
ARTICLE

Episodic construction of the early Andean
Cordillera unravelled by zircon petrochronology
José Joaquín Jara 1,2,3✉, Fernando Barra 1,3, Martin Reich 1,3, Mathieu Leisen1,3, Rurik Romero1,3 &

Diego Morata1,3

The subduction of oceanic plates beneath continental lithosphere is responsible for con-

tinental growth and recycling of oceanic crust, promoting the formation of Cordilleran arcs.

However, the processes that control the evolution of these Cordilleran orogenic belts, par-

ticularly during their early stages of formation, have not been fully investigated. Here we use

a multi-proxy geochemical approach, based on zircon petrochronology and whole-rock

analyses, to assess the early evolution of the Andes, one of the most remarkable continental

arcs in the world. Our results show that magmatism in the early Andean Cordillera occurred

over a period of ~120 million years with six distinct plutonic episodes between 215 and 94Ma.

Each episode is the result of a complex interplay between mantle, crust, slab and sediment

contributions that can be traced using zircon chemistry. Overall, the magmatism evolved in

response to changes in the tectonic configuration, from transtensional/extensional conditions

(215–145Ma) to a transtensional regime (138–94Ma). We conclude that an external (tec-

tonic) forcing model with mantle-derived inputs is responsible for the episodic plutonism in

this extensional continental arc. This study highlights the use of zircon petrochronology in

assessing the multimillion-year crustal scale evolution of Cordilleran arcs.
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Orogenic systems are essential to comprehend the geolo-
gical history of the Earth1,2. Cordilleran orogenic systems
occur where oceanic lithosphere subducts under con-

tinental crust producing voluminous igneous rocks of mostly
intermediate composition2,3. Traditionally, the geochemical and
isotopic compositions of igneous rocks coupled with field
observations, have been used to determine the tectonic and
compositional evolution of these continental magmatic arcs4–6.
However, in some cases, superimposed metamorphic and meta-
somatic events7–11 obscure the primary chemical composition of
plutonic and volcanic units, precluding the sole use of whole-rock
geochemistry to constrain their origin and evolution.

Zircon is an accessory mineral phase commonly found in
intermediate and felsic igneous rocks that is resistant to weath-
ering and hydrothermal alteration12. It can be precisely dated and
is able to incorporate a number of minor and trace elements, a
characteristic that has been increasingly used in petrogenetic
studies13,14. Zircon petrochronology has been applied to com-
prehend specific magmatic events15–17 and more recently to study
the fertility of intrusive units18–20, but its potential to trace the
evolution of continental arcs at a regional scale has not been fully
evaluated.

The early Andean Cordillera of northern Chile, also known as
the Coastal Cordillera, represents an early product of the south-
ern Andes21, one of the most remarkable modern continental arcs
in the world2,5 (Fig. 1a, b). The Coastal Cordillera comprises an
orogenic belt that extends parallel to the Peru–Chile trench for
more than 1500 km. It was shaped by subduction during multi-
stage, episodic magmatism over more than 100 million years,
beginning in the Late Triassic and extending to earliest Late
Cretaceous21,22. The structural and geodynamic setting of the
Coastal Cordillera during the Mesozoic has been the focus of
several studies23–26. These works have been fundamental to
understand the evolution of the southwestern margin of
Gondwana21–27. Nevertheless, the chemical characteristics and
petrogenesis of the Coastal Cordillera plutonic complexes have
been rather understudied22, and the complex relationship
between its multiple magmatic episodes, geotectonic changes and
magma sources are poorly understood.

Here we report new U-Pb ages and trace element data from
zircon grains from several plutonic complexes located along the
Coastal Cordillera between 26° and 30°S (Supplementary Fig. 1,
Supplementary Data 1 and Supplementary Data 2), covering a
timespan of more than 120 million years of geological history of
the Andean orogeny. We use a multi-proxy geochemical
approach, based on zircon petrochronology and whole-rock
analyses, to determine the contributions of mantle-crust-slab-
sediments to the magma source in order to better understand the
early evolution of the Andean continental arc.

Results
The early Andean Cordillera of northern Chile. The early
Andean Cordillera is a non-collisional orogen built on an active
subduction margin since the Late Triassic22. The magmatic
activity progressively migrated eastward and was associated with
back/intra-arc basins21–27 in a multistage, extensional to a
transtensional setting24,25. This continental arc developed over a
Palaeozoic to early Mesozoic basement and was epitomized by
thick (6–10 km) basaltic to andesitic Middle Jurassic volcanic
units with minor sedimentary sequences, and by north-south
oriented, elongated plutonic complexes28. The volcanic sequence
has a tholeiitic affinity at the bottom and calc-alkaline at the top,
and is characterised by primitive Sr, Nd and Pb isotopic
compositions28–31. However, these rocks are enriched in large ion
lithophile elements (LILE), probably because of variable sediment

contributions30,32. This thick volcano-sedimentary sequence was
intruded by calc-alkaline plutonic complexes distributed in par-
allel belts of N-S orientation. These belts have a general trend of
eastward-younging ages22,33,34 (Fig. 1b and Supplementary
Fig. 1). Back/intra-arc basaltic to andesitic lavas interbedded with
marine units of Late Jurassic to Early Cretaceous ages overlay the
Middle Jurassic volcanic rocks at its eastern edge21,28. During the
latest Early Cretaceous, an extensional event led to subsidence
and the development of marginal basins35. Volcanic and sedi-
mentary rocks, representative of this event, unconformably
overlay the back-arc/intra-arc units21. At the end of the Early
Cretaceous, and concurrent with the final breakup of Gondwana
and the opening of the Atlantic Ocean, the extensional regime
changed to a compressional one27, which led to the inversion and
closure of back/intra-arc basins and forced the migration of the
magmatic arc to the east27,35.

The main structural feature of the Coastal Cordillera is the
Atacama Fault System (AFS). The AFS extends from north to
south for more than 1000 km and was active intermittently at
least since the Middle to Late Jurassic19 (Supplementary Fig. 1).
This structural system comprises vertical ductile shear zones and
brittle fault arrangements in concave segments with north-
northwest, north and north-northeast faults with normal and
sinistral components23–26,34.

Episodic, calc-alkaline plutonism in the early Andean Cordil-
lera of northern Chile. In the past decades, an increasing number
of studies have recognized the episodic nature of magmatic
arcs3,36, suggesting mainly two models of formation: (i) an
‘internally controlled’ model, based on the interplay between
tectonic and magmatic processes and inputs from the upper plate,
e.g. forearc underthrusting3 and landward migration of the arc;37

and (ii) an ‘externally driven’ model involving processes such as
mantle-flow fluctuations or tectonic reconfigurations38,39. Epi-
sodic magmatism has mostly been studied in compressional
continental arcs, with only a few cases reported in oceanic or
continental arcs developed under extensional to transtensional
regimes36. The available geochronological data from intrusive
units in the study area (Supplementary Data 3) supports the
notion that these rocks were generated by several magmatic
pulses during the eastward migration of the arc21,27 (Fig. 1b, c).
Previous studies22,26,33,34 identified five possible plutonic epi-
sodes between 200 and 95Ma, with an apparent lull between 180
and 165Ma and a significant flare-up from 140 to 120Ma.

These episodes are here constrained using zircon petrochro-
nology on representative plutonic complexes. Zircon dates can be
used to identify temporal patterns in long-lived magmatic arcs. A
representative sampling of all igneous units coupled with a sound
knowledge of the geological record of the study area is desirable
to obtain reliable age populations36. However, continental
orogenic systems such as the Andes are characterised by
abundant intermediate to felsic igneous rocks and where mafic
compositions are usually underrepresented. In addition, the
common presence of zircon xenocrysts yielding highly variable
age populations in volcanic rocks makes sampling of plutonic
units preferable. Hence, this sampling bias is inevitable, but does
not affect the identification of general temporal trends40.

Our results reveal younging crystallisation ages to the east
(Fig. 1b and Supplementary Fig. 1), and clearly define six plutonic
episodes at ca. 215–203, 200–185, 160–145, 138–121, 120–108
and 103–94Ma (Fig. 1d). The differences between outcrop and
zircon ages (Fig. 1c, d) can be explained by: (i) the higher number
of igneous units and samples included in the outcrop series,
which allows better identification of minor events and better
assessments of the age amplitude of major ones (sampling bias36);
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and (ii) the inclusion of crystallisation and cooling ages (K-Ar
and 40Ar/39Ar data) in the outcrop series, making it less prone to
precisely define the time span of each plutonic episode. Never-
theless, these ages apparently have a minor effect in the analysis
due to rapid cooling of plutonic units in the early Andean
continental arc22,34.

The plutonic complexes of the early Andean Cordillera are
mainly composed of amphibole and biotite diorites to granodior-
ites (Supplementary Data 4), with the presence of granites mainly
during the inception of the magmatic arc28,31 (Supplementary
Fig. 2a). These complexes are predominantly metaluminous to
slightly peraluminous with calc-alkaline affinities (Supplementary
Fig. 2b–d). All these rocks are enriched in LILE and show variable
fractionation of rare earth elements (REE). Lower Nb, Ta, P and
Ti contents are also observed, as well as positive Pb-

anomalies22,30,31. These results, coupled to published isotopic
data29,31, suggest that they were generated from a juvenile and
depleted mantle source in a subduction setting. Nevertheless, each
plutonic episode presents distinct geochemical features that can
be used to trace the evolution of the arc36.

Zircon and whole-rock petrogenetic indicators. To better con-
strain the episodic magmatism and trace the evolution of the early
Andean continental arc, we selected 10 petrogenetic indicators
based on whole-rock data (Fig. 2) and zircon chemistry (Fig. 3).
First-order tectonic parameters were determined by: (i) whole-
rock LaN/YbN (Fig. 2a) and Sr/Y ratios (Supplementary Fig. 3),
which are used to estimate crustal thickness or depth to
Moho;41,42 (ii) zircon Th/U ratios (Fig. 3a), to identify extensional
and compressional periods in subduction environments;43 and
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(iii) Ti-in-zircon temperatures (Fig. 3b), which could be linked to
magma composition, depth of emplacement and cooling rates in
magma chambers44,45. In addition, the magma source was
determined by whole-rock La/Sm, Ba/La and Nb/Zr4 and zircon
U/Yb13 elemental ratios (Fig. 2b–d and Fig. 3c, respectively). The
redox state of magmas is recorded by zircon Eu-anomalies and
Ce/Nd ratios (Fig. 3d, e). It is also calculated by using rock-to-
zircon elemental partitioning coefficients46,47 and expressed in
logarithmic units of oxygen fugacity relative to the
fayalite–magnetite–quartz mineral buffer (ΔFMQ) (Fig. 2e). To
discern trends and/or anomalous values, the median and 5th and
95th percentiles were calculated using a kernel density estimation
with a bandwidth of 2.5 Ma and a bin width of 5 Ma for each
series, except for the oxygen fugacity due to the limited number of
samples with zircon and whole-rock analyses (n= 30). In addi-
tion, the median and 5th and 95th percentiles for the 10 petro-
genetic indicators and by each plutonic episode are reported in
Supplementary Table 3.

Multistage evolution of the early Andean Cordillera. The
construction of the early Andean Cordillera commenced in the

Late Triassic, when subduction restarted along the southwestern
margin of Gondwana after an anorogenic period21,22. The mag-
matic arc was established in the current Coastal Cordillera in a
rather attenuated crust31 within multistage, extensional to
transtensional tectonic settings24,25, which led to six plutonic
episodes at 215–203, 200–185, 160–145, 138–121, 120–108 and
103–94Ma (Fig. 1c, d). These episodes are characterised using the
proposed indicators (Figs. 2 and 3) and schematically represented
in cross sections of the continental arc in Fig. 4.

The first and second plutonic episodes of the early Andean
continental arc took place between 215–203 and 200–185Ma (LT
and EJ; Fig. 1c, d, and Figs. 2 and 3). These episodes are marked by
a gradual and continuous thinning of the continental crust from
~30 to ~22 km (Fig. 2a and Supplementary Fig. 3) and a depletion
of the magmatic source. Zircon grains display low Th/U ratios
with minor dispersion (Fig. 3a), a behaviour usually linked to
convergent settings43. Ti-in-zircon temperatures vary within a
restricted range (Fig. 3b). Minor sediment contributions and
crustal contamination are recorded by the La/Sm ratio (Fig. 2b)
and fluid-derived elements from slab dehydration are negligible
(Fig. 2c). This led to an increasingly depleted source with a
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represented by the dashed grey band.
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N-MORB signature that is reflected in the Nb/Zr (Fig. 2d) and
zircon U/Yb (Fig. 3c) ratios. The redox state of the magmas was
relatively low due to the diminishing effect of slab fluids. A slight
decrease in oxygen fugacity values is observed during this period
(Figs. 2e and 3d, e). These geochemical signatures suggest that the
emplacement of the plutonic complexes took place in an
attenuated margin21,27 during a transtensional regime with an
increasing subduction angle and plate decoupling24, which led to a
gradual but persistent thinning of the continental crust (Fig. 4a, b).
These results are consistent with structural observations in the
forearc24, and an isotopic ‘pull-up’ of its igneous units29,31 which
is uncommon in continental arcs48. This period ended with
foundering of the slab, subduction rollback and a complete
decoupling of plates in an arc-normal extensional regime during
the extensive La Negra volcanic event, NVE (~180 to ~155Ma;
grey band in Figs. 2 and 3)24,27.

The third episode (160–145Ma; LJ; Fig. 1c, d, and Figs. 2 and 3)
partially overlaps with La Negra volcanic event and occurs prior to
a plutonic hiatus in the Jurassic to Cretaceous transition. During

this period, a crustal thickness of ~20 km is estimated based on
whole-rock chemistry (Fig. 2a and Supplementary Fig. 3) and the
highest zircon Th/U ratio among the studied samples (Fig. 3a).
High crystallisation temperatures (~850 °C) are also recorded
(Fig. 3b). Accordingly, Late Jurassic magmatism would have been
generated primarily by decompressional melting of the upper
mantle28,49 with minor contributions from the subduction process
(Fig. 2b, c). This is reflected in a highly depleted and reduced
signature with whole-rock Nb/Zr values consistently near or below
the N-MORB value (Fig. 2d), a median ΔFMQ of −2.15 (Fig. 2e),
and zircon EuN/Eu* and Ce/Nd ratios with median values of 0.11
and 3.8, respectively (Fig. 3d, e). Nevertheless, a relatively high
zircon U/Yb ratio was obtained due to the influence of two highly
differentiated samples, uncommon in this geological period
(samples JJJD_43 and JJJD_62). Excluding these samples, a U/
Yb ratio of 0.27 was obtained, which is similar to that of the Early
Jurassic episode (Fig. 3c). These results are consistent with: (i) a
strong arc-normal extensional setting and shallow plutonic
emplacement, determined by structural analyses of the AFS and
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its relationship with surrounding plutonic bodies;24,25,34 and (ii) a
negative to neutral, trench normal absolute and relative
convergence rates in the kinematic plate model of South
America50. Overall, during the long-lasting, transtensional to
extensional transition that occurred between the Late Triassic and
Late Jurassic, the contribution of sediments and slab-derived fluids
to the magmatic source was strongly diminished. In addition, the
lithospheric mantle thickness was reduced triggering decompres-
sional melting and upwelling of asthenospheric material to the
base of the crust (Fig. 4c). This led to a progressively depleted,
dehydrated and reduced magmatism22,28–30,49.

The fourth and fifth plutonic episodes occurred between
138–121 and 120–108Ma, respectively (V-EAp and LAp-EAlb;
Fig. 1c, d, and Figs. 2 and 3). These episodes are characterised by
increasing crustal thickness, reaching over ~35 km (Fig. 2a and
Supplementary Fig. 3), slightly lower crystallisation temperatures
(Fig. 3b) and higher fluid and sediment contributions to the mantle
wedge compared to the previous period (Fig. 2b, c). As a result, the
magmas became more enriched (Fig. 3c), hydrated and oxidized
(Fig. 3d, e). These trends could be explained by: (i) the transition
from an arc-normal extensional to an oblique (low-stress?)
transtensional regime (Fig. 4d), a change that has been recorded
in the kinematics of the AFS;24–26,34 and (ii) increased coupling
between plates, likely due to higher convergence rates24,50 (Fig. 4e).
Consequently, subduction contributions (sediments and fluids)
progressively increased and magmas became more enriched,
hydrated and oxidized than in previous episodes.

The last plutonic episode of the early Andean Cordillera
occurred during the late Albian to Cenomanian (103–94Ma;
LAlb-Cnm; Figs. 2 and 3) after a magmatic lull in the middle
Albian (108–103Ma; Fig. 1c, d). An estimated crustal thickness of
>35 km (Fig. 2a and Supplementary Fig. 3) coupled with
increasing contributions of slab-derived fluids and lesser
sediments (Fig. 2b, c) as well as a depleted mantle source (Figs. 2d
and 3c), could be better explained by an extensional to
transtensional regime with high convergence rates and relative
decoupling of plates (Fig. 4f). This interpretation is also
supported by relatively high oxygen fugacity markers (Figs. 2e
and 3d, e) and low crystallisation temperatures (Fig. 3b). These
results are consistent with the geological record of the back-arc35,
and with changes in trench normal and parallel relative
convergence rates from the kinematic plate model50.

Discussion
The evidence presented in this study, coupled with current
knowledge of the tectonic and structural evolution of Gondwana’s
southwestern margin, allows us to conclude that the episodic
magmatism of the early Andean Cordillera resulted from a mul-
tistage, transtensional to extensional subduction setting21,24,28. Six
plutonic episodes were identified between the Late Triassic and
earliest Late Cretaceous (215–94Ma); each one related to specific
substages in the evolution of the continental arc. These episodes
are better identified and characterised based on zircon petro-
chronology coupled with whole-rock geochemical analyses (Figs. 2
and 3), and can be associated with significant tectonic changes in
the continental margin (Fig. 4). Therefore, an “external forcing”
model36 with mantle-derived inputs39 is argued as the mechanism
for the episodic plutonism in this extensional continental arc.

Our interpretations are in agreement with a proposed Cre-
taceous (ca. 120–90Ma) flare-up event recorded in the Western
Peninsular Ranges Batholith (US), the Peruvian Coastal Batholith,
and the Costal Cordillera of central Chile south of the study
area39; and with the episodic magmatism in the Mesozoic Median
Batholith of Fiordland, New Zealand51. Further, the new data
presented here are consistent with intermittent magmatism in the

American Cordilleras52. However, they contrast with data
reported for other continental arcs developed in compressional to
transpressional tectonic settings, such as the Cenozoic central
Andes53, the North37,54–56 and South57 American Cordilleras,
and the collisional Gangdese Batholith58. In those, an ‘internal
feedback’ model36, based on processes such as foreland
underthrusting3 or arc migration37, is the preferred explanation
for cyclical magmatism. These dissimilarities could be attributed
to different tectonic processes governing the arcs during flare-
ups38,57, and could explain the variability among high flux events
in a particular magmatic arc through time, as in the case of the
Mexican Cordillera59. Consequently, episodic magmatism in
continental arcs could be explained by: (i) external forces (first-
order variables) without a significant modulating effect of crustal-
scale processes (second-order variables) during an extensional
tectonic regime; and (ii) a variable mixture of external forces and
intra-arc feedbacks in compressional settings38,52.

Our results highlight the use of zircon petrochronology as a
potential tool to unravel the multimillion-year crustal scale evo-
lution of Cordilleran arcs.

Methods
Sampling and analytical methods. Descriptions of the studied plutonic complexes
and analysed samples are presented in Supplementary Table 1 and Supplementary
Table 2, respectively. Methods for whole-rock analysis and for simultaneous zircon
U-Pb geochronology and trace element determinations are reported in the Sup-
plementary Material. Raw data of the whole-rock and zircon analysis from this
study are shown in Supplementary Data 1, and for ref. 22 in Supplementary Data 2.
Compiled published radiometric ages for plutonic units in the study area are in
Supplementary Data 3. Compiled published whole-rock analyses for intrusive rocks
in the early Andean Cordillera are in Supplementary Data 4.

Data availability
The authors declare that all relevant data are available within the article and
its Supplementary Information files.
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