the red edge band (S2-B6-summer, wavelength at 740 
nm) represents general vegetation vigor and density (Ollinger, 2011). 
Both bands show a negative correlation with biomass (Table 2). While 
for the SWIR band the negative trend is clearly depicted in the response 
curves, the red edge band shows a more hump-shaped pattern (supple
mentary material 6). The trend of the SWIR band is likely related to a 
reduced crown density in older plantations with higher biomass as 
compared to very dense, younger plantations with lower overall 
biomass. The hump-shaped pattern in the red edge band may be caused 
by very young plantations with low biomass values where crown closure 
has not yet been reached. Hence, both very young and very old plan
tation may show an increased influence of the soil signal and a corre
sponding lower reflectance in the NIR. However, a more detailed 
analysis, would be required to draw final conclusions on this. 

Contrary to the results from the other vegetation types, CHM vari
ables were not selected in grasslands. The limited ability of height 
metrics from LiDAR data to estimate herbaceous biomass has been re
ported before (e.g., Li et al., 2017). Our results suggest that reasonable 
biomass estimates for grasslands can be derived using a combination of 
field reference data and Sentinel-2 data only. The most important 
identified predictor is the summer SWIR2 band of Sentinel-2 (2190 nm). 
The SWIR2 band shows a very high and linear negative correlation with 
the grassland biomass (Table 2, Supplementary Material 6). We believe 
that this is due to the sensitivity of the SWIR region to 
non-photosynthetic vegetation (NPV). In our study area, most grassland 
areas have dried out by late spring. Therefore, most of the standing grass 
is not photosynthetically active, and typical greenness indices using the 
red and near infrared region are less suitable to quantify its biomass. 
NPV typically has a high lignin and cellulose content, which affects the 
SWIR reflectance (Li and Guo, 2018). Hence, the high sensitivity of the 
SWIR to the biomass observed here seems plausible. The second selected 
band is a red edge band (Band 5, 705 nm) from the winter acquisition, 
which also shows a negative correlation with biomass (Table 2). 

However, its corresponding response curve suggests a more complex 
relationship (Supplementary material 6), which would require a more 
detailed analysis to draw final conclusions. One assumption is that the 
greenness information of the red edge band may help to track differences 
in the species composition of the grasslands and thereby contribute to 
explain some of the variance that cannot be explained by the NPV signal 
captured in the SWIR band. Moreover, studies focusing on photosyn
thetically active grasslands typically report the highest importances for 
NIR bands and vegetation indices incorporating NIR bands (e.g., Filho 
et al. 2019, Sibanda et al., 2015). Some of the grassland areas in the 
study areas may actually have higher photosynthetic activity in winter 
than in summer due to the increased precipitation in winter. Future 
studies may also examine the added value of integrating Sentinel-1 data, 
which were for example found suitable to estimate grassland biomass by 
Wang et al. (2019). 

In the shrubland model, four variables were selected. The most 
important variable is the Sentinel-2 based fractional vegetation cover 
(summer acquisition), which shows a strong positive correlation with 
biomass (Table 2, supplementary material 6). We assume that the frac
tional vegetation cover is a good indicator of the green shrub cover in 
contrast to the dried-out grassland background. Percent cover of shrubs 
was also reported as the best predictor to estimate biomass by Li et al. 
(2015). Other studies focusing on dry shrublands furthermore identified 
NDVI - which also relates to fractional vegetation cover - as good indi
cator to estimate shrubland biomass (e.g., Aranha et al., 2020; Viana 
et al., 2012). The second most important predictor is the LiDAR-based 
CHM. Similarly, as in the case of the native forests, the higher spatial 
resolution of the LiDAR CHM may have contributed to its selection over 
the more up-to-date TanDEM-X CHM. The CHM predictor also shows a 
positive relationship with biomass, which seems plausible as higher 
heights indicate larger shrubs with higher biomass. Earlier studies also 
suggested that canopy volume is a good indicator of biomass (Ni-Meister 
et al., 2010; Li et al., 2015; Olsoy et al., 2014; Greaves et al., 2015 as 
discussed in Li et al., 2017). The combination of the two most important 
predictors of this study, fractional cover and canopy height, can together 
be interpreted as an approximation of shrub volume and hence confirm 
these earlier observations. The third selected variable is a texture metric 
(variance of the red-edge band 6 (740 nm) from the S2 summer acqui
sition). It shows a negative correlation with biomass, which suggests 
that a higher spectral variability is related to lower biomass values. This 
may be related to the homogeneity of shrub cover in the plots where 
plots with very high and hence homogeneous cover also reach the 
highest biomass values. Finally, the selected topographic metric “Profile 
Curvature” mainly depicts larger topographical features at the applied 
spatial resolution and is hence unlikely to be directly related to the 
structure of the shrubs themselves. A visual inspection suggests that the 
metric may have contributed to separate denser, older shrublands which 
are often found in more pronounced terrain situations from younger and 
sparser shrublands, located often in flatter areas. 

The final landscape-level biomass map shows realistic patterns of 
biomass distribution with coarse patterns following the land-cover 
mosaic of the study area, but also showing smaller scale patterns 
related to the variability of biomass within the individual vegetation 
types. Fig. 5 depicts examples of apparent differences in biomass ranges 
between the two forest types and the two non-forest vegetation types (e. 
g., bottom row). Here, we observe a cut in the landscape between pine 
plantations in the West and a more open landscape in the East. However, 
more subtle differences in biomass can also be differentiated. For 
example, in the open landscape, a slightly higher biomass accumulation 
is apparent along the river in the Eastern part of the image, which may 
relate to a higher density of shrubs in the shrublands close to the river. In 
the middle row of Fig. 5, several larger patches of native forests and pine 
plantations with varying biomass quantities are displayed. The general 
impression of the patterns agrees with the BING high-resolution RGB 
satellite image which shows forests with larger crowns in areas with 
higher biomass. In the top row, biomass differences between younger 
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second-growth native forests and older pine plantations are well 
depicted. Some deviations between the visual impression of the RGB 
BING images and the depicted biomass maps may be explained with 
time gaps between the BING images and our biomass estimations. For 
example, the subsets in the middle row of Fig. 5 shows comparably high 
biomass estimates for plantation areas at the eastern border of the 
image. In contrast, the RGB image indicates a recently harvested area. 

One drawback of our landscape-level biomass map is that we did not 
include all vegetation types occurring in the watershed. We omitted 
Eucalyptus plantations and wetlands due to missing field reference data. 
In the given case, we think the omission of these classes is acceptable as 
their overall coverage (154 km2 or 9.5 %) in the watershed is limited in 
comparison to the considered vegetation types (1184 km2 or 72.8 %). 
Agricultural areas were also omitted but would also generally be chal
lenging to integrate in our static map as the seasonal dynamics of crops is 
very high. Nevertheless, many earlier studies showed that biomass of 
crops can be estimated from optical remote sensing data such as 
Sentinel-2, particularly when coupled with crop growth models (e.g., 
Battude et al., 2016; Novelli et al., 2019). It may hence be possible to 
integrate such approaches with the workflow presented here. 

The presented workflow and the resulting biomass maps at the 
landscape level can be useful for various applications, including the 
management of water resources. Water is a limited resource in the semi- 
arid Mediterranean climate of our study area, and certain vegetation 

types consume more water than others. In the given case, the fast- 
growing pine plantations have high evapotranspiration rates and a 
corresponding high water consumption (Huber et al., 2008). Contrarily, 
the transpiration and water consumption rates of the native forests, and 
especially the shrublands, are notably lower (Olivera-Guerra et al., 
2014). However, not only the vegetation type but also the age, the 
density, and hence the corresponding biomass of forests (which corre
lates with the former two) influence transpiration rates (Ewers et al., 
2005; Forester, 2015). Large scale estimates of water use related to 
transpiration can be obtained with process-based numerical 
eco-hydrological models. Such models can simulate all water balance 
components, sediments and biomass. The Soil Water Assessment Tool 
(SWAT, Arnold et al., 2012) is a widely used example. Fine-grain land
scape-level biomass maps could help to constrain such models to deliver 
more realistic representations of eco-hydrological processes within the 
various vegetation types of a watershed. This is especially relevant for 
those vegetation types where parameter values are usually unknown, 
such as native vegetation communities. The latter are often represented 
by default settings, which only differentiate a few coarse vegetation 
types. Yang et al. (2018b) demonstrated that an improved parameteri
zation of forest-related variables in SWAT led to improved estimates for 
key ecosystem variables, such as evapotranspiration. Accurate outputs 
of such detailed ecohydrological models can be useful for 
landscape-planning measures, benefiting for example local agricultural 

Fig. 5. Three subsets of the final map products showing the Land Cover, Biomass and Coefficient of Variation results along with an satellite RGB image obtained 
from Bing. 
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and silvicultural activities. In the Cauquenes area, understanding the 
spatio-temporal patterns of water use and biomass production of the 
different vegetation types using eco-hydrological models can deliver 
important information to adequately project future biomass productions 
under global change scenarios. This is, for example, relevant to the 
current Chilean Nationally Determined Contributions (NDC) defined for 
the ratification of the Paris Agreement (Government of Chile, 2015). 
Further, it can help to understand how a plausible transformation of the 
landscape composition and configuration (e.g., the reduction or trans
formation of pine plantations to other vegetation types) can modify 
water yield and benefit agricultural activities and the few remaining 
natural vegetation areas which are severely threatened (Alaniz et al., 
2016). 

For such applications, but also for other potential application fields 
such as carbon inventories, the mono-temporal biomass map presented 
in this study is useful, but adding a temporal perspective by providing 
regularly updated biomass maps would further increase the application 
potential. Multi-temporal maps would allow to trace changes of the 
overall biomass and its spatial distribution in the region and enable the 
quantification of biomass growth rates in different vegetation types and 
age-classes. 

Here, only the biomass models for grasslands exclusively used freely 
and regularly available Sentinel-2 satellite data and could hence easily 
be retrieved for more than one point in time. Albeit, even for grasslands 
some additional field data may be required. Contrarily, the biomass 
models for the three other vegetation types included height metrics 
derived from LiDAR and TanDEM-X datasets. The latter are still not 
regularly and freely available for most parts of the world and a transition 
towards multi-temporal biomass maps may hence be more challenging. 
However, in some countries regular orthophoto campaigns are con
ducted by administrative institutions. With the fast development in the 
sector of photogrammetric algorithms, point clouds derived from such 
orthophotos could be a valuable data source to provide structural in
formation required to regularly obtain biomass maps at a fine spatial 
grain and at low additional cost. However, such approaches may 
currently be restricted to highly developed countries with the corre
sponding budgets to conduct regular airborne campaigns. This is un
fortunate as the largest uncertainties concerning biomass and carbon 
stocks often exist in areas with less developed economies or in remote 
areas such as the tropics (Houghton, 2005). New space missions 
including, for example, ESA’s BIOMASS Radar mission (Arcioni et al., 
2012) as well as the combination of free optical Sentinel-2 data with 
structural data collected by recent spaceborne LiDAR missions such as 
GEDI (e.g., Hancock et al., 2019) and Icesat-2 (Abdalati et al., 2010) may 
provide opportunities to develop new workflows towards regularly 
updated landscape-level biomass maps at a global level and independent 
from airborne campaigns. Albeit, the latter satellite-based products may 
come at a coarser spatial grain and data continuity is still a challenge. 

6. Conclusions 

We developed a workflow to estimate vegetation biomass in a het
erogeneous Mediterranean landscape by combining optical and struc
tural remote sensing data with vegetation-type specific biomass 
estimates collected in the field. Our workflow successfully estimated 
biomass across four different vegetation types, including grasslands, 
shrublands, pine plantation, and native forests. We merged the predic
tion maps of the individual biomass models into a landscape-level 
biomass map by integrating the biomass maps of individual vegetation 
types with a remote sensing-based land-cover map. 

We found that biomass of grassland ecosystems can be estimated 
using optical data only, while ecosystems dominated by woody-species 
benefit from extra information on vegetation structure. This compli
cates the future multi-temporal estimation of biomass at the landscape- 
level as freely available satellite-based structure and height data is still 
scarce and at coarse resolution in many parts of the world. 

Landscape-level biomass maps at fine spatial grain as presented here 
are relevant for ecosystem and hydrological modeling applications, such 
as the refinement of water management strategies and carbon assess
ment and reporting. 
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