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Quantum Hall edge states under periodic driving: A Floquet induced chirality switch
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We report on the fate of the quantum Hall effect in graphene under intense laser illumination. By using Floquet
theory combined with both a low energy description and full tight-binding models, we clarify the selection rules,
the quasienergy band structure, as well as their connection with the two-terminal and multiterminal conductance
in a device setup as relevant for experiments. We show that the well-known dynamical gaps that appear in
the Floquet spectrum at &+ 7€2/2 lead to a switch-off of the quantum Hall edge transport for different edge
terminations except for the armchair one, where two terms cancel out exactly. More interestingly, we show that
near the Dirac point changing the laser polarization (circular right or circular left) controls the Hall conductance,
by allowing to switch it on or off, or even by flipping its sign, thereby reversing the chirality of the edge states.
This might lead to new avenues to fully control topologically protected transport.
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I. INTRODUCTION

Forty years ago, the discovery of the precise quantization
of the Hall conductance in a two-dimensional electron gas
under extreme conditions [1] opened the doors to a new
chapter in condensed matter physics [2]. Elegant topological
arguments [3,4] explained the precision of the Hall plateaus
in practical devices under high perpendicular magnetic fields,
while also pointing to new deeper and unifying concepts. Over
the last two decades, the use of such topological arguments
rapidly expanded [5-7] allowing the discovery of, for exam-
ple, topological insulators in two [8] and three dimensions [9]
and Weyl semimetals [10]. Amid the ever growing family of
topological phases, the quantum Hall (QH) effect remains as a
paradigmatic case where the topological edge states enjoy the
highest degree of robustness, a fact that is nowadays exploited
in the new international system of units [11].

Besides the plethora of manifestations of topological states
in (or near) equilibrium conditions, another growing research
front aims at using light to change the properties of a mate-
rial by generating hybrid electron-photon states (also called
Floquet-Bloch states) with different spectral and topologi-
cal properties [12-20]. The latter has become an emerging
research front within the so-called quantum materials [21].
Fascinating experiments have unveiled the Floquet-Bloch
states [22,23] and a much awaited consequence: the light-
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induced Hall effect [24]. While in photonic systems or
ultracold matter the experiments allow to reach high driv-
ing [25] frequencies, which in turn allow suitable theoretical
approximations [26,27], the sweet spot for laser-illuminated
Dirac materials corresponds to the (theoretically more chal-
lenging) mid-infrared where /<2 (a few hundreds meV) is
much smaller than the bandwidth [28-30].

Here we address the question of how the QH effect in
graphene is affected by laser illumination. Previous studies
have mainly focused on the effect of light on the intricacies of
the Hofstadter butterfly of different lattices [31-34], the bulk
properties of the irradiated Landau levels and topological in-
variants [31,35], and related dynamics [36]. By computing the
spectrum and the topological invariants, laser-induced modifi-
cations on the Hofstadter butterfly and topological properties
were recognized. The Hall conductivity in presence of both
illumination and an external magnetic field (but without dissi-
pation terms) was also discussed but by means of a Kubo-type
formula [35,37]. The subject still remains controversial, as the
issue of how to properly account for the occupation of the
Floquet bands [38-45], specially in this bulk regime when
dissipation effects need to be included, has demonstrated to
be a difficult task.

In this work, we tackle two aspects that are unavoidable in
condensed matter experiments: (i) the regime of photon ener-
gies (€2) much smaller than the bandwidth—in particular, we
consider 2 < w,, where w, is the cyclotron frequency; and (ii)
a multiterminal device geometry with a laser spot applied to
the central part and address the conductance measured in such
configurations [46]. Specifically, we study the spectrum and
the time-averaged conductance both in the two-terminal and
multiterminal case as required for Hall measurements. To such
end, we use atomistic models within a scattering configuration
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with a central illuminated spot, thereby allowing for the occu-
pations to be well defined far away in the leads. The spectrum
is first analyzed by using the continuous Dirac model that
properly describes the low energy properties of the system.
This is done for both zigzag and armchair edge terminations.
Such an approach allows us to clearly identify the main fea-
tures of the Landau-Floquet edge modes. These results are
further verified using a more complete tight-binding model
which is later used for our transport calculations. The latter
are implemented by means of a generalization of the coherent
Landauer-Biittiker approach to the Floquet picture [47—49].
In this Floquet scattering picture, the leads are not illuminated
and have well defined occupations.

We find that in certain experimentally accessible parameter
regions laser illumination leads to important effects including
the switch-off of the Hall conductance, the splitting of the Hall
plateaus and even a change in the chirality of the propagating
states. Interestingly, the Hall conductance is switched off for
all edge terminations except for the armchair one, where two
contributions cancel out exactly.

This paper is organized as follows. In Sec. II, we describe
the Landau-Floquet states in graphene within the frame-
work of the Dirac (linear) model. In Sec. III, we study the
Landau-Floquet bands in a tight binding model for zigzag
and armchair ribbons. Section IV shows two-terminal con-
ductance simulations which are clarified by visualizing the
scattering states. Section V shows the simulations of the Hall
conductance in a six-terminal configuration. Finally, we sum-
marize our results in Sec. VL.

II. LOW ENERGY HAMILTONIAN

The low energy properties of graphene can be described
using the following Hamiltonian [50,51]:

Ho=v (. ®0, X+ 10 ®0,9) - p, (1

where o; (t;) with i = x, y, z are Pauli matrices describing
the pseudospin (valley) degree of freedom, 7y is the 2 x 2
identity matrix, p = p, X + p,y is the momentum operator
and v, is the Fermi velocity. The wave function W has then
four components, ¥ = [Vak, ¥ak, Vax', Yk 1T, with ampli-
tudes describing the two inequivalent valleys in the Brillouin
zone around K = (471/3\/3(10, 0) and K’ = —K (the first two
amplitudes correspond to K and the remaining ones to K’).
The parameter a is the distance between nearest neighbor
carbon atoms. The presence of a perpendicular magnetic field,
B = BZ, can be described by the well-known Peierls substitu-
tion, p — p + ¢A, with A the corresponding vector potential
(—e is the electron charge, e > 0).

A. The Floquet approach

The illumination with a laser field (applied perpendicularly
to the graphene plane) can be modeled as a time-dependent
term in the Hamiltonian. Furthermore, as long as the laser is
monochromatic (as it will be the case throughout this work),
this term is periodic in time and hence it can be treated
within the Floquet theory [52-54]. We briefly describe now
this approach before going into its application to our problem.

For a periodic time-dependent Hamiltonian 71(r), where
H(t + T) = H(t) with the period T = 27 /2, Floquet theory
assures the existence of a complete set of solutions of the
form |W, (1)) = e /" | (1)) with |¢a(1)) = |¢pa(t 4+ T)).
Replacing this solution in the time-dependent Schroédinger
equation one obtains: 7:[]«‘ | (1)) = &4 | (1)), Where 7:£p =
H(t) — il 9, is called the Floquet Hamiltonian. Thus we get
an eigenvalue equation in the composite space R ® T (also
called Floquet space) where R is the usual Hilbert space and
T the space of T-periodic functions spanned by exp (imt).
The integer m is called the replica index. The change in the
replica index in a process going from a state with, say, m to
m + n can be assimilated to a number of photon excitations
[55].

Our Hamiltonian can be written as the sum of a time-
independent term and a time-dependent one involving the
interaction with the laser: H(t) = Ho + V (¢). By using a
Peierls’ substitution the time dependent term can be written as
V() = % (; ® 0. X+ 19 ®0,9)-A,(t), where the vector
potential

A, (t) =Ap[cosacos QX +sinacos(Q —@)y]  (2)

describes the radiation field. For ¢ = 0, this radiation field is
linearly polarized, in which case « is the polarization angle;
whereas for ¢ = /2 (—n/2), and o = 7 /4, the radiation is
right-handed (left-handed) circularly polarized. The Fourier
components of V), V, = % fOT V(t)e~ ¥ dt, introduce ele-
ments connecting the different Floquet replicas in the Floquet
Hamiltonian.

In the low energy approximation there is a further simplifi-
cation: since the momentum p enters linearly, the perturbation
V (¢) is monochromatic so that its Fourier expansion will have
only one harmonic (there is no such a simplification in the
tight-binding model, see Sec. III). Notice also that any spatial
modulation of the laser beam is considered to be larger than
all other relevant length scales and hence ignored. This im-
plies that the perturbation cannot mix states that are spatially
orthogonal. Finally, we write V() as

V)= Ve +V e ™), 3)
with
nh<2 . _
V:T[cosatz®ox+smae 10 ® oy]. @
Here we have defined the dimensionless parameter n =

ev;Ap/ch2 that characterizes the driving strength. With this,
our eigenvalue equation reduces to

(Ho +mhS) |¢a.m) + V' |$ums1) + VIdam1) = €a |¢a,m>5,

)
where [@q (1)) = Y, €™ | ¢, ). From this, it is clear that the
laser field can only couple replicas m; and my such that my =
m; £ 1. For the application of the Floquet formalism, we will
expand |@, ) in a basis of eigenfunctions |x,) of the static
system (i.e., with the magnetic field alone)

|fam) = wie) |X,) - (6)

The eigenstates |x,) can be those corresponding to a system
with an edge (see Sec. II B and II C) or to an infinite (bulk)
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O A sublattice
@ B sublattice

FIG. 1. Geometry used in the Dirac model. The homogeneous
magnetic field and the laser are normal to the graphene monolayer.
The zigzag and armchair edges are indicated, highlighting the fact
that the former contains only C atoms from a given sublattice (B),
while the latter contains both.

sample (see Sec. IID). From hereon the letter m will be
reserved to indicate Floquet replicas.

B. Zigzag Floquet Hall states

We start our analysis with the most relevant case of zigzag
edges (see Fig. 1). Since in this case the two valleys are not
coupled by the boundary condition, we can consider only one
of them, say the K valley, and use a simpler two-component
spinor notation. Since this is a generic feature of all termina-
tions except for the armchair one, this case can be considered
as the most general. The armchair edge will be analyzed
separately later on. As a basis to expand the Floquet space
we use the corresponding QH zigzag edge states, which are
given by (see Appendix A for details)

XS ( )_ 1 ( Dv,,(g) )
vk Y \/m S/VaDy,—1(€) ,

where & = «/2(y/lp — klp), £g = /fic/eB is the magnetic
length, ¢,(k) = s iw.A/v,(k) is the energy of the Hall state,
where s = %1 refers to the electron and hole bands, respec-
tively, and w, = +/2v, /3 is the cyclotron frequency, D, (x)
is the parabolic cylinder function of index v, k is the crystal
momentum along the x axis and C,; is a normalization con-
stant. Here, n > 1 enumerates the positive energy levels, for a
given k, in ascending order. Notice that the plane wave factor
along the x axis (see Appendix A) can be safely ignored as the
perturbation does not mix states with different k.

Since the laser field is monochromatic [cf. Eq. (2)], the
Floquet matrix # r—which is a representation of Eq. (5) in the
R ® T space—is an infinite block tridiagonal matrix. With
our choice of basis given in Eq. (6), the diagonal blocks are
itself diagonal. Because we are interested in the effect of the
laser field on a few edge states around the Dirac point (¢ = 0),
we will truncate Hr and retain 2N Landau levels, N above and
N below the Dirac point and 2M + 1 Floquet replicas. Hence
n=1,...,Nand m = —M, ..., M. The matrix element be-
tween states | Xfﬁk> and [x; ) in the m and m — 1 Floquet
replicas, respectively, is simply given by

(N

5 P nh2 B
(o VxS )= 5 [8f (@ IRy A5~ R 1 - B

K valley K' valley
T S T R e —— —
1.0 \\ 1t § ]
~ QO =w,. Q=w,
(a) (b)
Soo0f —— ]
~— /—
w A
-
-1.0 -//’_;;d——‘ B /_
1 1 1 —m————
. Q= 065w, = 0= 065w,
Jool TS
W
1.0k 41
g 1 TR W— . B ———
0.0 2.0 4.0 0.0 2.0 4.0
klp klp

FIG. 2. Quasienergy spectrum projected on the m = 0 Floquet
replica [po(€, k), solid black lines] as a function of the dimensionless
wavevector k{p along a zigzag edge irradiated with a circularly
polarized laser. For (a) and (b) [(c) and (d)] we use n = 0.2 w./Q2
(n =0.3w./%2). Subplots (a) and (b) correspond to the resonant
case (2 = w,) for valleys K and K’, respectively. Similarly, (c) an
(d) correspond to a nonresonant photon energy (2 = 0.65w,.). Here
five Floquet channels (—2 < m < 2) were used.

where f(a, ¢) = cosa — isina e and

EB\/U o0
2CuCuik J oKty

Similar calculations can be performed in the K’ valley using
the eigenfunctions given by Eq. (A4).

Let us now consider the case of a laser field with positive
(counterclockwise) circular polarization: o« = 7 /4 and ¢ =
/2. Then we have f(w/4,7/2) =0 and f(—n/4,7/2) =
V2, and thus the right hand side of Eq. (8) reduces to
nhQ25R,,,, /~/2. Figure 2 shows the quasienergy dispersion
of the Floquet Hall edge states, weighted by their projection
on the m = 0 Floquet replica. These dispersion relations were
obtained by numerically calculating the following spectral
density

Ry = d§D,_1(§)Dy(§).  (9)

1 _
pole. k) = ——Im Trole +i0" — Hp (k)] h (10)

where the trace Tr( is taken only over the m = 0 subspace.
Here we used five Floquet replicas (M = 2), twelve Landau
levels (N = 6) and two different photon energies: (i) resonant
with the first bulk Landau level (2 = w,.) and (ii) off-resonant
(22 = 0.65 w.). We include also the results for the K’ valley
which were obtained in a similar fashion.

The main new features in the spectrum that are apparent
from the Fig. 2 are: (i) the splitting of the bulk Landau levels
and the lack of electron-hole symmetry, both analyzed in
detail in Sec. II D; (ii) the appearance of multiple dynamical
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gaps (or, more precisely, avoided crossings) of different order
in 5. In particular, the first-order ones at £ /€2/2 in the K
valley arises from the resonant coupling between the lowest
electron and the highest hole edge states and, as we will show
when discussing the transport properties, lead to the (almost
complete) suppression of the QH conductance; (iii) the bend-
ing of the otherwise flat zero energy state (v = 0) of the K’
valley, which results from the direct coupling to the lowest
Landau level of the electron band | le ) (in the Floquet picture
it corresponds to coupling to the m = —1 replica). This leads
to an edge mode with a polarization dependent dispersion that
it is always a counter-propagating mode, in the sense that it
has the opposite velocity that the edge states with the same
sign of quasienergy. This, in turn, causes a change of the sign
of the Hall conductance, as we discuss in Sec. V; (iv) in a
small quasienergy region above ¢ = hw, there is an effective
reduction of the number of edge states as the one coming from
the K’ valley is shifted upwards. In a finite sample, the same
happens for the K valley on the other edge. This leads to the
emergence of a 4e*/h feature in the two terminal conductance
as discussed in Sec. IV.

The size Agym of a dynamical gap is given, to first order
in 1, by the matrix element between the two states involved
in the avoided crossing [Eq. (8)]. In the case of the gap at
e = h<2/2, they are Ix";k) and |xv_]k) inthem=0andm =1
replicas, respectively, so that

Agym =~ 0 AQ sina|R,,, |, (11)

where vy (k) = (SZ/Za)C)2 defines the value of k& where the
resonant condition is fulfilled. Equation (11) is not restricted
to a circularly polarize laser. In fact, it must be noted that in
the case of a linearly polarized beam, Agyy, depends on the
relative orientation of the electric field and the edge, being
zero if the electric field is parallel to the edge (o = 0).

C. Armchair Floquet Hall states

Now we apply a similar treatment to the case of armchair
edges. For this special termination, however, one needs to
take into account both valleys at the same time [50], as the
boundary condition mixes them. The eigenfunctions for the
static system are presented in Appendix A. They are now
four-component spinors

—ist,D,, (§)eK~
1 —Tun/VaDy,—1 ()"
Ok | isy/nD,, 1 (8 )e~ K
D, (§)e™

X (X) = . 312

with & = /2(x/€z — k€p). The eigenenergies are given by
&, = s liwc /v, with s = £1, the meaning of s being the same
as in the zigzag case. The new parameter 7, = (—1)"*! indi-
cates the branch v, belongs to [see Appendix A for details
as well as for the explicit form of C, «]. Using Eq. (12) and
the interaction matrix Eq. (4), we have the following matrix
element that enters in Hp:

hQ
4 |Xi,,k) = inT(gs + TaTn)

<X§ﬁk
x[sf(=at, §)Rupy, — 5f (et $Ruyr, |- (13)

Circular Polarization Linear Polarization
r : .

i T —

Lo} = —— 1}

0.0 2.0 10 0.0 2.0 10
klp klp

FIG. 3. Quasienergy spectrum projected onto the replica m = 0
for an irradiated armchair edge. The laser is circularly (linearly)
polarized in (a) and (c) [(b) and (d)]. In (a) and (b), the laser is in
resonance (2 = w,), with n = 0.2 w./2; whereas in (c) and (d) it
is out of resonance (2 = 0.65w,), with n = 0.3 w./<2. Five Floquet
replicas (—2 < m < 2) were included. It is clear, in comparison with
Fig. 2, the absence of a first-order dynamical gap at £ 1€2/2. Higher-
order gaps due to the coupling with m = £2 replicas are present.

This gives an interesting selection rule: ( Xi,-, Rz X0 =0 if
§s = —1;7,. In particular, for the n = 7 = 1 edge mode, the
coupling between the conduction (¢, s = 1) and valence (v,
§ = —1) bands vanishes

(bl Vx5 =0. (14)

Because this matrix element is responsible for the opening of
a dynamical gap at + /€2/2, we do not expect such a gap in
the armchair case—of course, this argument refers to a first-
order gap; higher-order (smaller) gaps in fact exist at these
points, whose width can be estimated to be roughly equal to
2n2hAQR,,,,, i.e., a factor n smaller than the zigzag dynami-
cal gap. Note that, in general, there is no coupling between

electron and hole levels (i.e., s§ = —1) belonging to the same
solution branch (i.e., 737, = 1). Similarly, (x, . |VIx, ;) =
(XxVIx,, ) =0 if 7, = —75. ie., same electron or hole

character and different solution branch. All this implies that,
considering only first-order couplings, the armchair edges
have more symmetries than the zigzag ones, leading to a
simpler Floquet spectrum.

The corresponding weighted Floquet spectrum, calculated
with the projected spectral density po(e, k), is shown in Fig. 3
for a circular (¢ = 2o = 7 /2) and linear (@« = ¢ = 0) polar-
ization of the laser field. As in the previous section, we use five
Floquet replicas (M = 2). The most striking difference with
Fig. 2 is the lack of first-order dynamical gaps at + h2/2,
in complete agreement with Eq. (14). Moreover, when the
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photon energy is out of resonance [Figs. 3(c) and 3(d)], the
weighted Floquet bands are similar to the ones of the static
system, except for an energy shift of certain Landau levels.
It is interesting that certain gaps appear at the crossing of the
static system (m = 0) with replicas m = £2. Since our linear
model only couples directly Floquet channels differing in one
photon, these gaps are of second order and thus smaller than
those seen in Fig. 2 at ¢ = &£ h€2/2. The flat states for klg > 2
correspond to the bulk Landau levels, so that their shifting
and splitting follows the pattern of the latter, which we now
discuss.

J

nhQ
V =
XV Xk 4T = (no ¥+ 810)/2

In the right-handed circularly polarized case, f(«, ¢) = 0 and
this matrix element is proportional to §), 7j+1. In this way we
obtain the selection rule |/| = |n| — 1, where [ is the Landau
index of the state with an extra absorbed photon [(I, m +
1) < (n, m) transition in the Floquet space]. For the opposite
circular polarization, the |/| = |n| + 1 rule applies. When the
polarization is linear, Eq. (15) dictates that ||n| — ||| = 1. The
matrix elements between eigenfunctions in the K’ valley are
the same as those in Eq. (15), and thus the same selections
rules apply.

These selection rules can be clearly seen when we plot the
Floquet spectral density po(e) as a function of B for a fixed
value of /€2, as shown in Fig. 4. The calculations were carried
out with twenty Landau levels (N = 10,), five Floquet replicas
(M = 2) and n = 0.15. To properly scale, the spectrum it is
useful to define an auxiliary magnetic field By = hcQ2?/(2ev?)
so that w./Q2 = /B/By and the energy of the mth Floquet
replica is simply e = (sgn(n),/ &-|nl +m)hS2. Figure 4(a)
shows the case of a circular polarization. First we notice that,
as B approaches zero, there are dynamical gaps of almost
constant size that tend to center around ¢ = £ /i2/2. These
are reminiscences of the well-known dynamical gaps of irradi-
ated graphene that appear in the absence of any magnetic field
(with size roughly equal to n#€2) [12,28]. Another interesting

FIG. 4. Weighted bulk Landau-Floquet spectral density py(e, B)
as a function of the magnetic field for a fixed value of 2. In (a) and
(b) the laser field is circularly (¢ = /4, ¢ = 7 /2) and linearly
(a0 =m/2, ¢ = 0) polarized, respectively. Here n = 0.15 and By =
thc/(Zevﬁ).

D. Bulk selection rules

To better understand some of the features observed in
Figs. 2 and 3, it is useful to analyze the bulk case. For that
we calculate pg(¢) [cf. Eq. (10)] with Hf written in the basis
of the bulk eigenfunctions (see Appendix A). The matrix
elements of Hr between the Floquet bulk eigenfunctions can
be calculated by considering each valley separately as they are
decoupled in bulk. Using the solutions |x;;) given in Eq. (A2)
for the K valley (and omitting the superscript K) we obtain the
following matrix elements

[£ (e, @)sgn(D)8)uyj11-1 + f(—at, @)sgn(m)Spuy 1j11]- (15)

(

feature is the appearance of anticrossings near B = By, that
is, when the laser field is in resonance with the transition
between the zero and the first Landau level. In the case of
the anticrossing near ¢ = 0, it originates from the degeneracy
of the Floquet states | xq;, 0) and |x;;, —1), as dictated by the
selection rules—here we use the notation |x,,, m) to indicate
the mth Floquet replica the state |x,,) belongs to—while for
the one at ¢ = /€2 it corresponds to the near degeneracy be-
tween | X, 0) and | xq, 1). Note that because of the selection
rules there is no coupling between |x_;, 0) and |xq, —1)
and so py(e) # po(—e) (there is no electron-hole symmetry).
This is consistent with the results of Refs. [33,34] where the
full Hofstadter butterfly spectrum (tight-binding model) was
analyzed. Finally, we mention that the series of gaps near
h2/2 arises from the anticrossings between the Floquet states
[Xu» 0) and |x;_, 4, 1) with n=1,2, ..., while those near
—Fh<2/2 appear at the crossings of |x_,;, 0) and |, 1, —1).

As we have already mentioned, for a linearly polarized
laser the selection rules require ||n| — |/|| = 1, with both n and
[ entering symmetrically. This implies that pg(e) = po(—¢)
as it is clear from Fig. 4(b). It is interesting to analyze
in particular the triple crossing that occurs near ¢ = 0 for
B = By (resonance condition, 2 = w,). In that case, | xq, 0),
[X_1x, 1) and |xy;, —1) become degenerate while the selec-
tion rules allow the coupling between |y, 0) and each of
the other two states, with a matrix element 5/ e=®/24/2,
respectively. Within this restricted subspace, a straightfor-
ward diagonalization gives the eigenvalues Ao = 0 and Ay =
£ nhS2/2. The eigenvector corresponding to Ag is (| X_x, 1) +

|X1> —1))/~/2 which does not have any weight on the m = 0
replica, as it is evident from the lack of spectral weight shown
in Fig. 4(b). For the other eigenvalues A+ we have that the
corresponding eigenvectors are («/§|x0k, 0) Fe* (x> 1) +
[X1x>» —1))/2, both with the same weight (1/2) on the m = 0
replica. A similar calculation explains the features observed
at ¢ = = A2 in Fig. 4(b). Finally, the small gaps near /€2/2
that appear at low B result from the crossing of |x,,., 0) with
[X—urips 1) and | X_o1pps 1) (n=1,2,...), and similarly
for the gaps near —/€2/2. It is worth mentioning here that
in the absence of a magnetic field there is no laser induced
dynamical gap in pg(¢) for a linearly polarized laser but a
pseudogap that closes linearly in energy at exactly ¢ = /i2/2
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FIG. 5. (a) Geometry of the problem in the tight-binding model,
with the lattice a; and nearest neighbors §; vectors indicated, whose
modules are a and ay, respectively (a = V3 ay). We refer all our
calculations to this configuration, and thus a zigzag (armchair) ribbon
has a translational symmetry along the x (y) direction. (b) First
Brillouin zone and the two nonequivalent valleys K and K'.

[28]. This can be seen in Fig. 4(b) as B goes to zero, where the
size of such gaps become smaller until they vanish at B = 0.
In this case, the presence of this pseudogap is reveled by the
Landau-Floquet states that appear nearly pinned at ¢ = 7Q2/2.

III. TIGHT BINDING MODEL

The Dirac model is suitable only for describing the low
energy excitations near the Dirac point (¢ = 0), where the
energy dispersion is almost conical. A better and more com-
plete description is given by a tight-binding (TB) model,
where the p, carbon orbitals in graphene are described by
H= Z(i,j) tij 6;6]' + H.c. Here ¢; is a destruction operator at
the position j, the notation (i, j) implies that the summation
is carried over nearest neighbors only, separated by a distance
ap = 1.42 A (see Fig. 5), while the hopping f; ;j is independent
of the site: #;; =t = —2.8 eV. The effect of an external field
described by the vector potential A(r, 7) is included as before
via the Peierls substitution, which in the TB approach is given
by

tij%lineXp[(;—ec) /r/A(r»t)'dr]- 16)

ri

A. Landau levels

Let us first briefly describe the well-known effects of an
homogeneous magnetic field on a graphene ribbon with ei-
ther zigzag or armchair edges. Figure 5 shows that with our
choice of axes the ribbon has translation symmetry along the
x (y) direction for a zigzag (armchair) edge. This symme-
try allows us to introduce a Bloch function with a crystal
momentum k, or k, along the relevant symmetry direction.
In order to preserve, this symmetry we choose the gauge
A(x) = —ByX [A(x) = BxJy] for the zigzag (armchair) rib-
bon. Hence, the Peierls substitution for the zigzag ribbon
is explicitly given by ;; =t exp[—i £ (x; — x;))(y; + yi)/aj],
where ¢ = 7®/®g, ® = Bal and Py = hc/e is the flux
quantum.
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FIG. 6. (Left) Energy dispersion of the Landau levels for (a) a
zigzag and (b) an armchair ribbon with widths W = 224 gy and W =
7543 ay, respectively, and ¢ = 0.003 (equivalent to £ =~ 13 ay).
(Right) Geometry of the ribbons with the corresponding unit cells
highlighted by the purple box. The magnetic field BZ is applied
normally to the ribbon’s plane.

Figure 6(a) shows the Landau bands for a zigzag ribbon
of a width of 300 atoms (W = 224q,) and ¢ = 0.003. There
are bulk Landau levels (flat bands), as well as dispersive
edge states due to the confinement imposed by the ribbon.
The dispersion relations in each Dirac point is in very good
agreement with those found with the Dirac model [compare
with Figs. 19(a) and 19(b) in Appendix A]. It is worth men-
tioning here that not all the zero energy states in this geometry
are bulk Landau levels. There is also a trivial dispersionless
edge mode that appear on zigzag ribbons in the absence of
a magnetic field (see Appendix A for a further discussion).
These modes, being dispersionless, are not affected by the
Lorentz force.

A similar calculation done for the armchair case leads to
the Landau spectrum shown in Fig. 6(b). Here the ribbon is
302 atoms wide (W = 753 ap). In contrast with a zigzag
ribbon, the two dispersionless states at ¢ = 0 are fully located
in bulk, and are identified with the n = 0 Landau level.

B. Floquet states

We now add a time dependent laser field using the vector
potential given in Eq. (2), which is assumed to be homo-
geneous throughout space. The integral in Eq. (16) is then
simply R;; - A(t), where R;; = ag (cos 0;; X + sin6;; §) is the
vector connecting neighboring sites i and j. For a laser field
with positive circular polarization, the Peierls substitution
leads to #;; =t expliz cos(2t — 6;;)], while for the linearly
polarized case we have f;; =1 expl[izcos(8;; — a)cos Qr].
Here we have introduced the dimensionless quantity z =
eapAo/hc = (Rap/vr)n that measures the driving strength
(with n <« 1 indicating the weak coupling regime). It is clear
then that the time-dependent TB Hamiltonian for the irradi-
ated ribbon is periodic in time but not harmonic. In the Floquet
formulation, the Floquet matrix elements now couple replicas
with Am # =£1. The Fourier components of the Hamiltonian
can be calculated using the well-known Jacobi-Anger identity:
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FIG. 7. Landau-Floquet spectral density po(¢, k) in the presence
of an homogeneous magnetic field (¢ = 0.003) and a driving strength
z = 0.025. The polarization is circular (¢ = 2« = 7 /2) for (a) and
(c), and linear (@ = 7 /2, ¢ = 0) for (b) and (d). Subplots (a) and
(b) correspond to the resonant case with = w,, whereas in (c) and
(d) the laser field is off-resonant with Q = 0.65 w.. Five Floquet
replicas (—2 < m < 2) were used. The ribbon is 300 atoms wide
W = 224 ay).

eircost — ;Zo—oo ", (r) eimﬁ’ where J,,(r) are the Bessel

functions of the first kind of integer order. Hp, which is
no longer block tridiagonal, is truncated to a finite number
of Floquet channels for its numerical diagonalization. In the
following we retain five Floquet replicas —2 < m < 2 (unless
otherwise stated) and calculate py(e, k) by means of Eq. (10).
This number of replicas guarantees that, for the value of the
parameters we use, the most relevant features in pg(e, k) are
well described.

The Landau-Floquet spectral density for a zigzag ribbon of
width W = 224 a, is shown in Fig. 7: (a) and (c) correspond
to the circularly polarized case, while (b) and (d) to a linearly
polarized laser, with o = 7 /2—the direction of polarization
is perpendicular to the edges of the ribbon—which guaran-
tees a maximum size in the gap opening, see Eq. (11). The
photon frequency is 2 = w, (resonant) for (a) and (b) and
Q = 0.65 w, (off-resonant) for (c) and (d). We use a dimen-
sionless flux ¢ = 0.003 and z = 0.025. The bands of the static
system (red dashed lines) are also shown for comparison.

All features described in the previous section using the
Dirac approximation are observed here. In particular, there are
dynamical gaps at around & = +/€2/2 with a magnitude in
agreement with Eq. (11). In Fig. 7(c), the degeneracy between
the two flat modes at ¢ = 0 is removed, one remains at ¢ = 0
while the other shifts downwards. We identify the latter with
the n = 0 bulk Landau level, which obeys the selection rules
Eq. (15) and whose shifting is in good agreement with these.
The other state corresponds to the edge state solution Eq. (A9)
given in Appendix A. Being an edge state, it does not couple
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FIG. 8. Same as previous figure but for an armchair ribbon of
width W = 120+/3 a, (480 atoms in the unit cell).

to the bulk states and hence it is pinned at ¢ = 0. A similar
analysis applies to Fig. 7(a) except that the bulk » = 0 Landau
level here is split instead of shifted due to the resonance
condition. The linearly polarized case present similar features.
However, in this case, the spectrum is electron-hole symmetric
and hence the n = 0 Landau level can only split. For an off-
resonant photon energy [Fig. 7(d)], the only effects of the laser
field are the opening of the dynamical gaps at +/£2/2 and the
shifting of the first nonzero static Landau levels. In resonance,
Fig. 7(b), there is a splitting in a neighborhood of ¢ = 0.
The states with ¢ # 0 are truly bulk states, coming from the
mixing of the n = 0 Landau level in the replica m = 0, and the
n = %1 Landau level from the replica m = 1. The state that
remains at ¢ = 0 is the zigzag edge state mentioned above.

Figure 8 shows the results for an armchair ribbon. The
main feature predicted by the Dirac model is quite apparent:
irrespective of the laser polarization, there is not a (first order)
gap at £ /i2/2, the origin of such absence being the selection
rule between Landau edge states, Eq. (14). Moreover, as it was
mentioned in the preceding section, the bands around k, = 0
(roughly |kyao| < 0.4 in Fig. 8), are basically bulk bands, and
as such their splitting follows the selection rules obtained in
Sec. IID.

IV. TWO-TERMINAL CONDUCTANCE

We now discuss the transport properties of an illuminated
ribbon in the QH regime in a two-terminal setup. For that,
we take the magnetic field to be present throughout the en-
tire sample (including the semi-infinite leads), whereas the
laser field is switched on smoothly (over a length scale A;),
kept constant for a distance 2A, and finally switched off,
as schematically shown in Fig. 9. This defines the scatter-
ing region. If we take the coordinate x to be directed along
the ribbon, then the scattering region is defined by |x| <
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FIG. 9. Setup for the calculation of the two-terminal conductance
G,r using the Landauer-Biittiker approach for Floquet systems. The
laser field, defined by the local function z(x), is applied along a
central region and its intensity vanishes smoothly towards the leads.

A1 + A,, while the local driving strength parameter z(x) =
eapAp(x)/Hic is taken to be

A\l

z2(x) = %[1 + cos (ﬂ(\xkxl—/\z))] s

a7

Here z is the maximum value reached by the driving strength.
We use this symmetric profile for the laser field to preserve the
left/right symmetry of the ribbon—the laser is homogeneous
along the transverse direction.

The current is computed within a scattering approach
[47,48]. In the noninteracting limit, this is equivalent to the
Keldysh formalism [54,56]. This has been used for a variety of
systems including laser illuminated graphene [46,57]. Within
this scattering picture the main assumption is that the device
dimensions are smaller than the phase coherence length, so
that dissipation takes place only in the leads (this is a reason-
able approximation for clean graphene samples). This way,
one overcomes the problem of the occupation of the Floquet
states mentioned in the introduction.

The time-average current, ] = % fOT dtI(t), is calculated
according to

_ 2 n "
I= { Z / [T fule) = T% fr(e)]de,  (18)

where TR(Z)(&‘) is the transmission probability for an electron

with energy ¢ from lead L to lead R emitting (absorbing) n >
0 (n < 0) photons and f,(¢) is the Fermi function of the lead
a. Defining the quantities T(s) = Y, (T,%(e) + T (£))/2
and 8T (s) = Zn(TL(]';)(e) - TR(Z)(e))/Z, the average current [
can be written as the sum of two terms

-2
1:Ie/[T(g)(fL(8)_fR(s))_5T(8)(fL(8)+fR(8))] de.

(19)
At zero temperature, and up to first order in the bias difference
8V, it reduces to

- 288 4e [°F
I=—T(Fp)sV — — 8T (g)de . (20)

h h J_«
Here ¢, is the Fermi energy. The bias independent contribu-

tion in Eq. (20) is the so-called pumped current. The inversion
symmetry of our geometry guarantees that §7 (¢) = 0. We can

/
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kza() Gor (2¢2/h)

FIG. 10. Landau-Floquet bands [(a) and (c)] and linear conduc-
tance G,r(¢) [(b) and (d)] of a zigzag ribbon of width W = 224 q,
and ¢ = 0.003. The laser is linearly polarized (¢ = /2, ¢ =0)
and we have used z = 0.025. Subplots (a) and (b) correspond to
Q = 0.65 w., whereas in (c) and (d), we have Q = w, (resonance).
The results of the static system are also included in red dashed lines
for comparison.

then define the linear dc two-terminal conductance G,y (g,) =
I/8V = (2¢*/h) T (g,) in terms of the transmittance at the
Fermi energy. The latter is calculated using the Green function
recursion technique within the Floquet formalism.

A. Zigzag ribbons

We consider in this section a 300 atoms wide zigzag ribbon
(W = 224 ay) and take A; = 21, = 800ag~/3. This value is
large enough as to minimize the backscattering of electrons
at the interface where the laser is on. The other parameters
are ¢ = 0.003 ({p ~ 13 ap) and z = 0.025. Unless otherwise
mentioned, in all transport calculation we use only three
Floquet replicas (—1 < m < 1), with the aim of describing
the most important features while reducing the computational
cost. First let us analyze the case of a linearly polarized laser
(o = /2, ¢ = 0). The results are shown in Fig. 10 for the oft-
resonant (top panels) and resonant (bottom panels) situations.
For each case, the conductance G,r [(b) and (d)] is shown by
the side of the corresponding Landau-Floquet spectral density
(projected on the m = 0 replica) [(a) and (c)]. Here, electron-
hole symmetry guarantees that Go7(—¢) = Gor(¢).

For an off-resonant photon frequency [Q2 = 0.65w,,
Figs. 10(a) and 10(b)], two changes appear in the conductance
(as compared with that of a nonilluminated ribbon shown
in red dashed lines): the two dynamical gaps centered at
+ /12/2, and a small energy shift in the n = 1 (electron and
hole) Landau levels where a transition from G,y = 2¢?/h to
Gor = 6¢%/h takes place. In the quasienergy region corre-
sponding to the dynamical gaps the conductance is almost
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FIG. 11. Same as Fig. 10 but with a right-handed circularly
polarized laser (¢ = 2« = 7 /2). The other parameters remain the
same.

completely suppressed in a very sharp way. This is due to the
fact that transport is carried out entirely by edge states, which
are completely reflected by the laser spot in that particular
energy range owed to the appearance of a gap—a related
effect was discussed in the case of a driven transition-metal
dichalcogenide ribbon in Ref. [58].

When the photon energy is in resonance with the first
nonzero Landau level [Q2 = w,, Figs. 10(c) and 10(d)], the
conductance exhibits, in addition to the two dips at = 7$2/2,
a strong suppression coming from the low energy gap created
in the Floquet spectrum—it is interesting to note that the faint
dispersive states near ¢ = 0 have a negligible contribution
to the conductance. Additionally, whereas in a nonirradiated
sample the conductance jumps from 2¢?/h to 6¢?/h when the
Fermi energy crosses /iw, as the result of the change of the
number of available edge states with a given chirality from one
to three, here an intermediate quasiplateau at G,y = 4e*/h
appears. As mentioned in the discussion of Fig. 2, this effect
is related to the fact that there is a range of quasienergies were
the number of effective edge modes is reduced by virtue of the
upward energy shift of the Floquet edge mode of one of the
valleys (the K’ valley in the case of Fig. 2). The origin of that
shift is the level repulsion between the flat (dispersionless)
edge state in the m = 1 replica and the first dispersive (v;)
edge mode of the m = 0 replica, which has always a higher
quasienergy (this is not the case in the other valley). As such,
this happens for opposite valleys in opposite sides of the
sample. This explains why in Fig. 10(c) there are no edge
modes for ¢, ~ hw,. near k.ay ~ 1.8 for the chosen ribbon’s
width. Due to the electron-hole symmetry, a similar argument
holds for &, = —hw,.

The results for a circularly polarized laser (p = 2«0 = 7 /2)
are shown in Fig. 11 for the same photon frequencies. All
the prominent features described for the linear case are also

-0.5 0.0 0.5 0.0 1.0 2.0 3.0
k‘y(l,o Gor (2¢2/h)

FIG. 12. Landau-Floquet spectral density and two-terminal con-
ductance for an armchair ribbon (W = 120+/3 a,) under illumination
with a linearly polarized (¢ = ¢ = 0) laser. The parameters used
are ¢ = 0.003 and z = 0.025. The photon frequency is 2 = 0.65 @,
[(a) and (b)] and w, [(c) and (d)].

observed here, but with the addition of several important new
ones. (i) In contrast to Figs. 10, here Gor(—¢) # Gor(e). (ii)
When @ = 0.65 w. the conductance is, apart from the two
square dips around = /€2/2, quite similar to that of the static
system. Notice that bending of the states near ¢, = 0 induced
by the laser provides the channel that leads to Gor = 2¢2/h
near the Dirac point. (iii)) When Q = w,, the emergence of
the new dispersive edge modes near &, ~ 0 (on the nega-
tive side for our choice of polarization) is fully developed.
These edge modes are the ones described in Fig. 2 when
discussing the properties of the edge modes of the K’ valley
[and the same as those described above in (ii)]. They lead to
a quantized conductance that partially fills the gap near zero
energy—the narrow dip in the conductance that is observed in
that energy region is due to a high-order anticrossing, which
cannot be fully appreciated in the Landau-Floquet spectral
density [Fig. 11(c)]. The quasiplateau in Fig. 11(d) slightly
above ¢, = hw, has the same origin as those seen in Fig. 10(d)
and can be explained in an analogous manner. The lack of a
similar feature at &, = —hw, comes from the selection rules
Eq. (15).

B. Armchair ribbons: the role of adiabaticity

We now consider an armchair ribbon of width W =
1203 ay and keep the same parameters, { = 0.003 and
7 =10.025. Figure 12 shows the results for a linearly po-
larized laser (¢ = ¢ =0, in-plane electric field normal
to ribbon’s edges). Let us point out first some general
considerations. As always with this type of polarization,
the Landau-Floquet spectrum presents electron-hole sym-
metry and thus Gyr(er) = Gor(—¢,). Moreover, as the
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Landau-Floquet bands lack the dynamical gaps at £ /7i2/2
(to first order in z), Gor does not show the typical strong
suppression around these points—at most some minor very
narrow features can be observed, corresponding to higher-
order photon processes. Additionally, for ¢, slightly below
(above) fiw, (—hw.), where the static conductance changes
from Gor = 2¢*/h to Gor = 6€?/h, the conductance is rather
oscillating, a behavior reminiscent of the 4¢? /h feature found
in the zigzag case—note that, in the latter case, the features
appear exactly at ¢, = £ hiw,.

For a nonresonant photon frequency €2 = 0.65w,,
Figs. 12(a) and 12(b), there are not special features around
& = 0. The linear conductance shows a flat profile as a
function of ¢, nearly the same as the static system, in
agreement with the small changes induced by the laser field
on the spectral density.

The situation changes when the laser photon frequency
is in resonance, 2 = w,, Figs. 12(c) and 12(d). On the one
side, there is a sharp dip around &, = 0. Its limits are roughly
defined by the small avoided crossings, coming from the
coupling between the replicas |xj ;,0) and |x) ;. 1) (& >
0), and between |x} ;. 0) and [x} ;. —1) (& < 0)—selection
rules Eq. (13) state that the matrix element between these
pairs of Floquet states is zero, so these gaps originate from
higher-order processes, which explains their smallness. This
dip is not the product of an evanescent penetration inside the
scattering region, since from Fig. 12(c) it is clear that there are
conducting states there. However, inside the region defined by
the avoided crossings mentioned above, the Landau-Floquet
states well inside the scattering region, and in a given edge
of the ribbon, have the opposite sign of the velocity as com-
pared with the incoming electrons. Therefore the only way for
these electrons to go through the central illuminated region
is to move across the width of the ribbon until reach the
opposite edge, where available states with a favorable velocity
exist. If the laser’s spatial profile (see Fig. 9), is sufficiently
smooth or adiabatic, as it is in our calculations, this motion
of charge between edges is hindered by the presence of the
small gaps introduced above. In this scenario, the fraction of
incoming electrons reaching the opposite edge is negligible,
and instead most of them simply backscatter into the Floquet
channels m = 1 or m = —1, depending on the character (con-
duction or valence) of the incident electrons. For electrons
with energies just above the avoided crossing, the mismatch
is still present, although in this case the incident electrons
can reach the other edge and transmit into the other lead.
This form of transmission is inherently inefficient, although
it can be improved by further smoothing out the turning
on-off of the laser (not shown). The renormalized (shifted)
value of bulk part of | x; ,, —1) marks the onset of a constant

conductance G,y = 2¢”/h. Above this value there are two
available Landau-Floquet channels, although with only one
incident channel the transmittance reduces to 7' (¢;) = 1. Due
to electron-hole symmetry, this analysis can be extended to
negative energies.

On the other hand, near ¢, = hw, (similar at &, = —lhw,),
instead of the well defined change from T'(¢,) = 1 to T'(¢,) =
3 in the nondriven system, there is a progressive increase from
1 to 3, something that resembles the zigzag case [where an
intermediate step with 7'(¢,) ~ 2 was found].
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FIG. 13. Same as Fig. 12 but for a circularly polarized laser field
(o =20 =m/2).

The circularly polarized case (Fig. 13, ¢ =20 = 7/2)
presents similar features, with the expected lack of electron-
hole symmetry. It is worth mentioning that the mismatch
problem that leads to the suppression of the conductance
for ¢, >~ 0 are already apparent in the nonresonant case
[Figs. 13(a) and 13(b)], as well as higher-order narrow fea-
tures. What is more, in resonance [Figs. 13(c) and 13(d),
Q = w,], the low energy conductance gap contains some fine
structure inside it, which can be understood using the same
arguments we introduced when dealing with the linearly po-
larized case. However, a better and more appealing way to
analyze this is to look at the scattering states in Floquet space,
as we do in the next section.

C. Scattering wave functions in Floquet space

In the previous sections, we described some of the features
of the two-terminal dc conductance in terms of the appearance
of gaps in the projected Landau-Floquet spectral density, the
emergence of light induced edge states with different chirality,
or the mismatch between the leads’ and the system’s wave
function. All these effects can be made clearer by looking
at the Floquet scattering states. Namely, we calculate the
(squared) amplitude of the scattered wave function corre-
sponding to an incident wave coming from the right lead, for
instance, with a given energy in the m = 0 Floquet replica.
The results are shown in Figs. 14 and 15 for the zigzag and the
armchair edge terminations, respectively. We have selected
four particular values of the incident waves for illustration
purposes.

In Fig. 14 (zigzag ribbon, W = 130 a), the four selected
scattered waves correspond to an incoming wave function
with energy: (i) ¢/hw, = 1.15, in which case there are three
propagating edge modes in the leads and hence the corre-
sponding equilibrium conductance is 6e?/h. Of those edge
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FIG. 14. Scattering states as a function of the position in a zigzag ribbon for four selected values of the quasienergy. The width of the ribbon
is W = 130 a. The parameters of the irradiated region (see Fig. 9) are Ay = 130a and A, = 30 a, where « is the lattice parameter, a = ap/3.
The vertical dashed lines determine the central irradiated region. We use parameters ¢ = 0.003, z = 0.025, 2 = w, and the polarization is
circular and right-handed. Three Floquet replicas are used (—1 < m < 1). We show the scattering states projected over the m = 0 replica
(central column), and those projections over a replica different from zero carrying most of the weight. In all cases, the electrons come from the
right lead with velocities to the left and in the replica m = 0, in the upper or lower edge depending on the quasienergy.

modes, only two can propagate through the irradiated re- reflected at the interface between the two regions (mostly
gion, as it can be clearly observed in the projected Floquet  in the m = 0 replica on the other side of the sample). This
spectral density shown in Fig. 14(i), while the other is fully ~ leads to the quasiplateau of 4e?/h shown in Fig. 11(d); (ii)

0.4

-400 -200 0 200 400 -400 -200 0 200 400
x(a) x(a)

FIG. 15. Same as the previous figure but for an armchair ribbon of width W = 120a, 1| & 450a and 2A, =~ 200a (a = 3ay). The
parameters ¢ and z, as well as the polarization of the laser, remain the same. The values of the quasienergies are: (i) ¢ = 0.32 hw, = 0.15¢eV,
(1) ¢ = 0.022 hw, = 0.01 eV, (iii) € = —0.043 liw, = —0.02eV, and (iv) ¢ = —0.11 liw, = —0.05 eV. For purposes of clarity, the saturation
in the cases (iii) and (iv) has been enhanced.
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e = h2/2, well inside the dynamical gap. Here the incident
wave penetrates the scattering region as an evanescent wave
before being reflected, on the same side of the sample, into the
m = 1 replica. Hence the conductance is strongly suppressed;
(iii) ¢/hw. = 0.05, inside the low energy Floquet gap but
above the Dirac point. The incident wave is fully reflected
on the m = —1 replica but on the other side of the sample;
@iv) &¢/hw, = —0.05. Here the incoming wave, now on the
bottom edge of the sample due to its valence band charac-
ter, is mostly fully transmitted through the m = 0 channel
(with some participation of the m = —1 replica). However,
quite remarkably, this requires the edge mode to switch edges
inside the irradiated region. That is, the Floquet edge mode
inside the sample presents the opposite chirality as compared
to the one it has on the (nonirradiated) leads. As we show in
the next section, this leads to a change in the sign of the Hall
conductance.

Figure 15 shows the scattering states for an armchair rib-
bon of width W = 120a. Here we concentrate on a small
quasienergy region, ¢ € [—0.3 hiw,, 0.4 hiw.], where important
departures from the static conductance appear [see Figs. 13(c)
and 13(d)]. For all the quasienergies selected, the static system
presents a conductance G,y equal to 2e?/h, with only one
propagating channel coming from the right lead. In every case,
we see that most of the incident flux is scattered through the
channel m = —1, with a negligible component going into the
channel m = 1 (not shown here). This asymmetry in the roles
of the Floquet replicas is a consequence of the time-reversal
symmetry breaking imposed by the circularly polarized light
and the selection rules Eq. (15) and (13). Mainly due to the
nonmonotonous bands of the second branch (see Appendix),
this case shows some special peculiarities not present in
zigzag ribbons.

As before, we consider four relevant cases with different
energies: (i) ¢/hw, = 0.33, there are two available channels
inside the irradiated region, as the result of the superposition
and coupling of two replicas m = 0 and m = —1, for only one
incident conduction channel. This leads to the appearance of
oscillations in the probability density on each channel and to a
displacement of the center of the orbits inside the illuminated
region. The period of these oscillations is roughly equal to
27 /§k, where 6k is the difference between the wave vectors
ky, corresponding to the incident energy ¢, of the two Floquet
channels inside the sample. The transmittance in this region is
almost perfect so Gor ~ 2¢%/h; (ii) & /hw. = 0.022, the sign
of the velocity of the incoming channel matches that of the
(only) Floquet states in the irradiated region, and thus trans-
port is possible, although imperfect due to the different spatial
profile of both of them (incoming states are more centered
towards the bulk while the Landau-Floquet states are closer
the edge). This results in a not very well developed peak of
conductance [T (g;) ~ 0.9], as it is shown in Fig. 13(d). In
(iii) and (iv), the incoming channels move in the opposite
direction to those available Landau-Floquet states inside the
scattering region and on the same edge. Then, the only way for
them to reach the other lead is to scatter into the other edge,
where states with the same velocity are available for transport.
Because of the adiabatic matching between the wave functions
(as a consequence of the smooth turning on of the laser field),
as it was already discussed in Sec. IV B, there is a certain

Irradiated
region

Transversal (Hall) Conductance

FIG. 16. Zigzag six-terminal Hall bar to measure the Hall con-
ductance avoiding any pumped current. A similar setup can be
established now with armchair leads.

energy threshold for this to happen set by the presence of a the
small gap between (iii) and (iv) as shown in the Floquet spec-
tral density (see Fig. 15). Then we have the following: (iii)
e/hw, = —0.044, here the incoming state cannot go through
the avoided crossing and it is mostly reflected backward
in the Floquet channel m = —1; (iv) ¢/hw, = —0.11, the
electrons arriving from the right lead can partially go through
the avoided crossing in the Floquet spectrum, reaching the
other edge of the ribbon. Characteristic of this regimen is
the noisy behavior of the conductance as a function of the
Fermi level, leading to an incomplete transmission. Below
& = —0.07 hw,, the velocities match and the transmission is
perfect (Gor = 2¢*/h).

V. HALL CONDUCTANCE

In order to measure the Hall conductance one requires at
least four terminals. However, the usual (90°) four-terminal
Hall bar configuration necessarily breaks the symmetry be-
tween leads, since if one pair of leads have zigzag edges,
the other pair must have armchair edges. To avoid this, and
to maintain the symmetry among all leads, we use the setup
shown in Fig. 16. This six-terminal arrangement has also the
advantage that is does not generate any pumped current when
the laser is turned on in a symmetrical way, and hence it
is simpler to obtain the conductance. Notwithstanding, the
computational effort in calculating the scattering matrix [59]
(and from this the Hall conductance) in this setup is more
involved when compared to the two terminal setup. Following
Ref. [46], the time averaged current is now written as a gen-
eralization of Eq. (18). If « and B label the terminals (leads),
the average current through the « lead is given by

- 2
le = ZeZZ/[T;Z)(S)fa(s)—Tof;)(s)f,g(s)]ds. Q2D
B#a n

The transmittances Ta(g) are the multiterminal generalizations
of those in Eq. (18). Our six-terminal setup guarantees that
Ta(g) is the same for any pair of adjacent terminals, ruling out
the presence of any pumped current in the absence of a voltage

013201-12



QUANTUM HALL EDGE STATES UNDER PERIODIC ...

PHYSICAL REVIEW RESEARCH 3, 013201 (2021)

3

- - - laser off

-0.5

FIG. 17. Hall conductance Gy in a six-terminal setup (see inset) as a function of the Fermi level ¢,. The width of the leads is W = 224 a
and the magnetic field corresponds to ¢ = 0.003. The laser field is circularly polarized as indicated. The different insets shows the scattering
states for the selected ¢ indicated in the main plot. In all cases, the incoming state is in the channel m = 0 (black arrow). Most of the scattering
is into the m = 0 channel and the m = 1 (m = —1) for the ccw (cw) polarization. Both the switch-off of the conductance and the change of

chirality are clearly seen for the ccw and cw polarization, respectively.

bias. In what follows, we assume that the chemical potential
g at the lead « is not very different from its equilibrium value
&y, that is, u, = & + 8y with S, small. Taking the low
temperature limit and expanding Eq. (21) up to linear terms in
Sy = —eV, we get to

_ 262
L= ﬁ; [Tpo(er) Ve — Tup(er) Vg ). (22

Our goal is to study the Hall conductance, as indicated
in Fig. 16. To this we let a charge current flow from leads
4to 1, I =—1I =1, and impose I, = 0 on the remaining
leads. From this we define the Hall conductance as Gy =
1/(V3 — Vs). Furthermore, hereon we shall consider only the
circularly polarized resonant case, as it is the one with the
most interesting features. The central irradiated region, in this
case, is described by a local driving strength z(x,y) that is
smoothly turned on from the leads in a way that conserves the
hexagonal rotational symmetry [60].

Figure 17 shows the Hall conductance for a six-terminal
system with zigzag leads (width W = 130 a), as a function of
the Fermi level ¢, for both chiralities of the circular polar-
ization: G§;% counterclockwise (ccw, ) and Gj¥ clockwise
(cw, O)—the Hall conductance in the absence of a laser field
is plotted in black dashed lines. The parameters are the same
we have been using so far: { = 0.003 and z = 0.025. Clearly,
Gy (er) = —GY)'(—er), as expected. Several features are ap-
parent in the figure, which are directly related to those of
the Floquet edge states discussed in the previous sections:
(i) the suppression of the Hall signal around the dynamical
gaps, &, ~ £ h2/2, where the scattering states only penetrate
as evanescent waves inside the scattering region and hence
the incoming states are almost fully backscattered; (ii) the

presence of an intermediate plateau with Gy =~ 4¢*/h near
&r = hw,; (iii) an additional suppression for energies ¢, > 0
(¢r < 0) near the Dirac point for the ccw (cw) case; and (iv)
a switch of the sign the Hall conductance for energies right
below (above) the gap mentioned in (c) for the ccw (cw) case.

It is worth emphasizing that, quite remarkably, the switch
of the Hall signal depends on the polarization of the laser field.
Furthermore, if we set ¢, to lie inside of the low energy gap
[item (iii) above] for a given polarization, the Hall conduc-
tance can be turned on by simply changing the chirality of the
polarization. This is depicted in the insets (b) and (c) of Fig. 17
where we show the scattering states for three selected ener-
gies. For the ccw polarization most of the incoming states are
backscattered into the same lead, which results in G3;™ =~ 0.
On the contrary, for the cw polarization, the incoming states
cross over the width of the ribbon and reaches the other edge,
from where it propagates to lead 6, resulting in a negative Hall
signal.

When the leads have armchair edges, Gy changes as shown
in Fig. 18. Here, the parameters ¢ and z remain the same
as in the zigzag case, while the width of the leads is now
W = 120 a. First we notice that even in the absence of illumi-
nation (dashed black line), the armchair six-terminal geometry
is accompanied by a certain degree of back scattering. This
effect takes place only in the e.-range between the local
minimum of the bands belonging to the second branch (see
Appendix A), that in Fig. 18 are | x; ;). and the corresponding
bulk level, where counter propagating edge states do exist on
the same side of the sample. This leads to the appearance
of a shoulder-like structure just below ¢, = lhiw,, that is in
the transition from Gy = 2¢?/h to 6¢*/h. (The same is true
near &, = —hw,..) This effect becomes less noticeable as the
absolute value of the Landau bulk index |n| increases.
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FIG. 18. Same as in the previous figure but with armchair terminations (leads) of width W = 120+/3ay. The insets correspond to
quasienergies: (a) ¢ = 0.01eV, cw; (b) ¢ =0.01eV, ccw; and (¢) ¢ = 0.06eV, cw. The saturation has been enhanced for a better

visualization of the incoming states, particularly in (c).

When the laser is applied, the departures from the static
Hall conductance (black dashed line) take place in a small
vicinity around the Dirac point, ¢, = 0, and around = /iw,,
depending on the polarization (ccw or cw). Let us describe
what happens in a vicinity of ¢, = 0 —as before, the scat-
tering states for three selected energies, are shown as insets.
Firstly, for positive values of &,, G§;” (¢, ) exhibits a somewhat
wide dip, indicating the presence of an avoided crossing in
the spectrum. Apart from this, the Hall signal roughly follows
its nondriven value, as it can also be inferred from inset (b).
On the other hand, G§;%(e,) vanishes just below &, = 0, and
changes sign for ¢, further below. The former behavior is
analogous to that exhibit by the single ribbon, Sec. IV B:
electrons hitting the illuminated region from lead 1 (see inset
on the far left), encounter counter propagating states there,
but at the same time are unable to reach the opposite edge of
the lead, where propagation would be possible, and simply
backscatter. Inset (a) graphically describes the situation. In
the situation where the Hall signal is reversed, the incident
states reach the other side of the ribbon and spill into lead
6, and the Hall signal passes from —2e?/h to 2¢?/h. In the
inset (c) the situation is shown for G};"(¢,) and for a positive
energy, although due to the symmetry G§% (e,) = —Gy' (—&)
the result is entirely equivalent.

VI. SUMMARY

The quantum Hall effect is a paradigmatic topological
phase, one of the most robust available phases, a fact that
has proved useful for many applications. These developments
came hand in hand with concrete measurements in different
device setups. Here we present a study of the effect of strong
laser illumination on graphene in the quantum Hall regime and
the changes in the Hall response in a multiterminal setup that
is accounted for by an atomistic description. Our results show

that the quantum Hall plateaus can be disrupted or tailored
by tuning the frequency, polarization and intensity of the
laser field. This includes the switching on-off and a chirality
inversion of the Hall signal, by tuning the handedness of the
circular polarization.

On one hand, the driving laser field induces the appearance
of dynamical gaps in the Floquet spectrum that manifest, for
instance, in the suppression of the Hall conductance near
&r = £ hQ2/2—the fact that there is essentially a full sup-
pression is related to the nature of the equilibrium transport
in the QH regime which only occurs at the edges of the
sample [58]. This quench of the topologically protected QH
transport arises from the resonant coupling between counter-
propagating electron and hole edge states. Quite interestingly,
the & /1€2/2 gaps are absent in samples with armchair edges
and hence no suppression of the conductance is observed in
such a case. This is a very particular aspect of the armchair
termination, where the symmetry of the Hall edge modes leads
to the cancellation of the dominant matrix elements of the time
dependent perturbation. We have verified (but have not shown
here) that the cove termination leads to similar results as the
ones reported here for the zigzag case, and so we expect the
suppression of the Hall signal at e, = 4+ i<2/2 to represent
the general situation. It is also worth mentioning that, under
resonant conditions, and more clearly in the zigzag ribbon,
the driving produces a novel 4¢?/h feature in the Hall conduc-
tance due to the reduction of the available edge channels near
&r = + hw,.

On the other hand, near the Dirac point, the driving be-
comes a nonequilibrium knob that allows to turn on and off the
Hall signal or changing its sign. Quite remarkably, both effects
depend on the polarization of the laser field. The possibility
to turn transport on and off relies on the appearance, under
resonant conditions, of an effective transport gap right above
or below the Dirac point, depending on the polarization’s
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handedness. The change in sign of the Hall signal have a less
anticipated and more striking origin. It results from a change
of the chirality of the propagating modes inside the irradiated
region that makes the propagating edge channel to cross from
one side of the sample (ribbon or lead) to the other while
inside the driving area. In the zigzag case, for instance, the
physical origin for this is the fact that the zero energy flat
edge modes acquire a polarization-dependent dispersion that
is always opposite to the one of the regular QH edge states. We
expect this to be a generic feature for all terminations where
the K and K’ valleys are separate and not fold onto each other.
In this sense, the armchair case appears as the only exception.

Regarding the required conditions for experimental real-
ization, our results indicate that for a laser frequency in the
mid-infrared range (72 ~ 150-200 meV) as in Ref. [24], a
magnetic of ~15-30 T is needed. The driving strengths in
Ref. [24] correspond to 1 ~ 1, higher than those required in
our simulations.

We hope that the effects described in the present work
will help in stimulating new experiments and theory on the
interplay between chiral transport and periodic driving as this
might open the door to new ways to control it. This includes
systems in a QH phase as discussed here, but also topological
insulators where spin-orbit coupling may add further intrica-
cies [61].
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APPENDIX A: LANDAU LEVELS IN GRAPHENE

For the sake of completeness, we present here a brief de-
scription of the Landau levels in graphene in the low energy
approximation, which are obtained from Eq. (1) after the
substitution p — p + <A.

Before starting, it is useful to point out the following sym-
metries of the Hamiltonian 7:10:

TX®G)7HOTX®U)v=HO,

rx®ax7:lo T, Q0 = —7'20, (A1)

that allow us to relate the eigenfunctions belonging to differ-
ent valleys (before imposing the boundary condition) when
the problem can be solved on each of them separately (see
bellow).

1. Bulk states

In the Landau gauge, A(y) = —Byx, the Hamiltonian
Eq. (1) is invariant under translations in x direction so that the
eigenfunctions (for the K valley) can be written as W, (x, y) =

[
L, ? e7* xK (). Here, L, is the samples’s length along the x
direction and

¢|n|(§’) )’ (AZ)

x50) = ;<
" V5 2 = 8,0) \sgn(n)py—1(F)

where § = y/€p — klp, g = /Hic/eB is the magnetic length,
and ¢,(x) is the normalized harmonic oscillator eigen-
function, ¢,(x) = (/7 2"n!)~1/2 e”‘z/zH,,(x) with H,,(x) the
Hermite polynomial. The corresponding eigenvalues are E,, =
sgn(n)hiw.+/[n], where n € Z, sgn(n) is the sign function and
we = /2v,/Lp. Positive or negative values of n correspond to
electrons and holes respectively. Solutions for the K’ valley
can be obtained by applying the operator oy, to Eq. (A2), by
virtue of Egs. (Al).

2. Zigzag edge

The Landau levels corresponding to a semi-infinite plane
with zigzag edges ending on a ‘B’ site can be obtained by
requiring that the component “A” of the wave function be zero
at the edge, which for the case depicted in Fig. 1 corresponds
to y = O—notice that (with the gauge A(y) = —ByX) trans-
lational symmetry along the x direction is preserved. Since
this edge termination does not mix the two valleys K and
K’, the solutions can be found for each valleylseparately.

These solutions still have the form W(x,y) = L, e~ * x,(y)
but the components of x,(y) are not the harmonic oscillator
eigenfunctions but the general solutions of the corresponding
differential equations, and that are well-behaved in the limit
y — 00. These are the parabolic cylinder functions D, (x) with
v € R and v > 0. Hence we have [62]

PN (DV(E) ) A3
w0 =T\ snne) 4
K= (32019 "
Xvk(y) m —DV(S) ) ( )

where & = ﬁ(y/ﬂg — kfp) and C,; is a normalization con-
stant. The quantity klp can be considered the center of the
cyclotron orbit of the electrons, and thus the larger klp, the
deeper into the bulk the electrons reside. The quantity ¢ =
s hiwe/v is the energy of the state (s = +1 refers to the elec-
tron and hole bands respectively), with w, = ﬁvF /p.

The index v(k), and thus the energy dispersion, is deter-
mined by the boundary condition that the upper component
(sublattice A) of the spinor wave function vanish at position
y = 0. That is

Dy(—2klp) =0, vD,_1(—v2ktg) =0,

for the K and K’ valleys, respectively. This gives a discrete
set of eigenenergies elK (k) and elK'(k) for each value of k,
where the integer / labels the solutions of Eqs. (AS). It is
straightforward to verify that because for the same value of v;
the two spinors in the conduction and valence bands (opposite
s) must be orthonormal, one has that

(AS5)

+00

+o0
/ d& D? () = / dE wD? (&),
—V2keg —2ktp

(A6)
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FIG. 19. Energy dispersion (in units of 7iw,) for the K (a) and K’ (b) Dirac valleys in a zigzag edge. Note that the K’ valley have a
dispersionless mode with £(k) = 0 while the K valley possesses two states that converge to the n = 0 bulk Landau level. In (c), we show
the energy dispersion for an armchair ribbon. No distinction between valleys has place here. In every case ¢ = 0.003. The first nonzero bulk

Landau level E; = hiw, is indicated.

and hence the normalization constant becomes

[o¢]
Cox = V205 /

—V/2ktp

de D? (8). (A7)

Figures 19(a) and 19(b) show the energy dispersion for both
valleys where dispersive edge states are apparent. Far from
the boundary (k€z > 1), one has that v; — n € N°, and so
the bulk Landau levels = fiw.+/n are recovered. Note that the
K’ valley possesses dispersionless states pinned at the Dirac
point, the corresponding spinor being the same as for the zero
energy bulk Landau level.

The edge states in the K valley close to zero energy de-
serve a separate and careful treatment. From Fig. 19(a), it
is clear that the lowest conduction and the highest valence
bands converge into each other and into ¢ = 0 as k{p be-
comes large. At first sight, it might appear, since in this case
v — 0, that the two spinor states themselves go into the same
spinor proportional to [Dy(£), 0]7, with a vanishing second
(B) component. This state clearly could be identified with
the bulk » = 0 Landau level [cf. Eq. (A2) with n =0 and
¢0(z) = Do(z)]. However, Eq. (A6) shows that even in this
limit (v & 0), the B-component does not vanish as the left
side of the equation converges to /27 when kfz — 00. To
properly account for this one needs to take into account the
precise way in which v — 0 as kfp — co. After expanding
the equation D, (—~/2k€z) = 0 for k€z > 1, the solution for
vanishing v is given by v ~ 2kl exp [—(k£p)*] and there-
fore the B-component of the spinor wave function at the edge
goes as \/vD,_i(§) >~ rr%(ZkEB)%e”‘«". That is, the B compo-
nent gets sharper as k{p grows and so it is more localized
at the edge (recall that the condition Eq. (A6) must hold). In
summary, for k€ > 1, the two orthonormal eigenstates have
the A component located mostly in bulk, and the B component

at the edge. The fact that v is almost zero allow us to treat
them as nearly degenerate, and thus change the basis to a
symmetrical x,; and antisymmetrical x4, solutions,

2 (Dy(§)
Xouk () = [ = ’ < 0 )’ (A%)
2 0 A9
Xedge0") = Cor (ﬁDul(f)) - o

In this representation, the spatial profile of each spinor is
evident. As it was already pointed out, x,y is to be identified
with the n = 0 bulk Landau level, whereas X4 1s the well
known nondispersive edge state in a zigzag graphene ribbon
[62,63].

3. Armchair edge

To be consistent with the geometry shown in Figs. 1 and
5, we take the armchair edge to be along the x =0 line
and therefore, to make use of the translation symmetry along
that direction, we use a different but completely physically
equivalent gauge, namely A (x) = Bx§. The wave function on
each valley can then be written as Ly’ 1/2 giky xfk(’(/)(x), where
the spinor components are given by

1 D, (&)
Xh () = ( ) (A10)
X&) = ( wD”_ ('%%3 (A11)
v JEi\ D,E) )

Here, & = V2(x/lp — klp) and & = shw./v. If we de-
note the complete wave function of the armchair edge as
L'/ ™ x,,(x), then the boundary condition in the armchair
edge corresponds to make x,,(0) = 0. This cannot be made
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FIG. 20. Landau-Floquet bands for a zigzag ribbon (W = 130 a) with three different values for Ng. We use ¢ = 0.003 and a counterclock-
wise circularly polarized laser. The value of the driving strength z is indicated in every plot. It is clear that convergence is reached from Ng = 5
onward and that reducing z by a half reduces significantly the high-order gaps (indicated by red arrows).

separately in each valley (the boundary mixes the valley in-
dex) and so the solution needs to be constructed using a linear
combinations of both valleys [62,64]

Xor @) = a0 e xK (x) + e ¥ (x), (A12)

where we have added a phase factor ¢X” (¢K'7) to the K
(K’) component, noticing that in our geometry (see Fig. 5) we
have K' = —K = —K&, withK = 471/(3\/511). The condition
Xv(0) = O results in the following equation for v(k):

D2(—~/2ktp) — v D% (—/2ktg) = 0. (A13)

This equation yields a discrete infinite set of solutions for
each k, that in ascending value we denote as v,(k), with
n=1,2,....Itis interesting to note that these solutions can
be arranged in a way that simplifies the construction of their
corresponding eigenstates. To this, we first note that Eq. (A13)
can be written as follows (all D, functions are evaluated at

—/2ktp):
(D, — \/;val)(Dv + \/;val) =0.

It can be shown that solutions v, with n odd satisfy
D,—./vD,_; =0, while those with n even are solutions of
D,++/vD,_1 = 0. To make things more compact, we in-
troduce an index 1, = (—1)""!. We then say that the v,
solutions exist in two branches defined by the equation
DUH(—\/EMB) = ranU,l_l(—ﬁkZB). The energy spec-
trum €} (k) = s fiwe/va(k) (s = £1) is shown in Fig. 19(c).
The bands with n odd (the first branch), are monotonous
decreasing functions of kg, very similar to those of a zigzag
edge at the K point. For n even (the second branch), the
bands are decreasing functions for very negative values of k¢,

(A14)

until they reach a local minimum and start to grow as k{p
increases. For kfp large enough (k{p > 3 if we consider the
first six bands), we see that adjacent pairs of bands converge to
each other and into the bulk states: {v,, v,.1} — +/n/2, with
n=2,4,6,....

We now examine the specific structure of the correspond-
ing eigenfunctions as it plays a crucial role in determining
the value of the gaps in the Floquet spectrum. To this, we
first notice that the coefficients « and g in Eq. (A12) satisfy
o, = —iB,sT7,. With this result it is useful to write down these
eigenfunctions in the four-component spinor notation,

—ist,D,, (§)ek~
—Tpa/VnDy, -1 (§)e™E*
i5\/VuDy, 1 (€ e K

D, (§)e

X, () = (A15)

Cv,lk

where the s parameter indicates electron/conduction (s = 1)
or hole/valence (s = —1) character, which in the main text
will be often denoted by superscripts ¢ and v, respectively.
Since the probability density is obtained by summing up sub-
lattice (A and B) components, it can be shown that the spatial
profile of x} ; (x) across the ribbon shows oscillations of the
form cos2Kx, with a period equal to 1/2K (the inverse of
the distance between the two nonequivalent valleys [65]). The
normalization constant C, is given by

Coi = ﬁeB/

—/2klg

= Tun/VnDy, (§)Dy,—1 (§) cos(2Kx)].

+o00
d& [D2 () + v,D% _,(£)

(A16)
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From the general solutions in Eq. (A15), the matrix ele-
ments of the time dependent perturbation V, Eq. (13), can be
evaluated.

APPENDIX B: CONVERGENCE OF THE
LANDAU-FLOQUET BANDS AND CONDUCTANCE
WITH THE NUMBER OF FLOQUET REPLICAS

The Floquet formalism exploits a picture where the Hilbert
space of our physical system is extended to take into account
the emission or absorption of light quanta. The number Ny of
Floquet replicas (2M + 1 in the main text) needs to be chosen
in such a way that it guarantees a suitable convergence of both
the quasienergy bands and the conductance. Although there
are some thumb rules giving rough estimates of Ng based
on the ratio between the bandwidth of the static system and
the driving strength z, we use the more basic approach of
calculating the Landau-Floquet bands for different values of
Nr and use the smaller value of them, from which the bands
are almost indistinguishable in the range of interest.

For concreteness, here we will focus on the zigzag ribbons
only, with the same width as in the main text, W = 130 a. To
illustrate our point, we show in Fig. 20 the Landau-Floquet
bands near the Dirac point (2 = w,), projected on the m = 0
replica, with Ng = 3, 5,7, as indicated by the range of m in
the plots. It is clear that with Np = 5 the convergence has
been reached, and that using Ny = 7 does not change things
significantly. The differences between Ngp = 5 and Np = 3 are
more notorious. Apart from the dynamical gaps at +A$2/2,
there are higher-order (smaller) gaps around the former (in-
dicated by red arrows), coming from the crossing of the static
bands (m = 0) with replicas m = +£2. That these gaps become
smaller more rapidly than the dynamical ones can be seen
by repeating the calculation now with half the value of z, as
shown in Figs. 20(d)-20(f).

The two-terminal conductance follows closely the pattern
given by these bands. Figure 21 shows the two-terminal con-
ductance with Ngp =3 (black solid line) and Ng =5 (red
dashed line), in resonant (2 = w.) and nonresonant (2 =
0.65w,) conditions, for the same two values of z used in the
calculation of the spectrum. In all cases the formation of extra
high-order dips is observed—they do not drop all sharply to
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FIG. 21. Conductance of a zigzag ribbon (W = 130 @) with three
and five Floquet replicas, and two values of the driving strength, z =
0.025 and 0.0125. The magnetic field correspond to { = 0.003 and
the polarization is counterclockwise circular.

zero since that would require a much larger irradiated region
as their corresponding gaps are much smaller than the first-
order ones. In fact, it is apparent from the figure that by
reducing the value of z in one half the high-order features are
significantly reduced and become harder to observe.

In the nonresonant situation, Figs. 21(b) and 21(d), we
think we do not miss any physical content if three instead of
five Floquet replicas are used. In the resonant case a much
richer structure appears, but the leading-order features on
which we focused earlier remain: the dynamical gaps and
the central gap, now a little narrower as a result of the cou-
pling with the extra Floquet replicas, and the 4¢?/h feature.
Much of what we discuss in the main text is related to these
two attributes of the conductance, still clearly visible using
only Nr = 3. Besides, this discussion on the value of N has
a practical side: the numerical calculations performed with
these large Floquet systems (~Np times the size of the static
system) can be quite demanding and thus time consuming.
Thus, using only three Floquet channels imposes less stringent
computational efforts without missing out the most interesting
physical features.
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