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Abstract
Nonpharmaceutical interventions (NPI) such as banning public events or instituting
lockdowns have been widely applied around the world to control the current COVID-
19 pandemic. Typically, this type of intervention is imposed when an epidemiological
indicator in a given population exceeds a certain threshold. Then, the nonpharma-
ceutical intervention is lifted when the levels of the indicator used have decreased
sufficiently.What is the best indicator to use? In this paper, we propose amathematical
framework to try to answer this question. More specifically, the proposed framework
permits to assess and compare different event-triggered controls based on epidemio-
logical indicators. Our methodology consists of considering some outcomes that are
consequences of the nonpharmaceutical interventions that a decision maker aims to
make as low as possible. The peak demand for intensive care units (ICU) and the total
number of days in lockdown are examples of such outcomes. If an epidemiological
indicator is used to trigger the interventions, there is naturally a trade-off between the
outcomes that can be seen as a curve parameterized by the trigger threshold to be used.
The computation of these curves for a group of indicators then allows the selection
of the best indicator the curve of which dominates the curves of the other indicators.
This methodology is illustrated with indicators in the context of COVID-19 using
deterministic compartmental models in discrete-time, although the framework can be
adapted for a larger class of models.
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1 Introduction

After the initial outbreak of COVID-19 inWuhan, China, the novel coronavirus SARS-
COV-2 has spread to multiple countries (Li et al. 2020) causing over 183 million cases
and almost 4 million deaths by July 4, 2021 (World Health Organization 2021). Since
the emergence and global spread of COVID-19 in a context where no approved vac-
cines, treatments, or prophylactic therapies were still available (Alvi et al. 2020),
countries implemented different nonpharmaceutical interventions (NPI) (Flaxman
et al. 2020). These prevention, containment, and mitigation policies had been imple-
mented in order to flatten the peak of critical cases and consequently, to prevent as far as
possible the health systems from being overwhelmed (Alvi et al. 2020; OECD 2020).

In a scenario where pharmaceutical interventions are not available, public health
policy responses to the pandemic aim both to limit the number and duration of social
contact. Even in a scenariowhere pharmaceutical interventions have begun to be imple-
mented, mainly the progressive vaccination of the population, the nonpharmaceutical
measures are needed to prevent widespread outbreaks, and therefore have continued
to be applied (Moore et al. 2021; Yang et al. 2021). They include measures such as
early detection of cases, and tracing and isolating infected individual’s contacts (test-
ing and contact tracing), the use of Personal Protective Equipment (PPE) by health
care workers, and social distancing measures, among others (Alvi et al. 2020; OECD
2020). Social distancing interventions include working from home, school closures,
cancellation of public gatherings and restrictions on unnecessary movement outside
one’s residence such as national or partial lockdowns (Alvi et al. 2020; Davies et al.
2020; Flaxman et al. 2020; OECD 2020). These measures have been shown to be
successful in reducing the spread of SARS-COV-2 (Alvi et al. 2020; Flaxman et al.
2020). Lockdowns, in particular, have had a substantial effect on the transmission as
measured by the changes in the estimated reproduction number (Flaxman et al. 2020).
In fact, a modeling study of the demand for hospital services in the UK found that
intermittent periods of more intensive lockdown-type measures are predicted to be
effective in preventing health system overload (Davies et al. 2020).

Beyond the health consequences of the pandemic, it also has important economic
consequences (Martin et al. 2020; McKibbin and Fernando 2020), throwing many
countries into recession and possible economic depression (Brodeur et al. 2020;
Kurowski et al. 2021). The economic impact can be direct and indirect (Béland et al.
2020; Brodeur et al. 2020; Fan et al. 2018; Martin et al. 2020; Meltzer et al. 1999),
at the individual or aggregate level, affecting firms and different sectors (Martin et al.
2020; Nicola et al. 2020), and with effects in the short, medium and long term (Béland
et al. 2020; Brodeur et al. 2020; Gong et al. 2020; Nicola et al. 2020). The negative
economic effects may vary based on the severity of the social distancing measures, the
length of their implementation, and the degree of compliance (Brodeur et al. 2020),
and, as usual, in times of crises the most vulnerable groups are affected the most
(Buheji et al. 2020; Marmot and Allen 2020).

Health systems must face direct costs related to the diagnosis and confirmation
testing, outpatient and inpatient care, and vaccines and pharmaceutical treatments
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when these were available (Fan et al. 2018; Meltzer et al. 1999). On the other hand,
productivity is affected by both absenteeism (patients and preventive isolation) and
deaths caused by the virus (Brodeur et al. 2020; Fan et al. 2018; Meltzer et al. 1999;
UNDP 2020).

In this context, authorities are constantly searching for balance between health
and economic consequences; with the latter being the result of not only the former
but also of the measures or policies implemented to confront the health issues. This
is the case for the aforementioned lockdowns that keep the individuals of a certain
locality or sector confined and, therefore, reduce the economic activity. Therefore, it
is possible to perceive a trade-off between the extension of lockdowns, and its impact
on productivity, and the health outcomes observed; for instance, the longer lockdown
period, the fewer intensive care units (ICU) required (or number of cases, or deaths).
In terms of the objective for the decision makers, it is sought to minimize both the
lockdowns duration and the health consequences (Alvarez et al. 2020; Angulo et al.
2021; Grigorieva et al. 2020).

Several countries and cities have used epidemiological indicators to activate, rein-
state and release NPI such as lockdowns. In fact, inWorld Health Organization (2020),
has proposed various public health criteria to adjust public health and social measures
in the context of COVID-19. The criteria are grouped into three domains: Epidemi-
ology, Health system and Public health surveillance. Many of these criteria can be
expressed in terms of the following indicators: effective reproduction number, active
new cases, positivity rate, and hospitalization and intensive care unit (ICU) admissions
due to COVID-19.

In this context, the government of San Francisco (US) has published on its website
(San Francisco government 2020) various health indicators used to monitor the level
of COVID-19 in the city and assess the ability of its health care system to respond
to the pandemic. These health indicators are grouped into 5 areas: hospital system,
cases, testing, contact tracing and personal protective equipment. The first three areas
are characterized in terms of the following observations: COVID-19 hospitalizations,
acute care beds available, ICU beds available, new cases per day per 100,000 residents,
and tests collected per day. The last two areas consider the indicators related to contact
tracing and personal protective equipment that are beyond the scope of our study. In
other places, such as the city of Austin (US), it was decided to track daily COVID-
19 hospital admissions and daily total hospitalizations across the city and trigger the
initiation and relaxation of lockdown periods when admissions cross predetermined
thresholds (Duque et al. 2020).

In the case of Chile, and in particular its capital, Santiago, which is our main case
study, at the beginning of the outbreak the government used indicators mainly based
on the active cases (per 100,000 residents and per area) and on the available hospital
beds to activate lockdowns (Chilean Ministry of Health 2020). These lockdowns were
dynamically applied to the most affected sectors of the cities. Since July 2020, a five-
steps plan known as “Paso aPaso" (Step byStep), has been used to release and reinstate
various NPI measures including lockdowns (Chilean Government 2020). Following
the recommendations of the World Health Organization (2020) and of the COVID-19
advisory council (Aguilera et al. 2020), an independent organism conceived to guide
the Chilean Ministry of Public Health in the policies that will be implemented to face
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the COVID-19 outbreak; this plan now takes into account several dimensions of the
pandemic through the monitoring of the following indicators: ICU beds available,
effective reproductive number, new active cases, positivity rate, and some additional
tracing and surveillance indicators. Thus, lockdowns are now release/reinstate for a
given district of a city when the values of these indicators, computed for such districts,
are below/above the predetermined thresholds. In this country, the mass vaccination
plan started in February 2021 and, as by early July, 10.5 million individuals have
been fully vaccinated (Chilean Government 2021). Although four vaccines have been
approved for emergency use: Pfizer-BioNTec, CoronaVac (Sinovac), AstraZeneca and
CanSino (Chilean Ministry of Health 2021); CoronaVac has been the most used in the
country (about 80% of the doses) (Aguilera et al. 2021), and the “Paso a Paso" plan
(consisting in several NPIs) continues to be implemented (Chilean Government 2020).

Given the aforementioned situation, our aim is to propose a framework based on
control theory that permits to assess and compare NPI policies based on epidemiolog-
ical indicators.

It is important to note that the application of NPI strategies to mitigate the effects
of the COVID-19 pandemic has been already modeled using control theory and other
techniques, as fractional models (Aba Oud et al. 2021). For instance, in Djidjou-
Demasse et al. (2020) andx Ullah and Khan (2020), optimal control theory is used to
explore the best strategy for implementation while waiting for the development of a
vaccine.More specifically, inDjidjou-Demasse et al. (2020) the authors seek a solution
minimizing deaths and costs due to the implementation of the control strategy while in
Ullah andKhan (2020) the objective is to minimize the total number of infected people
(in different stages of the disease) togetherwith the cost of the control implementation.

The same objective is studied in Richard et al. (2021) by the means of an age-
structured optimal control model. Specifically, a model with a double continuous
structure by host age and time since infection is proposed. In Bonnans and Gianatti
(2020), the authors also propose an optimal control model with infection age. The
main difference from the previous model is the consideration of the peak value in
the objective function that leads to a problem with state constraints. This work has
generated an open access code, based on the optimal control toolbox BOCOP. An SIR
model is studied in Angulo et al. (2021) to derive a simple but mathematically rigorous
criterion for designing optimal transitory NPIs. In particular, the authors found that
reducing the reproduction number below one is sufficient but not necessary. This
condition may be prescribed according to the maximum health services’ capacity.

In Bonnans and Gianatti (2020), Djidjou-Demasse et al. (2020), Richard et al.
(2021) and Ullah and Khan (2020) (optimal) control strategies are obtained numer-
ically in open-loop form and in Angulo et al. (2021) an analytical optimal solution
is provided in closed-loop form. An open-loop strategy refers to a policy established
at the beginning not taking into account the evolution of the state variables, while a
closed-loop strategy (or feedback) is a function of the state variable and varies as the
state variables evolve. For this reason, under several uncertainties sources, to establish
an optimal closed-loop strategy is more robust. The problem with implementing this
kind of policy, is the necessity to observe the state variables or part of them (as in
Angulo et al. 2021). Moreover, these works consider that the effects of NPIs are per-
fectly controllable by the decision maker without taking into account that a decision
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regarding the application or release of an NPI may require time for the population
to adapt. These considerations are important when the proposed trajectories are com-
posed by bang-bangs, singular arcs or saturation of constraints, because in practice,
these controls may be very difficult to implement.

Additionally, since NPIs activation/release decisions based on the observation of
indicators are made at specific given moments (for instance, lockdowns may be acti-
vated on Mondays for the whole week, or always at a given time of the day, etc.), they
would not be faithfully represented through the aforementioned approaches. This is a
key aspect when one of the objectives of the study is to provide recommendations to
decision makers.

Thus, our first aim is to propose a framework for representing the decision-making
process related to the application of NPIs based on the observation of epidemiological
indicators. The proposed framework uses event-triggered controls in discrete time. To
the best of our knowledge, the notion of event-triggered control was first introduced
in Arzén (1999) and allows to model update instants (in the decision, or control) by
the violation of a condition depending on the state of the system, instead of assuming
a constant or a periodic updating. As mentioned above, the event-triggered decisions
is precisely the framework such as the NPIs that are being applied in several places,
because depending onwhether or not some indicators are in violation of their respective
thresholds, the NPIs are applied or lifted.

In recent years, event-triggered control techniques have attracted increasing interest
with studies focusing on the stabilization of event-triggered implementations and the
existence of a minimum interevent time (see for instance Asadi Khashooei et al. 2018;
Borgers and Heemels 2014; Dolk et al. 2017; Goebel et al. 2009; Mazo and Tabuada
2011; Tabuada 2007; Wakaiki and Sano 2020; Zhu and Lin 2019). In our work, these
topics are not addressed because it is assumed that the stabilization is not an issue, in
the sense that we are not concerned with the final state of the system but rather we seek
to be able to determine what type of indicator-based strategy is more suitable for use.
Ensuring the minimum interevent time is not an issue in our framework, because we
impose thisminimum interevent time to avoid the application and lifting (or vice versa)
of an NPI in a short period of time, which is the practice we have observed in cited
examples. Moreover, we consider the possibility that decisions can be taken (apply or
release an NPI) only at some prescribed times, for instance, only onMondays, making
the modeling of the decision-making process more realistic.

In addition to realistically representing the decision-making process based on the
observation of indicators, our approach allows the assessment and comparison of the
use of indicators from a cost-benefit perspective. Indeed, based on the discussion given
in this introduction section, we assume that a decision maker aims to obtain as few as
possible of some outcomes that are consequences of the NPIs. The peak of ICU beds
demand and the total number of days in lockdown are two examples of such undesired
outcomes. Therefore, if the policy for activating or releasing NPIs is triggered by some
observation or, more specifically, when a given indicator (computed in terms of these
observations) is above or below a certain threshold, we can link all of these thresholds
with their respective outcomes.

Thus, considering the trigger threshold as a parameter, one can construct the curve
of outcomes associated with a given indicator. This curve lies in the space of outcomes
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and it is called the trade-off curve. This curve allows the identification of the trade-
offs between different outcomes. Moreover, after computing these curves for several
indicators, they can be compared to choose an indicator that will determine the policy.
Indeed, for instance, if one of the curves dominates the others in the Pareto sense (that
is, the curve is below the others), this immediately suggests that the corresponding
indicator is the most suitable for the outcomes considered in the analysis.

On the other hand, when no domination occurs between the curves, a decision can
be taken by setting all but one outcomes as objectives (viewed as upper bounds). This
allows the determination of the best indicator as that with the lowest value for the
outcome not considered as the objective. Thus, the proposed methodology allows the
comparison of the use of indicators to trigger either the application or release of NPIs.

For the sake of a clear exposition and an easy implementation of the event-triggered
controls, we introduce our methodology using discrete-time control systems. This
choice is also justified for better representing the making decision process associated
to the implementation/release of NPIs and the time steps where data are obtained.
From a theoretical viewpoint, considering time-continuous dynamics needs a deeper
analysis about the measurability of the used control functions.

The rest of this paper is organized as follows. In Sect. 2, we introduce the proposed
framework that we use to model the making decision process, that is, discrete-time
control systems and event-triggered controls. In Sect. 3, we define the trade-off curve
associated with a trigger indicator and show how to compare these curves in order to
choose the best indicator to activate/release NPIs. To illustrate the proposed modeling
framework andmethodology for the assessment of the indicators, in Sect. 4 we discuss
two case-studies, corresponding to Chile and China, where different indicators are
evaluated. Finally, some concluding remarks are stated in Sect. 5.

Numerical examples introduced in Sect. 4were developed in Python 3.0. The source
code, data, and scripts used in our experiments are available in https://github.com/
COVID19-CMM/jomb-assessment-indicators.

2 Mathematical framework based on event-triggered controls

2.1 Discrete-time control systems

Given an initial time t0 ∈ N, a horizon time T ∈ N (with T > t0), an initial state
x0 ∈ X and a finite sequence of controls u = (u(t))Tt=t0 = (u(t0), . . . , u(T )), we
consider the discrete-time control system:

x(t + 1) = f (t, x(t), u(t)), t ∈ [[t0 :T ]], x(t0) = x0. (1)

In this setting, f : [[0 : T ]] × X × U −→ X is the dynamics, X is a vector space,
called the state space, and U is a compact set of a given vector space satisfying 0 ∈ U
(representing no action). The latter is called the control space. Here, when p ≤ q,
[[p :q]] denotes the collection of all integers between p and q (inclusive).

Several epidemiological models can be represented as system (1). For instance, the
state x ∈ X can model the number of individuals in different stages of a disease (e.g.,
SEIR compartmental models; See, for instance, Brauer and Castillo-Chávez 2001 and
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references therein) in different populations (e.g., counties, cities, age-groups, etc.),
and the control u ∈ U can model the application of one or more NPIs to some groups
of the population under study.

We denote by U the collection of all possible controls; that is,

U =
{
u = (u(t))Tt=t0

∣∣ u(t0), . . . , u(T ) ∈ U
} ∼= UT−t0+1.

A solution of the control system (1) associated with a control u ∈ U is an element
of the space

X =
{
x = (x(t))T+1

t=t0

∣∣ x(t0), . . . , x(T + 1) ∈ X
} ∼= XT−t0+2,

that satisfies the initial time condition x(t0) = x0.

2.2 Event-triggered controls

For Δ ∈ N, with 0 ≤ Δ < T − t0, we consider feedback controls based on the recent
history of the state, that is, the state in the current time t and in the previous Δ times
t − 1, . . . , t − Δ (if Δ > 0). Therefore, for t ∈ [[t0 :T ]], we introduce the notation

xΔ(t) = (x(t − Δ), . . . , x(t)) ∈ XΔ+1.

If t − Δ < t0, in the definition of xΔ(t), we repeat the initial state x0 in the first
t0 − t + Δ components.

Motivated by the current practice, we consider xΔ(t) instead of x(t) for defining
our policies. Indeed, as mentioned in the introduction, the use of epidemiological
indicators for triggering either the application, or the release, of NPIs considers the
state of the disease in a window of time and not instantaneously.

To reduce the control variability, we turn to the event-triggered state feedback
control based on the recent history of the state. For this purpose, we introduce an
event-triggered set S ⊆ XΔ+1 in order to determine the variations in the control law
which in turn are produced by a transition of the recent history xΔ(t), either from S to
its complement Sc, or vice versa. To compute these transitions, we define the indicator
(XOR) function ϕS : XΔ+1 × XΔ+1 −→ {0, 1} by

ϕS(xΔ, x̃Δ) =
{
0 if (xΔ, x̃Δ) ∈ (S × S) ∪ (Sc × Sc)

1 if (xΔ, x̃Δ) ∈ (S × Sc) ∪ (Sc × S)

for all (xΔ, x̃Δ) ∈ XΔ+1 × XΔ+1. The event-triggered set S will then define the
application (xΔ /∈ S) or release (xΔ ∈ S) of an NPI.

Now, we define the following event-triggering mechanism

u(t0) =
{
0 if x0 ∈ S
uref ∈ U if x0 /∈ S (2)
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and

u(t) = u(t − tk, xΔ(tk), u(tk)) tk < t ≤ tk+1, (3)

where the trigger times tk are updated according to rule (5) given below, and the
controller u : [[0 :T − t0]] × XΔ+1 × U −→ U is defined by

u(τ, xΔ, u) =
{
û−(τ, u) if xΔ ∈ S
û+(τ, u) if xΔ /∈ S,

(4)

with û−, û+ : [[0 :T − t0]]×U −→ U reference time-varying controls associatedwith
the NPI to be applied. Functions û−(·, u) and û+(·, u) satisfy û−(0, u) = û+(0, u) =
u for all u ∈ U. The controller u(τ, xΔ, u) is then defined (in (4)) through two types of
policies depending on whether or not xΔ belongs to the event-triggered set S. Thus,
this models the application of a given NPI or the release of this measure. This policy,
consisting of applying or not some NPIs, is eventually time-varying on the intervals
[[tk : tk+1]], and can model a variable intensity or an adoption degree that changes with
time. For instance, in a population where an NPI has been applied for a long period
of time, when the intervention is lifted, some time is required to return to the activity
levels (of contact rates, mobility, etc.) identical to those prior to the application of
the NPI. In addition, the controller takes into account the last control u applied in
the previous interval [[tk−1 : tk]] with the aim of allowing (but not limiting to) smooth
variations of the applied policies.

The trigger times tk in (3) are given by

tk+1 = tk + tmin + min{t ≥ 0 | ϕS(xΔ(tk), xΔ(tk + tmin + t)) = 1}. (5)

In the above definition, we have considered a minimum fixed period of time tmin ∈
[[Δ : T − t0]] during which the event-triggered control is applied, thus imposing a
minimum interevent time. The interevent time is assumed to be greater or equal to
Δ which is the time window where the state variable is considered in order to have
enough time to observe the effects of the application of the NPI, or of its release. On
the other hand, the element

xΔ(tk + tmin + t) = (x(tk + tmin + t − Δ), . . . , x(tk + tmin + t))

in (5) is the sequence of states obtained from

x(τ + 1) = f (τ, x(τ ), u(τ − tk, xΔ(tk), u(tk))) τ ∈ [[tk : tk + tmin + t − 1]]

with initial condition x(tk).
More generally, trigger times in (5) can be defined as

tk+1 = tk + tmin + ξday (min{t ≥ 0 | ϕS(xΔ(tk), xΔ(tk + tmin + t)) = 1}) ,
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where the function ξday : [[0 :T − t0]] −→ [[0 :T − t0]] can be introduced in order to
impose a change in the control policy in the prescribed periods. For instance, if the
time unit is day and the application (or release) of an NPI must start on a Monday,
when t0 is aMonday, we take tmin a multiple of seven and the function ξday(t) = 7	 t

7
,
where 	α
 is the smallest integer that is also greater or equal than α.

To summarize, the event-triggered feedbacks considered in this paper are defined
by:

1. Observation time window Δ: period of time in which the state is observed for
defining the closed-loop strategy;

2. Minimum time of implementation tmin: period of time (with tmin ≥ Δ) imposed for
avoiding high variability in the control and in order to observe the effects of the
applied measures;

3. Event-triggered set S: set of recent history of states for determining variations in
the policy through transitions from S to Sc or in the inverse sense. The definition
of set S depends on Δ;

4. Controller u: the function defining the control through mechanism described in
(2), (3), and (4). The definition of the controller u depends on functions û− and û+
in (4) and on Δ and S.

An event-triggered feedback will be denoted by u = m(x0,Δ, tmin, u,S) ∈ U in order
to highlight that the associated control u is completely defined by the event-triggered
mechanism (the four elements listed above) and the initial condition x0 at time t0.

Hence, given the mathematical formalism described above, the main objective of
this paper is to compare different even triggered controls assuming that all of them
have common controllers u with same functions û− and û+ in (4) (that is, all of the
policies apply the same NPI, and in the same manner). In addition, since the initial
state x0 is fixed for all of our analyses, we simplify the notation of event-triggered
feedbacks by u = m(Δ, tmin,S).

3 NPI strategies based on indicators and their trade-offs

In this section, we specify the event-triggered set S in the definition of event-triggered
controls introduced in Sect. 2.2. The particular forms considered of the set S are
provided by an epidemiological indicator. Thus, considering the space of the recent
history of states XΔ+1 and an indicator I : XΔ+1 −→ R, we will work with event-
triggered sets S in the form

S = S(Δ, I, θ) = {xΔ ∈ XΔ+1 | I(xΔ) ≤ θ},

where θ ∈ R is a threshold for the indicator I.
If in the period of time [[t − Δ : t]], we consider instantaneous observations of the

state, represented by the function O : X −→ R, the following indicators I can be
considered:
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a) the mean of instantaneous observations:

I(xΔ(t)) = 1

Δ + 1

t∑
τ=t−Δ

O(x(τ ));

b) the mean of differences of instantaneous observations:

I(xΔ(t)) = 1

Δ + 1

t∑
τ=t−Δ+1

(O(x(τ )) − O(x(τ − 1))) = O(x(t)) − O(x(t − Δ))

Δ + 1
;

c) variation rate of instantaneous observations:

I(xΔ(t)) = O(x(t)) − O(x(t − Δ))

O(x(t − Δ))
;

d) variation rate of differences of instantaneous observations:

I(xΔ(t)) = 1

Δ + 1

t∑
τ=t−Δ

O(x(t)) − O(x(t − 1))

O(x(t − 1))
.

The specific instances of observationsO can be the number of infected people (Aguil-
era et al. 2020; Chilean Government 2020; Chilean Ministry of Health 2020; San
Francisco government 2020; World Health Organization 2020), number of deaths
associated with COVID-19 (World Health Organization 2020), excess mortality due
to pneumonia (World Health Organization 2020), number of tests (San Francisco gov-
ernment 2020), positivity rate (Chilean Government 2020;World Health Organization
2020), COVID-19 total hospitalizations (Duque et al. 2020,ChileanGovernment 2020,
San Francisco government 2020, World Health Organization 2020) and the number
of people in ICU beds (Chilean Government 2020, San Francisco government 2020,
World Health Organization 2020), among others. Additionally, the formalism intro-
duced above permits to consider more elaborated indicators I computed from xΔ(t),
such as the effective reproductive number (Chilean Government 2020, World Health
Organization 2020).

We update the notation of an event-triggered feedback by u = m(Δ, tmin, I, θ),
noticing that the event-triggered set S now depends on indicator I and threshold θ .

3.1 Trade-offs of event-triggered policies based on indicators

For a fixed initial state x0 ∈ X and a given control sequence u ∈ U, we assume that
m ∈ N (m ≥ 2) outcome measures are observed. These outcomes are represented
by a function P : X × U −→ R

m and, in our convention, we want these to be as
low as possible. Examples of these outcomes are the peak demand of ICU beds, the
total number of deaths (directly attributed to the COVID-19 outbreak) and the total
number of days of lockdown (i.e., shelter-in-place), or of any other NPI. The first two
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Fig. 1 Illustration of a trade-off curve C(x0, Δ, tmin,I) parametrized by thresholds θ when the number of
outcomes is m = 2

outcomes are related to the health cost of the pandemic, while the third-one is a proxy
for the economic and societal cost of the policy. Intuitively, there should be a trade-off
between the different outcomes, in the sense that a lower outcome of one kind (e.g.,
peak demand of ICU beds) will lead to a greater outcome of the other kind (e.g., total
time of NPI), as it is showed in Angulo et al. (2021). Of course, one can take a group of
outcomeswhere thementioned trade-off does not exist (e.g., peak demand of ICU beds
and the total number of deaths), but even in these cases it is interesting to quantify the
links between these outcomes. Therefore, we propose to compute the outcomes given
by an event-triggered feedback u = m(Δ, tmin, I, θ) when the threshold θ varies.
With this information, decision makers can observe the links between the outcomes
provided by the policy based on the indicator I and, for instance, to evaluate the
marginal variation of one outcome when other outcome decreases/increases.

For a given event-triggered feedback u = m(Δ, tmin, I, θ), we define the trade-off
curve associated with indicator I, and parametrized by thresholds θ , as follows

C(x0,Δ, tmin, I) = {P(x0,u) | u = m(Δ, tmin, I, θ); θ ∈ DI} ⊆ R
m, (6)

where DI ⊆ R is the domain for the thresholds associated with indicator I.
In Fig. 1, we illustrate the trade-off curve C(x0,Δ, tmin, I) when the observed

outcomes are m = 2, that is, P(x0,u) = (P1(x0,u), P2(x0,u)) with u =
m(Δ, tmin, I, θ). In this figure,weuse the simplifiednotationP(x0,u) = (P1(θ), P2(θ))

∈ R
2, for highlighting the dependence of the outcomes on thresholds. In this curve,

we represent two outcomes exhibiting a trade-off (i.e., greater value of one outcome
leads to a lower values of the other outcome).
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3.2 Comparing event-triggered policies based on indicators

To compare the efficiency of two event-triggered feedbacks based on two different
epidemiological indicators Ia and Ib, we propose to compute the associated trade-
off curves described in the previous section. If the policies based on indicators Ia
and Ib consider observation time windows Δa and Δb, respectively, and minimum
interevent times tamin and tbmin, respectively, then we compare the trade-off curves
Ca = C(x0,Δa, tamin, Ia) and Cb = C(x0,Δb, tbmin, Ib) defined in (6).

Recall that the outcomes are represented by the function P : X × U −→ R
m , with

m ≥ 2, and the aim is to have the m outcomes

P(x0,u) = (P1(x0,u), . . . , Pm(x0,u))

to be as low as possible. Then, the calculation of the trade-off curves Ca and
Cb, consists of the evaluation of function P for event-triggered controls ua(θa) =
m(Δa, tamin, Ia, θa) and ub(θb) = m(Δb, tbmin, Ib, θb) with different values of thresh-
olds θa and θb.

If a decisionmaker considers as objective (maximal bounds) the firstm−1outcomes
P̂1:m−1 = (P̂1, . . . , P̂m−1) (e.g., peak demand of ICU beds), the corresponding m-th
outcomes Pa

m and Pb
m (e.g., total time ofNPI) obtained using event-triggered feedbacks

based on indicators Ia and Ib can be computed such that

(P̂1:m−1, P
a
m) ∈ Ca and (P̂1:m−1, P

b
m) ∈ Cb.

Thus, the decision maker should consider the policy based on Ia or Ib comparing
Pa
m and Pb

m decision depending on the given objective outcomes P̂1:m−1. In Fig. 2,
we show two trade-off curves for m = 2. In this figure, for small objective values of
outcome P̂1, it is better to use a policy based on indicator Ib. Otherwise, for larger
values of P̂1, it is recommended to use a policy based on Ia .

If Pb
m < Pa

m for all objective outcomes P̂1:m−1, it means that the curve Cb dominates
curve Ca and therefore, the policy based on Ib is always better. This situation is
illustrated in Fig. 3 for m = 2.

Finding a control u ∈ U that minimizes the m outcomes given by the vector
P(x0,u) = (P1(x0,u), . . . , Pm(x0,u)) is evidently a multicriteria optimization prob-
lem. Therefore, we only propose to compare single outcomes obtained from two
policies when the other (m − 1) outcomes are fixed and treated as objectives. This
avoids the need to consider outcomes of different nature and expressed in different
units in a single objective function. On the other hand, to compare two policies when
several outcomes are simultaneously considered (i.e., not fixed) is technically possibly,
although it is not straightforward.

4 Examples

We present two case studies, one for Chile (Metropolitan Region) and one for China.
For both cases we ran simulations in Python based on parameters estimated using
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Fig. 2 Illustration of the trade-off curves Ca and Cb corresponding to event-triggered feedbacks based on
indicators Ia and Ib , when the number of outcomes m = 2 and there is no domination

Fig. 3 Illustration of trade-off curves Ca and Cb corresponding to event-triggered feedbacks based on
indicators Ia and Ib , when the number of outcomes is m = 2 and one curve dominates the other

Markov chain Monte Carlo for the first example. We refer to “Appendix A” for a
description of the calibration algorithm and the parameter priors used in Sect. 4.1
(Chile). For the example in Sect. 4.2 (China), we use the information (model and
parameters) provided in the recent publication (Ivorra et al. 2020). The source code,
data, and scripts used in both sections are available in https://github.com/COVID19-
CMM/jomb-assessment-indicators.
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4.1 Case study: Metropolitan Region, Chile

For this example, we use a discrete-time compartmental model where the population
of Metropolitan Region, Chile (Santiago) N = 7, 112, 808 (according to the Chilean
Institute of Statistics INE1), assumed to be constant and isolated, is distributed into
eight groups corresponding to different disease stages. Susceptible (denoted by S) are
individuals not infected by the disease but who can be infected by the virus. Exposed
(denoted by E) are those in the incubation time after being infected. In this stage,
they do not have symptoms but can infect other people with a lower probability than
those in the infectious group described below. Mild infected or subclinical (denoted
by Im) is an infected population that can also infect other people. In this stage, they
are asymptomatic or show mild symptoms. They are not detected and thus are not
reported by authorities. At the end of this stage, they pass directly to the recovered
state. Infected (denoted by I ) are infected citizens that can infect other people. They
develop symptoms and are detected and reported by authorities. They can recover
or enter to some hospitalized state. Recovered (denoted by R) is a population that
survives the illness, is no longer infectious, and has developed immunity to the disease.
Hospitalized (denoted by H ) are patients hospitalized in basic facilities. After this
stage, hospitalized can recover or get worse and use an ICU bed or die. Hospitalized
in ICU beds (denoted by Hc) are patients in critical care. People in these two last
stages may infect other people; however, in our posterior analysis, we will neglect
this source of infection because we assume that hospitalized individuals are highly
isolated. After leaving the ICU bed, they either come back to the basic facilities in
the hospital or die. The term dead (denoted by D) accounts for people who did not
survive the disease.

The evolution of the previous state variables is described by the following discrete-
time system, with states x = (S, E, Im, I , R, H , Hc, D) ∈ X = R

8+:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t + 1) = S(t) − Λ(x(t))S(t)
E(t + 1) = E(t) + Λ(x(t))S(t) − γE E(t)
Im(t + 1) = Im(t) + (1 − φE I )γE E(t) − γIm Im(t)
I (t + 1) = I (t) + φE IγE E(t) − γI I (t)
R(t + 1) = R(t) + γIm Im(t) + φI RγI I (t) + φHRγH H(t)
H(t + 1) = H(t) + (1 − φI R)γI I (t) + (1 − φHcD)γHc Hc(t) − γH H(t)
Hc(t + 1) = Hc(t) + (1 − φHR − φHD)γH H(t) − γHc Hc(t)
D(t + 1) = D(t) + φHDγH H(t) + φHcDγHc Hc(t),

(7)

where natural births and deaths are not considered because their effects are negligible.
The above system is a type of discrete-time SEIR (or SEIRHD) model. It aims to

better describe an outbreak where part of the population has been infected by a virus,
with many people with no symptoms or only mild symptoms. It was found that this
is the case for SARS-CoV-2, as has been reported in several papers in the literature
(Ferguson et al. 2020; Ivorra et al. 2020; Liu et al. 2020). The model we use can be
extended to consider age ranges and evaluate other indicators or policies such as the

1 https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda
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Fig. 4 Structure of themathematicalmodel for theCOVID-19dynamics in an isolated city (Metropoli-
tanRegion,Chile). Each circle represents a specific group. Susceptible individuals (S), anddifferent disease
states: exposed (E), mild infected (Im ), infected (I ), recovered (R), hospitalized (H ), hospitalized in ICU
beds (Hc), and dead (D)

schools reopening or the progressive lifting of quarantines according to age groups as
explored in Zhao et al. (2020) and Zhao and Feng (2020). However, to illustrate the
proposed methodology, we have only considered one age class.

The structure of this mathematical model, along with the transitions among the
different stages, is shown in Fig. 4.

We proceed now to describe the main components of system (7). First, we consider
the time interval [[t0 : T ]], with days as the unit of time, where t0 is the initial time
from which we start the assessment of different policies (September 21, 2020) and T
is the time horizon. In this example, the time horizon is the simulation time and must
be large enough for all of the considered policies (NPI triggered by indicators) to be
able to reduce the number of infected people to zero (September 21, 2025), without
considering other interventions.

The contagion rate (see the first and second equation in (7)) is

Λ(x(t)) = 1

(N − D(t))
(βE E(t) + βIm I

m(t) + βI I (t) + βH H(t) + βHc Hc(t)),

(8)
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where the specific rates βE , βIm , βI , βH , βHc can be written as the product of the
contagion probabilities (pE , pIm , pI , pH , and pHc ) and the reference values of contact
rates (crefE , crefIm , c

ref
I , crefH , and crefHc ), each value associated with a contagious stage of the

disease (indicated in the subindex). Therefore, one has βE = pEcrefE , βIm = pIm crefIm ,
βI = pI crefI , βH = pHcrefH , and βHc = pHccrefHc .

The rest of parameters defining dynamics (7), including the initial conditions, are
described in “Appendix A” where we explain the calibration procedure for this exam-
ple.

4.1.1 Basic qualitative analysis

Basic qualitative analysis can be studied through positivity, existence of fixed points
and stability.

Positivity: If we assume that the initial states are positive, it is easy to see positive
forward invariance; this is, if all components of

x(t) = (S(t), E(t), Im(t), I (t), R(t), H(t), Hc(t), D(t)) ∈ X = R
8+

are positive, then all components of x(t + 1) are also positive.
This follows from 0 < 1 − φHR − φHD < 1, 0 < φi < 1 and consequently

0 < 1 − φi < 1; and the assumptions that all 0 < γi < 1 and thus 0 < 1 − γi < 1
(see “Appendix A”).

Also, from the calibration procedure, we assume that the values of rate parameters
βi are positive and small enough (less than 1), and thus

βE E(t) + βIm I
m(t) + βI I (t) + βH H(t) + βHc Hc(t) ≤

≤ (max βi )(E(t) + Im(t) + I (t) + H(t) + Hc(t)) ≤
≤ (max βi )(N − D(t)).

Therefore, the contagion rate Λ(x(t)) defined in (8) satisfies

0 ≤ Λ(x(t)) ≤ max βi ≤ 1,

and consequently

0 ≤ 1 − Λ(x(t)) ≤ 1.

From the previous inequalities, it easily follows that if all components of the state
x(t) are positive, then all components of x(t + 1) are positive, and we can conclude
forward positivity invariance.

Fixed points: From the first equation in system (7) it is easy to see that the fixed
points satisfyΛ(x(t))S = 0.After that, and substitutingΛ(x(t))S in the next equation,
it can be easily concluded that E(t) = 0, and it follows that also

Im(t) = I (t) = H(t) = Hc(t) = 0
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and thus Λ(x(t)) = 0.
Then, for each positive (or zero value) of S, R and D we obtain a fixed point, as

expected.
We can conclude that the set of fixed points is part of a 3-dimensional linear man-

ifold. Although this is not the focus in this work, stability and bifurcations can be
further studied through Central Manifold Theorem for discrete systems and related
mathematical tools (Kuznetsov 1998).

4.1.2 Control and indicators to be used

Our goal is to influence the contagion rate Λ(x(t)) in (8) with a control policy u(t),
representing the application of NPI, in this example, a lockdown, having as effect a
reduction in the contact rates. We denote by Λ̂(x(t), u(t)) the controlled contagion
rate andwe define controlled specific contagion rates β̂E , β̂Im , β̂I , β̂H , β̂Hc as follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β̂E (uE ) = (1 − uE )βE = (1 − uE )pEcrefE
β̂Im (uIm ) = (1 − uIm )βIm = (1 − uIm )pIm crefIm
β̂I (uI ) = (1 − uI )βI = (1 − uI )pI crefI
β̂H (uH ) = (1 − uH )βH = (1 − uH )pHcrefH
β̂Hc (uHc ) = (1 − uHc )βHc = (1 − uHc )pHccrefHc

(9)

where u = (uE , uIm , uI , uH , uHc ) ∈ [0, 1]5 is the initial vector of control variables
that later will be reduced.

We shall assume that crefH = crefHc = 0 because we suppose that the hospitalized
patients are highly isolated. Therefore, uH and uHc are no longer considered as control
variables. This approach is also used in Koo et al. (2020). Additionally, we assume
that the policy for the exposed and mild-infected individuals is the same and thus
uE = uIm , which will be denoted u for simplicity. This means that NPI have the same
effects (in terms of the contact rates reduction) for the people in the incubation stage
and for the infected population with mild symptoms because these populations are not
detected, so that NPI such as lockdowns are assumed to affect them similarly. Finally,
we also assume that NPI do not have additional effects in terms of the contact rates
reduction, in the infected population with symptoms (and then detected and reported
by authorities) because we assume that these individuals are already isolated. Thus,
we set uI = 1 − δ̂ with δ̂ ∈ (0, 1) representing the fraction of nonisolated infected
(detected) population. Our vector of control variables is then reduced to a single input
u ∈ [0, 1] and the (controlled) contagion rate becomes

Λ̂(x(t), u(t)) = 1

(N − D(t))

(
(1 − u(t))(βE E(t) + βIm I

m(t)) + δ̂βI I (t)
)

. (10)

Furthermore, we set 1− δ̂ as the upper bound for the control variable, thus representing
that NPI cannot isolate people to a greater extent than the isolation already imposed on
the infected and detected population. Therefore, the single control variable u belongs
to the control space U = [0, 1 − δ̂]. In the following, we set δ̂ = 0.2.
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Now we can write the (autonomous) dynamics f : X × U −→ X, where the state
space is X = R

8+, defining the discrete-time control system of this example as in (1)
as follows

f (x, u) = f (S, E, Im, I , R, H , Hc, D, u)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S − Λ̂(x, u)S
E + Λ̂(x, u)S − γE E

Im + (1 − φE I )γE E − γIm Im

I + φE IγE E − γI I
R + γIm Im + φI RγI I + φHRγH H

H + (1 − φI R)γI I + (1 − φHcD)γHc Hc − γH H
Hc + (1 − φHR − φHD)γH H − γHc Hc

D + φHDγH H + φHcDγHc Hc,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(11)

where the controlled contagion rate Λ̂(x, u) is given by (10).
Now we describe the elements for defining the event-triggered controls introduced

in Sect. 2.2. The considered observation time window and the minimum time of
implementation (or minimum interevent time) will be Δ = tmin = 14 days. The
event-triggering mechanism, as described in (2) and (4), is defined by uref = 1 − δ̂

(associated with u(t0) in (2)) and as controllers û−, û+ : [[0 : T − t0]] × U −→ U
(see (4)), we consider max-linear functions of the form

û−(τ, u) = max

{
0, u

(
1 − τ

tmin

)}

û+(τ, u) = min

{
1 − δ̂, u

(
1 − τ

tmin

)
+

(
1 − δ̂

tmin

)
τ

}
.

These controllers permit to monotonically decrease/increase the strength of the NPI
in tmin days until saturating it. We have decided to consider that our control saturates
in tmin days, coinciding with the minimum interevent time assuming that at the end of
this period of time, the effect of NPI (or their release) is fully accomplished, producing
the maximal isolation (u = 1− δ̂) or reaching the normal contact rates equal to those
before the pandemic (u = 0).

To define trigger indicators I : XΔ+1 −→ R and then the event-triggered sets
S, as in Sect. 3, we consider the following instantaneous observations of the state
O : X −→ R:

(O1) Number of hospitalized people in ICU beds:

O(x(τ )) = Hc(τ );

(O2) Number of active cases (infectious persons detected) per 100,000 residents:

O(x(τ )) =
(
100, 000

N

)
(I (τ ) + H(τ ) + Hc(τ )).
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As established in Sect. 2.2, given an observation time window of Δ = 14 days, the
indicators to be used are defined for the recent history of the state

xΔ(t) = (x(t − Δ), . . . , x(t)) ∈ XΔ+1.

Thus, the indicators considered in this example are computed from the observations
defined in (O1) and (O2) as follows:

(a) the mean of instantaneous observations:

I(xΔ(t)) = 1

Δ + 1

t∑
τ=t−Δ

O(x(τ ));

(b) the mean of differences of instantaneous observations:

I(xΔ(t)) = 1

Δ + 1

t∑
τ=t−Δ+1

(O(x(τ )) − O(x(τ − 1))) = O(x(t)) − O(x(t − Δ))

Δ + 1
.

Thus, we will assess four indicators associated with two instantaneous observa-
tions (O1) and (O2) and with two different ways to consider them (a) and (b).

Finally, to compare the performance of different event-triggered controls based on
the indicators introduced previously (as introduced in Sects. 3.1 and 3.2), we consider
two outcomes, that is, the function of outcomes P : X × U −→ R

2 is given by
P(x0,u) = (P1(x0,u), P2(x0,u)), where the event-triggered control u is defined by
u = m(Δ, tmin, I, θ), for a given trigger threshold θ , from an initial state x0 at initial
time t0. The outcomes considered are:

(P1) Peak of ICU demand:

P1(x0,u) = max
t0≤t≤T+1

Hc(t);

(P2) Total number of days in lockdown. This is expressed as a percentage (over the
total simulation time) and is computed differently depending on whether our NPI
is applied at the initial time t0 or not. If the NPI is applied at t0, it is given by

P2(x0,u) = 100

(T − t0)

ku∑
k=0

(t2k+1 − t2k)

otherwise, we have

P2(x0,u) = 100

(T − t0)

ku∑
k=0

(t2k+2 − t2k+1).

We note that in the above expressions, ku is the total number of the switches
triggered by the policy u.
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Fig. 5 Trade-off curves for the case study of the spread of COVID-19 in Metropolitan Region, Chile. The
considered indicators are: number of hospitalized patients in ICU beds (observation (O1)) considering the
mean (indicator (a), blue dashed curve) and the mean of difference (indicator (b), orange dashed curve) and
the number of active cases (observation (O2)) considering the mean (indicator (a), blue continuous curve)
and the mean of difference (indicator (b), orange continuous curve). The curve above the other three curves
(indicator (a) using observation (O1), in blue dashed curve) suggests that this indicator is the worst for
triggering decisions about NPI (implement/release). For the targeted objective (to have a ICU peak demand
at most 1200 beds) the best indicator is the curve crossing at the minimum level (percentage of days in
lockdown) the vertical line representengin the target

4.1.3 Numerical results

In this part, we report the numerical results using the introduced discrete-time control
model with the four indicators already defined.

For a given event-triggered feedback u = m(Δ, tmin, I, θ) we recall the definition
of the trade-off curve associated with indicator I, and parametrized by thresholds θ

(see Sect. 3.1)

C(x0,Δ, tmin, I) = {P(x0,u) | u = m(Δ, tmin, I, θ); θ ∈ DI} ⊆ R
2,

where DI ⊆ R is the domain for the thresholds associated with indicator I. For the
four indicators considered here (two instantaneous observations (O1) and (O2) and
two different ways to consider them (a) and (b)) and the two introduced outcomes (P1)
and (P2), the trade-off curves are depicted in Fig. 5.

It is observed from Fig. 5 that the performance of the indicator corresponding to
the mean of hospitalized patients in ICU beds (observation (O1) considered as (a)),
depicted by a blue dashed curve, is theworst in comparison to the other indicators in the
sense that its trade-off curve is above the other curves; therefore, for any objective in
the peak of ICUdemand (outcome (P1)), the use of this indicator will implymore days
in the lockdown (outcome (P2)). The trade-off curves of the other three indicators are
quite similar. Nevertheless, the indicators based in the number of active cases (based in
observation (O2), depicted by continuous curves) in practice can be less reliable that
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Table 1 Thresholds and percentages of days in lockdown P2(x0, u) (see (P2)) associatedwith four assessed
indicators, considering a peakof ICUdemandobjective of P1(x0,u) = 1, 200 beds (see (P1)), inMetropoli-
tan Region (Chile)

Indicator Threshold % in lockdown

I θ P2(x0,u)

Mean of ICU (O1); (a) 253 36%

Difference of ICU (O1); (b) 8.9 27%

Mean of active cases (O2); (a) 87 31%

Difference of active cases (O2); (b) 2.2 26%

the indicator corresponding to the mean of the difference of the hospitalized patients
in ICU beds (based in observation (O1) considered as (b)) that is shown by the orange
dashed curve.

InTable 1,wepresent the associated threshold for each indicator, having as objective
a peak of ICU demand of P1(x0,u) = 1, 200 beds (see (P1)). This value corresponds
to an approximation of the total ICU beds available during October 2020 for the
Metropolitan Region according to Chilean official data (Chilean Ministry of Science,
Technology, Knowledge and Innovation 2020). In this table, we also show the per-
centage of days in lockdown P2(x0,u) (see (P2)) associated with each indicators for
the objective mentioned above.

4.2 Case study: China

In this example, we consider the compartmental model published in Ivorra et al.
(2020) for the spread of COVID-19 in China. The model is composed by nine state
variables corresponding to different stages of the disease: susceptible (S), exposed
(E), infectious (I ), infectious but undetected (Iu), hospitalized that will recover (HR),
hospitalized that will die (HD), recovered after being detected (Rd ), and recovered
after being infectious but undetected (Ru), and dead by COVID-19 (D). Thus, the
vector of the state variables is

x(t) = (S(t), E(t), I (t), Iu(t), HR(t), HD(t), Rd(t), Ru(t), D(t)) ∈ X = R
9+.

Since themodel in Ivorra et al. (2020) is established in continuous-time,we consider
a very small time step (one hour). Then, we use the standard Euler method to discretize
the dynamics in Ivorra et al. (2020) with a stepΔt = 1/24 to obtain f : X×U −→ X
as in (1). Thus, for this case-study, the (autonomous) dynamics that define the discrete-
time control systems are described by the following:
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f (x, u) = f (S, E, I , Iu, HR, HD, Rd , Ru, D, u) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S − ΔtΛ̂(x, u)S

E + Δt
(
Λ̂(x, u)S − γE E

)

I + Δt (γE E − γI I )
Iu + Δt

(
(1 − φI HR − φI HD )γI I − γIu Iu

)
HR + Δt

(
φI HRγI I − γHR HR

)
HD + Δt

(
φI HDγI I − γHD HD

)
Rd + ΔtγHR HR

Ru + ΔtγIu Iu
D + ΔtγHD HD

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(12)

Here, the controlled contagion rate Λ̂(x, u) is given by

Λ̂(x(t), u(t)) = 1

N
(1 − u(t))(βE E(t) + βI I (t) + βIu Iu(t) + βHR HR(t) + βHD HD(t)),

(13)

where a single control variable u ∈ U = [0, 1 − δ̂] has been considered. This control
is associated with the implementation of NPIs such as lockdowns. It multiplies all of
the contagion rates (βE , βI , βIu , βHR and βHD ), because its main effect is to reduce the
contact rates among all individuals. Parameter δ̂ ∈ (0, 1) represents the fraction of the
population that reduces their contact rates during a lockdown (or more generally the
application of a given NPI). The latter is considered to be different from zero because,
even during lockdowns, some basic services must still operate. In the following, we
set δ̂ = 0.25.

The parameters defining the dynamics f : X × U −→ X in (12) are given by the
vector (β, γ, φ) ∈ R

5+ × R
5+ × [0, 1]2. Vector β = (βE , βI , βIu , βHR , βHD ) ∈ R

5+
contains all of the specific rates associated with the contagious stages of the disease.
Parameters γ = (γE , γI , γIu , γHR , γHD ) ∈ R

5+ are the mean rates of the transition
from these respective stages to the subsequent stage. In other words, for a disease
stage X ∈ {E, I , Iu, HR, HD} parameter γ −1

X days represents the mean duration of
stage X . Finally, the vector φ = (φI HR , φI HD ) ∈ [0, 1]2 allows us to describe the
distribution from infected people (I ) to the next three stages: infected but undetected
(Iu), hospitalized that will recover (HR), and hospitalized that will die (HD). Indeed,
the fraction of infected people that are not detected is given by 1 − φI HR − φI HD ,
while φI HR and φI HD represent the fraction passing from infected to the hospitalized
stages HR and HD , respectively. We note that in Ivorra et al. (2020), both fractions are
equivalently written in terms of the case fatality ratio and of the fraction of infected
people that are detected. The values of (β, γ, φ) used in our simulations correspond to
those used in Ivorra et al. (2020) for experiment EXP29M; see Table 3 in Ivorra et al.
(2020).

Additionally, the initial conditions

x(t0) = (S0, E0, I0, Iu0, HR0, HD0, Rd0, Ru0, D0) ∈ X = R
9+
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Table 2 Initial conditions for
example in Sect. 4.2
corresponding to China,
estimated at t0 = March 29,
2020

State variable Value

S0 1,389,828,000

E0 14

I0 2

Iu0 1,555

HR0 2,035

HD0 270

Rd0 73,622

Ru0 90,346

D0 3,708

were obtained from the calibration realized with the complete set of data available in
Ivorra et al. (2020), that is, our initial condition vector x(t0) corresponds to the last
day output (March 29, 2020) of the fitted model in Ivorra et al. (2020) for experiment
EXP29M. These values are given in Table 2.

It is important to note that a very strict lockdown was considered in the exper-
iment EXP29M in Ivorra et al. (2020). This explains the very low values obtained
for the infected stages in Table 2. Recall that our initial time (t0 = March 29, 2020)
corresponds to the final time in that experiment after the application of the lockdowns.

Regarding the other elements necessary to pursue our analysis, the event-triggered
controls introduced in Sect. 2.2 are defined similarly to those in Sect. 4.1. Indeed,
the considered observation time window and the minimal time of implementation (or
minimal interevent time)will beΔ = tmin = 14 days. The event-triggeringmechanism
described in (2) and (4) is defined by uref = 1 − δ̂ (associated with u(t0) in (2)) and
by controllers û−, û+ : [[0 : T − t0]] × U −→ U (see (4)) that are considered as
max-linear functions of the form

û−(τ, u) = max

{
0, u

(
1 − τ

tmin

)}

û+(τ, u) = min

{
1 − δ̂, u

(
1 − τ

tmin

)
+

(
1 − δ̂

tmin

)
τ

}
.

As in the previous case-study analyzed in Sect. 4.1, our control saturates in tmin days,
coinciding with the minimum interevent time. Thus, we assume that at the end of this
period of time, the effect of NPI (or their release) is fully accomplished, producing
maximal isolation (u = 1 − δ̂) or reaching the normal contact rates equal to those
prior to the pandemic (u = 0).

To define trigger indicators I : XΔ+1 −→ R and then the event-triggered sets S
(cf. Sect. 3), we also consider the following instantaneous observations of the state:

(Õ1) Number of hospitalized people:

O(x(τ )) = HR(τ ) + HD(τ );
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(Õ2) Number of detected infectious people:

O(x(τ )) = I (τ ).

As established in Sect. 2.2, given an observation timewindowof 14 days (i.e.,Δ = 14),
the indicators to be used are defined for the recent history of the state

xΔ(t) = (x(t − Δ), . . . , x(t)) ∈ XΔ+1.

Thus, the indicators considered in this case-study are computed from observations
defined in (Õ1) and (Õ2) as follows:

(a) the mean of instantaneous observations:

I(xΔ(t)) = 1

Δ + 1

t∑
τ=t−Δ

O(x(τ ));

(b) the mean of differences of instantaneous observations:

I(xΔ(t)) = 1

Δ + 1

t∑
τ=t−Δ+1

(O(x(τ )) − O(x(τ − 1))) = O(x(t)) − O(x(t − Δ))

Δ + 1
.

Finally, for the assessment of the different event-triggered controls policies based
on the indicators above, we apply the methodology described in Sects. 3.1 and 3.2.
Thus, we consider the function of outcomes P : X × U −→ R

2 given by
P(x0,u) = (P̃1(x0,u), P̃2(x0,u)), where the event-triggered control u is defined
by u = m(Δ, tmin, I, θ) (for a given trigger threshold θ , from an initial state x0 at
initial time t0), and the outcomes P̃1(x0,u) and P̃2(x0,u) are given by the following:

(P̃1) Peak of hospitalization demand:

P̃1(x0,u) = max
t0≤t≤T+1

(Hu
R(t) + Hu

D(t)),

where Hu
R(t) + Hu

D(t) corresponds to the total number of hospitalized patients at
period t .

(P̃2) Total number of days of lockdown: This outcome was already defined in
Sect. 4.1, outcome (P2). For the sake of completeness, we recall its computa-
tion here:
If the NPI is applied at t0, it reads as follows

P̃2(x0,u) = 100

(T − t0)

ku∑
k=0

(t2k+1 − t2k)
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Fig. 6 Trade-off curve for our case-study based on the spread of COVID-19 in China. Four indicators are
considered: number of hospitalized people (observation (Õ1)) considering the mean (indicator (a), blue
dashed curve) and the mean of difference (indicator (b), orange dashed curve) and the number of active
cases (observation (Õ2)) considering the mean (indicator (a), blue continuous curve) and the mean of
difference (indicator (b), orange continuous curve). The curve below the other three curves (indicator (a)
using observation (Õ2), in blue continuous curve) suggests that this indicator is the best for triggering
decisions about NPI (implement/release) because for any targeted objective (to have a maximal hospital
demand) the percentage of days in lockdown using this indicator is lower

otherwise, we have

P̃2(x0,u) = 100

(T − t0)

ku∑
k=0

(t2k+2 − t2k+1).

We note that in the previous expressions, ku is the total number of the switches
triggered by the policy u.

4.2.1 Numerical results

Finally, we report the numerical results for this case study considering the four indica-
tors (two instantaneous observations (Õ1) and (Õ2) and two different ways to consider
them (a) and (b)) defined above, consisting in computing their trade-off curves (see
Sect. 3.1) given by

C(x0,Δ, tmin, I) = {P(x0,u) | u = m(Δ, tmin, I, θ); θ ∈ DI} ⊆ R
2.

The four trade-off curves are depicted in Fig. 6.
Figure 6 shows that the 14-day rolling average of infected and detected people

(observation (Õ2) considered as (a)) is clearly the best indicator among the four
analyzed indicators. The second best indicator is the mean of total hospitalizations due
toCOVID-19 (observation (Õ1) considered as (a)), but its performance is considerably
weaker. For instance, when we consider an objective peak hospitalization demand of
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Table 3 Thresholds and percentages of days in lockdown P̃2(x0, u) (see (P̃2)) associated with the four
assessed indicators considering the peak hospitalization demand of P̃1(x0, u) = 7, 000, 000 beds (see (P̃1))
in China as the objective

Indicator Threshold % in lockdown

I θ P̃2(x0,u)

Mean of hospitalized people (Õ1); (a) 295,926 57%

Difference of hospitalized people (Õ1); (b) – 1,137 69%

Mean of detected infectious people (Õ2); (a) 3,932,230 31 %

Difference of detected infectious people (Õ2); (b) – 6,607 96 %

7 million of beds (that is, P̃1(x0,u) = 7, 000, 000; see outcome (P̃1)), the percentage
of time in lockdowns (outcome (P̃2)) for the policies associated with each indicator
is given by P̃2(x0,u) = 31% and 57%, respectively, over the total analyzed time. This
demonstrates the strong advantage of using a policy associatedwith the rolling average
of infected people with respect to the other analyzed indicators in this case. Therefore,
our analysis suggest the use of this indicator as the basis for an event-triggered policy
for this case study.

In Table 3 we show the percentage of the days in lockdown P̃2(x0,u) (see (P̃2))
associated with each indicator when the objective peak hospitalization demand is
P̃1(x0,u) = 7, 000, 000 beds (see (P̃1)). We also present the associated thresholds θ

for these four indicators.

5 Final remarks

In this work, we addressed two main goals: to propose a modeling framework for
representing the decision-making process related to the application of NPI policies
based on the observation of epidemiological indicators and to introduce amethodology
to compare the effectiveness of these strategies (defined by trigger indicators) with
respect to multiple objectives outcomes. The proposed framework is that of event-
triggered controls with some specific details such as considering the state in a window
of time and imposing a minimum intervention time (or minimum interevent time).
Both features were introduced in order to represent the application of the NPIs more
realistically.

The two case-studies discussed in Sect. 4 show how our methodology can be used
to recommend an indicator-based policy when some given outcomes are treated as
objectives in our analysis. Nevertheless, our approach should be consider only as a
guide to suggest a recommendation. In practice, decision makers must also undertake
a complementary and more in-depth analysis. For instance, the observability of the
indicators under analysis is something that must also be taken into account. Indeed,
when an indicator based on active cases has a similar performance to that of another
indicator based, for instance, on the number of hospitalized patients (as in the case-
study given in Sect. 4.1), a possible recommendation is to consider a policy based
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on the second type of indicator because the corresponding observations (hospitalized
patients) are more reliable and, consequently, the latter is a more robust NPI policy in
practice.

As described in this article, our approach permits to represent the decision-making
process based on the observation of indicators and compare the use of these indicators
to define NPI policies from a cost-benefit perspective. This comparison will depend
on the outcomes chosen as objectives and also on the structure of the dynamic model
and on the indicators chosen for this comparison. Both of the latter mathematical
objects are intrinsically related in the sense that the dynamics considered as a basis
in our methodology must allow the computation and simulation of the indicators
that we seek to compare in the analysis. Therefore, for assessment of more elaborate
indicators such as positivity rates, indicators associatedwith testing and contact tracing
and effective reproduction number, it is necessary to consider dynamical systems with
compartmental stages that allows the formulation of such indicators.On the other hand,
our methodology was demonstrated for two SEIR-type models that are some of the
most common mathematical models in epidemiology. Nevertheless, our methodology
can also be adapted to other underlying mathematical models, such as agent-based
models. Of course, different dynamics or other underlying mathematical models can
lead to different recommendations. However, this issue is inherent to any real-life
decision derived from a mathematical analysis.

It should be noted that this research was carried out when no pharmacological
interventions were available, so the underlying models in the case studies presented
in this paper do not consider the effects of vaccines on disease progression. However,
the methodology introduced can be implemented with models where the effects of
pharmacological interventions are considered, such as those developed in Buonomo
(2020) and Ramos et al. (2021), and in situations where the implementation and lifting
of NPIs is still the subject of public policy.

The framework introduced in this paper for assessing indicators-based event-
triggered policies raises some interesting problems to study the further theoretical
analysis of which can have important repercussions on the decision-making process.
We mention three such problems:

– Time consistency:When the analysis introduced in Sect. 3.2 for determining the
best indicator to use is carried out at time t0, following the policy induced by
this indicator, there is no guarantee that this strategy will be the best in the long
term. Since the trade-off curves are dynamic objects because they depend on the
initial conditions (see (6)), it is possible that with time, another indicator should
be chosen for triggering NPIs, because its performance is better considering the
future state as the initial condition.
In the terms of trade-off curves and the comparison process proposed in Sect. 3.2,
the aforementioned situation occurs when two of these curves (the best chosen at t0
and other), viewed as curves that evolve in time, intersect in a future time at the level
(in the outcomes space) corresponding to them−1 outcomes objectives for which
the analysis was carried out at time t0. To prove that a future intersection between
the trade-off curves will not occur will clearly require to assume certain properties
of the dynamics and the compared indicators; this is an interesting problem. A
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similar problem in the context of linear system where the performance (i.e., our
outcomes) is a quadratic cost, is studied in Antunes and Khashooei (2016).
On the other hand, it is natural to consider situationswhere the outcomes objectives
can evolve in time. For instance, at time t0 the situation is analyzed considering
a given ICU maximal capacity but perhaps in some months, this capacity will be
increased. In summary, the comparison process of indicators-based event-triggered
policies should be implemented continuously across the evolution of the disease
in the population, taking into account eventual updating of objective outcomes by
the decision makers. Due the latter and the dynamics aspect of trade-off curves,
with longer time it is possible that a discarded indicator will in fact become the
best indicator.

– Is it better to consider policies based on more indicators? In the analysis pro-
posed in this work, we have considered only policies based on a single indicator.
That is, to consider event-triggered setsS, defined in the space of the recent history
of states XΔ+1, in the form

S = S(Δ, I, θ) = {xΔ ∈ XΔ+1 | I(xΔ) ≤ θ}, (14)

where the indicator I : XΔ+1 −→ R takes values in R and θ ∈ R is a threshold
for this indicator. Consideration of more indicators leads to the consideration of a
vector-valued functionI : XΔ+1 −→ R

p, with p ≥ 2, and the inequalityI(xΔ) ≤
θ in (14)with respect to the componentwise order for a vector of thresholds θ ∈ R

p.
We wonder if the question of whether more indicators lead to better policies can
be formulate as follows: If S(I, θ) ⊆ S(Ĩ, θ) for all vector of threshold θ (in an
appropriate domain) can one conclude that a policy based on I is better than one
based on Ĩ (or vice versa)?
For triggering NPIs it can be natural to consider various indicators, as in the
examples cited in the introductory section, motivated by the reliability (or the
lack of) of observations for making decisions. Nevertheless, assuming that all
observations are reliables, it is not clear that the addition of indicators for triggering
the decisions will induce better policies from the cost-effectiveness viewpoint.

– Stochastic analysis: The framework introduced in this work can be extended
considering stochastic dynamics and indicators. In this case, a possible additional
outcome that can be considered is the maximum probability of satisfying the
other outcomes (seen as objectives), and then the performance of different event-
triggered policies can be assessed in terms of that probability, considering the
risk-aversion of the decision makers.
To considering stochastic dynamics, the estimated probabilities distributions of
involved parameters can be take as one of the output given by the calibration
procedure used in Sect. 4.1 and mentioned in “Appendix A”.

Perhaps using simple models (few state variables) it is possible to provide math-
ematical proofs for the questions posed in the first two points of the previous list,
that is, to ensure that the trade-off curves do not intersect in the future and to deduce
when an indicator is better than others from the properties of the event-triggered
sets S corresponding to those indicators. Eventually the theoretical analysis can
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be simpler considering feedbacks based only on the instantaneous observations and
time-continuous dynamics, a framework have purposefully avoided here because the
measurability of the involved functions merits a deeper analysis. The aforementioned
problems are beyond the scope of this paper; however, we plan to study them in future
works.
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A Parameter description and calibration procedure of model in
Sect. 4.1

The parameters of system (7) associatedwith dynamics f : X×U −→ X given by (11)
are contained in the vector (β, γ, φ) ∈ R

3+×R
5+×[0, 1]5, where β = (βE , βIm , βI ) ∈

R
3+ is the vector of the specific rates associated with contagious stages of the disease

and that are involved in the definition of the controlled contagion rate Λ̂(x(t), u(t))
given by (10).

Parameters γ = (γE , γIm , γI , γH , γHc ) ∈ R
5+ are the mean rates of transition

from the respective stages to the next stage. In other words, for a disease stage X ∈
{E, Im, I , H , Hc} parameter γ −1

X days represents the mean duration of stage X .
The vector φ = (φE I , φI R, φHR, φHD, φHcD) ∈ [0, 1]5 contains different distri-

bution fractions between the different stages. Thus, φE I is the fraction of exposed
people who become infected (with symptoms), φI R is the fraction of infected peo-
ple who recover, φHR is the fraction of hospitalized (in normal services) people who
recover, φHD is the fraction of hospitalized (in normal services) people who die, and
φHcD is the fraction of hospitalized people in ICU beds who die.

The parameters have been estimated using a Hamiltonian Markov chain Monte
Carlo estimation method using the Stan library (Carpenter et al. 2017). The method
is a Bayesian approach that allows the approximation of the probability densities for
each of the parameters in the system when using a sufficient number of iterations. We
use the Gelman-Rubin (R̂) convergence diagnostic and 12 parallel chains to ensure
that the separate chains converge to the same values. R̂ compares the variance of each
chain to the pooled variance of all chains. Each of the parameters obtained an R̂ ≤ 1.03
where each chain ran 10,000 iterations of which a half were warm-up.

For each of the parameters, we set upper and lower limits to restrict the parameter
search space to allow realistic combinations only. In addition, we used a weakly
informative prior for each of the parameters with mean values obtained from the
literature and broad standard deviations.

In Table 4, we state for each parameter its limits, prior probability distribution
in the form of a mean and standard deviation, and some references for the mean
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Table 5 Initial conditions for
example in Sect. 4.1
corresponding to Metropolitan
Region (Chile), estimated at
t0 = September 21, 2020

State Initial condition

S0 6,671,557

E0 1,697

Im0 1,723

I0 2,540

H0 1,157

Hc
0 433

R0 421,948

D0 11,753

of the used prior distributions. The model was trained on data from June 20, 2020,
until September 20, 2020, in the Metropolitan Region (Chile), considering the total
number of COVID-19 cases (symptomatic), the number of patients in ICU, and the
number of deceased, according the information collected and published by the Chilean
Ministry of Science, Technology, Knowledge and Innovation in (2020). We assume
an independent and identically distributed (i.i.d.) error of σ for all data points.

Since there are no data available of the asymptomatic population, we are not able
to train the trajectory of asymptomatic cases from E to Im and to R. That is, the
parameters φE I and γIm are not trained by maximizing the posterior, except for the
small influence through βIm that is difficult to distinguish from the other sources
of contagion. To mitigate this, we will fix φE I = 0.6 where we assume 60% of
the infections to be symptomatic, following Oran and Topol (2020) and Centers for
Disease Control and Prevention (2020a, Scenario 5: Current Best Estimate).

The initial conditions x(t0) = (S0, E0, Im0 , I0, R0, H0, Hc
0 , D0) ∈ X = R

8+, have
been estimated using weakly informative priors where we take E0, Im0 , I0, and H0 to
have scaled Beta priors between 0 and N with α = 1 and β = 4 (parameters of Beta
distribution), where N = 7, 112, 808 is the total population. For the initial number
of hospitalized patients in ICU, deceased patients, and total number of infections to
date we assume a lognormal distribution with a standard deviation of σ around the
data. In this setup, S0 and R0 are free variable but we need to restrict at least one
of these variables to solve the system. We propose a rough estimate of R0 to be the
total number of infected patients to date plus the percentage that were mildly infected.
Here, we assume that the number of people that are currently infected, hospitalized,
or deceased are small relative to the total population. S0 then follows from S0 =
N − E0 − Im0 − I0 − H0 − Hc

0 − R0 − D0. The obtained values of initial conditions
are shown in Table 5.
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