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ABSTRACT
The jackknife method gives an internal covariance estimate for large-scale structure
surveys and allows model-independent errors on cosmological parameters. Using the
SDSS-III BOSS CMASS sample, we study how the jackknife size and number of re-
samplings impact the precision of the covariance estimate on the correlation function
multipoles and the error on the inferred baryon acoustic scale. We compare the mea-
surement with log-normal mock galaxy catalogues with the same survey geometry. We
build several jackknife configurations that vary in size and number of resamplings. We
find that it is useful to apply the tapering scheme to estimate the precision matrix
from a limited number of jackknife resamplings. The results from CMASS and mock
catalogues show that the error estimate of the baryon acoustic scale does not depend
on the jackknife scale. For the shift parameter α, we find an average error of 1.6%
and 1.2%, respectively from CMASS and mock jackknife covariances, consistent with
pre-reconstruction analyses. However, when relatively few resamplings are used, the
jackknife error estimate becomes unreliable. Future large-scale structure surveys will
map even greater volumes allowing percent-level estimation of the covariance matrix
using a jackknife approach.

Key words: cosmology: large-scale structure of Universe; cosmological parameters;
observations; theory – galaxies: statistics; haloes

1 INTRODUCTION

The most popular methods to estimate the uncertainties on
the galaxy two-point correlation function (2PCF) internally
in a survey are bootstrap (Efron 1979; Davison & Hink-
ley 1997; Norberg et al. 2009, 2011) and jackknife (Que-
nouille 1956; Miller 1974; Turkey 1958; Norberg et al. 2009,
2011) resampling. Bootstrap resampling is carried out by
randomly selecting Nb sub-volumes, with replacement, from
the original sample. Then the galaxy clustering measure-
ment is performed in each resampling, which is associated
a constant weight equal to the number of times that the
sub-volume has been selected (Norberg et al. 2009). Simi-
larly, the jackknife method uses Njk regions in the survey
footprint, each with approximately the same galaxy number
density. The correlation function is measured on the survey
multiple times, each time removing a different jackknife re-
gion (Norberg et al. 2009). The covariance matrix is finally
inferred from the 2PCF measurements and the 1σ errors are
derived as the square root of the diagonal elements.

Internal methods for error estimation are computation-
ally inexpensive and are derived directly from the measure-
ments. Therefore, the analysis does not depend on an as-
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sumed cosmological model, which is an attractive feature
when testing alternative models such as dark energy or mod-
ified gravity. Indeed, jackknife resampling has been widely
used to estimate the uncertainties on the galaxy clustering
measurements from large-volume spectroscopic surveys (e.g.
Zehavi et al. 2002, 2005, 2011; Guo et al. 2012; Ross et al.
2012; Anderson et al. 2012; Guo et al. 2015a,b; Favole et al.
2016a, 2017).

Jackknife resampling has two main disadvantages: (i) it
tends to overestimate the errors due to the lack of indepen-
dence between the NJK copies; and (ii) it is necessary to bal-
ance the number and size of resamplings to be drawn in the
survey footprint. The last issue is driven by several factors.
First of all, in order to have covariances with reduced noise in
their off-diagonal terms, we need a large number of jackknife
resamplings. This limits the size of the jackknife regions and
also the maximum scales that can be probed in the galaxy
clustering observables. It is often assumed in the literature
that the jackknife cell size SJK should embed the maximum
scale measured in the two-point correlation functions. At
the same time, to have an invertible (i.e. non-singular) co-
variance matrix, the number of resamplings should be larger
than the number of bins in the measured 2PCF. These con-
ditions are difficult to satisfy in galaxy samples with limited
area (e.g. Beutler et al. 2011; Hong et al. 2016). Due to the
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finite size of any survey footprint, the more resamplings we
draw, the smaller their size and the variation between one
copy and the next one (Norberg et al. 2009, 2011).

The issues discussed above have discouraged some cos-
mologists to use jackknife resampling in favour of estimat-
ing the galaxy clustering uncertainties from large sets of
independent synthetic galaxy catalogues. In the last years,
the advent of efficient codes based on fast gravity solvers
has considerably reduced the computational time needed for
massive mock production, making available many different
realisations of accurate, independent mocks for covariance
estimates. Among these methods, PTHALOS (Scoccimarro
& Sheth 2002; Manera et al. 2013), PINOCCHIO (Monaco
et al. 2002, 2013), PATCHY (Kitaura et al. 2016) and
HALOGEN (Avila et al. 2015) are all based on Lagrangian
perturbation theory (LPT). Others, such as QPM (White
et al. 2014), FastPM (Feng et al. 2016) or PPM-GLAM
(Klypin & Prada 2018), use a quick particle mesh approach.
Algorithms such as EZ-MOCKS (Chuang et al. 2015) adopt
the effective Zel’dovich approximation, while COLA (Tas-
sev et al. 2013; Koda et al. 2016), L-PICOLA (Howlett et al.
2015) or ICE-COLA (Izard et al. 2016) combine LPT with
N-body solvers to speed up the computational time. Finally,
high-fidelity mocks can also be obtained from multiple real-
isations of a log-normal density field (Coles & Jones 1991;
Beutler et al. 2011; Hong et al. 2016; Agrawal et al. 2017;
Lippich et al. 2019).

All these fast mocking approaches are extremely conve-
nient compared to running a full N-body code, but they are
generally limited to predicting the dark matter distribution.
On top of the dark matter field, it is necessary to model the
galaxy distribution by properly accounting for the different
baryonic components and the complex physics of galaxy for-
mation and evolution (e.g. Mo et al. 2010; Naab & Ostriker
2017).

Simulating baryons is a non-trivial task, which requires
advanced computational techniques and resources. Semi-
analytic models of galaxy formation and evolution (SAMs;
White & Frenk 1991; Kauffmann et al. 1993; Baugh 2006;
Benson 2010, 2012; Somerville & Davé 2015; Cora 2006;
Cora et al. 2018; Croton et al. 2006, 2016; Gargiulo et al.
2015; Collacchioni et al. 2018) and hydrodynamical simula-
tions (e.g. Yepes et al. 1997; Springel & Hernquist 2003;
Yoshida et al. 2003; Springel 2010; Vogelsberger et al.
2014b,a; Genel et al. 2014; Crain et al. 2015; Schaye et al.
2015; Pillepich et al. 2018) are now able, with different de-
grees of accuracy, to incorporate the multitude of ingredients
and physical processes that contribute to shape the forma-
tion and evolution of galaxies within their host dark mat-
ter haloes. Some of these processes are: gas accretion (Guo
et al. 2011; Henriques et al. 2013; Hirschmann et al. 2016)
and cooling (De Lucia et al. 2010; Monaco et al. 2014; Hou
et al. 2017), star formation (Lagos et al. 2011), stellar winds
(Lagos et al. 2013), stellar evolution Tonini et al. (2009);
Henriques et al. (2011); Gonzalez-Perez et al. (2014), AGN
feedback Bower et al. (2006); Croton et al. (2006) or en-
vironmental processes Weinmann et al. (2006); Font et al.
(2008); Stevens & Brown (2017); Collacchioni et al. (2018).

Analogously, one should also account for the effect of
massive neutrinos on the growth of cold dark matter per-
turbations, which are responsible of suppressing the mat-
ter power spectrum at intermediate and small scales (Ali-

Häımoud & Bird 2013; Wright et al. 2017; Parimbelli et al.
2019).

All of these assumptions and prescriptions have uncer-
tainties which become significant on non-linear scales and
limit the accuracy of the covariance estimate.

Upcoming surveys, such as the Dark Energy Spectro-
scopic Instrument1 (DESI; Schlegel et al. 2015), Euclid2

(Laureijs et al. 2011; Sartoris et al. 2016) and the Large
Synoptic Survey Telescope3 (LSST; Ivezić et al. 2019), will
bring us to the era of high precision cosmology. In order to
prepare to this new phase, it is imperative to improve and
compare different methods to construct accurate covariances
able to capture the hidden physical process of gravitational
collapse. These methods have to carefully optimise the spe-
cific binning scheme adopted in order to minimise the noise
in the measurements.

For the reasons above, in this work we aim to rehabili-
tate the use of jackknife resamplings versus mocks for esti-
mating covariances. We explore how varying the size (SJK)
and number (NJK) of jackknife regions impacts the preci-
sion in the error estimates of galaxy clustering and on the
baryon acoustic oscillation scale through the α shift param-
eter. In concrete, we measure the monopole and quadrupole
two-point correlation functions of the BOSS CMASS DR12
galaxies and we compute their covariances using four dif-
ferent jackknife configurations, coupled with two binning
schemes. We compare these results with those obtained from
200 independent log-normal mock light-cones with the same
volume of CMASS, and with the covariance obtained by per-
forming jackknife resampling on a single light-cone.

From these covariances, we build the precision matrices
needed to estimate the α shift parameter through a Monte
Carlo Markov Chain (MCMC) algorithm. We reduce the
noise in their off-diagonal terms by applying the tapering
correction (Kaufman et al. 2008). We study the impact of
a variation in the tapering parameter, Tp, on the α results.
These estimates of α will be directly compared with the
galaxy clustering pre-reconstruction results from the BOSS
collaboration (Ross et al. 2016).

The paper is organised as follows: in Sec. 2, we intro-
duce the observational galaxy sample used in our analysis,
SDSS-III/BOSS CMASS DR12; in Sec. 3, we present the
galaxy clustering measurements performed, together with
the jackknife methodology and schemes used to estimate
their uncertainties. Sec. 4 describes the models used to anal-
yse the CMASS observations: the log-normal mock galaxy
catalogues and light-cones (§ 4.1), and the analytic models
used in the Monte Carlo runs (§ 4.2). In Sec. 5, we explain the
Monte Carlo algorithm used to extract the α BAO parame-
ter. Sec. 6 presents our main results, which are discussed in
Sec. 7 together with our conclusions.

Throughout the paper we adopt a Planck et al. (2014)
cosmology with Ωm = 0.307115, ΩΛ = 0.692885, h = 0.6777,
n = 0.96 and σ8 = 0.8228.

1 https://www.desi.lbl.gov
2 https://www.euclid-ec.org
3 https://www.lsst.org
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The impact of jackknife scale on covariances 3

2 OBSERVED GALAXY SAMPLE: BOSS
CMASS DR12

The SDSS-III BOSS survey observed about 1.2 million
galaxies over an effective area of 9329 deg2 (Alam et al.
2017), using the 2.5m Sloan Telescope (Gunn et al. 2006)
at the Apache Point Observatory in New Mexico. It used
a drift-scanning mosaic CCD camera with five photomet-
ric bands, ugriz (Gunn et al. 1998; Fukugita et al. 1996),
and two spectrographs covering the wavelength range 3600−
10000

◦
A with a resolving power of 1500 to 2600 (Smee

et al. 2013). Spectroscopic redshifts were measured using
the minimum-χ2 template-fitting procedure by Aihara et al.
(2011), with templates from Bolton et al. (2012).

BOSS targeted galaxies into two main samples: LOWZ
at z < 0.43 and CMASS at 0.43 < z < 0.7 (Ahn et al. 2012).
For our analysis, we use the data from the BOSS CMASS
DR12 sample (Alam et al. 2015; Reid et al. 2016; Alam et al.
2017), which is defined through a number of magnitude and
colour cuts aimed at obtaining a selection of galaxies with
approximately constant stellar mass. These cuts are:

17.5 < icmod < 19.9
rmod − imod < 2

ifib2 < 21.5
d⊥ > 0.55

icmod < 19.86 + 1.6 (d⊥ − 0.8),

(1)

where icmod represents the SDSS i-band cmodel magnitude,
imod and rcmod are model magnitudes, ifib2 is the fibre mag-
nitude within 2” aperture, and d⊥ is the following colour
combination:

d⊥ = rmod − imod − (gmod − rmod)/8. (2)

In addition, the CMASS sample satisfies also the star-galaxy
separation cuts:

ipsf − imod > 0.2 + 0.2 (20 − imod)
zpsf − zmod > 9.125 − 0.46zmod,

(3)

where the subscrit “psf”stands for PSF magnitude.

3 MEASUREMENTS

3.1 Two-point correlation functions

We measure the two-point correlation function, ξ(s, µ), of the
galaxy sample described in Sec. 2 using the code from Favole
et al. (2017). This is based on the Landy-Szalay estimator
(Landy & Szalay 1993),

ξ(s, µ) = DD(s, µ) − 2DR(s, µ) + RR(s, µ)
RR(s, µ) , (4)

where s is the redshift-space distance and µ is the cosine of
the angle between s and the line of sight.

In the expression above, DD, DR and RR are respec-
tively the data-data, data-random and random-random pair
counts that we can form between the galaxy and random
catalogues. The latter is built to have the same angular foot-
print and radial distribution of the CMASS observations. All
the pairs above are properly normalised by the number of
galaxies (randoms) and weighted to correct from different
systematic effects (see e.g. Sánchez et al. 2012; Ross et al.

2012; Favole et al. 2016b). In particular, we weight the ob-
served data for potential fibre collisions (wfc) and for redshift
failures (wzf). We also account for possible variation in the
galaxy (random) number densities assuming the FKP (Feld-
man et al. 1994) weight:

wFKP =
1

1 + n(z)P0
, (5)

where n(z) is the galaxy (random) number density at redshift
z and P0 is a constant quantity that roughly corresponds
to the amplitude of the CMASS power spectrum at k =
0.1 hMpc−1. We assume P0 = 20000 h3Mpc−3 as in Anderson
et al. (2012).

From Eq. 4, we compute the multipoles of the CMASS
correlation function as:

ξl(s) =
2l + 1

2

∫ 1

−1
ξ(s, µ)Pl(µ) dµ, (6)

where Pl(µ) are the Legendre polynomials. In this study, we
focus only on the first two even multipoles of the 2PCF,
i.e. the monopole ξ0(s) and the quadrupole ξ2(s). We explore
two different binning schemes, both centered on the BAO
distance scale, coupled with the jackknife configurations de-
fined in Sec. 3.2: (i) 20 linear bins in 24 < s < 184 h−1Mpc
and 120 linear bins in 0 < µ < 1; (ii) 10 linear bins in
24 < s < 184 h−1Mpc and 120 linear bins in 0 < µ < 1.

3.2 Jackknife configurations and covariances

We implement jackknife resampling in the BOSS CMASS
DR12 galaxy sample adopting four different configurations
summarised in Table 1. We divide the survey footprint into
200, 100, 50 and 20 RA×DEC cells approximately containing
the same number of galaxies (randoms). The CMASS covari-
ance matrix for NJK jackknife resamplings is (e.g. Ross et al.
2012; Favole et al. 2016a):

Cij =
NJK − 1

NJK

NJK∑
a=1
(ξai − ξ̄i)(ξaj − ξ̄j), (7)

where ξ̄i is the mean jackknife correlation function in the ith

bin,

ξ̄i =
NJK∑
a=1

ξai /NJK. (8)

The overall factor in Eq. 7 corrects from the lack of indepen-
dence between the NJK jackknife copies, which is the main
limitation of the jackknife method. In fact, from one con-
figuration to the next, NJK − 2 cells are the same (Norberg
et al. 2011).

4 MODELS

4.1 Log-normal mock galaxy catalogues and
light-cones

We generated 200 log-normal mock galaxy catalogues for
the BOSS CMASS sample at mean redshift z ∼ 0.56. The
target power spectrum was computed with the code CLASS4

4 https://github.com/lesgourg/class_public
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NJK AJK [deg2] SJK [h−1Mpc]

200 46.6 110.7
100 93.3 156.6

50 186.6 221.4

20 932.9 495.1

Table 1. Jackknife configurations adopted in our analysis. For

each of the four cases implemented, we indicate the number of
jackknife resamplings (NJK), the area (AJK) and comoving size

(SJK) of the individual cell computed in Planck et al. (2014) cos-

mology at the mean redshift of CMASS, z = 0.56.

(Blas et al. 2011). We applied a linear bias and the Halofit
(Takahashi et al. 2012) prescription to model the non-linear
galaxy power spectrum: P(k) = b2Pm(k) with the value b =
2.1.

We present the Synmock code used to produce the log-
normal catalogues in a public repository5. The implementa-
tion follows the standard approach for generating log-normal
simulations (see also Beutler et al. 2011; Pearson et al. 2016).
For each realization, first we generated a Gaussian density
field δG(®x) on a cubic grid with dimension L = 4096h−1Mpc
and step size h = 8h−1Mpc and transformed it to derive the
target log-normal field:

δ(®x) = exp
(
δG(®x) − σ2/2

)
− 1 , (9)

where σ2 is the variance of the Gaussian field. In order to
match the target power spectrum we made a Fourier trans-
form of the power spectrum to compute the correlation func-
tion and using the relationship (Coles & Jones 1991)

ξG(| ®x − ®x′ |) = log
(
1 + ξ(| ®x − ®x′ |)

)
. (10)

The log-normal density field was used to build a discrete
galaxy field by Poisson sampling the number density n(®x) =
n̄(1+ δ(®x)). We applied a uniform random offset to move the
mock galaxies away from the grid points.

The velocity field was computed on the same δ(x) grid
using the linear continuity equation in Fourier space:

®v
(®k ) = i

f aH
b

δ
(®k ) ®k

k2 , (11)

where f is the logarithmic growth rate. After a final Fourier
transform, the velocity of each galaxy was assigned using
the value at the nearest grid point.

We built 200 BOSS CMASS light-cones (LCs) with
0.43 < z < 0.7 by cutting the BOSS survey geometry in
the log-normal simulation box above. The Cartesian galaxy
coordinates were transformed to the spherical coordinates
right ascension, declination and radial distance with the ori-
gin at the center of the simulation box. In order to transform
to the redshift-space coordinates, the line-of-sight peculiar
velocity component was computed and applied to the radial
comoving distance: rs = r + ®r · ®v/

(
aH |®r |

)
. We constructed a

coarse angular mask using the Healpix (Górski et al. 2005)
scheme at resolution nside = 64 and discarded galaxies out-
side the mask. The catalog was further downsampled along
the radial direction to match the target redshift distribu-
tion. We generated an unclustered random catalogue with

5 https://github.com/bengranett/synmock

10 times the number density of the CMASS data that pre-
cisely corresponds to the mock construction using the same
angular mask and radial selection function.

After computing the correlation functions of the NLC =
200 log-normal light-cones, we derive their covariance matrix
as:

Cij =
1

NLC − 1

NLC∑
a=1
(ξai − ξ̄i)(ξaj − ξ̄j), (12)

where ξ̄i is their mean 2PCF in the ith bin. The pre-factor
properly accounts for the fact that the mock realisations are
independent.

4.2 Analytic models

Besides the log-normal mocks, we also model the multipoles
of the BOSS CMASS two-point correlation function using
an analytic approach, which is required to run the Monte
Carlo analysis (see Sec. 5). The 2PCF can be obtained from
the Fourier transform of the matter power spectrum, P(k),
for which we assume the template from Padmanabhan &
White (2008):

P(k) = [Plin(k) − Pdw(k)] e−k
2Σ2

nl/2 + Pdw(k) . (13)

In the equation above, Plin(k) is the linear matter power
spectrum computed using the Boltzmann code CLASS (Les-
gourgues 2011) assuming the Planck 2015 (Ade et al. 2016)
fiducial cosmology. The Pdw(k) term is the de-wiggled power
spectrum (Eisenstein & Hu 1998), while the Σnl parameter
encodes the smoothing of the BAO peak due to non-linear
effects (Crocce & Scoccimarro 2006). The multipoles of the
analytic 2PCF are defined as:

ξl(s) =
il

2π2

∫ ∞
0

Pl(k) jl(ks)k2dk , (14)

from which we recover the monopole (l = 0) and the
quadrupole (l = 2). In Eq. 14, jl(x) represents the spheri-
cal Bessel function of first kind and order l, while Pl(k) are
the multipoles of the power spectrum defined as:

Pl(k) =
2l + 1

2

∫ 1

−1

(
1 + f µ2

)2
P(k)Ll(µ)dµ, (15)

where Ll(x) is the Legendre polynomial of order l and P(k) is
the template given in Eq. 13. By replacing Eq. 15 in Eq. 14,
the analytic expressions for monopole (l = 0) and quadrupole
(l = 2) are respectively (Xu et al. 2012):

ξ
(0)
model(s) = B0ξ0(αs) + a(0)0 +

a(0)1
s
+

a(0)2
s2 , (16)

ξ
(2)
model(s) = B2ξ2(αs) + a(2)0 +

a(2)1
s
+

a(2)2
s2 , (17)

where α is the shift parameter, while (a(i)1 , a(i)2 , a(i)3 ) are linear
nuisance parameters.

The shift parameter α in Eqs. 16 and 17 is usually de-
fined as (Padmanabhan & White 2008):

α =
DV

rs

rfid
s

Dfid
V

, (18)
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where rs represents the sound horizon (Hu & Sugiyama
1996), and DV the volume-averaged distance given by
(Eisenstein et al. 2005):

DV(z) =
[
cz(1 + z)2D2

A(z)H
−1(z)

]1/3
, (19)

with DA(z) being the angular diameter distance, and H(z)
the Hubble parameter at redshift z. The α shift parameter
accounts for the observed distortion between distances due
to the chosen fiducial cosmology, while the nuisance param-

eters (a(i)1 , a(i)2 , a(i)3 ) and B1, B2 incorporate those effects that
are responsible of modulating the clustering amplitude, such
as redshift-space distortions (Xu et al. 2012), linear bias, and
the power spectrum normalisation, σ8.

5 SHIFT PARAMETER ESTIMATION

Following the methodology presented in Favole et al. (2019),
we analyse the BOSS CMASS covariances, both computed
from jackknife and 200 light-cones, using a Monte Carlo
Markov Chain based on a Metropolis-Hastings algorithm6.
Our MCMC code is publicly available on GitHub7.

In order to find the optimal parameter values, we as-
sume a likelihood function L ∝ exp(−χ2/2), with

χ2 =
(
®ξmodel − ®ξobs

)T
Ψ̂

(
®ξmodel − ®ξobs

)
, (20)

where

®ξmodel ≡
(
®ξ(0)model,

®ξ(2)model

)
(21)

represents the theoretical correlation function whose compo-
nents are given in Eqs. 16-17, while ®ξobs corresponds to the
observed monopole and quadrupole 2PCFs, both grouped in
a vector depending on the comoving distance. The Ψ term
above is the precision matrix defined as:

Ψ̂ =

(
1 − nb + 1

Nres − 1

) (
Ĉ ◦ T

)−1
◦ T , (22)

where Ĉ is the total assembled covariance matrix:

Ĉ =
©«
Ĉξ0ξ0 Ĉξ0ξ2

ĈT
ξ0ξ2

Ĉξ2ξ2

ª®®¬ . (23)

The first term in parenthesis in Eq. 22 is the Hartlap factor
(Hartlap et al. 2006), which corrects from the bias intro-
duced in the covariance matrix by the limited number of
jackknife resamplings and 2PCF bins. In Tab. 2, we report
the values of the Hartlap factor as a function of the number
of jackknife resamplings and bins used in our analysis.

The quantity T in Eq. 22 is the tapering correction
(Kaufman et al. 2008) that minimises the noise in the off-
diagonal terms of the covariance matrix; for further details
see also Favole et al. (2019). In this work, we assume a ta-
pering parameter Tp = 500 h−1Mpc to ensure that the entire
covariance matrix is positive semi-definite and the noise in
the off-diagonal terms is minimised. In Sec. 6, we test how a
variation in the tapering parameter affects the results for α
and its uncertainty. Further details on the dependence of α
on Tp are addressed also in Paz & Sánchez (2015).

6 https://emcee.readthedocs.io/en/stable/
7 https://github.com/javiersilvalafaurie/BTCosmo

nb NJK Hartlap factor

10 20 0.42105
20 50 0.57143

20 100 0.78788

20 200 0.89447

Table 2. Values of the Hartlap factor (Hartlap et al. 2006) as a

function of the number of bins nb and jackknife resamplings NJK
used in our analysis.

6 RESULTS

In Fig. 1 we present the BOSS CMASS monopole and
quadrupole two-point auto-correlation functions compared
to the mean predictions from the 200 log-normal light-cones.
The CMASS error bars are inferred from the jackknife co-
variances based on the four configurations shown in Tab. 1
coupled with two different binning schemes (see Sec. 3.1). For
the LCs, we show the dispersion obtained from the 200 re-
alisations without jackknife resampling. The LCs reproduce
the BAO peak well, but differ from the CMASS measure-
ments in the broadband shape. The LC monopole prediction
tends to overestimate the observed clustering amplitude at
s . 60 h−1Mpc and to underestimate it beyond BAO scales.
The systematic difference in shape will be accounted for by
the nusiance parameters in the model and so will not influ-
ence the analysis of the α shift parameter. We also overplot
the analytic 2PCF model used in our MCMC algorithm to
estimate the α BAO parameter (Sec. 5). The best-fit ana-
lytic model is in good agreement with the CMASS multipole
measurements on all scales.

In Fig. 2 we display the normalised covariance of the
monopole and quadrupole from the 200 log-normal light-
cones, in 20 s bins, built in Sec. 4.1, without jackknife re-
samplings. The matrix is normalised as Cnorm

ij = Cij/
√

Cii Cjj,

with Cij given in Eq. 12.
Fig. 3 compares the normalised covariances obtained by

performing jackknife resampling on a light-cone (upper tri-
angles) versus BOSS CMASS data (lower triangles). From
top to bottom, we present the 20, 50, 100 and 200 jackknife
configurations listed in Tab. 1, respectively coupled with 10,
20, 20, 20 linear bins in s (see Sec. 3). The normalisation is
calculated as described in Fig. 2, with Cij given by Eq. 7 for
CMASS data and by Eq. 12 for the light-cone covariance es-
timate without jackknife resampling. It is evident that the
noise in the covariance estimate is reduced as the number of
resamplings is increased. The covariances from 200 jackknife
resamplings with 20 bins on a light-cone and on CMASS ob-
servations are consistent with the result from the 200 LCs
without jackknife shown in Fig. 2. These covariances lead to
consistent error bars on the galaxy clustering multipoles, as
shown in Fig. 1.

The top panel of Fig. 4 shows, as a function of the scale,
the ratio of the uncertainties obtained from CMASS jack-
knife covariances and from 200 light-cones without jack-
knife resampling. The results for the monopole and the
quadrupole are shown as solid and dashed lines, respectively.
We remind the reader that the 200, 100 and 50 JK config-
urations are measured in 20 s bins, while the 20 JK case
in 10 bins. The combined action of the jackknife size, num-
ber and binning is what determines the level of noise in
the covariances. The 20 JK bins scheme leads to the largest
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Figure 1. Monopole (top) and quadrupole (bottom) auto-

correlation functions of the BOSS CMASS galaxies (markers)
computed using two different binning schemes (20 and 10 lin-

ear bins in s) coupled with the jackknife configurations given in

Table 1 for the error estimation (200, 100, 50, 20 resamplings). We
overplot the mean ±σ values from the 200 log-normal light-cones

(Sec. 4.1) as orange lines with the 1σ uncertainty as shaded area.
The analytic best-fit models to the CMASS measurements that

we use to estimate the α shift parameter (see Sec. 4.2) are shown

as dashed purple curves.

fluctuations in the σ estimate due to having relatively few
jackknife resamplings available. However, doing only 10 bins
instead of 20 helps to partially mitigate these fluctuations.

On small scales, the errors from CMASS resamplings
shown in the top panel of Fig. 4 are underestimated with
respect to the LCs by up to ∼ 40% for both monopole
and quadrupole. Around 130 h−1Mpc, the monopole errors
from CMASS covariances are ∼ 10 − 50% larger than those
from 200 light-cones, and the discrepancy increases with
the number of resamplings. Compared to the monopole, the
quadrupole shows smaller fluctuations in the 1σ ratio shown
in the top panel of Fig. 4.

The amplitude of the quadrupole 20 JK result is ∼
10− 20% lower than the others on scales below 150 h−1Mpc,
while the monopole is lower than the rest only beyond
100 h−1Mpc. As expected, the 20 and 50 jackknife schemes
return the largest fluctuations. Although larger jackknife re-
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Figure 2. Normalised monopole and quadrupole auto- and cross-
covariances obtained from the 200 log-normal light-cones without

jackknife resampling. The normalisation is computed as Cnorm
ij =

Cij/
√
Cii Cjj, where Cij is given in Eq. 12. The mean value and 1σ

dispersion of these mocks are shown in Fig. 1 as a solid line with

the corresponding shaded region.

gions with greater independence may give a more accurate
covariance estimate, the uncertainty on the covariance is
large due to having few resamplings available. In the 20 JK
scheme coupled with 10 s bins, the large fluctuations due to
a limited number of resamplings are partially mitigated by
the smaller number of bins compared to the other cases.

In the bottom panel of Fig. 4, we display the ratio of the
uncertainties obtained by performing jackknife resampling
on one of the light-cones and those from 200 LCs without
jackknife. For the 20 JK case, we show the results from two
different light-cone realisations (blue and turquoise lines) to
highlight the significant uncertainty in the covariance esti-
mate, which we expect to be high in this case. Compared to
the ratio of CMASS jackknife to 200 LCs shown in the upper
panel, overall here we find smaller fluctuations and a flatter
trend. Again, the 20 and 50 JK configurations are the ones
exhibiting the largest fluctuations due to the limited number
of resamplings.

Out to BAO scales, the errors from jackknife resampling
on the LC are overestimated by up to ∼ 30% for both the
monopole and quadrupole. Beyond 110 h−1Mpc, the error
estimates fluctuate significantly, but tend to indicate over-
estimation by ∼ 50%. Those from 50 and 20 JK also main-
tain a growing trend, but with even larger fluctuations due
to the smaller number of resamplings. Beyond BAO scales,
the quadrupole errors tend to decrease such that the JK
estimates agree with the covariance computed from 200 in-
dependent realizations.

Overall, we find strong consistency between the uncer-
tainties based on covariances computed either performing
jackknife re-sampling on CMASS data, or on a light-cone
with the same volume of CMASS, or from 200 LC realisa-
tions without jackknife. In general, with respect to the 200
LCs without jackknife, which represent the “ideal”case, the
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Figure 3. Normalised covariances obtained from jackknife resam-

pling performed on a light-cone (upper triangles) and on BOSS

CMASS data (lower triangles). From top to bottom we display
the 20, 50, 100 and 200 jackknife configurations coupled with two

binning schemes.

40 60 80 100 120 140 160 180

s (h−1Mpc)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

σ
C

M
A

S
S

J
K

/σ
20

0
L

C
w
/o

J
K

solid : ξ0

dashed : ξ2

200 JK

100 JK

50 JK

20 JK

40 60 80 100 120 140 160 180

s (h−1Mpc)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

σ
1

L
C

J
K
/σ

20
0

L
C

w
/o

J
K

solid : ξ0

dashed : ξ2

200 JK

100 JK

50 JK

20 JK

20 JK?

Figure 4. Top: Ratios of the 1σ uncertainties obtained from

the CMASS jackknife covariances and the 200 LCs without JK.
The solid (dashed) lines correspond to the monopole (quadrupole)

measurements. Bottom: Ratios of the 1σ errors obtained by ap-

plying jackknife to one of the light-cones and those from 200 LCs
without jackknife. For the 20 JK LC scheme we show two differ-

ent light-cone realisations (blue and turquoise lines). We remind
the reader that the 200, 100 and 50 JK configurations are coupled

with 20 s bins, while the 20 JK case with 10 bins. The horizontal

dotted lines are shown to help the comparison.

monopole errors from CMASS JK are underestimated on
small scales and overestimated beyond ∼ 80 h−1Mpc, while
those from jackknife on a light-cone are overestimated on all
scales. For the quadrupole, the CMASS JK errors are over-
all underestimated compared to 200 LCs, while those from
jackknife resampling on a LC are overestimated. All these
discrepancies remain within 30% in most cases.

We next consider how the covariance of the correlation
function propagates to the error on the α shift parameter.
Fig. 5 compares the values of the α shift parameter and cor-
responding uncertainties inferred from (i) the BOSS CMASS
jackkife covariances, (ii) the log-normal light-cone jackknife
covariances, and (iii) the covariance from 200 LCs with-
out jackknife. The specific values are reported in Tab. 3. All
these results assume a tapering parameter Tp = 500 which
we found to be optimal. For the 20 JK/10 bins scheme ap-
plied to the light-cone we show two different LC realisations

MNRAS 000, 1–11 (0000)
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α

BOSS CMASS log-normal LC

200 JK, 20 bins: 0.974+0.022
−0.020 0.974+0.016

−0.014

100 JK, 20 bins: 0.978+0.017
−0.017 0.973+0.011

−0.011

50 JK, 20 bins: 0.973+0.011
−0.011 0.966+0.010

−0.010

20 JK, 10 bins: 0.980+0.019
−0.018 0.996+0.021

−0.016

20 JK, 10 bins*: 0.985+0.013
−0.013

200 LCs w/o JK, 20 bins: 0.992+0.010
−0.009

Table 3. Estimates of the α shift parameter and its uncertainty
obtained from the four jackknife configurations coupled with two

binning schemes applied to both CMASS data and a log-normal

lightcone. The last row shows the result obtained from the covari-
ances of the 200 LCs without performing jackknife resampling.

All these results here assume an optimal tapering parameter of

Tp = 500. These results are shown in Fig. 5.

to highlight the fluctuations that the α uncertainty can suf-
fer due to the small number of resamplings. Overall, we find
good agreement between the results based on covariances
from jackknife, both applied to CMASS observations and
LCs. For the LC results, we use the same realisation for all
the jackknife configurations except the second 20 JK case,
indicated with a star symbol, in which we test a different re-
alisation. The 200 LC result without jackknife is consistent
with the JK outcomes, despite the difference in the pre-
factor of their covariances (Eqs. 7,12) and the lower level of
noise in their off-diagonal terms (see Fig. 2).

The uncertainties on α are all in agreement with each
other, independently from the number/size of jackknife re-
samplings adopted. The average errors obtained from 200,
100 and 50 JK resamplings (i.e. the most robust ones) per-
formed on CMASS data and a light-cone are ∼ 1.6% and
∼ 1.2%, respectively. That from the 200 LC covariances with-
out jackknife is ∼ 0.95%. This latter case is “ideal”since the
200 LCs are all independent (but we do not expect the log-
normal catalogs to capture the full covariance of the CMASS
galaxy sample). The 50 and 20 JK schemes are the ones re-
turning the largest fluctuations in the covariances, which can
result in errors on α as large as ∼ 2.1%. In order to precisely
estimate the effect of the fluctuations in the 20 JK case, one
should repeat the resamplings on many different LC realisa-
tions, but this goes beyond the scope of our analysis.

Despite the large fluctuations observed in the 20 JK con-
figurations, the constraints on alpha in some cases show that
the error bars tend to reduce when the jackknife size in-
creases. However, the trend depends on the tapering scheme
and further trials on mocks are required to determine if this
trend is real or not.

Fig. 6 shows the dependence of α and its uncertainty on
the tapering parameter, Tp. In the top panel, we show the
results from the 200 light-cones and from jackknife applied
to one of the LCs; in the bottom panel we show the CMASS
jackknife outcomes. In both cases, we have run the MCMC
chains assuming Tp = [50, 100, 300, 500, 700]. In the plots we

0.95 0.97 0.99 1.01 1.03

α

20 JK 1 LC?

20 JK 1 LC

20 JK CMASS

50 JK 1 LC

50 JK CMASS

100 JK 1 LC

100 JK CMASS

200 JK 1 LC

200 JK CMASS

200 LCs w/o JK

Figure 5. Summary of the α shift parameters obtained from
the covariances calculated using the jackknife configurations and

binning schemes reported in Table 3. The points are color-coded

as in Fig. 1, where each colour corresponds to a different jack-
knife/binning scheme. The results from CMASS are represented

by dots, those from LCs by squares. The vertical line shows the

value α = 1 to help the comparison. For the 20 JK case applied to
a LC, we show two different LC realisations, one of them indicated

with a star symbol (turquoise), to highlight how the 1σ error can

fluctuate due to the small number of resamplings. All these results
are calculated assuming a tapering parameter Tp = 500.

offset the tapering values by a multiplicative factor to avoid
crowding (see caption of Fig. 6). The optimal value, which
provides errors on α of ∼ 1 − 2%, turns out to be Tp = 500.
In this way, our BOSS CMASS α estimates are comparable
with previous results in the literature (pre-reconstruction,
e.g. Ross et al. 2016; Pearson & Samushia 2018).

The 20 JK configuration shows the largest fluctuations
due to the limited number of resamplings. We have further
tested our MCMC code without including any tapering cor-
rection and leaving only the Hartlap factor. In this case
we find that the covariances from 20 JK resamplings are no
longer semi-positive definite, meaning that they are not in-
vertible, hence not useful for assembling the precision matrix
needed to estimate α. Such a result confirms that jackknife
configurations with few cells tend to provide non robust co-
variance estimates.

7 DISCUSSION AND SUMMARY

We have studied the impact of choosing different sizes and
numbers of jackknife resamplings on the accuracy of the co-
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Figure 6. Shift parameter α and its uncertainty as a func-

tion of the tapering parameter Tp. Top: results from covari-

ances computed from 200 light-cones without jackknife and
from jackknife performed on a LC. We have offset the Tp val-
ues on the x-axis by multiplying them, from left to right, by

[0.75, 0.80, 0.85, 0.90, 0.95, 1.0]. Bottom: results from CMASS jack-
knife resampling. The Tp values have been offset by multiplying

them, from left to right, by [0.80, 0.85, 0.90, 0.95, 1.0].

variance estimates and the α shift parameter. To this pur-
pose, we have measured the first two even multipoles of the
BOSS CMASS DR12 galaxy sample at 0.43 < z < 0.7 and we
have modelled the results both using a set of 200 log-normal
light-cones (Sec. 4.1) and an analytic approach (Sec. 4.2). We
have computed their covariances using 200, 100, 50 and 20
jackknife resamplings coupled with two binning schemes: 20
or 10 linear bins in 24 < s < 184 h−1Mpc, with 120 linear bins
in 0 < µ < 1 (see Sec. 3). We have compared the results with
the covariances obtained from the 200 log-normal light-cones
without jackknife. We have then applied the same jackknife
configurations above on one of the light-cones to derive LC
JK covariances directly comparable with the CMASS ones.

From these different covariance matrices we have de-
rived corresponding precision matrices (Sec. 5), which we
have used as inputs for our Monte Carlo Markov Chain to es-
timate the baryon acoustic scale through the α shift param-
eter and its uncertainty. Our main findings are summarised
in what follows:

• We find good consistency between the covariances ob-
tained from CMASS and LC jackknife resamplings, and from
200 LCs without jackknife resampling. This leads to consis-
tent error bars in both the galaxy clustering measurements
and the α shift parameter.

• We find no evidence for a bias in the inferred value of
α or its error when the jackknife cell size is smaller than the
maximum 2PCF scale measured. However, with few resam-
plings available the error estimate becomes unreliable.

• We have demonstrated that it is useful to apply the
Hartlap factor and the tapering scheme to estimate the pre-
cision matrix with jackknife resampling. The α shift param-
eter estimated either from CMASS or LC jackknife covari-
ances, or from 200 light-cones without jackknife, are all con-
sistent between each other and with previous BOSS CMASS
DR12 results from galaxy clustering pre-reconstruction anal-
ysis (Ross et al. 2016). We find uncertainties on α of 1-
2%, depending on the jackknife size/ 2PCF binning scheme
adopted. This confirms that the jackknife methodology ap-
plied to both observations and mocks produces a comparable
level of noise in the covariance estimates. This noise is then
reduced in the precision matrix by applying the tapering
correction (see Sec. 5).

• We have tested different values for the tapering parame-
ter, in the range 50 6 Tp 6 700, to maximise the accuracy in
the α shift parameter estimation. We find that the optimal
value is Tp = 500. By lowering it, the noise in the precision
matrix estimate is suppressed but the error on α grows.

To summarise, performing jackknife resamplings either
on BOSS CMASS DR12 data or on a log-normal light-cone
with the same CMASS volume provides covariances that are
consistent with those obtained from a set of 200 independent
log-normal LCs and with previous results in the literature
(Ross et al. 2016). These covariances lead to α estimates with
1-2% uncertainties, depending on the jackknife size/2PCF
binning scheme assumed.

The largest differences between covariance estimates
from jackknife resampling and 200 log-normal light-cones
without JK are visible in the off-diagonal terms. Here the
jackknife results exhibit a higher level of noise. This dif-
ference is key for determining the accuracy of the α shift
parameter. The action of the tapering correction (Sec. 5) is
to considerably reduce this noise returning comparable un-
certainties on α from all of the different covariance estimates
tested.

Although previous works limit the jackknife scale to
larger than the measured 2PCF scale (e.g. Beutler et al.
2011; Hong et al. 2016), we find that this is not essen-
tial. In fact, when using jackknife to estimate covariances,
one should prioritise building a large number of resamplings
rather than choosing a jackknife size larger than the max-
imum galaxy clustering scale measured. In fact, especially
when studying BAO scales, by requiring SJK > max(s), we
are able to build only few wide jackknife regions, which leads
to large uncertainties in the error estimates. In our results
we do see a trend that the α error bars tend to reduce as
the jackknife size increases, but it is not seen in all taper-
ing configurations and we do not have sufficient statistics to
confirm whether it is real or not.

The new generation of cosmological surveys, such as
DESI, Euclid or LSST, will span larger volumes compared to

MNRAS 000, 1–11 (0000)
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SDSS-III/BOSS. The precision in their covariance estimates
based on jackknife will be determined by the number of re-
samplings. We find that it is not essential to use jackknife
sizes larger than the BAO scale, and so it will be possible to
achieve N > 103 resamplings to reach percent level precision
on the error of cosmological parameters using the jackknife
approach. In a followup work, we will address the feasibility
of inferring accurate covariance estimates for a survey such
as Euclid using a large number of jackknife resamplings.
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Ivezić Ž., Kahn S. M., Tyson J. A., et al., 2019, ApJ, 873, 111

Izard A., Crocce M., Fosalba P., 2016, MNRAS, 459, 3, 2327

Kauffmann G., White S. D. M., Guiderdoni B., 1993, MNRAS,

264, 201

Kaufman C. G., Schervish M. J., Nychka D. W., 2008, Journal of

the American Statistical Association, 103, 484, 1545
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